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Abstract There is a long-standing anomaly in the ratio
of the decay width for ψ(3770) → D0D0 to that for
ψ(3770) → D+D− at the level of 9.5 σ . A similar anomaly
exists for the ratio of φ(1020) → K 0

LK
0
S to φ(1020) →

K+K− at 2.1 σ . In this study, we reassess the anomaly
through the lens of a Gaussian wave-packet formalism. Our
comprehensive calculations include the localization of the
overlap of the wave packets near the mass thresholds and
the composite nature of the initial-state vector mesons. The
results align within a ∼ 1σ confidence level with the Parti-
cle Data Group’s central values for a physically reasonable
value of the form-factor parameter, indicating a resolution
to these anomalies. We also check the deviation of a wave-
packet resonance from the Briet–Wigner shape and find that
wide ranges of the wave-packet size are consistent with the
experimental data.
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1 Introduction

There is a long-standing anomaly (discrepancy between
experimental and theoretical results) in the ratio of the decay
width for ψ(3770) → D0D0 to that for ψ(3770) →
D+D−. A similar but weaker anomaly exists for the ratio
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of φ(1020) → K 0
LK

0
S to φ(1020) → K+K−. On the other

hand, the ratio of ϒ(4S) → B+B− to ϒ(4S) → B0B0 is
consistent with the standard theoretical predictions.

At the quark level, these processes are1

φ(ss) → K+(us̄) K−(sū) ,

ψ(cc) → D+(cd
)
D−(dc) ,

ϒ
(
bb
)→ B+(ub

)
B−(bū) ,

φ(ss) → K 0(ds̄) K 0
(
sd̄
)→ K 0

LK
0
S,

ψ(cc) → D0(cu) D0(uc) ,

ϒ
(
bb
)→ B0(db

)
B0
(
bd
)
,

which can be summarized as V
(
QQ

)→ P(Qq) + P
(
qQ
)
,

where V and P are vector and pseudo-scalar mesons, respec-
tively, and Q and q are heavy (s, c, b) and light (u, d) quarks,
respectively. This ratio of decay widths is theoretically clean
because most of the quantum chromodynamics (QCD) cor-
rections cancel out between the numerator and the denomi-
nator. These decay processes are via strong interaction, and
hence in the limit of exact isospin symmetry u ↔ d, the ratio
becomes unity. The isospin violation makes a deviation from
unity.

We name the ratio of the widths as2

Rφ := �
(
φ → K+K−)

�
(
φ → K 0

LK
0
S

) ,

Rψ := �
(
ψ → D+D−)

�
(
ψ → D0D0

) ,

Rϒ := �
(
ϒ → B+B−)

�
(
ϒ → B0B0

) . (1)

The experimental results are combined by the Particle Data
Group (PDG) [1]:3

RPDG
φ = 1.45 ± 0.03,

1 Here and hereafter, we omit (3770), (1020), and (4S). ϒ(4S) is some-
times written as ϒ(10580). We do not distinguish the weak-interaction
eigenstates K 0K 0 and the mass eigenstates K 0

LK
0
S , neglecting the small

CP-violation effects. Other processes have even smaller CP-violation
effects, and we neglect them too.
2 In the original Ref. [1], the first two of Eq. (2) are given in its inverse

(
R−1

φ

)
PDG = 0.690 ± 0.015,

(
R−1

ψ

)
PDG = 1.253 ± 0.016,

and we have inverted them in Eq. (2). In the theoretical literature, the
ratio (1) of charged to neutral modes is mainly used, and we follow it
for ease of comparison.
3 In the evaluation of Rϒ = 1.058 ± 0.024 [1], the following
isospin symmetry among, e.g., B0 → J/ψ KS and B+ → J/ψ K+
is assumed. The extent to which the isospin symmetry is valid in
hadronic decays is debatable (private communication with Dr. Aki-
masa Ishikawa).

RPDG
ψ = 0.798 ± 0.010,

RPDG
ϒ = 1.058 ± 0.024. (2)

The theoretical prediction of the decay rates for V →
P+P− and V → P0P0 is based on the plane-wave for-
malism so far. The tree-level result of the chiral perturbation
theory reads

Rplane
V = g2

V+
g2
V0

(
m2

V − 4m2
P+

m2
V − 4m2

P0

)3/2

, (3)

where gV+ (gV0) is the coupling between V and P+P−
(P0P0) andmV ,mP+ , andmP0 are the masses of V , P+, and
P0, respectively. Even if we assume an isospin-symmetric
coupling gV+ = gV0, the difference in the pseudo-scalar-
meson masses mP+ �= mP0 results in a deviation in RV from
unity: Putting the mass values in Ref. [1],4 we obtain

Rplane
φ = g2

φ+
g2
φ0

(1.5156 ± 0.0033) ,

Rplane
ψ = g2

ψ+
g2
ψ0

(0.6915 ± 0.0046) ,

Rplane
ϒ = g2

ϒ+
g2
ϒ0

(1.047 ± 0.026) . (4)

Comparing Eqs. (2) and (4), we see that the isospin-
symmetric limit for the coupling gV+ = gV0 results in the
anomaly at the level of 2.1 σ , 9.5 σ , and 0.32 σ for φ, ψ , and
ϒ , respectively.

We briefly review the theoretical accounts for the anomaly
within plane-wave formalism. For Rφ , it turned out that radia-
tive corrections make the anomaly more significant [2]: The

4 Concretely,

mφ = (1019.461 ± 0.016) MeV,

mψ = (3773.7 ± 0.4) MeV,

mϒ = (10579.4 ± 1.2) MeV,

2mK+ = (987.354 ± 0.032) MeV,

2mD+ = (3739.32 ± 0.10) MeV,

2mB+ = (10558.7 ± 0.24) MeV,

2mK 0 = (995.222 ± 0.026) MeV,

2mD0 = (3729.68 ± 0.10) MeV,

2mB0 = (10559.3 ± 0.24) MeV,

assuming the standard error propagation for the twice pseudo-scalar
mass. The total decay widths are

�φ = (4.249 ± 0.013) MeV,

�ψ = (27.2 ± 1.0) MeV,

�ϒ = (20.5 ± 2.5) MeV.
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standard quantum electrodynamics (QED) corrections make
the theoretical prediction of the ratio 4 % larger, and isospin-
breaking corrections to the ratio g2

φ+/g2
φ0 further make it

“some 2 %” [2] larger, leading to a larger anomaly of roughly
5.2 σ assuming that the error is dominated by that in Eq. (2).
In Ref. [3], the authors introduce a smeared decay rate that
is a function of the energy difference between the initial and
final plane-wave states; this smearing is by the Lorentzian
distribution due to the inclusion of the width and by a phe-
nomenological form factor put by hand to regularize an ultra-
violet (UV) divergence; the anomaly for φ can be explained
with a mass parameter M � 1.5 GeV in the phenomenolog-
ical form factor. In Ref. [4], the authors have estimated the
effects of the electromagnetic structure of kaons and other
model-dependent contributions to the radiative corrections,
and the resultant corrections have turned out to be tiny. In Ref.
[5], two (a Breit–Wigner and a nonrelativistic Lorentzian)
types of averaged decay widths over the initial-state energy
are introduced with two phenomenologically chosen energy
intervals, 1.010–1.060 GeV and 1.000–1.100 GeV, to relax
the anomaly.

For Rψ , another type of averaged decay width is intro-
duced in Ref. [6], and the resultant anomaly has become
even more significant. There is no explanation for this 9.5 σ

anomaly so far.
The above smearing/averaging over the energy provides

significant effects because the decay V → PP is near the
threshold mV � 2mP . In situations near the threshold, it
is desirable to treat the decay more rigorously by using
wave packets for the initial and final states. Recall that the
S-matrix in the plane-wave formalism contains the energy-
momentum-conserving delta function and is theoretically ill-
defined when computing the probability rather than the rate.
A well-defined decay probability can be calculated only as a
transition from a wave packet to a pair of wave packets. This
is theoretically more reliable.

In the previous analyses [3–5], it has been assumed that
the transition processes are described by the (plane-wave)
rates alone.5 In this paper, we present an analysis based on
the transition probability of the normalized states and wave
packets, without the divergence of the delta function squared.
Concretely, we compute the decay V → PP in the Gaussian
wave-packet formalism [9–13]; see also Refs. [14–16].6 In
particular, we include a wave packet effect, called the in-time-
boundary effect for the decay, by simply limiting the time
integral of the decay interaction point to t > Tin [10]. Here,
Tin is the time from which the interaction is switched on. This
procedure is proven to provide approximate modeling of the

5 See also Refs. [7,8] for nonstandard approaches within the plane-
wave formalisms.
6 There is an ongoing experimental project directly to confirm this
wave-packet effect [17,18]; see also Ref. [19].

full production process of V in the corresponding two-to-two
wave-packet scattering, say, e+e− → V → PP [13]; see
also Refs. [11,12,20–24] for related discussions.

The organization of this paper is as follows: In Sect. 2,
we will introduce the minimum basics of calculating the
(generalized) S-matrix that describes wave-packet-to-wave-
packet transitions considering the initial state’s decaying
nature when wave packets take the Gaussian form. In Sect. 3,
we will review significant properties of the Gaussian wave-
packet S-matrix. In Sect. 4, we will compare the theoretical
predictions for the ratios of Rφ , Rψ , and Rϒ in the wave-
packet and the plane-wave formalisms taking into account
the form factor of the vector mesons. In Sect. 5, we will dis-
cuss the constraint from the resonant shape in the electron
positron collider experiments for φ and ψ . In Sect. 6, we will
provide a summary and further discussions. In Appendix A,
we will review the form factor details for vector mesons used
for our analysis. In Appendix B, we will provide the details
on how to derive the total probability of V → PP under non-
relativistic approximations. In Appendix C, a brief review on
how to derive the plane-wave decay rate for V → PP will be
provided. In Appendix D, we will comment on a specific for-
mal limit where the wave-packet decay rate coincides with
the plane-wave decay rate. In Appendix E, we will briefly
consider the isospin violation on the ρ system.

2 Basics of Gaussian wave-packet formalism

For the near-threshold decay, the velocities in the final state
are small, and the overlap of the wave packets becomes more
significant in general. Therefore, it is important to take them
into account.

Here, we spell out how to compute the probability for
the V → PP decay in the Gaussian wave-packet formal-
ism. Throughout this paper, we work in the natural units
h̄ = c = 1. Readers who are more interested in analyses of
experimental results rather than detailed theoretical formu-
lation may skim through this section.

2.1 Wave-packet S-matrix

In the Gaussian wave-packet formalism, a transition from an
initial wave-packet state |WP0〉 to a two-body final wave-
packet state |WP1,WP2〉 is characterized by the following
generalized S-matrix [9]:

SWP0→WP1WP2 = 〈WP1,WP2| Û (Tout, Tin) |WP0
〉
,

(5)
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where Û describes the unitary time evolution from the initial
time Tin to the final time Tout

Û (Tout, Tin) := T exp

(
−i
∫ Tout

Tin

dt
∫

d3x Ĥ(I)
int(t, x)

)
, (6)

in which T denotes the time ordering, and Ĥ(I)
int is the

interaction Hamiltonian density in the interaction picture.
The local interaction point (t, x) is integrated in the four-
dimensional spacetime. It is noteworthy that the wave-packet
states |WP0〉 and |WP1,WP2〉 are normalizable, and hence
the transition amplitude (5) is finite, unlike in the ordinary
plane-wave formalism.7 Through the Dyson series expansion
of Û (Tout, Tin), a perturbative S-matrix can be systematically
constructed at any order of perturbation using Wick’s theo-
rem, as in the plane-wave case [11]. Throughout this paper,
the subscripts 0, 1, and 2 denote V , P , and P , respectively.

A free Gaussian wave packet is characterized by a set of
parameters

{
m, σ, X0, X, P

}
, where m is the mass; σ is the

width squared; and X0 is a reference time at which the wave
packet takes the Gaussian form with the central values of the
peak position X and momentum P .

Within the chiral perturbation theory, the effective inter-
action Hamiltonian density is

Ĥ(I)
int,eff = igV+Vμ

[P+∂μP− − P−∂μP+]

+ igV0Vμ
[
P0∂μP0 − P0∂μP0

]
, (7)

where V , P±, P0, and P0 are the fields representing the
vector meson, the charged pseudo-scalar mesons, the neutral
pseudo-scalar meson, and its antiparticle, respectively, and
gV+ and gV0 are the vector-meson effective couplings to
the charged pseudo-scalars and to the neutral pseudo-scalars,
respectively. In this paper, we take the isospin-symmetric
limit

gV+ = gV0 (=: gV ), (8)

with which the effective coupling geff takes the form in the
momentum space

geff(λ0, P0, P1, P2) := gV εμ(P0, λ0)
(
Pμ

1 − Pμ
2

)
, (9)

where P0, P1, and P2 are the four-momenta of the vector
meson V , the pseudo-scalar meson P , and its antiparticle P ,
respectively, and εμ is the polarization vector of the vector
meson with λ0 being its helicity.8

7 See the “Discussion” subsection in Ref. [13] for further discussion.
8 In Eq. (9), P0 = (

Pμ
0

)
μ=0,...,3 = (

P0
0 , P0

)
stands for the four-

momentum of V , with its subscript denoting the initial particle. We use
the same letter P0 for the particle label of the neutral pseudo-scalar,

In this paper, we investigate the transition from an off-
shell initial state for V to an on-shell final state for PP ,
having an off-shell energy Ẽ0 and on-shell ones E1, E2,
respectively:9

Ẽ0 :=
√
m2

V + P2
0 − i �VmV

=
√
E2

0 − i �VmV � E0 − i
mV

2E0
�V ,

E1 :=
√
m2

P + P2
1,

E2 :=
√
m2

P + P2
2, (10)

where mV and mP are the masses of V and P , respectively;

E0 :=
√
m2

V + P2
0 is the on-shell energy of V ; and �V is the

“decay width” of V , or more precisely, the imaginary part
of its plane-wave propagator divided by mV ; see Ref. [13]
for detailed discussion, and see also footnote 13. Throughout
this paper, we take the narrow width approximation for �V

as in Eq. (10).10 Here, the off-shell V should eventually be
regarded as an intermediate state for a scattering process that
includes the production of V , which necessarily introduces
the in-time-boundary effect appearing below.

Their wave functions take the form

fV (x) := NV

(σ0

π

)3/4
(

π

σ0

)3/2

× 1
√

2P0
0 (2π)3/2

e
i P0·(x−X0)− (x−�0(t))

2

2σ0

∣∣∣∣
P0

0 =Ẽ0

,

fP (x) :=
(σ1

π

)3/4
(

π

σ1

)3/2

× 1
√

2P0
1 (2π)3/2

e
i P1·(x−X1)− (x−�1(t))

2

2σ1

∣∣∣
∣
P0

1 =E1

,

fP (x) :=
(σ2

π

)3/4
(

π

σ2

)3/2

× 1
√

2P0
2 (2π)3/2

e
i P2·(x−X2)− (x−�2(t))

2

2σ2

∣
∣∣∣
P0

2 =E2

,

(11)

Footnote 8 continued
with its zero denoting its charge. The distinction should be apparent
from the context.
9 This procedure of introducing Ẽ0 is equivalent to the Weisskopf–
Wigner approximation [25,26]. See Ref. [27] for its inclusion in the
Gaussian wave-packet formalism.
10 Theoretically, �V is obtained as the imaginary part of the plane-wave
V propagator at the loop level. See footnote 13.
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where NV is a wave-function (field) renormalization factor
for V due to its off-shellness , 11 and

�A(t) := X A + V A

(
t − X0

A

)
(A = 0, 1, 2) (12)

describes the location of the center of the wave packet at a
time t with the central velocity

V A := P A

EA
. (13)

Now it is straightforward to compute the S-matrix from
Eq. (5) at the leading order in the Dyson series (6) with the
effective Hamiltonian (7) from the wave functions (11) [11]:

SV→PP = igeff(λ0, P0, P1, P2)

×
(

2∏

A=0

1√
2EA

(
1

πσA

)3/4
)

e− σt
2 (δω)2− σs

2 (δP)2− R
2

×
∫ Tout

Tin

dt e− 1
2σt

[t−(T+iσt δω)]2

×
∫

d3x e
− 1

2σs

[
x−
(
X+V t−iσsδP

)]2

× NV e− �V
2 (t−T0) F̃(|V 1 − V 2|) , (14)

where the notation follows Eq. (27) of Ref. [11] (see also
below for a short summary).12 Differences from the previ-
ous calculation [11] are the following four points: First, the
coupling is changed to κ/

√
2 → geff. Second, the “decay

width” of V is included as the phenomenological factor

e− �V
2 (t−T0),13 where T0 := X0

0 is the initial time from which
V starts to exist.14 Third, NV in Eq. (11) is introduced.

11 NV shows a factor that accounts for the possible extra decrease of
the norm of the initial state due to the off-shellness �V > 0. Anyway,
NV will drop out of the final ratio of the decay probabilities.
12 In Eq. (14), we have dropped the overall phase factor which is
irrelevant to the calculation of the probability, while properly taking into

account the real damping factor e− �V
2 (t−T0) coming from the imaginary

part of Ẽ0; see Eq. (11).
13 When one includes the production process in the amplitude, e.g.,
as e+e− → V → PP , the result does not change whether we expand
the complete set of intermediate states of V by the Gaussian-wave-
packet or plane-wave bases; see Sec. 2.3 in Ref. [12]. The imaginary
part mV�V of the plane-wave propagator of V appears through loop
corrections, and when translated to the decay process V → PP , its
effect can be expressed as the phenomenological factor e−�V (t−T0)/2 in
the plane-wave formalism. Here, we also phenomenologically take into
account the exponentially decaying nature of the initial wave packet of
V through the channel that is common to the plane-wave decay, namely,
through the bulk effect that appears below. See also footnote 9.
14 T0 is indeed irrelevant in the sense that the time-translational invari-
ance results in the dependence of the final result only on the difference
Tin −T0. Furthermore, this dependence on Tin −T0 cancels out between
the numerator and denominator of the final ratio of the decay probabil-
ities, as we will see. (Physically, we would expect Tin � T0.)

Fourth, we have included a phenomenological form factor
F̃ due to the composite nature of V :

F̃
(|V 1 − V 2|

) := 1

1 +
(
R0mP |V 1−V 2|

2

)2 , (15)

where R0 describes a typical length scale of the composite-
ness of V ; see Appendix A. The normalization is such that
F̃ becomes unity for V 1 = V 2.

Now we provide a brief introduction to other variables
in the first two lines of (14) (see Sect. 3.1 of [11] for more
details):

• √
σs is a typical spacial size of the region of interaction

σ−1
s :=

2∑

A=0

1

σA
. (16)

• √
σt is a typical temporal size of the interaction region15

σt := σs

�V 2 . (17)

• T is the time of intersection of the three wave packets,

T := σt
V · X − V · X

σs
, (18)

where

XA := �A(0)
(

= X A − V AX
0
A

)
(19)

is the location of the center of each wave packet at our
reference time t = 0. As mentioned above, each wave
packet takes the Gaussian form centered at X A at its ref-
erence time X0

A.
• R is called the overlap exponent, which provides the

exponential suppression when wave packets are sepa-
rated from each other:

R := �X2

σs
− T2

σt
. (20)

15 We adopt the following notation for arbitrary scalar and vector vari-
ables C and C , respectively,

C := σs

2∑

A=0

CA

σA
, C := σs

2∑

A=0

C A

σA
, �C2 := C2 − C

2
.
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Fig. 1 Schematic figure for the finite wave-packet process (left) and
the infinite plane-wave process (right), without taking into account the
decay width �V . In the left, we have shown the time of intersection T;
the spatial and temporal sizes of the overlap

√
σs and

√
σt ; the center

of wave packets �A (A = 0, 1, 2); and the initial and final times of the
scattering Tin and Tout . Also, the bulk Tin 	 t 	 Tout, in-time-boundary
(|t − Tin| � √

σt ), and out-time-boundary (|Tout − t | � √
σt ) regions

are shown. (This panel corresponds to the bulk-like case |T − Tin| 


√
σt ; see Fig. 2.) In the right, the spatial overlap of the plane waves never

decreases in time, and hence the interaction would be never switched
off, and the scattering would be never completed; therefore the extra

damping factor e∓εt
∫

d3x Ĥ(I)
int(t,x) with an infinitesimal ε > 0 is conven-

tionally put by hand for the future and past infinite times t → ±∞,
which is depicted by the damping of the opacity of the orange region.

This factor eventually results in the propagator ∝ (p2 + m2 − iε
)−1

in
the conventional Feynman diagram calculation

• We write the deviation of energy momentum from the
conserved values (for their central values of wave pack-
ets) as

δP := P1 + P2 − P0,

δE := E1 + E2 − E0, δω := δE − V · δP, (21)

where ωA := EA − V · P A is the “shifted energy” of
each packet.

A schematic figure is shown in the left panel of Fig. 1, com-
pared with the plane-wave counterpart in the right.

After the square completion of t and the analytic Gaussian
integration over x in (14), as made in [11], we represent the
S-matrix as

SV→PP = igeffNV

×
(

2∏

A=0

1√
2EA

(
1

πσA

)3/4
)

e− σt
2 (δω)2− σs

2 (δP)2− R
2

× (2πσs)
3/2
√

2πσt G(T)

× e− �V
2 (T−T0+iσt δω)+ �2

V σt
8 F̃(|V 1 − V 2|) , (22)

where the window function G(T) is defined as16

G(T) :=
∫ Tout

Tin

dt√
2πσt

e
− 1

2σt

[
t−
(
T− �V σt

2 +iσt δω
)]2

16 In Eq. (23), T on the right-hand side is replaced from the original
definition of G(T) in [11] as T → T − �V σt

2 .

= 1

2

[

erf

(
T − Tin − �V σt

2 + iσtδω√
2σt

)

−erf

(
T − Tout − �V σt

2 + iσtδω√
2σt

)]

, (23)

with

erf(z) := 2√
π

∫ z

0
e−x2

dx (24)

being the Gauss error function. The window function G(T)

becomes unity for Tin 	 T 	 Tout and zero for T 	 Tin

and for Tout 	 T. For a given configuration of in and out
states, which fixes the value of σt , the time regions Tin 	
t 	 Tout,17 |t − Tin| � √

σt , and |t − Tout| � √
σt are called

the bulk, in-time-boundary, and out-time-boundary regions,
respectively. In the phenomenological analysis below, we
will neglect the out-time-boundary contributions as we will
discuss.

2.2 Differential decay probability

From the S-matrix (22), the differential decay probability can
be derived as

dPV→PP

= d3X1d3P1

(2π)3

d3X2d3P2

(2π)3

∣
∣SV→PP

∣
∣2

17 More precisely, the bulk region is the one satisfying |t − Tin| 
 √
σt

and |Tout − t | 
 √
σt .
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Fig. 2 Schematic figures for two limiting cases |T − Tin| 
 √
σt (left)

and
√

σt 
 �−1
V (right). The case δω 
 σ

−1/2
t is hard to draw in the

position space and is not shown here. The overlap region is determined
by both the initial and final states as in Fig. 1

= |geff|2N 2
V

1

2E0

d3P1

(2π)32E1

d3P2

(2π)32E2
(2π)4

×
(√

σt

π
e−σt (δω)2

)((σs

π

)3/2
e−σs (δP)2

)

×
√

σt

π5

(
σs

σ0σ1σ2

)3

d3X1d3X2e
−R |G(T)|2

× e−�V (T−T0)+ �2
V σt
4
∣∣F̃(|V 1 − V 2|)

∣∣2 , (25)

where we have taken the average over the helicity λ0, which
results in the helicity-averaged effective coupling

|geff|2 := g2
V

3

∑

λ0

∣∣εμ(P0, λ0)
(
Pμ

1 − Pμ
2

)∣∣2

= g2
V

3
(P1 − P2)

2. (26)

Here, the last equality further assumes the vanishing ini-
tial momentum P0 = 0. We will compute the integrated
decay probability under this assumption in Sect. 2.3 and in
Appendix B.

Hereafter, we assume both the following conditions:

∣∣∣T − Tin − �V σt
2 + iσtδω

∣∣∣
√

2σt

 1,

∣∣∣T − Tout − �V σt
2 + iσtδω

∣∣∣
√

2σt

 1. (27)

Physically, each of these conditions is satisfied when at least
one of the following three conditions is met:

• |T − Tin| 
 √
σt (or |T − Tout| 
 √

σt ) when the inter-
action timeT is apart enough from Tin (or Tout) compared

to the temporal width of the overlap
√

σt , which typically
corresponds to the “bulk-like” case (Fig. 2, left);

• √
σt 
 �−1

V when the “mean lifetime through bulk
effect” �−1

V is much shorter than the temporal width of
the overlap region

√
σt , which typically corresponds to

the so-to-say “decay within wave-packet overlap” case
(Fig. 2, right);

• δω 
 σ
−1/2
t when the deviation from the conservation

of the shifted energy, δω, is much larger than the inverse
of the temporal width of the overlap 1/

√
σt , namely, the

“violation of shifted energy” case.

This assumption (27) is made for simplicity, and there is no
obstacle to using the full form (23) in the numerical com-
putation in principle, but the result would remain the same
approximately because this is satisfied anyway in the ordi-
nary bulk-like case and when anything interesting happens
around the (in-)time boundary.

Under the assumption (27), the following asymptotic form
is obtained [11]:

G(T) � W (T)

− 1

2
e
−
(
T−Tin− �V σt

2

)2

2σt
+ σt

2 (δω)2−iδω
(
T−Tin− �V σt

2

)

×
√

2σt

π

1

T − Tin − �V σt
2 + iσtδω

+ 1

2
e
−
(
T− �V σt

2 −Tout

)2

2σt
+ σt

2 (δω)2−iδω
(
T− �V σt

2 −Tout

)

×
√

2σt

π

1

T − Tout − �V σt
2 + iσtδω

, (28)

where we have defined the “bulk window function”

W (T) := 1

2

[

sgn

(
T − Tin − �V σt

2 + iσtδω√
2σt

)

−sgn

(
T − Tout − �V σt

2 + iσtδω√
2σt

)]

, (29)

in which the sign function for a complex variable is

sgn(z) :=

⎧
⎪⎨

⎪⎩

+1 for �z > 0 or (�z = 0 and �z > 0),

−1 for �z < 0 or (�z = 0 and �z < 0),

0 for z = 0.

(30)

Here and hereafter, � and � denote the real and imagi-
nary parts, respectively. Equation (29) describes the ordinary
“bulk contribution” for the quantum transition from the in to
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out states in the time period [Tin, Tout]. The second and third
terms of Eq. (28) show the contributions near the in and out
time boundaries Tin and Tout, respectively. More explicitly,18

W (T) =
{

1 (Tin + �V σt
2 < T < Tout + �V σt

2 ),

0 otherwise.
(31)

Because the contribution from the out-time-boundaryT �
Tout is suppressed by the extra dumping factor e−�V (T−T0)

in the differential probability (25),19 it is safe to neglect the
out-time-boundary contribution, and we can take

Tout → +∞, (32)

with which the second line in Eq. (28) goes down to zero.
With this limit, |G(T)|2 reads

|G(T)|2 → [GG]bulk (T) + [GG]bdry (T) + [GG]intf (T),

(33)

where

[GG]bulk (T) := ∣∣W (T)
∣∣2, (34)

[GG]bdry (T) := 1

4
e−

(
T−Tin− �V σt

2

)2

σt
+σt (δω)2 2σt

π

× 1
(
T − Tin − �V σt

2

)2 + (σtδω)2
, (35)

[GG]intf (T) := −W (T)

2
e−

(
T−Tin− �V σt

2

)2

2σt
+ σt

2 (δω)2
√

2σt

π

×
⎧
⎨

⎩
e
−iδω

(
T−Tin− �V σt

2

)

T − Tin − �V σt
2 + iσtδω

+ e
+iδω

(
T−Tin− �V σt

2

)

T − Tin − �V σt
2 − iσtδω

⎫
⎬

⎭
. (36)

The three functions [GG]bulk, [GG]bdry, and [GG]intf describe
the square of the bulk term, the square of the in-time-
boundary term, and the interference between the bulk and
in-boundary terms, respectively.

With the approximation (27) and the limit (32), the dif-
ferential probability (25) takes the simpler form and can be
classified into the following three parts:

dPV→PP = dPbulk
V→PP

+ dPbdry
V→PP

+ dP intf
V→PP

, (37)

18 Precisely speaking, Eq. (31) is given except right at the boundary
T = Tin + �V σt

2 or T = Tout + �V σt
2 , which is rather a peculiarity of

how to define a boundary value and is out of our current interest.
19 Here, we physically assume Tout − Tin 
 �−1

V with T0 � Tin; see
also footnote 14.

with

dP“type”
V→PP

:= |geff|2N 2
V

1

2E0

d3P1

(2π)32E1

d3P2

(2π)32E2
(2π)4

×
(√

σt

π
e−σt (δω)2

)((σs

π

)3/2
e−σs (δP)2

)

×
√

σt

π5

(
σs

σ0σ1σ2

)3

d3X1d3X2 e
−R [GG]“type”(T)

× e−�V (T−T0)+ �2
V σt
4
∣∣F̃
(|V 1 − V 2|

)∣∣2 , (38)

where the argument “type” discriminates the three types of
contributions.

2.3 Integrated decay probability

To compare the theoretical predictions in the Gaussian wave-
packet formalism with the experimental results in Eq. (2),
we integrate the differential decay probability (37) over the
whole position-momentum phase space of the final-state
pseudo-scalar mesons, namely, over X1, X2, P1, and P2:

PV→PP = Pbulk
V→PP

+ Pbdry
V→PP

+ P intf
V→PP

. (39)

We focus on the situation where these integrals can be per-
formed analytically using the saddle-point approximation;
see e.g. Ref. [11]. In the current setup, we can safely take
nonrelativistic approximations in the kinematics of the sys-
tem because the mass difference mV − 2mP is small.

Here, we only list the final form of the three types of
contributions to the integrated decay probability: the bulk,
boundary, and interference contributions. These calculations’
details are provided in Appendix B. For later convenience,
we define a common dimensionless factor CV→PP for all of

Pbulk
V→PP

, Pbdry
V→PP

, and P intf
V→PP

as

CV→PP := g2
VmP N 2

V e
−�V (Tin−T0)

12πmV
. (40)

2.3.1 Bulk contribution

Integrating the bulk contribution in Eq. (37), we obtain

Pbulk
V→PP

� CV→PP mP

�V

(
(mV − 2mP )2

m2
P

+ �2
V

4m2
P

)3/4

× 1

2

[

1 + erf

(
mP

√
σPVB−√
2

)]

× e−F0
bulk

A3/2
bulk

∣∣∣F̃
(
V B−
)∣∣∣

2
, (41)
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where

VB− := 2

[
(mV − 2mP )2

m2
P

+ �2
V

4m2
P

]1/4

, (42)

F0
bulk := mPσP (− (mV − 2mP )

+
√

(mV − 2mP)2 + �2
V

4

⎞

⎠ , (43)

Abulk := 1

2
+ (mV − 2mP )

2
√

(mV − 2mP )2 + �2
V
4

. (44)

We note that the wave packet size of the decaying particle σV
drops out of this expression at this order of the saddle-point
approximation.

2.3.2 Boundary contribution

Integrating the boundary contribution in Eq. (37), we obtain

Pbdry
V→PP

� CV→PP
Ibdry

2π
, (45)

where Ibdry is written as an integration of a function of V− as

Ibdry :=
∫ ∞

0
dV− f̃bdry(V−) , (46)

in which

f̃bdry(V−) = V 4−
(
V 2− − 4mV −2mP

mP

)2 + 42

m2
P

�2
V
4

∣∣F̃(V−)
∣∣2

−
V 4−
[(

V 2− − 4mV −2mP
mP

)2 − 3
4�2

V
m2

P

]

2 2σP
V 2−

(mP
4

)2
[(

V 2− − 4mV −2mP
mP

)2 + 4�2
V

m2
P

]3

∣∣F̃(V−)
∣∣2 .

(47)

The integral (46) will be evaluated numerically.

2.3.3 Interference contribution

Integrating the interference contribution in Eq. (37), we
obtain

P intf
V→PP

∼

− CV→PP
mP

√
σP

2
√

2
√

π

(
V I−
)2 1

2

[

1 + erf

(
mP

√
σPV I−
2

)]

× e−F0
intf

A3/2
intf

∣∣
∣F̃
(
V I−
)∣∣
∣
2

×
(
�2
V − (δ̃ω)2

)
cos
(
2�V σ̃t δ̃ω

)− 2�V δ̃ω sin
(
2�V σ̃t δ̃ω

)

σ̃t

(
�2
V + (δ̃ω)2

)2 , (48)

where the definition of new parameters is

V I− :=
2

[
(mV − 2mP )2 + �2

V
2

]1/4

√
mP

, (49)

F0
intf

:= mPσP

2

⎡

⎣−(mV − 2mP ) +
√

(mV − 2mP )2 + �2
V

2

⎤

⎦ ,

(50)

Aintf := 1

4

⎡

⎣3 + mV − 2mP√
(mV − 2mP )2 + �2

V
2

⎤

⎦ , (51)

σ̃t := 2σP
(
V I−
)2 , (52)

δ̃ω := 1

4
mP

(
V I−
)2 − (mV − 2mP) . (53)

The tilde denotes that the values are evaluated at the saddle-
point for the interference contribution.

3 Magnitudes of three kinds of contributions

We have seen the magnitudes of the three kinds of contribu-
tions to the integrated probability from the bulk part Pbulk

V→PP

in Eq. (41), from the boundary part Pbdry
V→PP

in Eq. (45), and

from the bulk boundary interference P intf
V→PP

in Eq. (48).
Hereafter, we call the following three ratios the P-factors:

Pbulk := Pbulk
V→PP

CV→PP
,

Pbdry := Pbdry
V→PP

CV→PP
,

Pintf := P intf
V→PP

CV→PP
, (54)

where the common CV→PP given in Eq. (40) is factored out.
In Fig. 3, the P-factors (54) are shown for the following

cases, with a typical value 0.0015 MeV−1 = (0.67 GeV)−1

for R0 (see Appendix A):

• φ → K+K− and φ → K 0K 0 (first row),
• ψ → D+D− and ψ → D0D0 (second row),
• ϒ → B+B− and ϒ → B0B0 (third row).
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Fig. 3 The P-factors (54) are shown for φ → K+K− and φ → K 0K 0

(in the top row), ψ → D+D− and ψ → D0D0 (in the middle row),
and ϒ → B+B− and ϒ → B0B0 (in the bottom row), where we take
a typical value 0.0015 MeV−1 = (0.67 GeV)−1 for R0; see Appendix

A. The wave-packet treatment breaks down when the wave-packet size
of the decay product

√
σP is smaller than the de Broglie wavelength of

P , which is depicted by the hatched region
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We remind that all of Pbulk
V→PP

, Pbdry
V→PP

, and P intf
V→PP

do not
depend on σV within the nonrelativistic saddle-point approx-
imation; see Appendix B for details.

From Fig. 3, we can read the following properties:

• If the magnitude of
√

σP is relatively low, the three kinds
of the P-factors are of the same order.

• When
√

σP is a certain magnitude, the bulk contribution
is exponentially suppressed, while the boundary contri-
bution takes almost the same value, where the interfer-
ence part is negligible. For such a

√
σP and other higher

choices of it, the boundary part dominates.
• Physically, the wave-packet treatment of the decay prod-

uct P breaks down when the wave-packet size
√

σP is
shorter than the de Broglie wavelength of P ,

λde Broglie := 2π

mPVB−
, (55)

where V B− is the expectation value in the bulk part in
Eq. (42). It is straightforward to estimate it for each decay
process:

λde Broglie|φ→K+K− = 0.025 MeV−1 = 1

40 MeV
,

λde Broglie|φ→K 0K 0 = 0.029 MeV−1 = 1

34 MeV
,

λde Broglie|ψ→D+D− = 0.012 MeV−1 = 1

83 MeV
,

λde Broglie|ψ→D0D0 = 0.011 MeV−1 = 1

91 MeV
,

λde Broglie|ϒ→B+B− = 0.0090 MeV−1 = 1

0.11 GeV
,

λde Broglie|ϒ→B0B0 = 0.0091 MeV−1 = 1

0.11 GeV
.

(56)

The theoretically excluded region
√

σP < λde Broglie is
depicted by the hatched region.

• The differences in the P-factors between the charged
meson and neutral meson final states are sizable for
higher-

√
σP regions.

To clarify the dependence on R0, we prepare the surface
plots for the bulk, boundary, and interference parts of the P-
factors for � → D+D− as a typical example as Fig. 4. Here,
the following properties are observed: (i) The magnitude of
each part becomes larger for a smaller

√
σD and a smaller

R0; (ii) In the entire domain of
√

σD and R0, the boundary
part exceeds the bulk part in magnitude.

In Fig. 5, we have also plotted the P-factors for ρ0 →
π+π− and ρ+ → π+π0 by adopting the same formu-
las (41), (45), and (48) for a qualitative comparison between

Fig. 4 The distributions of the P-factors (54) representing ψ →
D+D− are shown as functions of (σD)1/2 and R0, where the bulk,
boundary, and interference ones are shown by the orange, magenta, and
green color, respectively

the decays with narrow phase spaces (φ, ψ , and ϒ) and
that with broad phase spaces (ρ), knowing that it is spec-
ulative whether we can still use the nonrelativistic approxi-
mation.20 As expected, the difference between ρ0 → π+π−
and ρ+ → π+π0 is small since the magnitude of the isospin
breaking is much smaller even for a smaller

√
σπ .

4 Analysis of ratio of decay probabilities RV

In this section, we discuss the ratio RV of decay probabilities
for three vector mesons φ, ψ , and ϒ in the wave-packet
formalism. We compare each with the PDG result and find
an agreement around a reasonable value of R0 of the form
factor (for the compositeness of V ). In particular, the 9.5σ

discrepancy for ψ is dramatically ameliorated. We find that
the effect of the form factor is significant in both the wave-
packet and plane-wave formalisms.

4.1 Wave-packet analysis

We estimate the wave-packet counterparts of the ratio of the
decay rates defined in Eq. (1) for the three vector mesons as

RWP
φ := Pφ→K+K−

P
φ→K 0K 0

,

RWP
ψ := Pψ→D+D−

P
ψ→D0D0

,

20 We set mρ+ � mρ0 � 770 MeV and remind mπ0 � 135 MeV, and
mπ+ � 140 MeV. We also remind the property that the decay channel
ρ0 → π0π0 is prohibited by the conservation of the isospin.
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Fig. 5 We show the P-factors (54) for ρ0 → π+π− (left panel) and the
difference between the P-factors for ρ0 → π+π− and ρ+ → π+π0

(right panel), with a typical value 0.0015 MeV−1 = (0.67 GeV)−1 for

R0; see Appendix A. We set the lowest
√

σπ near the bound from the
de Broglie wavelength � 0.012 MeV−1

RWP
ϒ := Pϒ→B+B−

P
ϒ→B0B0

, (57)

where we ignored the tiny CP violation effect in φ → K 0
LK

0
S.

We note that the ratio does not depend on the wave-function
(field) renormalization factor NV (accounting for the off-
shellness of the vector meson V ), nor on the decay factor
e−�V (Tin−T0). Also, we take the isospin-symmetric limit in
the couplings as introduced in Eq. (8), and the dependence
on the coupling is dropped off. For further comparison, we
also define a “bulk” ratio as

Rbulk
V := Pbulk

V→P+P−

Pbulk
V→P0P0

, (58)

which contains the wave-packet contribution only from the
bulk part. Also, we introduce the ratio without interference
as

Rwithout interference
V := Pbulk

V→P+P− + Pbdry
V→P+P−

Pbulk
V→P0P0

+ Pbdry

V→P0P0

. (59)

4.2 Wave-packet results

In Figs. 6, 7, and 8, we show the wave-packet results for the
decay probability ratios of φ, ψ , and ϒ , respectively. Several
comments are in order.

• For the φ decay in Fig. 6, the full wave-packet result in the
red solid line can fit the PDG result around the form-factor
size R0 � 2×10−3 MeV−1 and 6×10−3 MeV−1 for the
wave-packet size of the decay product

√
σK = 1 MeV−1

and 0.1 MeV−1, respectively.

• For theψ decay in Fig. 7, the full wave-packet result in the
red solid line can fit the PDG result around the form-factor
size R0 � 2×10−3 MeV−1 and 3×10−3 MeV−1 for the
wave-packet size of the decay product

√
σD = 1 MeV−1

and 0.01 MeV−1, respectively.
• For theϒ decay in Fig. 8, the full wave-packet result in the

red solid line can fit the PDG result around the form-factor
size R0 � 2×10−3 MeV−1 and 2×10−3 MeV−1 for the
wave-packet size of the decay product

√
σB = 1 MeV−1

and 0.01 MeV−1, respectively.
• As discussed in Fig. 3, if

√
σP is sufficiently large,

the bulk contribution becomes exponentially suppressed
compared to the boundary one. In this regime, we may
still formally evaluate the ratio between the (exponen-
tially small) bulk contributions of P0 and P− as

Rbulk
V ∼ e−F0

bulk|for P+

e−F0
bulk|for P0

∼

⎧
⎪⎨

⎪⎩

e12 MeV2 σK for V = φ,

e−1.0×103 MeV2 σD for V = ψ,

e3.5×102 MeV2 σB for V = ϒ,

(60)

where the exponent is from Eq. (43). This ratio becomes
either exponentially large or small due to the mass dif-
ference between P+ and P0, where the magnitude of the
exponents is much greater than O(1). For example, we
obtain σP � 10 MeV−2 and 100 MeV−2 if we estimate√

σP to be larger than the smallest radius of an electron
in atoms that interact with decay products of P , namely,
the Bohr radius divided by a typical atomic number of the
detector atoms, say, aB/Z � 3 MeV−1 and 10 MeV−1

for lead and iron with Z = 82 and 26, respectively. As
introduced, the experimental results of Rφ , Rψ , and Rϒ
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Fig. 6 The ratio comparing the decay rates of φ → K+K− to φ → K 0K 0 is drawn as a function of R0 for two fixed wave-packet sizes of the
kaons of

√
σK = 1 MeV−1 (left panel) and

√
σK = 0.1 MeV−1 (right panel). The experimental result is provided by the PDG [1] [shown in Eq. (2)]

Fig. 7 The ratio comparing the decay rates of ψ → D+D− to ψ → D0D0 is drawn as a function of R0 for two fixed wave-packet sizes of the
D-mesons of

√
σD = 1 MeV−1 (left panel) and

√
σD = 0.01 MeV−1 (right panel). The experimental result is provided by the PDG [1] [shown in

Eq. (2)]

Fig. 8 The ratio comparing the decay rates of ϒ → B+B− to ϒ → B0B0 is drawn as a function of R0 for two fixed wave-packet sizes of the
B-mesons of

√
σB = 1 MeV−1 (left panel) and

√
σB = 0.01 MeV−1 (right panel). The experimental result is provided by the PDG [1] [shown in

Eq. (2)]
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are around unity, and they disagree with Rbulk
V , both for

φ and ψ . So the Rbulk
V curves are completely out of the

depicted ranges of the left panels of Figs. 6, 7, and 8.

4.3 Plane-wave analysis

For a comparison with the wave-packet results, we also show
results with the plane-wave decay rate �plane (see Eq. (168)
in Appendix C), taking into account the relativistic form fac-
tor (103). The resultant plane-wave ratio becomes

Rplane
V := �

plane
V→P+P−

�
plane

V→P0P0

= Rparton
V

∣∣
∣∣
∣∣
∣∣
∣∣
∣

(
R0

(
m2

V −4m2
P0

)1/2

2

)2

+ 1

(
R0

(
m2

V −4m2
P+
)1/2

2

)2

+ 1

∣∣
∣∣
∣∣
∣∣
∣∣
∣

2

,

(61)

where the parton-level contribution to the ratio is

Rparton
V :=

(
m2

V − 4m2
P+

m2
V − 4m2

P0

)3/2

, (62)

and the other factor is from the relativistic form factor (103)
written in terms of the masses and R0.

For another comparison, we will also show analyses using
its nonrelativistic approximated form as

Rplane
V ⇒ Rplane, non-rel

V

:= m1/2
P+ (mV − 2mP+ )3/2

m1/2
P0

(
mV − 2mP0

)3/2

∣
∣∣
∣∣
∣∣

(
R0mP0 |V 1−V 2|P0

2

)2 + 1
(
R0mP+ |V 1−V 2|P+

2

)2 + 1

∣
∣∣
∣∣
∣∣

2

,

(63)

with

|V 1 − V 2|P+ ≈ 2 (mV − 2mP+)1/2

m1/2
P+

,

|V 1 − V 2|P0 ≈ 2
(
mV − 2mP0

)1/2

m1/2
P0

, (64)

where “⇒” represents the operation of taking the nonrel-
ativistic approximation, and ≈ denotes equality under the
nonrelativistic approximation. The contributions from the
form factor are not canceled out in Rplane

V .21 Note that the
ratio (63) can be obtained from the wave-packet counterpart
by taking the limits �V → 0 and σP → ∞ in �V PV→PP ;
see Appendix D for details.

21 A similar factor is taken into account in Ref. [3] as a purely phe-
nomenological cutoff factor of a divergent integral within the plane-
wave formalism.

4.4 Plane-wave results

We provide comments on the plane-wave results shown in
Figs. 9, 10, and 11 below.

• For all of the vector mesons, φ, ψ , and ϒ , the parton-
level ratios (4) (under the isospin-symmetric limit for the
couplings,22 without taking into account the form factor)
are disfavored with the PDG’s central values at the level
of 2.1 σ , 9.5 σ , and 0.32 σ , respectively.

• On the other hand, when the form factor effect is included,
which is compulsory since the vector mesons are com-
posite particles, we can see agreements with the PDG’s
results. It suggests the importance of the form factor in
addressing the ratio, where its effect is not fully can-
celed. Also, we can confirm that the nonrelativistic results
approximate their relativistic counterparts well for the
current system.

• We can find appropriate ranges of the form-factor param-
eter R0, where theoretical predictions agree with the
PDG’s results for both the full wave-packet and plane-
wave curves. For each vector meson, the favored regions
of R0 for the wave packet and the plane wave are close
to each other but different.

The calculation based on the plane wave works successfully,
even though the presumption of free plane waves character-
izing initial and final states is, at most, a viable approxima-
tion. The wave packet-based calculation provides a compre-
hensive approach, accounting for all aspects of the quantum
nature inherent in the initial and final states, thereby enhanc-
ing its reliability. It would be important to precisely discuss
the theoretically valid region of R0, which depends on many
details on the strong interaction. We leave this point for future
research.

Note that we also briefly consider the isospin violation
on the ρ system, where the result is separately available in
Appendix E since it might be out of our main interest.

5 Constraint from the shape of vector-meson resonances

In general, it is expected that the resonance shape of V is
modified by the inclusion of the wave packet effects. That is,
vector mesons, produced as resonances in electron positron
colliders, are subjected to a shape-fitting process. This section
addresses the constraint on the wave-packet size of pseudo-
scalar mesons through the resonance shape of the process
e−e+ → V → PP . Sufficiently precise resonance data
from experiments is available for φ and ψ , facilitating this

22 Here, we are assuming the isospin-symmetric limit in the sense of
Eq. (8) for both the wave-packet and plane-wave calculations.
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Fig. 9 The plane-wave ratio comparing the decay rates of φ →
K+K− to φ → K 0K 0 is drawn as a function of R0, where the cap-
tions “rel” and “Non-rel” mean the relativistic and nonrelativistic results
shown in Eqs. (61) and (63), respectively. For comparison, we also show
the wave-packet results for two fixed wave-packet sizes of the kaons of

√
σK = 1 MeV−1 (left panel) and

√
σK = 0.1 MeV−1 (right panel).

In both panels, the plane-wave results are the same since they are inde-
pendent of σK . The experimental result, shown in Eq. (2), is provided
by the PDG [1]

Fig. 10 The plane-wave ratio comparing the decay rates of ψ →
D+D− to ψ → D0D0 is drawn as a function of R0. For comparison, we
also show the wave-packet results for two fixed wave-packet sizes of the

D-mesons of
√

σD = 1 MeV−1 (left panel) and
√

σD = 0.01 MeV−1

(right panel). The other conventions are the same as in Fig. 9

Fig. 11 The plane-wave ratio comparing the decay rates of ϒ →
B+B− to ϒ → B0B0 is drawn as a function of R0. For comparison, we
also show the wave-packet results for two fixed wave-packet sizes of the

B-mesons of
√

σB = 1 MeV−1 (left panel) and
√

σB = 0.01 MeV−1

(right panel). The other conventions are the same as in Fig. 9
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objective. However, detailed resonance data for ϒ is cur-
rently unavailable. Consequently, our focus is maintained on
the instances of φ and ψ . Our analysis in this section is meant
to be a brief consistency check, assuming the factorization of
the production and decay processes of V in both the wave-
packet and plane-wave formalisms, and hence is confined to
data around the peak.

5.1 Invariant mass distribution of a decaying vector-meson
wave packet

First, we summarize the invariant mass distribution of the
decaying vector-meson when the Gaussian wave packet
describes the decaying state.

We define a Lorentz-invariant mass squared M2 for the
pair of pseudo-scalars in the final state as

M2 := (E1 + E2)
2 − (P1 + P2)

2 ⇒ m2
P

(
4 + V 2−

)
, (65)

where V− is the magnitude of V− := V 1 − V 2 with V a =
Pa/Ea for a = 1, 2 [see Eq. (108) in Appendix B]. We will
use

V 2− ≈ 1

m2
P

(
M2 − 4m2

P

)
, (66)

which results in

V−dV− ≈ MdM

m2
P

� mV dM

m2
P

, (67)

where we have approximated that V decays at rest in the last
step.

It is straightforward to derive the following forms after
integrating Eq. (38) over the final state phase space, except for
V−, under the current nonrelativistic approximation, which
is easily rewritten as the invariant mass distribution by use
of Eq. (67):

dPV→PP

dM
= dPbulk

V→PP

dM
+ dPbdry

V→PP

dM
+ dP intf

V→PP

dM
, (68)

where

dPbulk
V→PP

dM
� 2mV

m2
P

(
1

16
√

2π
CV→PP

)
m2

P
√

σP

�V
V 2−

× e−F0
bulk− m2

P σP
2

(
V−−VB−

)2

A3/2
bulk

∣∣F̃(V−)
∣∣2 , (69)

dPbdry
V→PP

dM
� 2mV

m2
P

(
1

4π
CV→PP

)
f̃bdry(V−)

V−
∣∣F̃(V−)

∣∣2 , (70)

dP intf
V→PP

dM
� −2mV

m2
P

(
1

8
√

2π
CV→PP

) (
σPm

2
P

)
V−

× e
−F0

intf− 1
2

(
m2
P σP
2

)(
V−−V I−

)2

A3/2
intf

×
[(

�2
V − (δω)2) cos(2�V σtδω) − 2�V δω sin(2�V σtδω)

(
�2
V + (δω)2)2 σt

]

V+→0

× ∣∣F̃(V−)
∣∣2 . (71)

Here, we consider the distribution of M instead of M2 due
to the convenience of comparing the wave-packet shape with
the nonrelativistic Breit–Wigner (BW) shape, which is the
well-known resonant shape for the decaying plane wave with
the decay rate �V ; see the next subsection.23

We note that under the current setup Tout → ∞, the factor
N 2
V in CV→PP [recall Eq. (40)] can be determined by the

normalization

Pbulk
V→PP

+ Pbdry
V→PP

+ P intf
V→PP

= (the corresponding branching ratio) (72)

that is obtained after integrating over M ; see Eqs. (41), (45),
and (48).

5.2 Breit–Wigner shape

For the plane-wave calculation, it is well-known that the
nonrelativistic Breit–Wigner distribution nicely describes the
shape of a narrow resonance:24

fNR-BW(E) = �/ (2π)

(E − mres)
2 + �2/4

,

(∫ +∞

−∞
dE fNR-BW(E) = 1

)
, (73)

where mres, E , and � are the resonant mass, the total energy
in the center-of-the-mass frame, and the total width of an
intermediate resonant particle, respectively. Note that

E = M. (74)

23 Experimentally, one may perform a precision experiment by mea-
suring the ratio per each bin �M near the resonance, in principle as

dPV→P+ P−
dM �M

dP
V→P0 P0

dM �M
=

dPV→P+ P−
dM

dP
V→P0 P0

dM

.

24 The relativistic Breit–Wigner distribution takes

fR-BW(s) = (mres �) /π
(
s − m2

res

)2 + (mres �)2
,

(∫ +∞

−∞
ds fR-BW(s) = 1

)
,

which is not used for the calculation. Mandelstam’s variable s is equal
to E2.
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Since we used the nonrelativistic approximation, we are
adopting the nonrelativistic Breit–Wigner shape (73) for
comparison.

5.3 Method of analyzing the resonant shape

We assume the following factorization for the resonant pro-
duction, where the cross section of the resonant production
of V and its subsequent decay into P and P , σe−e+→V→PP ,
can be factorized in the wave-packet (WP) and plane-wave
(PW) formalisms, respectively, as

σWP
e−e+→V→PP

(M) = NWP
e−e+→V

dPV→PP

dM
, (75)

σ PW-Parton
e−e+→V→PP

(M) = N PW-Parton
e−e+→V fNR-BW(M) , (76)

σ PW-FF
e−e+→V→PP

(M) = N PW-FF
e−e+→V fNR-BW(M)

×
∣∣∣∣
∣∣

1

1 + R2
0

(
M2−4m2

P

)

4

∣∣∣∣
∣∣

2

, (77)

where we consider the two cases for PW with and without the
form factor (FF); the two cases are discriminated by the short-
hand notations “PW-FF” and “PW-Parton.” For the form-
factor part of (77), we used the relation in Eq. (66) to convert
V− to M .

NWP
e−e+→V , N PW-Parton

e−e+→V , and N PW-FF
e−e+→V possess the mass

dimension of minus one and describe the factorized produc-
tion part e−e+ → V via the e−e+ collision at the center-of-
the-mass energy M . Here, we take these three factors to be
independent of M since the primal structure of the resonance
is in dPV→PP/dM or fNR-BW, and we use only the data
points near the peak of a resonance.25 We will take mres and
� for fNR-BW(M) in Eq. (73) as mV and �V , respectively;
see also Eq. (74). The actual analysis for e−e+ → V → PP
will be done in the following manner:

• We focus on the values of the experimentally given
cross sections only around the resonant peak, namely,
in [mV − �V /2,mV + �V /2] since the factorized forms
in Eqs. (75), (76), and (77) may work only around the

25 As is widely known, under the narrow-width approximation in the
plane-wave calculation at the resonant peak M = mres, we can derive
the factorized form explicitly as

σ PW
e−e+→V→PP

(M) � σ PW
e−e+→V Br

(
V → PP

) ;

refer to, e.g., Chapter 16 of [28]. And at this point, N PW
e−e+→V is deter-

mined as

N PW
e−e+→V � σ PW

e−e+→V
π

2
�V→PP .

Also, we note that the width-to-mass ratios of the vector mesons take
�φ/mφ � 0.42% and �ψ/mψ � 0.72%, where the adaptation of the
narrow-width approximation is justified.

peak. Here, we will adopt the PDG values for mV and
�V [1].

• In the analysis, we fix the values of �V and mP as con-
firmed by the PDG group [1], while we treat mV as an
unfixed parameter and will determine it through our sta-
tistical fit. The isospin-symmetric coupling gV and the
wave-function renormalization factor forV , NV are taken
as unity since it can be absorbed into the factorNe−e+→V .
Furthermore, for simplicity, we focus on Tin = T0, where
the exponential decay factor in CV→PP in Eq. (40) does
not work.

• Under the current scheme, σWP
e−e+→V→PP

has six parame-

ters {NWP
e−e+→V , mV , �V , mP , R0, σP }, σ PW-FF

e−e+→V→PP
has five parameters {N PW-FF

e−e+→V , mV , �V , mP , R0}, and
σ PW-Parton
e−e+→V→PP

has three parameters {N PW-Parton
e−e+→V , mV , �V }.

We will determine them through statistical analysis. We
remind ourselves that the vector-meson wave-packet size
σV does not appear in σWP

e−e+→V→PP
under the saddle-

point approximation.

5.4 Result of φ

In Ref. [29], the latest result of the resonant shape of φ

through e−e+ → φ → K+K− measured with the CMD-3
detector in the center-of-mass energy range 1010–1060 MeV
was reported, where the Born cross sections of e−e+ →
φ → K+K− around the resonance are available in Table I
of [29]. According to our guideline, we adopt the seven data
points from 1018.0 MeV to 1021.3 MeV and adopt the χ2

functions:

χ2
φ, WP :=

7∑

i=1

(
σWP
i − σ

exp
i

)2

(
δσ

exp
i

)2 ,

χ2
φ, PW-Parton :=

7∑

i=1

(
σ PW-Parton
i − σ

exp
i

)2

(
δσ

exp
i

)2 ,

χ2
φ, PW-FF :=

7∑

i=1

(
σ PW-FF
i − σ

exp
i

)2

(
δσ

exp
i

)2 , (78)

where i discriminates the seven points of M where experi-
mental data is available; σ

exp
i and δσ

exp
i are the central and

error of the experimentally determined cross section at the
point i , respectively. σWP

i , σ PW-Parton
i , and σ PW-FF

i represent
the theoretical values of the corresponding cross sections at
the energy point identified by i .

As examples, we show the fitted distributions for the
two sets of the fixed parameters

√
σK = 10 MeV−1 and

R0 = 0.0015 MeV−1 for the left panel of Fig. 12,26

26 Note that the value of R0 = 0.0015 MeV−1 is a typical value in the
current scheme of the form factor (see Appendix A), and its magnitude
is favored by the analysis on RV (see Sect. 4).
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Fig. 12 The fitted resonance distributions of φ in e−e+ → φ →
K+K− are drawn for the two sets of the fixed parameters

√
σK =

10 MeV−1 and R0 = 0.0015 MeV−1 (left panel) and
√

σK =
10 MeV−1 and R0 = 0.01 MeV−1 (right panel), where the mass of
φ and the normalization factor Ne−e+→φ are determined through our

statistical analysis based on the χ2 function defined in Eq. (78). The
best-fit parameters and the χ2 functions for the left/right panels are
shown in Eqs. (79) and (80)/and in Eqs. (81) and (82), respectively,
for the wave-packet (WP) and plane-wave without/with form factor
(BW/BW with FF)

√
σK = 10 MeV−1 and R0 = 0.01 MeV−1 for the right

panel of Fig. 12, where the two remaining parameters
{Ne−e+→φ, mφ} take the best-fit values, and the values of
the χ2 over the degrees of freedoms (DOFs), which is cur-
rently five, at the best-fit points are calculated as

• for
√

σK = 10 MeV−1 and R0 = 0.0015 MeV−1 (left
panel of Fig. 12):

mWP
φ

∣∣
∣
best fit

= 1019.8 MeV,

NWP
e−e+→φ

∣∣∣
best fit

= 6.23 × 105 MeV−1,

mPW-Parton
φ

∣∣∣
best fit

= 1019.4 MeV,

N PW-Parton
e−e+→φ

∣∣
∣
best fit

= 1.50 × 104 MeV−1,

mPW-FF
φ

∣∣∣
best fit

= 1019.4 MeV,

N PW-FF
e−e+→φ

∣∣∣
best fit

= 1.62 × 104 MeV−1, (79)

χ2
φ, WP

(DOFs)

∣
∣∣∣∣
best fit

� 5.5,

χ2
φ, PW-Parton

(DOFs)

∣∣
∣∣∣
best fit

� 6.3,

χ2
φ, PW-FF

(DOFs)

∣∣∣∣
∣
best fit

� 6.7, (80)

• for
√

σK = 10 MeV−1 and R0 = 0.01 MeV−1 (right
panel of Fig. 12),

mWP
φ

∣∣∣
best fit

= 1019.9 MeV,

NWP
e−e+→φ

∣∣∣
best fit

= 3.94 × 106 MeV−1,

mPW-Parton
φ

∣
∣∣
best fit

= 1019.4 MeV,

N PW-Parton
e−e+→φ

∣∣∣
best fit

= 1.51 × 104 MeV−1,

mPW-FF
φ

∣∣
∣
best fit

= 1019.6 MeV,

N PW-FF
e−e+→φ

∣∣∣
best fit

= 1.03 × 105 MeV−1, (81)

χ2
φ, WP

(DOFs)

∣∣∣
∣∣
best fit

� 14,

χ2
φ, PW-Parton

(DOFs)

∣∣∣∣∣
best fit

� 6.3,

χ2
φ, PW-FF

(DOFs)

∣
∣∣∣∣
best fit

� 14. (82)

We comment on the difference between the plane-wave
resonant shapes with and without the form factor. With-
out the factor, the shape obeys the Breit–Wigner distribu-
tion (73) and is symmetric under the reflection around the
peak (M = mφ); while taking it into account, the resonant
shape becomes asymmetric under the reflection around the
peak. The magnitude of the asymmetry is governed by the
part R2

0

(
M2 − 4m2

K+
)

of the form factor. So for a greater R0,
a more significant asymmetry will be realized, as observed
in Fig. 12.

Here, we comment on the origin of the “over-5σ” values
of χ2/(DOFs): this is because the resolution of the exper-
imental results near the peak is very high, and the current
simple scheme for σe−e+→V→PP in Eqs. (75), (76), and (77)
is not enough for discussing statistical significance precisely.
On the other hand, however, we are able to discuss the rel-
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Fig. 13 We plot the variable χ2
φ/(DOFs)

∣∣
∣
min

defined in Eq. (83) to

compare the significance of the wave-packet calculation with the plane-
wave one for various

√
σK . Here, R0 is fixed as 0.0015 MeV−1, and

for each
√

σK , mφ and Ne−e+→φ are determined to (locally) minimize
the corresponding χ2 function in Eq. (78). The black curve and the
blue dashed horizontal line describe the values in the wave-packet and
plane-wave calculations, respectively, without form factor, where the
latter is manifestly independent of

√
σK

ative significance between the wave-packet and plane-wave
results. According to Eq. (80), the shape of the wave-packet
resonant distribution is at least as good as that of the plane-
wave resonant distribution at the focused parameter point,
where we conclude that the wave-packet result at the first
parameter point (for the left panel of Fig. 12) is consistent
with the experiment. Note that at the first parameter point, R0

is taken as a typical value in the current scheme of the form
factor (see Appendix A), and a wave packet with a greater
size looks similar to the plane wave.

We also see the significance of the wave-packet results
over a broad range of

√
σK under R0 = 0.0015 MeV−1. In

Fig. 13, we plot the “minimized” χ2/(DOFs) defined by

χ2
φ, WP/PW-Parton

(DOFs)

∣∣
∣∣
∣
min

:= min
mφ, NWP/PW-Parton

e−e+→φ

[
χ2

φ, WP/PW-Parton

(DOFs)

]

, (83)

which measures the statistical significance for
√

σK . We do
not consider the PW-FF case since no sizable difference is
generated when R0 = 0.0015 MeV−1, as shown in the left
panel of Fig. 12, and the form factor part does not depend on√

σK . Under the simple guideline that a wave-packet result is
at least as good as the ordinary plane-wave one, from Fig. 13,
we can put the lower bound on

√
σK as

√
σK � 3 MeV−1 (84)

for R0 = 0.0015 MeV−1.

5.5 Result of ψ

The BaBar, Belle, BES, and CLEO experimental collabo-
rations have provided recent experimental data of the ψ’s
resonance produced by the e−e+ collision.

• We will adopt the results on [30] of the converting experi-
mental results to the exclusive initial-state-radiation scat-
tering cross section, e+e− → 2D, where the follow-
ing experimental papers are taken into account by BaBar
[31], by Belle [32], and by CLEO [33,34]. “2D” means
the inclusive final states of D+D− and D0D0.27

• We also take account of the experimental results by BES
of the inclusive hadron production cross section in [37,
38]. The original data is provided in the form,

R(s) = σ 0
had(s)

σ 0
μ+μ−(s)

, (85)

where σ 0
μ+μ−(s) = 4πα2(0) /3s is the lowest-order

QED cross section for muon pair production at the total
center-of-mass energy E = √

s. α(0) � 1/137 is
the QED fine structure constant at the Thomson limit.
Ruds(c)+ψ(3770) and Ruds are reported in [37] and in [38],
respectively. Through the approximation Rψ(3770) �
Ruds(c)+ψ(3770) − Ruds , we can recast the cross section
of e+e− → 2D, as done in [39].

Since the final state is inclusive as 2D, we adopt the fol-
lowing factorized form for the production cross section:

σWP
e−e+→ψ→2D(M)

= NWP
e−e+→ψ

(
dPψ→D+D−

dM
+

dP
ψ→D0D0

dM

)

, (86)

σ PW-Parton
e−e+→ψ→2D(M) = N PW-Parton

e−e+→ψ
fNR-BW(M) , (87)

σ PW-FF
e−e+→ψ→2D(M) = N PW-FF

e−e+→ψ
fNR-BW(M)

×
⎡

⎢
⎣Brψ→D+D−

∣∣∣
∣∣∣∣

1

1 + R2
0

(
M2−4m2

D+
)

4

∣∣∣
∣∣∣∣

2

+Br
ψ→D0D0

∣
∣∣∣∣∣∣

1

1 + R2
0

(
M2−4m2

D0

)

4

∣
∣∣∣∣∣∣

2⎤

⎥
⎦ , (88)

27 The exclusive initial-state-radiation scattering cross sections of
e+e− → D+D− and e+e− → D0D0 are also reported by Babar
[35] and by Belle [36]. Since few data points are available inside the
focused range [mψ − �ψ/2, mψ + �ψ/2], we do not adopt them for
our analysis.
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where Brψ→D+D− = 0.41 and Br
ψ→D0D0 = 0.52 are the

corresponding branching ratios [1]. The χ2 functions are
defined as

χ2
ψ, WP

:=
∑

I: BaBar, Belle, BES, CLEO

∑

iI

(
σWP
iI

− σ
exp,I
iI

)2

(
δσ

exp,I
iI

)2 ,

χ2
ψ, PW-Parton

:=
∑

I: BaBar, Belle, BES, CLEO

∑

iI

(
σ PW-Parton
iI

− σ
exp,I
iI

)2

(
δσ

exp,I
iI

)2 ,

χ2
ψ, PW-FF

:=
∑

I: BaBar, Belle, BES, CLEO

∑

iI

(
σ PW-FF
iI

− σ
exp,I
iI

)2

(
δσ

exp,I
iI

)2 , (89)

where σ
exp,I
iI

and δσ
exp,I
iI

are the central and error of the exper-
imentally determined cross section at the point iI of the exper-
iment I, respectively. σWP

iI
, σ PW-Parton

iI
, and σ PW-FF

iI
represent

the theoretical values of the corresponding cross sections at
the energy point identified by iI.

Here, we will see the two examples for the same wave-
packet size

√
σD = 1 MeV−1 but two different values for

the form-factor parameter R0. In the left and right pan-
els of Fig. 14, the fitted distributions about the parameters
{Ne−e+→ψ, mψ } are shown for R0 = 0.0015 MeV−1 and
R0 = 0.01 MeV−1, respectively, where the valid ranges of
Ne−e+→ψ and mψ are fixed as

• for
√

σD = 1 MeV−1 and R0 = 0.0015 MeV−1 (left
panel of Fig. 14),

mWP
ψ

∣
∣∣
best fit

= 3770.4 MeV,

NWP
e−e+→ψ

∣∣∣
best fit

= 1.02 × 105 MeV−1,

mPW-Parton
ψ

∣∣
∣
best fit

= 3774.6 MeV,

N PW-Parton
e−e+→ψ

∣∣∣
best fit

= 3.90 × 102 MeV−1,

mPW-FF
ψ

∣∣∣
best fit

= 3775.5 MeV,

N PW-FF
e−e+→ψ

∣
∣∣
best fit

= 5.77 × 102 MeV−1, (90)

χ2
φ, WP

(DOFs)

∣∣∣∣∣
best fit

� 0.92,

χ2
φ, PW-Parton

(DOFs)

∣
∣∣∣∣
best fit

� 0.91,

χ2
φ, PW-FF

(DOFs)

∣
∣∣∣∣
best fit

� 0.91. (91)

• for
√

σD = 1 MeV−1 and R0 = 0.01 MeV−1 (right panel
of Fig. 14),

mWP
ψ

∣
∣∣
best fit

= 3775.7 MeV,

NWP
e−e+→ψ

∣∣∣
best fit

= 4.92 × 106 MeV−1,

mPW-Parton
ψ

∣∣
∣
best fit

= 3774.6 MeV,

N PW-Parton
e−e+→ψ

∣∣∣
best fit

= 3.90 × 102 MeV−1,

mPW-FF
ψ

∣∣∣
best fit

= 3780.0 MeV,

N PW-FF
e−e+→ψ

∣
∣∣
best fit

= 3.36 × 104 MeV−1, (92)

χ2
φ, WP

(DOFs)

∣∣∣∣∣
best fit

� 0.92,

χ2
φ, PW-Parton

(DOFs)

∣
∣∣∣∣
best fit

� 0.91,

χ2
φ, PW-FF

(DOFs)

∣∣
∣∣∣
best fit

� 0.92. (93)

From Fig. 14, when R0 is large as ∼ 10−2 MeV−1, the reso-
nant distribution of the wave packet becomes identical with
that of the plane-wave without taking into account the form
factor. Meanwhile, when R0 ∼ 10−3 MeV−1, where this size
is favored with the agreement in Rψ , we observe the deviation
from the BW shape in the wave-packet distribution. Note that
all three kinds of distributions agree with the experimental
data for the larger and smaller R0.

We comment on the large asymmetry observed in the
right panel of Fig. 14, namely, the large deviation of “BW
with FF” in the low M range. As mentioned in the previ-
ous subsection, the asymmetry under the reflection around
the peak originates from the parts R2

0

(
M2 − 4m2

D+
)

and

R2
0

(
M2 − 4m2

D0

)
of the form factors. The realized asym-

metry in R0 = 0.01 MeV−1 becomes extensive when M is
less than the range used for the statistical fit, so this case is
considered to be disfavored even though the limited part near
the resonant peak is fitted to the experimental results well.

To clarify the experimentally valid range for
√

σD , we see
the curve of the “minimized” χ2/(DOFs) defined by

χ2
ψ, WP/PW-Parton

(DOFs)

∣
∣
∣∣
∣
min

:= min
mψ , NWP/PW-Parton

e−e+→ψ

[
χ2

ψ, WP/PW-Parton

(DOFs)

]

,

(94)

123



Eur. Phys. J. C (2023) 83 :978 Page 21 of 32 978

Fig. 14 The fitted resonance distributions of φ in e−e+ → ψ → 2D
are drawn for the fixed parameters

√
σD = 1 MeV−1 and R0 =

0.0015 MeV−1 (for the left panel), and
√

σD = 1 MeV−1 and R0 =
0.01 MeV−1 (for the right panel), where the mass of ψ and the normal-
ization factor Ne−e+→ψ are determined through our statistical analysis

based on the χ2 function defined in Eq. (89). The best-fit parameters
and the χ2 functions for the left/right panels are shown in Eqs. (90)
and (91)/and in Eqs. (92) and (93), respectively. The other conventions
are the same as those of Fig. 12

Fig. 15 We plot the variable χ2
ψ/(DOFs)

∣
∣
∣
min

defined in Eq. (94) to

compare the significance of the wave-packet calculation with the plane-
wave one for various

√
σD . Here, R0 is fixed as 0.0015 MeV−1, and for

each
√

σD , mψ and Ne−e+→ψ are determined to (locally) minimize the
corresponding χ2 function in Eq. (89). The black curve and blue dashed
horizontal line describe the values in the wave-packet and plane-wave
calculations, where the latter is manifestly independent of

√
σD

for R0 = 0.0015 MeV−1. Due to the same reason with the
case of φ for R0 = 0.0015 MeV−1, we skip to consider the
PW-FF case. From Fig. 15, we recognize that the range for√

σD is consistent with the constraint

χ2
ψ, WP/PW-Parton

(DOFs)

∣∣∣∣∣
min

< 2,

even though the wave-packet shape does not exceed the BW
shape in the goodness of fit. To summarize, within the cur-
rent scheme for the production cross section, no significant
bounds on

√
σD are imposed. This is because, as recognized

from Fig. 14, the experimental results still have sizable errors
for the ψ’s resonant shape.

6 Summary and discussion

In this paper, we have discussed the long-standing anomaly
in the ratio of the decay rates of the vector mesons φ and
ψ , namely, Rφ = �

(
φ → K+K−) /�

(
φ → K 0

LK
0
S

)
and

Rψ = �
(
ψ → D+D−) /�

(
ψ → D0D0

)
, where the strong

interaction causes the decay channels, and they measure
isospin breakages. If we estimate their theoretical values in
the plane-wave formalism without considering the effects
originating from the composite nature of the initial-state vec-
tor mesons, they are disfavored with the PDG’s central values
at the level of 2.1 σ and 9.5 σ . In particular, there has been
no explanation for the latter 9.5σ anomaly so far.

The decay channels that we focus on are near the mass
thresholds, where the velocities in the final state are small,
and hence the localization of the overlap of the wave packets
is more significant. Here, we fully take into account such
effects in the Gaussian wave-packet formalism. We care-
fully clarified the properties of one-to-two-body nonrelativis-
tic quantum transitions between normalizable physical states
described by Gaussian wave packets under the presence of
the decaying nature of the initial state, which is a full-fledged
calculation taking into account the essences that are missing
in the plane-wave calculations.

The result shows agreement with the PDG’s combined
results within a ∼ 1 σ confidence level. We conclude that the
long-standing anomalies in Rφ and Rψ are resolved.

In the calculation, the abovementioned compositeness has
been described by the form factor. The agreement is achieved
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when we appropriately take the form factor parameter at
around the physically reasonable value R0 ∼ (500 MeV)−1.

We also analyzed and made a comment on the bb-vector-
meson counterpartϒ , namely, Rϒ = �

(
ϒ → B+B−) /�

(
ϒ

→ B0B0
)
, where the plane-wave calculation without consid-

ering the abovementioned composite nature already agrees at
the 0.32 σ level with the corresponding PDG result due to the
smallness of the mass difference between B± and B0. The
wave-packet result agrees well with the PDG result around
the same value of R0.

We mention that the same form factors can be formally
multiplied on the ratio of the plane-wave decay rates in order
to partially take into account the wave-packet effects, though
the wave-packet approach is more comprehensive in describ-
ing quantum transitions. By doing so, around the same value
of R0, the plane-wave results can also be made to agree with
the PDG ones.

In general, the shape of a wave-packet resonance deviates
from the Briet–Wigner shape, where the magnitude of the
deviation depends on the size of wave packets. For φ and
ψ , experimental data is available, and we put constraints on
the size. We found that when the size of the wave packets is
small, the derivation from the Briet–Wigner shape tends to
be sizable. Both for φ and ψ , wide ranges of the wave-packet
size are consistent with the experimental data.

In the decay channels of the vector mesons, the nonrela-
tivistic approximation works fine, which simplifies the inte-
grations in the S-matrices and the final-state phase spaces in
the wave-packet formalism. Many other quantum transitions
in high-energy physics are relativistic, and it is worthwhile
to establish the general method to perform such integrations
without relying on the nonrelativistic approximation. Also,
analyzing resonant productions precisely requires the full
transition probabilities, including production parts. Doing
more dedicated analyses on resonant shapes will be another
important task.
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Appendix A: Vector-meson form factor

We focus on the following form for a nonrelativistic bound
state V

(
QQ

)
composed of a heavy constituent quark Q and

its anti-particle Q at a certain time:

∣∣V (QQ), P
〉 :=

∑

s1,s2

∫
d3x1 d3x2 e

i P · x1+x2
2 Fs1,s2(x1 − x2)

× Q†(x1, s1) Q
†
(x2, s2) |0〉 , (95)

where Fs1,s2(x1 − x2) is a wave function for the bound state;

Q†(x1, s1) and Q
†
(x2, s2) are the Fourier transforms of the

momentum-space creation operators of Q and Q, respec-
tively, with x1,2 and s1,2 being their positions and spins; and
|0〉 is the vacuum; see e.g. Ref. [40].

We consider the following matrix element:

〈
Q
(
p1, s1

)
Q
(
p2, s2

) |V (QQ), P
〉

=
∫

d3x1 d3x2 e
i P · x1+x2

2 Fs1,s2(x1 − x2)

(
1√
2π

)6

e−i p1·x1−ix2· p2

=
∫

d3X d3r e
i(P− p1− p2)·X−i

(
p1− p2

2

)
·r 1

(2π)3 Fs1,s2(r)

= δ3(P − p1 − p2
) ∫

d3r e
−i
(

p1− p2
2

)
·r
Fs1,s2 (r)

︸ ︷︷ ︸
=:F̃s1,s2

(
p1− p2

2

)

,

(96)

where X := (x1 + x2)/2, r := x1 − x2, and the normal-

ization of the form factor F̃s1,s2

(
p1− p2

2

)
is irrelevant for our

purpose.28

Hereafter, we assume the separable form

F̃s1,s2

(
p1 − p2

2

)
= Ss1,s2 F̃

(
p1 − p2

2

)
(97)

28 What is relevant is only the product of the normalization of the
effective coupling and that of the form factor. Such a normalization
factor will be dropped out of the final ratio of the decay probabilities
under the isospin-symmetric limit (8).
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for the heavy and nonrelativistic quarks QQ, which have
negligible spin-orbital angular momentum interaction. Fur-
ther, we drop the spin structure Ss1,s2 , which will be canceled
out in the ratio of the neutral to charged rates, and focus on
the momentum part.29

We adopt an approximate form of the wave function of
the (s-wave) ground state under a Coulomb potential in the
position space as

F(r) = N√
2πR0

e
− r

R0

r
, (98)

where r := |r|, the parameter R0 describes a typical length
scale of the bound state discussed below, and N is the irrele-
vant normalization factor mentioned above. Its Fourier trans-
form is

F̃( p) = N
∫

d3r

(2π)3/2 e−i p·rF(r) = N

π
√
R0

1

p2 + 1
R2

0

,

(99)

where we used
∫∞

0 dr sin(pr) e
− r

R0 = p
p2+ 1

R2
0

. In this paper,

we choose N = π/R3/2
0 such that F̃(0) = 1,

F̃( p) = 1

R2
0

1

p2 + 1
R2

0

. (100)

This form is also introduced in Ref. [3] to cut off a UV diver-
gence in the plane-wave computation. The treatment in Refs.
[4,5] is equivalent to taking this form factor to be unity.

Here, a vector meson V
(
QQ

)
decays into two light

pseudo-scalar mesons P(Qq) and P
(
qQ
)
. We approximate

the mass and momentum for each pseudo-scalar P (P) by
those of the constituent quark Q (Q): mP � mQ and
pP � p1 ( pP � p2), respectively. In this paper, we focus
on the situation where the masses of the two pseudo-scalar
mesons are almost the same (due to the approximated flavor
isospin SU (2) symmetry), and the mass relation is near the
decay threshold,

mV ≈ 2mP . (101)

Therefore, we can treat the process as a nonrelativistic one,
and thus, we conclude that

p1 − p2 ≈ mP (V 1 − V 2) , (102)

29 Concretely, the orbital and total angular momenta �J is S1 (� = 1),
D1 (� = 2), and S1 for φ(1020), ψ(3770), and ϒ(4 S), respectively;
see e.g. “Quark Model” section in Ref. [1].

thereby,

F̃

(
p1 − p2

2

)
= 1
(
R0( p1− p2)

2

)2 + 1
(103)

⇒ 1
(
R0mP (V 1−V 2)

2

)2 + 1
, (104)

where V 1 and V 2 are the (nonrelativistic) velocities of P and
P , respectively.

Finally, we reach the spin-independent dimensionless
function suitable for our purpose:

F̃(|V 1 − V 2|) := 1
(
R0mP (V 1−V 2)

2

)2 + 1
. (105)

This is the form factor shown in Eq. (15) for the matrix ele-
ments of the meson decays (with mV ≈ 2mP ) in the rest
system.

Now we estimate a typical value of the parameter R0 in
Eq. (98). The quarkonium potential can be approximated by
a sum of the confining linear potential and the QCD Coulomb
potential:

V (r) = r

a2
s

− αs

r
, (106)

where as is known as as = 1.95 GeV−1 [40], and αs is
the QCD fine structure constant. For the domain where
r � rc := as

√
αs � 1.5 GeV−1,30 the wave function can be

approximated by the Coulomb form (98). One can estimate r
by equating the potential and kinetic energies, V (r) ∼ KQ ,
where KQ ∼ mV − 2mQ = O(10) MeV. Since KQ is much
smaller than the typical energy scale a−1

s = 0.5 GeV of the
potential, the typical QQ distance can be estimated by equat-
ing two terms in the right-hand side of Eq. (106): r ∼ rc. The
use of Coulomb wave function (98) is marginally justified,
which suffices for our current consideration. See e.g. Ref.
[42] for further refinement.

Finally, a typical value of the parameter in Eq. (98) is

R0 ∼ rc � 1.5 GeV−1 = 0.0015 MeV−1 = 1

660 MeV
.

(107)

Appendix B: Details on calculations of PV→P P

We present detailed computation to obtain the decay proba-
bility integrated over the final-state positions and momenta
under the rest-frame assumption P0 = 0.

30 Here, we have put αs � 0.6 at the scale 0.5 GeV [41].
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B.1 Variables under nonrelativistic limit

As preparation, we show concrete forms of the kinetic vari-
ables and parameters, whose physical meaning is given in
Sect. 2.1, under the nonrelativistic limit

∣∣V 1,2
∣∣	 1. At first,

we define the “light-cone” variables for later convenience:

P± := P1 ± P2, V± := V 1 ± V 2. (108)

The kinetic variables are

P0 = 0 ⇒ V 0 = 0, P1 ⇒ mPV 1, P2 ⇒ mPV 2,

E0=mV ⇒ mV , E1⇒mP+mP

2
V 2

1, E2⇒mP+mP

2
V 2

2,

|geff|2 = g2

3
(P1 − P2)

2 ⇒ g2

3

(
m2

PV
2−
)

, (109)

where the symbol ⇒ represents the nonrelativistic approxi-
mation, which we will take later. We also have

V = σs

(
V 1

σP
+ V 2

σP

)
= σs

σP
V+, (110)

V 2 = σs

(
V 2

1

σP
+ V 2

2

σP

)

= σs

2σP

(
V 2+ + V 2−

)
, (111)

δP = P1 + P2 ⇒ mPV+, (112)

δE = −mV + E1 + E2 ⇒ − (mV − 2mP )

+ 1

2
mP

(
V 2

1 + V 2
2

)

= − (mV − 2mP) + 1

4
mP

(
V 2+ + V 2−

)
, (113)

δω = δE − V · δP ⇒ δE − mP
σs

σP
V 2+, (114)

σs = σV σP

2σV + σP
, (115)

σt = σs

V 2 − (V )2
= σP

1
2

(
V 2+ + V 2−

)− σs
σP

V 2+
. (116)

Also, we define the variables V+ and V−

V+ := |V+| , V− := |V−| . (117)

B.2 Bulk contribution

We compute the bulk contribution in Eq. (37). First, we per-

form the position integrals
∫ +∞
−∞ d3X1d3X2. As in Ref. [11],

we obtain

d3X1d3X2 = d5y dy0, (118)

∫
d5y e−R =

√
π5

σt

(
σ0σ1σ2

σs

)3 1
√

(δV 1)
2 + (δV 2)

2
,

(119)

T − �V σt

2
= − y0√

(δV 1)
2 + (δV 2)

2
+ · · · , (120)

dT = − dy0√
(δV 1)

2 + (δV 2)
2
, (121)

where y0 becomes a flat direction under the (unphysical) no-
decay limit �V → 0 (as considered in [11]), while the other
five directions are not flat directions irrespective of �V :

∫
d3X1d3X2e

−R−�V (T−T0)+ �2
V σt
4
(
W (T)

)2

=
√

π5

σt

(
σ0σ1σ2

σs

)3 ∫ Tout+ �V σt
2

Tin+ �V σt
2

dT e−�V (T−T0)+ �2
V σt
4

=
√

π5

σt

(
σ0σ1σ2

σs

)3

�−1
V e−�V (Tin−T0)− �2

V σt
4 , (122)

where we also used Eq. (31) and took the limit Tout → ∞.
The range of the integration is given by the bulk window
function W (T) in Eq. (31). After the position integrations,
we obtain

dPbulk
V→PP

= |geff|2 N 2
V�−1

V e−�V (Tin−T0)− �2
V σt
4

1

2E0

× d3P1

(2π)32E1

d3P2

(2π)32E2

× (2π)4
(√

σt

π

(σs

π

)3/2
e−σt (δω)2−σs (δP)2

)

× ∣∣F̃(V−)
∣∣2 , (123)

where the damping factors
√

σt
π
e−σt (δω)2

and
(

σs
π

)3/2
e−σs (δP)2

provide the approximate conservation for the mean energy
and momentum, respectively.31 So far, the expression (123)
does not assume P0 = 0 nor the nonrelativistic approxima-
tion given in Sect. 1.

Next, we perform the momentum integrals under the
saddle-point approximation with P0 = 0 in the nonrela-
tivistic approximation given in Sect. 1:

Pbulk
V→PP

⇒
(
N2
V�−1

V e−�V (Tin−T0)
) g2

3

1

2mV

1

(2π)24E1E2

× m6
P

8

(∫ ∞
0

4πV 2+dV+
)(∫ ∞

0
4πV 2−dV−

)

31 Of course, the energy–momentum conservation is fulfilled in itself
as a fundamental physical law of nature, in particular, for each partial
plane-wave component in the Fourier transforms.
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× 1

π2 σ
1/2
t σ

3/2
s

(
m2

PV
2−
)
e−Fbulk(V+,V−)

∣
∣F̃(V−)

∣
∣2 ,

(124)

where the factor 1/8 = 1/23 is from the Jacobian, and the
exponent is

Fbulk(V+, V−)

:= σs (δP)2 + σt (δω)2 +�2
V σt

4
= σsm

2
PV

2+

+ 2σP(
1 − 2σs

σP

)
V 2+ + V 2−

{[
mP

(
1

4
− σs

σP

)
V 2+

+1

4
mPV

2− − (mV − 2mP )

]2

+ �2
V

4

}
. (125)

We see that

1 − 2σs

σP
= 1

2σV /σP + 1
> 0, (126)

which implies

σP − 2σs > 0. (127)

Also, we see that

σP − 4σs = σP (σP − 2σs)

σP + 2σs
> 0, (128)

which leads to

1

4
− σs

σP
= 1

4σP
(σP − 4σs) > 0. (129)

Thereby,

e−Fbulk →︸︷︷︸
V+→∞

0, e−Fbulk →︸︷︷︸
V−→∞

0. (130)

The stationary point (V s+, V s−) that satisfies

∂Fbulk(V s+, V s−)

∂V+
= 0 and

∂Fbulk(V s+, V s−)

∂V−
= 0 (131)

is found to be

(
V s+, V s−

) ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜
⎜
⎝

0,

2

(
(mV − 2mP )2 + �2

V
4

)1/4

√
mP

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎜
⎝

0,

−2

(
(mV − 2mP )2 + �2

V
4

)1/4

√
mP

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜⎜
⎝

0,

2i

(
(mV − 2mP )2 + �2

V
4

)1/4

√
mP

⎞

⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎝

0,

−2i

(
(mV − 2mP )2 + �2

V
4

)1/4

√
mP

⎞

⎟⎟⎟
⎠

,

⎛

⎜⎜
⎜
⎝

2

(
(mV − 2mP)2 + �2

V
4

)1/4

√
mP

, 0

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜⎜
⎝

−2

(
(mV − 2mP )2 + �2

V
4

)1/4

√
mP

, 0

⎞

⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎝

2i

(
(mV − 2mP )2 + �2

V
4

)1/4

√
mP

, 0

⎞

⎟⎟⎟
⎠

,

⎛

⎜
⎜⎜
⎝

−2i

(
(mV − 2mP )2 + �2

V
4

)1/4

√
mP

, 0

⎞

⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(132)

Now we focus on the kinetic region (V+ � 0 and V− > 0),
and thus only the first one is relevant in our calculation:

(
V B+ , V B−

)
:=

⎛

⎜⎜⎜
⎝

0,

2

(
(mV − 2mP )2 + �2

V
4

)1/4

√
mP

= 2

[
(mV − 2mP )2

m2
P

+ �2
V

4m2
P

]1/4
⎞

⎠ . (133)

Note that

F0
bulk := Fbulk

(
V B+ , V B−

)
= mPσP

⎛

⎝− (mV − 2mP ) +
√

(mV − 2mP )2 + �2
V

4

⎞

⎠ , (134)
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which goes to zero in the (unphysical) limit �V → 0. Also,
we can see

∂2Fbulk

∂V 2+

∣∣∣∣
∣(
VB+ ,VB−

)
= 2m2

Pσs

×
⎡

⎣1

2
+ mV − 2mP

2
√

(mV − 2mP )2 + �2
V
4

⎤

⎦

=: 2m2
Pσs Abulk (> 0),

∂2Fbulk

∂V 2−

∣∣∣∣
∣(
VB+ ,VB−

)
= m2

PσP (> 0),

∂2Fbulk

∂V+∂V−

∣∣∣∣(
VB+ ,VB−

) = 0, (135)

where Abulk → 1 under the (unphysical) limit �V → 0.
We perform the integrals under the saddle-point approxi-

mation (putting E1 = E2 = mP in the overall factor) as

Pbulk
V→PP

� g2
V
3

1

2mV

1

(2π)24m2
P

× m6
P

8

(∫ ∞
0

4πV 2+dV+
)(∫ ∞

0
4π
(
VB−
)2

dV−
)

× 1

π2

[
σ

1/2
t

]

V+→VB+ , V−→VB−
σ

3/2
s

[
m2

P

(
VB−
)2
]

× e−F0
bulke− 1

2

(
2m2

Pσs
)
Abulk

(
V+−VB+

)2
e− 1

2

(
m2

PσP
)(
V−−VB−

)2

×
(
N2
V

�V
e−�V (Tin−T0)

) ∣
∣∣F̃
(
VB−
)∣∣∣

2

= g2m3
P N

2
V e

−�V (Tin−T0)

12πmVm
2
P

mP

�V

[
(mV − 2mP )2

m2
P

+ �2
V

4m2
P

]3/4

× 1

2

[

1 + erf

(
mP

√
σPV

B−√
2

)]
e−F0

bulk

A3/2
bulk

∣
∣∣F̃
(
VB−
)∣∣∣

2
,

(136)

where we have used the formulas for a > 0,

∫ ∞

0
4π r2e− a

2 r
2
dr = 2

√
2 π3/2

a3/2 , (137)

∫ ∞

0
e− a

2 (r−r0)2
dr =

√
π

2a

[
1 + erf

(√
ar0√
2

)]
, (138)

and the Taylor expansion around one of the stationary points
(V+, V−) = (V s+, V s−)

F(V+, V−) � F(V s+, V s−) + 1

2

×
∑

i, j=+,−

∂2F(V s+, V s−)

∂Vi ∂Vj

(
Vi − V s

i
) (

Vj − V s
j

)
.

(139)

B.3 Boundary contribution

We compute the boundary contribution in Eq. (37) as

∫
d3X1d3X2e

−R−�V (T−Tin)+ �2
V σt
4 −

(
T−Tin− �V σt

2

)2

σt

× 2σt

π

1
(
T − Tin − �V σt

2

)2 + (σtδω)2

=
√

π5

σt

(
σ0σ1σ2

σs

)3

e−�V (Tin−T0) 2σt

π

∫ ∞

−∞
dT′e− 1

σt (T
′)2

× 1
(
T′ − �V σt

2

)2 + (σtδω)2
, (140)

where T′ := T − Tin, and the range of the integration is
(−∞,+∞) since there exists no window function W (T) for
this boundary term other than the exponential factor.

Now we perform the Taylor expansion of T′ around the
saddle-point T′ = 0 up to the second order:

e− 1
σt (T

′)2

(
T′ − �V σt

2

)2 + (σtδω)2

�

⎛

⎜⎜
⎜
⎝

1
(

�V σt
2

)2 + (σtδω)2
+

2
(

�V σt
2

)
T′

((
�V σt

2

)2 + (σtδω)2
)2

+

(
3
(

�V σt
2

)2 − (σtδω)2
) (

T′)2

((
�V σt

2

)2 + (σtδω)2
)3

⎞

⎟⎟⎟
⎠
e− 1

σt (T
′)2

, (141)

to obtain

∫ ∞

−∞
dT′ e− 1

σt (T
′)2

(
T′ − �V σt

2

)2 + (σtδω)2

�
√

πσt

σ 2
t

⎛

⎜⎜⎜
⎝

1
(

�V
2

)2 + (δω)2
+

(
3
(

�V
2

)2 − (δω)2
)

((
�V
2

)2 + (δω)2
)3

2σt

⎞

⎟⎟⎟
⎠

,

(142)

which yields

Pbdry
V→PP

�
(
N 2
V e

−�V (Tin−T0)
) g2

V

3

1

2mV

1

(2π)24E1E2

× m6
P

8

(∫ ∞

0
4πV 2+dV+

)(∫ ∞

0
4πdV−

)
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× 1

2π5/2
σ

3/2
s m2

P e−σsm2
PV

2+

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V 4−
(

�V
2

)2 + (δω)2
+

V 4−
[

3
(

�V
2

)2 − (δω)2
]

[(
�V
2

)2 + (δω)2
]3

2σt

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

× ∣∣F̃(V−)
∣
∣2 . (143)

There is no V− in the exponent, and we will perform the
numerical computation for theV− integral. On the other hand,
the saddle-point of V+ is located at V+ = 0. With it in mind,
we approximate the polynomial part of the integrand by set-
ting V+ = 0 other than V 2+:

Pbdry
V→PP

�
(
N 2
V e

−�V (Tin−T0)
) g2

V

3

1

2mV

1

(2π)24m2
P

× m6
P

8

∫ ∞

0
4πV 2+dV+

∫ ∞

0
4πdV−

× 1

2π5/2
σ

3/2
s m2

Pe
−σsm2

PV
2+
(mP

4

)−2
f̃bdry(V−) ,

(144)

where we define a dimensionless function

f̃bdry(V−) :=
(mP

4

)2

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V 4−
(

�V
2

)2 + (δω)2
+

V 4−
[

3
(

�V
2

)2 − (δω)2
]

[(
�V
2

)2 + (δω)2
]3

2σt

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
V+→0

× ∣∣F̃(V−)
∣∣2

=

⎧
⎪⎪⎨

⎪⎪⎩

V 4−
(
V 2− − 4mV −2mP

mP

)2 + 42

m2
P

(
�2
V
4

)

−
V 4−
([

V 2− − 4mV −2mP
mP

]2 − 3
4�2

V
m2

P

)

2
(
σt |V+→0

) (mP
4

)2
[(

V 2− − 4mV −2mP
mP

)2 + 4�2
V

m2
P

]3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

× ∣∣F̃(V−)
∣∣2 , (145)

with

σt |V+→0 := 2σP

V 2−
. (146)

Now we execute the V+ integral using the formula (137)

Pbdry
V→PP

= g2m3
P N

2
V e

−�V (Tin−T0)

12πmVm2
P

Ibdry

2π
, (147)

where the integral

Ibdry :=
∫ ∞

0
dV− f̃bdry(V−) (148)

is convergent.

B.4 Interference contribution

We compute the interference contribution in Eq. (37). We
focus on the part including the factor

e
+iδω

(
T−Tin− �V σt

2

)

T − Tin − �V σt
2 − iσtδω

,

since the other part can be obtained by taking complex con-
jugation. At first, we perform the square completion of the T
part:

Iintf :=
∫

d3X1d3X2

× exp

[
−R−�V (T−T0) + �2

V σt

4
−
(
T−Tin−�V σt

2

)2

2σt

+iδω

(
T − Tin − �V σt

2

)]

× 1

T − Tin − �V σt
2 − iσtδω

W (T)

=
√

π5

σt

(
σ0σ1σ2

σs

)3 ∫ Tout+ �V σt
2

Tin+ �V σt
2

dT

× exp

[
− 1

2σt

(
T −

(
Tin−�V σt

2
+ iσtδω

))2

−�V (Tin−T0)−1

2
σt (δω)2 +�2

V σt

4
−i�V σtδω

]

× 1

T − Tin − �V σt
2 − iσtδω

→
√

π5

σt

(
σ0σ1σ2

σs

)3 ∫ ∞

Tin

dT′

× exp

[
− 1

2σt

(
T′ −

(
Tin−�V σt

2
+ iσtδω

))2

−�V (Tin−T0)−1

2
σt (δω)2 +�2

V σt

4
−i�V σtδω

]

× 1

T′ − Tin − iσtδω
, (149)
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where in the last fine, we changed the variable to T′ :=
T − �V σt/2 and took the limit Tout → ∞.

In order to use the analytic formula for σt > 0 and α ∈
C,32

∫ ∞

Tin

dt
1

t − α
e− 1

2σt
(t−α)2 = −1

2
Ei

(
− 1

2σt
(Tin − α)2

)
,

(150)

where Ei(z) is the exponential integral function defined by
the principal value of

Ei(z) := −
∫ ∞

−z
dt
e−t

t
, (151)

and we add an extra term in the denominator of the integrand
of Iintf such that

Iintf ∼
√

π5

σt

(
σ0σ1σ2

σs

)3 ∫ ∞

Tin

dT′

× exp

[
− 1

2σt

(
T′ −

(
Tin−�V σt

2
+ iσtδω

))2

−�V (Tin−T0)−1

2
σt (δω)2 +�2

V σt

4
−i�V σtδω

]

× 1

T′ −
(
Tin − �V σt

2 + iσtδω
) , (152)

which would underestimate the integral to some extent. Now
we reach the analytic form

Iintf ∼
√

π5

σt

(
σ0σ1σ2

σs

)3
e−�V (Tin−T0)− 1

2 σt (δω)2+ �2
V σt
4 −i�V σt δω

×
(

−1

2
Ei
(−X ′)

)
, (153)

with

X ′ := σt

2
(�V + iδω)2 . (154)

Here, we will take the leading term of the expansion
around infinity for X ′:

− Ei
(−X ′) = e

−X ′+O
(

1
X ′2
) [

1

X ′ + O
(

1

X ′2

)]
, (155)

32 One of the necessary conditions for this relation is
“(Tin + α /∈ R) & (�(Tin) �= �(α)) & (�(Tin) ≥ �(α)).” In our case,
the set of these conditions is manifestly fulfilled since α corresponds
to “Tin − �V σt/2 + iσtδω,”.

which leads to

Iintf + (Iintf)
∗ ∼ 1

2

√
π5

σt

(
σ0σ1σ2

σs

)3

e−�V (Tin−T0)− �2
V σt
4

×
[

e−2i�V σt δω

σt
2 (�V + iδω)2 + e2i�V σt δω

σt
2 (�V − iδω)2

]

,

(156)

and

dP intf
V→PP

∼ −|geff|2N 2
V

1

2E0

d3 P1

(2π)32E1

d3 P2

(2π)32E2
(2π)4

×
(√

σt

π
e−σt (δω)2

)

×
[(σs

π

)3/2
e−σs (δP)2

]

× e−�V (Tin−T0)− �2
V σt
4 + 1

2 σt (δω)2 ×
√

2σt

π

×
(
�2
V − (δω)2) cos(2�V σtδω) − 2�V δω sin(2�V σtδω)

σt
(
�2
V + (δω)2)2

× ∣∣F̃(V−)
∣∣2 . (157)

We perform the momentum integrals in the nonrelativistic
limit:

P intf
V→PP

⇒ −N 2
V e

−�V (Tin−T0) g
2
V

3

1

2mV

1

(2π)24E1E2

× m6
P

8

(∫ ∞

0
4πV 2+dV+

)(∫ ∞

0
4πV 2−dV−

)

× 1

π2 σ
1/2
t σ

3/2
s

(
m2

PV
2−
)
e−Fintf(V+,V−)

√
2σt

π

×
(
�2
V − (δω)2) cos(2�V σtδω) − 2�V δω sin(2�V σtδω)

σt
(
�2
V + (δω)2)2

× ∣∣F̃(V−)
∣∣2 , (158)

where

Fintf(V+, V−) := σs (δP)2 + 1

2
σt (δω)2 + �2

V σt

4
= σsm

2
PV

2+

+ 2σP(
1 − 2σs

σP

)
V 2+ + V 2−

︸ ︷︷ ︸
=σt

{
1

2

[
mP

(
1

4
− σs

σP

)
V 2+

+1

4
mPV

2− − (mV − 2mP )

]2

+ �2
V

4

}
. (159)

This function is similar to Fbulk, but a factor of the half comes
in front of σt (δω)2. As in the case of the bulk part, we can
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see

e−Fintf →︸︷︷︸
V+→∞

0, e−Fintf →︸︷︷︸
V−→∞

0. (160)

Stationary points (V s+, V s−) are defined by

∂Fintf(V s+, V s−)

∂V+
= 0 and

∂Fintf(V s+, V s−)

∂V−
= 0, (161)

and we find one stationary point in the kinetic region (V+ � 0
and V− > 0),

(
V I+, V I−

)
:=

⎛

⎜⎜
⎜
⎝

0,

2

[
(mV − 2mP )2 + �2

V
2

]1/4

√
mP

⎞

⎟⎟
⎟
⎠

. (162)

Note that

F0
intf = Fintf

(
V I+, V I−

)

:= mPσP

2

⎡

⎣− (mV − 2mP ) +
√

(mV − 2mP )2 + �2
V

2

⎤

⎦ , (163)

which takes a positive value when �V is finite, and goes to
zero in the (unphysical) limit �V → 0. Also, we can see

∂2Fintf

∂V 2+

∣∣∣∣
∣(
V I+,V I−

)
= 1

2
m2

Pσs

⎡

⎣3 + mV − 2mP√
(mV − 2mP )2 + �2

V
2

⎤

⎦

=:
(

1

2
m2

Pσs

)
4Aintf,

∂2Fintf

∂V 2−

∣∣∣∣
∣(
V I+,V I−

)
= 1

2
m2

PσP ,

∂2Fintf

∂V+∂V−

∣∣∣∣(
V I+,V I−

) = 0, (164)

where Aintf → 1 under the (unphysical) limit �V → 0.
Now we evaluate the nonrelativistic integral in Eq. (158).

By use of Eqs. (137) and (138), we reach

P intf
V→PP

∼ −
(
g2
Vm

3
P N

2
V e

−�V (Tin−T0)

12πmV E1E2

)
mP

√
σP

2
√

2
√
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(
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)2

× 1

2

[

1 + erf

(
mP

√
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2

)]
e−F0
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A3/2
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∣
∣∣F̃
(
V I−
)∣∣∣

2

×
⎡

⎢
⎣

(
�2
V − (δ̃ω)2

)
cos
(
2�V σ̃t δ̃ω

)− 2�V δ̃ω sin
(
2�V σ̃t δ̃ω

)

σ̃t

(
�2
V + (δ̃ω)2

)2

⎤

⎥
⎦ ,

(165)

where the factor
√

σP comes in the overall factor [instead
of �−1

V compared with the bulk result in Eq. (136)], and we
defined the parameters

σ̃t := σt

∣
∣
∣
V+→V I+, V−→V I−

= 2σP(
1 − 2σs

σP

)
V 2+ + V 2−

∣∣
∣∣
∣
∣
V+→V I+, V−→V I−

= 2σP
(
V I−
)2 , (166)

δ̃ω := δω

∣
∣∣
V+→V I+, V−→V I−

=
[
mP

(
1

4
− σs

σP

)
V 2+ + 1

4
mPV

2− − (mV − 2mP )

]∣∣
∣∣
V+→V I+, V−→V I−

= 1

4
mP

(
V I−
)2 − (mV − 2mP ) . (167)

Appendix C: Plane-wave decay rate

From the effective Hamiltonian (7), under the use of the form
factor (105), it is immediate to get the following form in the
plane-wave formalism for the resting V :

�
plane
V→PP

= 2

3

(
gV P

2

4π

)
|kP |3
m2
V

∣∣
∣
∣F̃
(
k1 − k2

2

)∣∣
∣
∣
2

= gV P
2

48πm2
V

(
m2
V − 4m2

P

)3/2

∣
∣
∣
∣∣
∣
∣

1
(
R0(k1−k2)

2

)2 + 1

∣
∣
∣
∣∣
∣
∣

2

,

(168)

where gV P represents gV+ (for P = P+) or gV0 (for P =
P0), and the magnitude of the final-state momenta in the
center of mass frame is given as

|kP | = |k1| = |k2| = 1

2

(
m2

V − 4m2
P

)1/2
. (169)

The form factor part does not take the nonrelativistic limit as
in Eq. (105), and currently, k1 = −k2, and thus

|k1 − k2| = 2 |k1| =
(
m2

V − 4m2
P

)1/2
. (170)

Note that under the nonrelativistic approximation taken in
Eqs. (101) and (102), it is easy to obtain the approximated
form as

�
plane
V→PP

⇒ �
plane,non-rel
V→PP

:= gV P
2m2

P
12πmV

(
mV − 2mP

mP

)3/2

∣
∣∣
∣
∣
∣∣

1
(
R0mP (V 1−V 2)

2

)2 + 1

∣
∣∣
∣
∣
∣∣

2

,

(171)

|V1 − V2| ≈ 2 (mV − 2mP )1/2
√
mP

. (172)
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Appendix D:Comparisonwith the plane-wave decay rate

As shown in Sect. 3, the boundary contribution dominates
over the bulk and interference ones in all regions of the
parameter space R0 and σP . This is because of the fast decay
of the vector meson V due to strong interactions. The fast
decay suppresses the contribution from the bulk so that the
contribution from the initial time boundary becomes more
significant compared to the bulk one.

As mentioned above, the plane-wave decay width �V is
dependent on other theory parameters such as gV , mP , and
mV . Therefore, it is meaningless to take an “on-shell” limit
�V → 0 with other parameters being fixed. Nevertheless,
one might pretend that one can take this unphysical limit,
and then one extracts the plane-wave decay width (171) as

�
plane,non-rel
V→PP

= lim
σP→∞

(
lim

�V →0
�V PV→PP

)

= lim
σP→∞

(
lim

�V →0
�V P

bulk
V→PP

)
, (173)

where the limit of large wave-packet size σP → ∞ is taken
after the limit �V → 0.33 The second equality in Eq. (173)
is derived as follows: Under the limit �V → 0, the two ratios
�V P

bdry
V→PP

and �V P intf
V→PP

approach zero since Pbdry
V→PP

and

P intf
V→PP

are not proportional to �−1
V as shown in Eqs. (45) and

(48). When taking the above limits �V → 0 and σP → ∞,

the following is satisfied:

V B− → 2

√
mV − 2mP√

mP
, erf

(
mP

√
σPVB−√
2

)

→ 1,

F0
bulk → 0, Abulk → 1,

(174)

as is the physical requirement NV → 1 from �V → 0.
In the actual setup, the (unphysical) �V → 0 limit is not

good, and we see that the boundary contribution dominates
over the bulk one for the parameters corresponding to the real
experiments mainly because of the exponential suppression
factor e−F0

bulk .

Appendix E: A brief comment on the isospin breaking of
the ρ system

We will make a brief comment on the isospin breaking of the
ρ system. Here, we define the following ratio:

RWP
ρ := Pρ+→π+π0

Pρ0→π+π−
,

33 As said above, σV drops out of the result at this order of the saddle-
point approximation.

Rplane
ρ :=

�
plane
ρ+→π+π0

�
plane
ρ0→π+π−

,

Rparton
ρ :=

�
plane
ρ+→π+π0

∣∣∣
without form factor

�
plane
ρ0→π+π−

∣∣∣
without form factor

, (175)

where we replacemP to
(
mπ+ + mπ0

)
/2 for the calculations

of ρ+ → π+π0. In Fig. 16, the Rρ in terms of the wave
packet and the relativistic plane wave is depicted for R0 =
0.0015 MeV−1 (left panel) and R0 = 0.01 MeV−1 (right
panel); see Sects. 2.3 and 4.3 for the details of the wave-
packet decay probabilities and the plane-wave decay rates,
respectively.

First, we mention the experimental inputs that we adopt.
As official results reported by the PDG [1],

• Six digits are reported as typical mass scales of the broad
resonant ρ system, where their central values are located
from 769.0 MeV to 775.26 MeV.

• Also, six digits are shown as typical width scales of the
ρ system, where their central values are located from
147.4 MeV to 151.5 MeV.

• The difference betweenmρ0 andmρ+ takesmρ0 −mρ+ =
−0.7 ± 0.8 MeV.

• The difference between �ρ0 and �ρ+ takes �ρ0 −�ρ+ =
0.3 ± 1.3 MeV.

Since Rρ measures isospin-violating effects, it is thus insen-
sitive to what is a typical mass scale of the system. So we sim-
ply take mρ0 = 770 ± 1 MeV and �ρ0 = 147.4 ± 0.8 MeV.
Based on the mass scale,mρ+ is estimated by use of the above
data on mρ0 and mρ0 − mρ+ as

mρ+ = 770.7 MeV (central),

mρ+ = 771.5 MeV (+1σ),

mρ+ = 772.3 MeV (+2σ),

while the central value of �ρ+ is similarly estimated as
147.7 MeV. As expected and as shown in Fig. 16, Rρ can
depend on the mass difference notably.

Next, we discuss the numerical result shown in Fig. 16.
As expected, the experimental result is located very near the
unity since the ρ vector mesons do not contain heavy quarks.
The plane-wave theoretical predictions with and without the
form-factor effect show similar results. The wave-packet pre-
dictions deviate from the unity several percent upward, show-
ing fewer agreements. Nevertheless, this does not necessarily
mean that wave-packet formalism works less effectively for
the ρ system than plane-wave formalism because the current
wave-packet result is precise only for nonrelativistic sys-
tems (due to the usage of nonrelativistic approximations).
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Fig. 16 Values of Rρ defined in Eq. (175) are depicted for R0 =
0.0015 MeV−1 (left panel) and R0 = 0.01 MeV−1 (right panel). The
captions “Wave-Packet (full),” “Plane-Wave (rel),” and “Plane-Wave

parton-level” correspond to RWP
ρ , Rplane

ρ , and Rparton
ρ , respectively. See

the main text of this section for other details

Note that the decays ρ+ → π+π0 and ρ0 → π+π− are
fully relativistic due to the large difference between the total
masses of the initial state and final state. Several percent
of theoretical errors are expected from the fully relativistic
wave-packet prediction, which is beyond the scope of this
paper. The typical scale of the form factor under the cur-
rent scheme R0 = 0.0015 MeV works well compared with
R0 = 0.01 MeV.

Also, we comment on the dependence on R0 in Rρ . As
typically observed in the curves of “Plane-Wave (rel)” of
Fig. 16, the form-factor part of Rρ is not sensitive to R0

since the total mass differences between the initial and the
final states take almost the same values in ρ+ → π+π0 and
ρ0 → π+π−, and their final-state phase spaces are wide.
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