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Dark matter particles captured in neutron stars deposit their energy as heat. This DM heating effect can be

observed only if it dominates over other internal heating effects in neutron stars. In this work, as an example
of such an internal heating source, we consider the frictional heating caused by the creep motion of neutron
superfluid vortex lines in the neutron star crust. The luminosity of this heating effect is controlled by the strength
of the interaction between the vortex lines and nuclei in the crust, which can be estimated from the many-body
calculation of a high-density nuclear system as well as through the temperature observation of old neutron stars.
We show that both the temperature observation and theoretical calculation suggest that the vortex creep heating
dominates over the DM heating. The vortex-nuclei interaction must be smaller than the estimated values by
several orders of magnitude to overturn this.

1. Introduction

Dark Matter (DM) is a mysterious gravitational source that remains
one of the biggest enigmas in the universe. Among the potential can-
didates, Weakly Interacting Massive Particles (WIMPs) are particularly
intriguing. The thermal history of WIMPs in the expanding universe
offers a natural explanation for the observed energy density of DM,
as determined by observations of the Cosmic Microwave Background
(CMB) [1]. WIMPs interact with particles in the Standard Model (SM),
providing avenues to probe their properties. The different approaches,
such as direct detection, indirect detection, and collider searches, pro-
vide valuable information on the properties of DM. However, despite
extensive efforts, the conclusive identification of DM particles remains
an ongoing challenge in the field of particle physics.

Recently, there has been growing interest in using Neutron Star (NS)
temperature observation as a means of searching for WIMPs [2-36].
By observing old NSs, we can explore the unknown properties of DM
through its interactions with stellar matter. NSs possess a strong grav-
itational potential, causing WIMP particles to fall and become gravita-
tionally bound to them. During this process, WIMP particles scatter off
the stellar matter, losing some of their kinetic energy to the NS [37].

* Corresponding author.

The capture of DM can occur via interactions with nucleons, leptons,
and even hyperons. If WIMPs lose enough energy, they will be cap-
tured within a NS core, where they thermalize and eventually annihilate
into SM particles. The capture, thermalization, and annihilation pro-
cess inject energy into the NS, serving as a late-time heating source
of old isolated NSs [2]. The heating effect typically predicts a surface
temperature of a few thousand Kelvin [31], which is anomalously hot-
ter compared to the prediction from the standard cooling theory for
NSs [38-43] that are older than 10° yrs. Therefore, by observing NSs
colder than this predicted WIMP temperature, we may be able to place
constraints on the WIMP-nucleon cross section.

In the context of NS temperature observations to probe DM proper-
ties, it is commonly assumed that the heating effects from DM dominate
a late heating source for the star. However, observations have revealed
the existence of old but still warm NSs with surface temperatures typi-
cally exceeding 10° K [44-50]. The presence of such high temperatures
in these compact objects suggests that additional internal heating mech-
anisms must be at play. Since DM heating alone cannot explain the
observed temperatures, other heating sources must contribute to the
thermal energy of these objects. For a review of such a heating mecha-
nism in NSs, see Refs. [51-53]. If NSs are primarily heated by internal
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mechanisms that predict a universal temperature as high as 10° K, as
observed recently, it would indeed pose challenges for probing WIMP
through future temperature observations [14].

The vortex creep heating [51,52,54-63] is a universal and internal
heating mechanism. This heating is caused by friction associated with
the creep motion of vortex lines in the neutron superfluid of the inner
crust region. Its heating luminosity is proportional to the time deriva-
tive of the angular velocity of the NS, and the proportional coefficients
(denoted by J in this paper) are expected to be universal and deter-
mined by the nuclear-vortex interaction in the inner crust region. We
can in principle evaluate this parameter J by means of a nuclear many-
body calculation [64-78]. It is also possible to determine this from the
NS surface temperature observations by fitting the data with the pre-
diction of the vortex creep heating mechanism. In Ref. [63], we showed
that the values of J obtained with these two approaches are consistent
with each other. In the present paper, we discuss the implications of
this result for the WIMP DM search through the NS surface temperature
observations.

2. Thermal history of neutron stars

We begin by reviewing the thermal history of NSs [38-40]. The ther-
malisation process of NSs is typically completed by ¢ < 102 yrs [79,801,
and the subsequent thermal evolution remains largely independent of
the initial conditions for each star. The following equation describes the
thermal evolution of NSs,

C""(T"°)ﬂ =—L®—-L®+L> )
dt v v heat’

where C®(T%) is the heat capacity of the star. On the right-hand side,

the terms with a negative sign, L, and L,, are redshifted luminosity for

cooling by the neutrino and photon emissions, respectively. The term

with a positive sign, L° , denotes the redshifted luminosity for heating

if any exists.

The early phase of cooling for ¢ $ 10° yrs occurs with neutrino
emission such as direct Urca [81], modified Urca [82,83], and Pair-
breaking and formation (PBF) process [84-86]. The late phase of cool-
ing for ¢ > 10° yrs is associated with photon emission, and the cooling
luminosity is given by the Stefan-Boltzmann law. If NSs have a heat-
ing source, the associated heating luminosity and the photon cooling
luminosity will eventually reach thermal equilibrium. Therefore, the
late-time surface temperature of NSs will be characterised by their lu-
minosity through the following relation.

Ly =~ LY = B(Rys) X 47 RYsosp Ty, ®)

heat

where Ryg is the NS radius, T is the surface temperature, and ogg is the
Stefan-Boltzmann constant. The factor of B(r), the time component of
the Schwartzschild metric, represents the redshift effect on luminosity.
In the following, we will consider two types of heating sources: DM
heating and vortex creep heating.

3. Dark matter heating

Dark matter particles accrete in NS cores and scatter with the stel-
lar matter. In particular, WIMPs with a mass of 1 GeV $Sm, 51 PeV
will be efficiently captured gravitationally [7]. For neutron targets, the
threshold value of DM-neutron cross section for capture is derived as
0, = 1.7% 107 cm? (1.4 X 107 cm?) in Ref. [21] (Ref. [24]).

The DM captured within a NS core will be thermalized and even-
tually annihilated into SM particles. The capture, thermalization, and
annihilation processes will inject energy into the NS and increase its
temperature [2]. The general expression for the capture rate by nucle-
ons and leptons in a NS is given by [2,37],

R

NS
c=4x p_){Erf \/EU—* / drﬂrzg_(r)ﬂ(r) ) €)
v, m, 2 Vg ; B(r)
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where v, and v, are the NS and dispersion velocities, respectively. Here
p, is the DM density which, considering local NSs, takes the value of
p, =04 GeV /cm3. We introduce the function Q™ (r) as the interaction
rate between dark matter and the target in the NS. This interaction
rate corresponds to the case when the DM is captured and depends
on factors such as the DM-target cross section and the target number
density. Additionally, the function #(r) takes into account the opacity
of the star. After the capture and annihilation of DM, and assuming
that both processes are in equilibrium, we obtain the following heating
luminosity observed at the distance,

LY = B(Ryg) X [X +(y = DIm,C(m,) , C))

where y = B(RNS)’I/ 2 is the Lorentz factor of the incoming DM parti-

cle. We introduce X to express the fraction of the annihilation energy
transferred to the heat of the NS, and the (y — 1) factor accounts for the
contribution of the DM kinetic energy [7].

Assuming the heating luminosity is dominated by the DM effects
expressed in Eq. (4), we can read out the surface temperature of NSs in
this scenario from Eq. (2):

[X +( - DIm, Cm )\
T,lpm = . (5)

2
47 R osB

The maximum value of T predicted, due to the heating by the cap-
ture of DM and its annihilation within a NS core, is T, ~ 2600K [31].
It is worth mentioning that the DM mass dependence in Eq. (5) is can-
celled by C(m ) & m-!. Therefore, the predicted surface temperature
dominated by DM effects will be quite universal for a wide range of DM
mass, 1 GeV <m S 1 PeV, if DM has a larger cross section with targets
than the threshold value.

4. Vortex creep heating

The key to understanding the vortex creep heating is the neutron ! S,
superfluid that is expected to appear in the inner crust of a NS [87-89].
Except for this superfluid, the components, such as a rigid crust, a lattice
of nuclei, charged particles, and NS core (denoted as crust component),
are tightly coupled through electromagnetic force and are directly af-
fected by the external torque. On the other hand, the neutron 'S
superfluid (denoted as superfluid component) is only indirectly affected
through the interaction with the crust component. This two-component
description is originally proposed in the context of NS glitch phenom-
ena [90]. Under this description, we need to follow two angular veloc-
ities, Q. and Q, for the crust and superfluid components, respectively.
The friction between these two components is crucial for the vortex
creep heating [54] as we will review below.

The interaction between the crust and superfluid components is
mediated by the vortex line of the neutron superfluid [91]. This string-
shaped configuration appears in a rotating superfluid system and has
a nonzero vorticity quantized in units of k = h/(2m,), where h is the
Planck constant and m, is the neutron mass. In a NS, the number of
vortex lines saturates at the point where its integrated vorticity corre-
sponds to the rigid body rotation of the superfluid component. In this
saturation limit, the angular velocity of the superfluid component at a
certain position decreases only if the number of vortex lines inside this
position reduces. This is accomplished by the radial motion of vortex
lines, known as vortex creep. See Ref. [63] for more detailed discussions
on the vortex creep.

The vortex creep occurs as a consequence of two forces exerting on
vortex lines, pinning force and the Magnus force: The pinning force, f;,,
originates from the interaction between the vortex and the lattice nuclei
and fixes a vortex line at some stable points in the crust. As a result, the
angular velocity of superfluid remains constant, while that of the crust
component slows down, leading to Q; — Q. > 0. This non-zero relative
angular velocity will be a trigger for the Magnus force as expressed
below:
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Fviag =0 [(Q — Qo) X 1] XK, (6)

where p is the mass density of superfluid, and r denotes the position
vector from the NS center. We introduce the vorticity vector denoted as
k, which has the absolute value |x| = k and is aligned to the rotational
axis with right-handed screw direction. Equation (6) shows that the
direction of the Magnus force, and thus the direction of the vortex creep
motion, is also fixed radially outward.

Depending on the NS temperature, vortex lines come off the pinning
positions due to the thermal excitation or quantum tunnelling. Ac-
cording to the previous estimation [62,92,93], the quantum tunnelling
process is dominant for old NSs (with T, S 10° K), and the unpinning
rate for vortex lines is large enough for the system to be entered to
the steady phase where the superfluid and the crust component have
the same spin-down rate, Q. = Q, = Q. The relative angular velocity
at this steady motion is nearly the same as that for the critical value
where we have fi;; > fye- Using Eq. (6), we obtain

f pin

pKkr’

(Q Q) = @)
where r is the distance from the rotational axis.

The rotational energy stored in the neutron superfluid, which rotates
faster than the crust component, is dissipated as heat via friction caused
by the vortex creep motion. The energy dissipation due to this steady
vortex creep motion gives the heating luminosity for NSs [54],

Ly = B(Rys) X J|Qq, |, (8)
where the proportional constant J is defined as

_ f pin
J= [ dIinQ— Q) > [ dly, Py (©)]
Here, I, denotes the moment of inertia for the NS crust where the

pinning force is relevant. The late-time surface temperature is given
from Eq. (2) once we assume the vortex creep heating dominates in a
NS,

1
JIQ :
Tilven = <A> . 10)

2
4r RO

Note that the J is only one parameter to characterize the predicted
temperature for each NS since we can input |Q,| and Ryg from obser-
vation.

The parameter J is, in principle, determined by the pinning force
that is expected to be universal for all NSs. This pinning force can
be evaluated using a nuclear many-body calculation [64-73], though
the present theoretical calculation suffers from large uncertainty. In
Ref. [63], we estimated the parameter J using the semi-classical [73]
and quantum [67] calculations of the pinning force and obtain the fol-
lowing range of J':

Je3.9%x10%,1.9x10%]erg-s (Semi-classical [73]), (11)
Je[1.7x10%,2.7x 10%]erg-s (Quantum [67]) . (12)

On the other hand, we can also estimate the parameter J from the
temperature observation of old NSs through Eq. (10). If the vortex creep
heating dominates the heating luminosity, we expect that the values of
J estimated from Eq. (10) are almost universal over the NSs within the
uncertainty coming from the surface temperature observation (typically
a factor of a few error in 7, [94]) and from the NS structure (an O(1)
factor in J and Ryg). In Ref. [63], we showed that the current temper-
ature observations of old NSs indeed support this prediction, with J in
the range

1 We obtain larger values of J if we use the pinning force computed in
Refs. [66,72] (see Ref. [63]).
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Fig. 1. Contours of J [erg - s] corresponding to L., = L;° in the 74-|Q| plane
(solid red lines). Grey dots represent spin-down pulsar data from the ATNF
pulsar catalogue [95,96], and orange stars indicate NSs used to test the quasi-
universality of J in vortex creep heating in Ref. [63]. Green and red bands
indicate the theoretical estimates (11), (12) and the observationally favored
range (13) of J, respectively. Blue dashed contours show the temperatures pre-
dicted by the vortex creep heating for J = 10*29 erg - s.

J~ 1042.943.8

erg-s (Observation [63]) . (13)

It is found that this observationally favoured range of J can be con-
sistent with the theoretical estimate in Eq. (11), though much smaller
values are also allowed in the theoretical estimations.

5. Results

Now we discuss the implications of the vortex creep heating mech-
anism for the prospects of the WIMP DM search via the NS surface
temperature observation. For the DM heating to have a visible effect
on the evolution of the NS surface temperature, its luminosity must
dominate the heating luminosity. This requires Ly < L;", imposing
an upper bound on J in Eq. (8). In Fig. 1, we show contours of J in
units of erg - s corresponding to Ly, = L;’: in the 7.4-|Q| plane (red
solid lines), where 14 is the spin-down age of the NS; in this evalua-
tion, we take 7, = 2600 K in Eq. (2) to estimate the most optimistic
value of the DM heating luminosity as estimated in Ref. [31]. We also
show the spin-down pulsar data taken from the Australian Telescope
National Facility (ATNF) pulsar catalogue [95,96] as the grey dots. The
orange stars indicate the NSs used to test the vortex creep heating in
Ref. [63]. The grey-shaded region corresponds to NSs too young to
probe DM heating (.4 < 10° yrs). As we see, for the observed values
of |Q|, we need J < ©(10°°-39) erg - s in order for DM heating to prevail
over vortex heating. These values are smaller than both the theoretical
estimations (11), (12) (green band) and the observationally favoured
range (13) (red band) by orders of magnitude.

In other words, if the value of J is in the observationally favoured
range, J ~ 104-10* erg - s, the surface temperature of NSs becomes
much higher than the maximal value predicted by the DM heating,
T, ~ 2600 K [31]. To see this, we also show the surface temperatures
predicted by the vortex creep heating for J = 10*29 erg - s (the lower
value in observationally favoured range) in blue dashed contours in
Fig. 1. We found that for all of the known pulsars 7, > 2600 K, im-
plying that the vortex heating effect always conceals the DM heating
effect.
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Fig. 2. Time evolution of the surface temperature in the presence of both the
vortex creep and DM heating in the blue solid lines, where we set PP=10""s5,
Py=10 ms, p, =0.42 GeV - em™, v, =230 km-s7!, v, =0, and X = 1. The
blue dotted and black dashed lines show the cases for only the DM heating and
the standard cooling, respectively. The orange dots represent the temperature
data for ordinary pulsars considered in Ref. [63], where the bars show the error
in T, and the arrows indicate the upper limits.

In Fig. 2, we show the time evolution of the surface temperature in
the presence of both the vortex creep and DM heating in the blue solid
lines.> We take J = 10*, 10*2, 10%°, 10, and 10® erg - s from top
to bottom. In the calculation of the vortex creep heating, we assume
that the magnetic dipole radiation causes the pulsar slowdown, and we
set PP =10"13 s and Py =10 ms, where P, P, and P, are the period,
its time derivative, and initial period of the pulsar, respectively. This
choice corresponds to the surface magnetic field of B, ~ 10'> G, which
is a typical value for ordinary pulsars.’> In the calculation of the DM
heating, we use p, =0.42 GeV - em™3 [111], v, =230 km -s7!, v, =0,
and X =1, for which we have T°|py ~ 2 x 10° K. The blue dotted
and black dashed lines show the cases for only the DM heating and the
standard cooling, respectively. The orange dots represent the tempera-
ture data for ordinary pulsars considered in Ref. [63], where the bars
show the error in T and the arrows indicate the upper limits. This fig-
ure shows that for observationally favoured values of J in Eq. (13), the
late-time temperature evolution is governed by the vortex creep heat-
ing, and the effect of the DM heating is completely invisible. The DM
heating effect can be comparable to the vortex creep heating effect only
if the value of J is smaller than those values by orders of magnitude;
for J =10% erg-s (103 erg - s), the DM heating may be observable for
NSs older than 7 > 107 years (3 x 108 years).

6. Conclusions & discussion

We have studied the effect of the vortex creep heating on the search
of WIMP DM through the surface temperature observation of old NSs.
We have found that for values of J that are favoured by both theory
(Egs. (11) and (12)) and observation (Eq. (13)), the vortex creep heat-

2 We use the Akmal-Pandharipande-Ravenhall (APR) [97] equation of state
for a NS mass of 1.4M, to calculate the NS structure. For Cooper pairing gap
models, we use the SFB model [98] for the neutron singlet pairing, the model
“b” in Ref. [41] for the neutron triplet pairing, and the CCDK model [99] for the
proton singlet pairing. The late-time temperatures rarely depend on the choice
of these models.

3 In millisecond pulsars, it is likely that another heating mechanism called
the rotochemical heating [100-108] (see also Refs. [109,110]) operates and its
effect will hide the DM heating effect [14]. For this reason, we focus on ordinary
pulsars in the present analysis.
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ing effect is much stronger than the DM heating effect, and thus it is
challenging to detect the signature of WIMP DM through the tempera-
ture observations of old NSs. For this to be possible, J should be smaller
than these values by orders of magnitude, as small as J < 1038 erg - s.

It is, of course, possible that future computations of the vortex-nuclei
interaction will indicate a much smaller pinning force than the present
calculations, leading to a sufficiently small value of J. Another possibil-
ity to suppress the vortex creep heating is that the vortex creep rate is
much lower than the theoretical estimates [62,92,93] so that the spin-
down rate of the superfluid component does not follow that of the crust
component. In this case, the spin-down of the superfluid component
does not reach the steady phase, which is assumed in the derivation of
Eq. (8), and the vortex heating luminosity depends on |Q|. It is found
that Q, is proportional to the vortex creep rate (see Ref. [63]), and
therefore a very small creep rate could suppress the vertex heating. To
explore these possibilities, improvements in the theoretical calculations
of the vortex-nuclear interactions are highly motivated.

Besides, it is also important to accumulate more data of the surface
temperatures of old NSs to observationally test the vortex creep heat-
ing mechanism as discussed in Ref. [63]. We envision that this will be
performed in the near future through improved optical, UV, and X-ray
observations.
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