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We expand our earlier results [D. Astefanesei et al., Hairy black hole chemistry, J. High Energy Phys. 11
(2019) 043.] to investigate a general class of exact hairy black hole solutions in Einstein-Maxwell-dilaton
gravity. The dilaton is endowed with a potential that originates from an electromagnetic Fayet-Iliopoulos
term inN ¼ 2 extended supergravity in four spacetime dimensions. We present the usual thermodynamics
by using the counterterm method supplemented with boundary terms for a scalar field with mixed boundary
conditions. We then extend our analysis by considering a dynamical cosmological constant and verify the
isoperimetric inequality. We obtain a very rich phase diagram and criticality in both the canonical and grand
canonical ensembles. Within string theory, the cosmological constant is related to the radius of the external
sphere (of the compactification) and can be interpreted as a modulus. In this context, the existence of a
critical value hints to the fact that the thermodynamic properties of black holes in lower dimensions depend
on the size of the compactification.
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I. INTRODUCTION

In the context of string theory, scalar fields arise
naturally as moduli when considering specific compacti-
fications. These moduli will appear as fields in the lower-
dimensional effective field theory (see, e.g., [1] and
references therein). One such modulus is the cosmological
constant that appears when considering gauged super-
gravity. Once embedded in string/M theory [2], the radius
of anti–de Sitter (AdS) spacetime is related to the radius
of the external sphere. Therefore, the cosmological constant
becomes dynamical if the radius of the sphere evolves
in time [3].
In string theory, a sufficiently heavy compactified

wrapped object will effectively give rise to a lower-
dimensional black hole; examples in AdS gravity include
the well-known R-charged black hole solutions [2,4].

Here we consider a different general class of exact hairy
black hole solutions in AdS4 [5]1 that can be embedded
in a supergravity model with dyonic Fayet-Iliopoulos
terms [18,19] (see also [20–24]). Interestingly, one can
study the thermodynamics of black holes in AdS when the
corresponding cosmological constant can vary [25,26] and
is taken to be a thermodynamic variable similar to “pres-
sure” [27–30]. In one of the pioneering works on this
subject [31], it was understood that there is a deep analogy
between charged AdS black holes and Van der Waals
fluids. What is important from a physical point of view is
that, since there is a critical value for the pressure, the
thermodynamic properties of the black holes in string
theory depend on the size of the compactification (external
sphere) [3,32]. It is also important to emphasize that the
cosmological constant represents a relevant thermodynamic
quantity in black hole thermodynamics, as follows from the
fact that it is required for the consistency of the Smarr
formula, even as a fixed quantity [33,34].
Previously we have provided a detailed analysis of

the criticality phenomena for a particular exact hairy
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1Similar or more general exact hairy black hole solutions in
AdS were obtained in [6–13]. It is also worth mentioning that
similar solutions [14], which are thermodynamically and dynami-
cally stable [15–17], exist in flat spacetime.
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black hole solution and compared its properties with the
Reissner-Nordström asymptotically anti–de Sitter (RN-
AdS) black hole [32]. Interestingly, the scalar field dras-
tically changes its properties. For example, in the grand
canonical ensemble, the scalar field allows critical phe-
nomena and, unlike the RN-AdS black hole, there is double
criticality in the canonical ensemble.
In this paper, we carry out a complete analysis of the

criticality for a general family of exact hairy black hole
solutions [5]. In this case, the potential of the scalar field
contains two extra parameters besides the cosmological
constant that makes the thermodynamics in the extended
phase space even richer. In the canonical ensemble, we
previously observed the particularly interesting aspect of
reentrant phase transitions [35]. However, in this paper we
shall not only provide the technical details and complete
the thermodynamic analysis in the canonical ensemble, but
shall also investigate the grand canonical ensemble, which
also has interesting properties that are distinct from the
particular case presented in [32]. We use the counterterm
method developed in [36] (that is consistent with the
Hamiltonian formalism [37,38]) for the scalar field to
regularize the Euclidean action and quasilocal stress tensor
of Brown and York [39]. Armed with these results, we
present the usual thermodynamics of hairy black holes
before considering the extended phase space thermody-
namics. We obtain the Smarr formula and provide a
concrete check of the isoperimetric relation and provide
its physical interpretation in this context. Unlike the RN-
AdS black hole, which has only a single critical point in the
canonical ensemble and no interesting phase behavior in
the grand canonical ensemble, for the class of hairy black
holes we consider, there exist two critical points in each
ensemble, along with reentrant phase transitions in some
range of the electric charge and its conjugate potential.
For the grand canonical ensemble, one critical point
corresponds to the termination of a sequence of standard
first-order phase transitions in which large black holes
“condense” to small ones. The other corresponds to the
beginning of a sequence of first-order phase transitions
exhibiting novel behavior, in which the specific volume
increases in a large-to-small phase transition instead of
decreases. We shall consider these new interesting thermo-
dynamic properties in great detail.
The paper is organized as follows: as a setup, in Sec. II,

we briefly review the main results we have obtained
in [32] for a particular charged hairy AdS black hole
solution. In Sec. III, we present a detailed analysis of
the usual and, also, extended phase space thermodyna-
mics for the general charged hairy AdS black hole solution
in both canonical and grand canonical ensembles.
Particularly, we shall consider in detail the novel first-
order transitions that appear above the second critical
point. In the last section, we conclude with a brief review
of our results.

II. HAIRY BLACK HOLE CHEMISTRY
FRAMEWORK

In this section, we review the thermodynamics of the
exact asymptotically AdS charged hairy black hole solution
found in [5], corresponding to the limit γ → 1 (when the
“hair parameter”2 σ → ∞) for constant coupling in the
exponential between the scalar field ϕ and the Maxwell
invariant F2 ≡ FμνFμν, as shown in the gravitational action
below. This is done in the extended phase space where the
(negative) cosmological constant Λ is a pressure term,
allowing us to explore the thermodynamic behavior for the
whole set of AdS theories. We use this example as a setup
for the complete analysis of the entire family that we shall
consider in the next section.
Let us consider the Einstein-Maxwell-scalar theory

described by the action

I ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 −UðϕÞ − eϕF2

�
; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the gauge field and Aμ is the
gauge potential, ϕ is the scalar field (dilaton), and
ð∂ϕÞ2 ≡ gμν∂μϕ∂νϕ. We adopt the unit system where the
numerical values of the fundamental constants are set to
unity: G ¼ 1, c ¼ 1 (so that κ ¼ 8π), ℏ ¼ 1, and, for the
electromagnetic sector, we fix μ0 ¼ 4π.
This theory is known to support a spherically symmetric

exact solution for the following scalar field potential:

UðϕÞ ¼ 2αð2ϕþ ϕ coshϕ − 3 sinhϕÞ þ 2Λ
3

ðcoshϕþ 2Þ;
ð2Þ

where α is an arbitrary dimensionful parameter that has its
origin in extended supergravity (SUGRA) [18,19], and
Λ≡ −3=l2 is the cosmological constant, with l being the
AdS radius. The self-interacting potential (2), for small ϕ,
decays as UðϕÞ ¼ −6=l2 − ϕ2=l2 þOðϕ4Þ, as expected
for the AdS asymptotics, and the solution to the corre-
sponding equations of motion is

ds2 ¼ ΩðxÞ
�
−fðxÞdt2 þ η2dx2

x2fðxÞ þ dθ2 þ sin2θdφ2

�
;

Aμ ¼
�
−
q
x
þ c

�
δtμ; ϕ ¼ lnðxÞ; ð3Þ

where

2In the original papers, the hair parameter is denoted by ν. In
order to avoid confusion with the notation for the specific volume
v, we shall use σ instead of ν.
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fðxÞ ¼ α

�
x2 − 1

2x
− ln x

�
þ 1

ΩðxÞ
�
1 − 2q2

x − 1

x

�
−
Λ
3
;

ΩðxÞ ¼ x
η2ðx − 1Þ2 ð4Þ

are the metric functions, η and q are the two constants of
integration, and c in the gauge field is an additive constant
that will be used to fixed the gauge AtðxþÞ ¼ 0, where xþ is
the location of the black hole horizon, fðxþÞ ¼ 0. The

radial x coordinate has the range 1 < x ≤ ∞, where x ¼ ∞
is the location of the central singularity and x → 1 is the
boundary.3 The relation to the canonical (Schwarzschild-
like) coordinate, at least near the boundary, is given by
r ¼ ffiffiffiffiffiffiffiffiffiffi

ΩðxÞp
.

For this solution, the conserved energy E, the Hawking
temperature T, the Hawking-Bekenstein entropy S, the
electric chargeQ and its conjugate potentialΦ, the pressure
P, and thermodynamic volume V are [5]

E ¼ q2

η
−

α

12η3
; T ¼ −

xþf0ðxþÞ
4πη

¼ ðxþ − 1Þ2
8πηxþ

�
−α − 2η2

�
xþ þ 1

xþ − 1

�
þ 4η2q2

�
xþ þ 2

xþ

��
; ð5Þ

S ¼ πxþ
η2ðxþ − 1Þ2 ; Φ ¼ qðxþ − 1Þ

xþ
; Q ¼ q

η
; P ¼ −

Λ
8π

; V ¼ 2πxþðxþ þ 1Þ
3η3ðxþ − 1Þ3 ; ð6Þ

and they satisfy the extended first law dE ¼ TdSþ
ΦdQþ VdP.
In order to work with dimensionless quantities, in the

remainder of this section we will consider the rescaled
thermodynamic variables,

η →
ffiffiffi
α

p
η; E →

Effiffiffi
α

p ; T →
ffiffiffi
α

p
T; S →

S
α
;

Q →
Qffiffiffi
α

p ; P → αP; V → α−
3
2V: ð7Þ

This makes explicit the assumption that α > 0.

A. The canonical ensemble: Fixed electric charge

The ensemble with T and Q kept fixed is achieved by
imposing the boundary condition δðeϕ⋆FÞj

∂M ¼ 0. The
on-shell Euclidean action is now ĨE ¼ IE þ IEA, where IA ¼
ð2=κÞ R d3x

ffiffiffiffiffiffi
−h

p
eϕnμFμνAν is the boundary term for the

gauge field, and satisfies the quantum-statistical relation
β−1ĨE ¼ F ðT;QÞ ¼ E − TS [32].
We begin with the equation of state, given parametrically

by the expressions

P¼ 3ðxþ þ 1Þ2
8πxþ

�
2ðxþ þ 1Þ2
xþðxþ− 1Þ

Q2

v4
−

1

v2
−
x2þ− 1− 2xþ lnxþ

2ðxþ þ 1Þ2
�
;

ð8Þ

T ¼ ðxþ þ 1Þ2
4πxþ

�
2ðxþ þ 1Þðxþ þ 2Þ

ðxþ − 1Þxþ
Q2

v3
−
1

v
−
v
2

ðxþ − 1Þ3
ðxþ þ 1Þ3

�
;

ð9Þ

where v≡ 3V=2S is the specific volume that measures
the thermodynamic volume per degree of freedom [40]. It
can be straightforwardly shown that, in the limit xþ → 1,

these expressions reduce to the RN-AdS equation of state,
P ¼ T=v− 1=ð2πv2Þ þ 2Q2=ðπv4Þ þOðv−5Þ, as expected.
In the opposite limit, xþ → ∞, we obtain

v ¼ 1

η
þ 2ηr2þ þOðr4þÞ;

ηðrþ → 0Þ ¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Q2

p �1
2

2Q
; ð10Þ

where rþ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðxþÞ

p
. This indicates that, in the limit xþ →

∞ (S → 0), the specific volume tends to a constant value,
i.e., V ∝ S.
Critical points in this ensemble satisfy the conditions

�
∂P
∂v

�
Tc;Q

¼ 0;

�
∂
2P
∂v2

�
Tc;Q

¼ 0 ð11Þ

for different critical temperatures. We find two solutions to
these equations, corresponding to two critical points, for all
fixed jQj > 0.
In Fig. 1, we depict the equation of state P − v (fixed T)

and free-energy F − T (fixed P) diagrams for Q ¼ 1. The
first critical point (c1) is reminiscent of RN-AdS criticality,
whereas the second critical point (c2) yields new features
due to the scalar hair. This one is quite novel. Below the
critical temperature Tc2, vðPÞ is a single-valued function,
whereas above this temperature it is multivalued; the
critical point corresponds to the point at which the local
maximum and minimum of PðvÞ become coincident,
shown by the dashed line in the panel second from the
right in Fig. 1. According to the F − T diagrams, both
critical points are associated with first-order phase

3This is known as the “positive branch” of solutions. There is
also a negative branch, which is not studied in this paper.
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transitions between thermally stable phases, as follows
from the fact that, for the coexisting phases, CQ ≡
Tð∂S=∂TÞQ ¼ −Tð∂2F=∂T2ÞQ > 0.

B. The grand canonical ensemble: Fixed conjugate
potential

The thermodynamic ensemble with T and Φ kept fixed
is compatible with the boundary condition δAμj∂M ¼ 0.
The on-shell action computed in the Euclidean section, IE,
satisfies the quantum-statistical relation β−1IE ¼ GðT;ΦÞ ¼
E− TS−ΦQ [32], where β ¼ T−1 is the periodicity in the
Euclidean time and G is the grand canonical thermody-
namic potential.
Let us first consider the equation of state P − T − v.

Parametrically, we have

Pðv; xþÞ ¼
3ðxþ þ 1Þ2Φ2

4πðxþ − 1Þv2 þ 3ðxþ þ 1Þ2
8πxþ

×

�
2xþ ln xþ − x2þ þ 1

2ðxþ þ 1Þ2 −
1

v2

�
; ð12Þ

Tðv; xþÞ ¼
ðxþ þ 1Þðxþ þ 2ÞΦ2

2πðxþ − 1Þv −
ðxþ − 1Þ3

4πxþðxþ þ 1Þv

×

��
xþ þ 1

xþ − 1

�
3

þ 1

2
v2
�
; ð13Þ

where 1 < xþ ≤ ∞. It is straightforward to show that, in
the large black hole limit xþ → 1, the equation of state
reduces to the RN-AdS equation of state, namely, P ¼
T=vþ ðΦ2 − 1Þ=ð2πv2Þ þOð1=v3Þ, as expected.
While there is no critical phenomena for the RN-AdS

black hole in the grand canonical ensemble, the situation
here is more interesting. We have previously reported one
critical point in this ensemble [32]. Upon further inves-
tigating this case we find at most two critical points, each
satisfying the conditions

�
∂P
∂v

�
Tc;Φ

¼ 0;

�
∂
2P
∂v2

�
Tc;Φ

¼ 0 ð14Þ

at different critical temperatures Tc. The equations in (14)
have two solutions if 1=

ffiffiffi
2

p
< Φ < 1, one solution if

Φ > 1, and no solution if Φ < 1=
ffiffiffi
2

p
. This is illustrated

in Fig. 2, where these three situations are shown. We see
that there are two kinds of critical isotherms for the
intermediate values of Φ. One corresponds to the standard
Van der Waals case, where the P − v curve has a point of
inflection. The other has the same novel features as in the
canonical ensemble, corresponding to the coincidence of
the local maximum and minimum of PðvÞ. This novel point
is the only critical point for large values of Φ > 1.
The existence of critical isotherms is indicative of phase

transitions, which we examine by studying the thermody-
namic potential G ¼ E − TS −ΦQ. In Fig. 3, we depict
the thermodynamic potential for the three situations. It is
remarkable that all the critical points are associated with
large-to-small first-order phase transitions between two
thermally stable phases. Hawking-Page phase transitions4

(in which the hairy black hole discharges to thermal AdS)
only take place for Φ < 1=

ffiffiffi
2

p
.

III. EXTENDED PHASE SPACE
THERMODYNAMICS: THE GENERAL CASE

In this section, we investigate the thermodynamics and
critical behavior of the general class of solutions for which
the scalar potential contains an extra parameter σ that
controls the coupling between the scalar and gauge fields,

FIG. 1. Equation of state and F − T diagram in the canonical ensemble for Q ¼ 1. The left-hand (right-hand) panels show the
behavior around the first (second) critical point. Critical isobars/isotherms are given by dashed lines.

4The two phases involved in the first-order Hawking-Page
transitions should be a large black hole and the ground state of the
theory. The fact that the solutions can be embedded in SUGRA is
a sufficient condition for the existence of a stable ground state of
the theory. While explicit construction of the ground state of the
theory is outside the scope of this paper, we would like to point
out Ref. [41], where exact hairy soliton solutions were con-
structed in supergravity.
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as well as the self-interaction scalar field potential. The
action is

I ¼ 1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R − eγϕF2 −

1

2
ð∂ϕÞ2 −UðϕÞ

�
; ð15Þ

where

γ ≡
�
σ þ 1

σ − 1

�1
2

; ð16Þ

and the scalar field potential is [5]

UðϕÞ ¼ 2α

σ2

�
σ − 1

σ þ 2
sinh

�
σ þ 1

lσ
ϕ

�
−
σ þ 1

σ − 2
sinh

�
σ − 1

lσ
ϕ

�

þ 4σ2 − 4

σ2 − 4
sinh

�
ϕ

lσ

��
þ σ2 − 4

3σ2

�
σ − 1

σ þ 2

× exp

�
−
σ þ 1

lσ
ϕ

�
þ σ þ 1

σ − 2
exp

�
σ − 1

lσ
ϕ

�

þ 4σ2 − 4

σ2 − 4
exp

�
−
ϕ

lσ

��
Λ; ð17Þ

where lσ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
. We refer to the parameter σ as the hair

parameter in the sense that we recover the usual RN-AdS
black hole for the specific value σ ¼ −1. When σ ≤ −1, the
coupling exponent is 0 ≤ γ < 1. We are interested in the
cases σ > 1 for which the coupling is stronger, γ > 1, and
so the contribution from the scalar field becomes non-
trivial in its capacity for inducing relevant changes on the
thermodynamic properties we propose to explore. The limit
σ ¼ 1 corresponds to the Schwarzschild black hole and the
limit σ → ∞ corresponds to the case studied in the previous
section.5

The potential was originally engineered to obtain exact
regular hairy black hole solutions. However, the potential
was later shown to belong toN ¼ 2 supergravity deformed
by the introduction of Abelian electric-magnetic Fayet-
Iliopoulos terms defined by a constant symplectic vector,
which encodes the gauge parameters of the model; the
technical analysis is described in great detail in [19]. Since
we are interested only in the solutions, we have not added
all these details in our paper.

FIG. 2. Equation of state. The left-hand panel, for Φ ¼ 0.25 < 1=
ffiffiffi
2

p
, shows no criticality. The middle panels, for 1=

ffiffiffi
2

p
<

Φ ¼ 0.85 < 1, show two different critical isotherms, Tc1 and Tc2 > Tc1, given by the dashed lines. The right-hand panel, for Φ ¼ 1.25,
shows one critical isotherm, again given by the dashed line.

FIG. 3. G − T diagrams. The left-hand panel, for Φ ¼ 0.5 < 1=
ffiffiffi
2

p
, shows no criticality, but exhibits a Hawking-Page–type phase

transition at G ¼ 0. The middle panels, for 1=
ffiffiffi
2

p
< Φ ¼ 0.85 < 1, show two different critical isobars, Pc1 and Pc2 > Pc1, given by the

dashed lines. The right-hand panel, for Φ ¼ 1.25, shows one critical isobar, again given by the dashed line.

5The limit σ → ∞ should be carefully taken [14].
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For small ϕ, the potential decays in accordance with the
AdS asymptotics,

UðϕÞ ¼ −
6

l2
−
ϕ2

l2
−

1

12

�
σ2 − 3

σ2 − 1

�
·
ϕ4

l2
þOðϕ5Þ; ð18Þ

where Λ ¼ −3=l2. As shown in Fig. 4, the potential is
bounded from below and has a global minimum at a finite
value of ϕ, for any (negative) value of Λ, provided σ > 1
and α > 0. We will assume σ > 1 and α > 0 from now on.
The equations of motion are

Rμν −
1

2
∂μϕ∂νϕ −

1

2
gμνUðϕÞ − TEM

μν ¼ 0;

□ϕ − γeγϕF2 −
dUðϕÞ
dϕ

¼ 0;

∇μðeγϕFμνÞ ¼ 0; ð19Þ

where TEM
μν ¼ 2eγϕðFμαFν

α − 1
4
gμνF2Þ is the energy-

momentum tensor for the electromagnetic field. The
exact solution to the equations of motion, given the
potential (17), is

ds2 ¼ ΩðxÞ
�
−fðxÞdt2 þ η2dx2

fðxÞ þ dΣ2

�
;

Aμ ¼
�
−

q
σxσ

þ q
σxσþ

�
δtμ; ϕ ¼ lσ lnðxÞ; ð20Þ

where η and q are the constants of integration related to the
conserved charges, namely, the mass and electric charge of
the black holes,6 and dΣ ≔ dθ2 þ sin2 θdφ2. The metric
functions fðxÞ and ΩðxÞ are

fðxÞ ¼ 1

l2
þ α

�
1

σ2 − 4
−
x2

σ2

�
1þ x−σ

σ − 2
−

xσ

σ þ 2

��

þ x
ΩðxÞ

�
1 −

2q2ðxσ − 1Þ
σðσ − 1Þxσ

�
;

ΩðxÞ ¼ σ2xσ−1

η2ðxσ − 1Þ2 : ð21Þ

The black hole horizon is located at x ¼ xþ, where
fðxþÞ ¼ 0. There is no loss in generality in assuming
η ≥ 0. The canonical radial coordinate is given by the
change r2 ¼ ΩðxÞ. In the asymptotic region (x → 1),

x ¼ 1þ 1

ηr
−
σ2 − 1

24

�
1

η3r3
−

1

η4r4
þ � � �

�
: ð22Þ

Since the mass of the scalar field potential is m2 ¼ −2l−2,
it should be expected that the scalar field falls off as
ϕðrÞ ¼ A

r þ B
r2 þOðr−3Þ. It turns out that, indeed, A ¼

lση−1 and B ¼ −ð1=2Þlση−2. So in this case, the scalar
field obeys a mixed boundary condition since both modes A
and B are nonvanishing. It is convenient to introduce a
function W ¼ WðAÞ that relates both A and B ¼ BðAÞ, by
means of BðAÞ≡ dWðAÞ

dA . It follows straightforwardly that

WðAÞ ¼ −
A3

6lσ
: ð23Þ

This expression forWðAÞ is relevant for the computation of
the contribution to the on-shell Euclidean action coming
from the scalar field.

A. Euclidean action and the usual thermodynamics

In this section, we use counterterms consistent with the
mixed boundary condition of the scalar field [36,42] to
compute the on-shell Euclidean action. We do the compu-
tation using the boundary condition δAμj∂M ¼ 0 for the
gauge field. Once the action is regularized, we use the

FIG. 4. The scalar field potential UðϕÞ vs ϕ. Left: σ ¼ ffiffiffi
3

p
. Right: σ ¼ 3.

6The scalar field is “secondary hair” that is present outside the
horizon and has no associated conserved charge.

ASTEFANESEI, CABRERA, MANN, and ROJAS PHYS. REV. D 108, 104047 (2023)

104047-6



Brown-York formalism [39] to compute the quasilocal
boundary stress tensor and the conserved energy. Finally,
we verify the first law of black hole thermodynamics
and the quantum-statistical relation. We would like to
emphasize that the hair parameter σ is kept arbitrary
and, therefore, this analysis is more general than the one
presented in [32].
The full regularized action IE in the Euclidean section is

composed of the bulk part IEbulk given by Eq. (15), the
Gibbons-Hawking boundary term IEGH [43], the gravita-
tional counterterm for asymptotically AdS spacetime IEg
[44], and the boundary term for the scalar field IEϕ [36],

IE ¼ IEbulk −
1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
K þ 1

κ

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p �
2

l
þ lR

2

�

þ 1

2κ

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p �
ϕ2

2l
þWðAÞ

lA3
ϕ3

�
; ð24Þ

respectively, where R is the Ricci scalar for the foliation
x ¼ xB ¼ const, where B stands for boundary, and hab is
the induced metric on the boundary ∂M. At the end, we
shall consider the limit xB → 1.
Let us proceed by computing the terms in (24) one by

one. By using the equations of motion, the bulk part of
the action in the Euclidean section can be reduced to
IEbulk ¼ −ð1=4Þβη−1½fðxBÞΩ0ðxBÞ − 2η2

R
xB
xþ

ΩðxÞdx�. Now,
by expanding this first result in powers of ðxB − 1Þ, we get

IEbulk ¼ β

�
1

4η
þ α

6η3
−

q2

ηðσ − 1Þ þ
σðxσþ þ 1Þ
4ηðxσþ − 1Þ −

σ2 − 1

48η3l2

�

þ β

2η3l2ðxB − 1Þ3 þOðxB − 1Þ: ð25Þ

The next terms are computed on the hypersurface
x ¼ xB, where habdxadxb ¼ ΩðxÞ½−fðxÞdt2 þ dΣ�. For
the Gibbons-Hawking boundary term, let us first write
down the extrinsic curvature tensor7 and its trace,

Kab ¼
Ω0

2η

�
f
Ω

�1
2

�ðfΩÞ0
Ω0 δtaδ

t
b − δθaδ

θ
b − sin2θδϕaδ

ϕ
b

�
;

K ¼ −
1

2η

�
f
Ω

�1
2

�
f0

f
þ 3Ω0

Ω

�
: ð26Þ

It follows that

IEGH ¼ β

�
3q2

2ηðσ − 1Þ −
3

4η
−

α

4η3
þ σ2 − 1

16η3l2

�

−
3β

2η3l2ðxB − 1Þ3 −
β

ηðxB − 1Þ þOðxB − 1Þ: ð27Þ

The Ricci scalar on the boundary is R ¼ 2=ΩðxBÞ and,
thus, the gravitational counterterm is

IEg ¼ β

�
1

2η
þ α

6η3
−

q2

ηðσ − 1Þ þ
σ2 − 1

8η3l2

�
þ β

η3l2ðxB − 1Þ3

þ
β
	
1
η −

σ2−1
8η3l2



xB − 1

þOðxB − 1Þ: ð28Þ

For the boundary term of the scalar field, we consider the
expression W obtained in (23). The result is

IEϕ ¼ −
βðσ2 − 1Þ
6η3l2

þ βðσ2 − 1Þ
8η3l2ðxB − 1Þ þOðxB − 1Þ: ð29Þ

Now, by adding up all the contributions, we find that the
divergent terms ∝ ðxB − 1Þ−1 and ∝ ðxB − 1Þ−3 cancel each
other and, in the limit xB → 1, the final result is finite

IE ¼ IEbulk þ IEGH þ IEg þ IEϕ

¼ β

�
1

4η
þ α

12η3
−

q2

2ηðσ − 1Þ þ
σ þ 1þ ðσ − 1Þxσþ

4ηðxσþ − 1Þ
�
:

ð30Þ

The total action IE satisfies the quantum-statistical
relation, as we shall show. Let us compute the thermody-
namic quantities for this solution. We start by computing
the conserved energy E. We use the Brown-York formalism
[39], which requires the quasilocal boundary stress tensor
τab. For the full action (24), we have

τab ≡ −
2ffiffiffiffiffiffi
−h

p δI
δhab

¼ −
1

κ

�
Kab − habK þ 2

l
hab − lGab

�

−
hab
2κl

�
ϕ2

2
þWðAÞ

A3
ϕ3

�
ð31Þ

and, according to the Brown-York formalism, the con-
served energy is

E ¼
I
s2∞

d2x
ffiffiffi
Σ

p
naτabξb; ð32Þ

where Σ ¼ Ω2ðxBÞ sin2 θ is the determinant of the metric on
the two-sphere ds2Σ ¼ ΩðxBÞdΣ, ξa ¼ δat is the timelike
Killing vector, and na is the normal unit to t ¼ const,
given by

7The normal unit to the hypersurface x ¼ const is nμ ¼
−δrμðgxxÞ−1

2, and Kμν ¼ ∇μnν, Kab ¼ ðdxμdyaÞðdx
ν

dyb
ÞKμν.
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na ¼
δtaffiffiffiffiffiffiffiffi
−gtt

p ¼
ffiffiffiffiffiffiffi
Ωf

p
δta: ð33Þ

To compute the conserved energy, we only need the leading
terms in powers of ðxB − 1Þ of τtt, that is,

τtt ¼
1

4πl

�
q2

σ − 1
−
αþ 3η2

6η2

�
ðxB − 1Þ þO½ðxB − 1Þ2�:

ð34Þ

Using this result, the conserved energy of the system is

E ¼ q2

ηðσ − 1Þ −
αþ 3η2

6η3
: ð35Þ

Let us now compute the remaining thermodynamic quan-
tities. The electric charge Q can be obtained, as usual, by
using the Gauss law at the boundary

Q ¼ 1

4π

I
s2∞

eγϕ⋆F ¼ q
η
; Φ ¼ q

σxσþ
ðxσþ − 1Þ; ð36Þ

where its conjugate potential is defined as Φ≡
Atðx¼xþÞ−Atðx¼1Þ. The Hawking-Bekenstein entropy
is S ¼ A=4, where A ¼ 4πΩðxþÞ is the area of the
event horizon, and the expression for the Hawking
temperature

S ¼ πσ2xσ−1þ
η2ðxσþ − 1Þ2 ;

T ¼ −
f0ðxþÞ
4πη

¼ 3E
2S

−
x
−σ−1

2þ
4σ

ffiffiffiffiffiffi
πS

p
�
4πσQ2

xþS
þ xσþðσ − 1Þ þ σ þ 1

�
ð37Þ

is obtained by removing the conical singularity in the
Euclidean metric. It is straightforward to show that the first
law for charged black holes dE ¼ TdSþΦdQ is satisfied.8

Now, we can easily verify that the Euclidean action, given
by Eq. (30), satisfies the quantum-statistical relation,

IE

β
¼ E − TS −ΦQ≡ GðT;ΦÞ; ð38Þ

where G is the grand canonical thermodynamic potential.
The first law can be written as dG ¼ −SdT −QdΦ, from
where it follows that G ¼ GðT;ΦÞ.

B. Smarr formula and the reverse
isoperimetric inequality

Let us now consider the extended phase space where the
cosmological constant represents the pressure of a perfect
fluid of density ρ ¼ −P, with P ¼ −Λ=ð8πÞ. The extended
first law is

dE ¼ TdSþ VdPþΦdQ; ð39Þ

where V is the thermodynamic volume given by

V ≡
�
∂E
∂P

�
Q;S

¼ 2πσ2

3η3
ðσ þ 1Þx2ðσ−1Þþ þ ðσ − 1Þxσ−2þ

ðxσþ − 1Þ3 : ð40Þ

The thermodynamic variables satisfy a simple relation
known as the Smarr formula. It can be obtained by scaling
arguments, i.e., by looking at the dimensions of the
corresponding thermodynamic variables [34]. Since the
theory is given by two-dimensionful constants (Λ and α),
besides the standard thermodynamic variables ðE; T; S;
Q;ΦÞ, the Smarr formula incorporates the extra pairs
PV and αB, and it reads

E ¼ 2TSþΦQ − 2PV − 2αB; ð41Þ

where B≡ ð∂E=∂αÞS;Q;P measures how E changes due to
variations in α. This suggests that the first law can be
further extended to

dE ¼ TdSþ VdPþΦdQþ Bdα; ð42Þ

provided we can find a concrete physical interpretation for
α. Nevertheless, we treat the parameter α as a constant
without variation and so the quantity B is not going to be
relevant in our analysis.
Returning to thermodynamic volume V, by using (22)

we observe that V ¼ 4πr3þ=3þOðrþÞ, or in other words
the leading contribution is the Euclidean volume, as could
be expected from the fact that for large black holes the
scalar field and its self-interaction are negligible at the
event horizon. In general, the thermodynamic volume V is
conjectured to satisfy the so-called reverse isoperimetric
inequality [3],

R≡
�ðd − 1ÞV

ωd−2

� 1
d−1
�
ωd−2

A

� 1
d−2

≥ 1; ð43Þ

where d is the number of dimensions of the spacetime,ωd−2
is the area of the unit cross section, and A is the area of the
black hole event horizon. In our case, with d ¼ 4 and
ω2 ¼ 4π, we find that

RσðxþÞ ¼ x
−1
6
ðσþ1Þ

þ

�
σ þ 1

2σ
xσþ þ σ − 1

2σ

�1
3 ð44Þ8Since the scalar field is secondary hair, no scalar charge

appears in the first law [45].
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is the general expression9 for the ratio R. From the
following considerations

lim
xþ→1

RσðxþÞ ¼ 1; lim
xþ→∞

RσðxþÞ → ∞;

dRσðxþÞ
dxþ

¼ 2
2
3x

−1
6
σ−7

6þ ðxσþ − 1Þðσ − 1Þ
12σ

1
3½xσþðσ þ 1Þ þ σ − 1�23 ≥ 0; ð45Þ

it is straightforward to show that the inequality (43) is
satisfied. The physical interpretation is that, for a fixed
thermodynamic volume, the charged hairy AdS black hole
carries less entropy than its RN-AdS counterpart, for which
R ¼ 1. This is expected, because the remaining entropy is
carried by the scalar field (“hairy” degrees of freedom)
outside the event horizon.
Henceforth, we shall rescale the thermodynamic quan-

tities as in (7); consequently, α > 0 will not appear
explicitly in any further expression.

C. Extended thermodynamics

With the on-shell Euclidean action properly computed,
we have the tools to study the thermodynamics. The hair
parameter σ introduces a new phenomenon of reentrant
phase transitions in both the canonical and grand canonical
ensembles, in addition to the novel transition behavior seen
in the previous section for σ → ∞.

1. The canonical ensemble

We first consider thermodynamics in the extended phase
space with the electric charge of the black hole being kept
fixed. The boundary condition for the gauge field is
δðeγϕ⋆FÞj

∂M ¼ 0. The thermodynamic potential in this
ensemble is F ðT;QÞ ¼ E − TS and can be obtained by a
Legendre transformation of the thermodynamic potential
from the grand canonical ensemble (38). This is equivalent
to adding a boundary term [46]

IEA ¼ −
2

κ

Z
∂M

d3x
ffiffiffi
h

p
eγϕnμFμνAν ¼ βQΦ ð46Þ

to the action, yielding F ðT;QÞ ¼ β−1ĨE ¼ E − TS,
where ĨE ¼ IE þ IEA.
Let us first study the equation of state, given parametri-

cally by

T ¼ 1

4πη3ΩðxþÞ
�
2η4ððσ þ 2Þxσþ þ 2σ − 2ÞQ2

σðσ − 1Þxσþ
− 1

�

−
ðσ þ 2Þx1

2
ðσþ1Þ
þ þ ðσ − 2Þx−1

2
ðσ−1Þ

þ
4πσ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðxþÞ

p ; ð47Þ

v ¼ xσþðσ þ 1Þ þ σ − 1

ηðxσþ − 1Þxþ
; ð48Þ

where η ¼ ηðxþ; P;QÞ is obtained from10 fðxþÞ ¼ 0,

2Q2x2−2σþ ðxσþ − 1Þ3η4
σ3ðσ − 1Þ −

ðxσþ − 1Þ2η2
σ2xσ−2þ

þ x2þ
σ2

�
1þ x−σþ

σ − 2
−

xσþ
σ þ 2

�
−

1

σ2 − 4
−
8πP
3

¼ 0: ð49Þ

For large black holes, the equation of state can be put in the
form T ¼ Pvþ 1=ð2πvÞ − 2Q2=ðπv3Þ þOðv−5Þ, regard-
less of the value of the hair parameter σ. This is because the
scalar field and its self-interaction are negligible at the
event horizon of a large black hole, and thus the corrections
to the equation of state due to the scalar are subleading.
When the scalar field and its self-interaction become

important near the event horizon, which is the case for
intermediate and small black holes, the thermodynamic
behavior becomes more interesting. Two values for the
electric charge are relevant in our analysis: Qmin and Q0.
Let us, for concreteness, fix σ ¼ 2, for which Qmin ≈ 2.622
and Q0 ≈ 2.712. In Fig. 5, we illustrate the equation of
state for three representative values of Q. For Q < Qmin
(left-hand panel in Fig. 5), there is no critical behavior. For
Q > Q0 (right-hand panel in Fig. 5), the critical behavior is
qualitatively the same as that of the RN-AdS. For Qmin <
Q < Q0 (middle plot in Fig. 5), two critical isotherms are
observed. These two critical isotherms are related to
reentrant phase behavior.
To appreciate better the nature of this double criticality

within Qmin < Q < Q0, consider the F − T diagram,
depicted in Fig. 6. As pressure increases from small values
(the bluer curve in Fig. 6), an “inverted” swallowtail
appears. There is no first-order phase transition in this
case because the curves that intersect themselves in the
inverted swallowtail are not at the global minimum of F .
However, as the pressure further increases, the inverted
swallowtail moves leftward with respect to the lower part of
the curve, eventually giving rise to a second (standard)
swallowtail. This standard swallowtail results in a first-
order phase transition from large to small black holes in the
direction of decreasing temperature. For a tiny range for P,
there is also a zeroth-order phase transition from a small
black hole to a large one, characterized by a jump

9Since the value of the scalar field on the horizon is
ϕþ ≡ lσ lnðxþÞ, the ratio R depends, alternatively, on σ and ϕþ.

10Since η > 0, Eq. (49) has two solutions of interest. One of
these solutions for η is positive only for σ > 2, while the other
one is positive only for 1 < σ < 2. For the particular case σ ¼ 2,
note that

lim
σ→2

�
x2−σþ

σ2ðσ − 2Þ −
1

σ2 − 4

�
¼ −

1

4

�
lnðxþÞ þ

3

4

�
:
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discontinuity in F , as well as in its first derivative
ð∂F=∂TÞP, as it is shown in the second panel of Fig. 6.
In Fig. 7, we have depicted the heat capacity CQ ≡

Tð∂S=∂TÞQ with respect to T, within the interval of P for
which there is reentrant phase behavior. We observe that,
for increasing values of P, the diagrams display interesting
behavior. Notice again from Fig. 6 the existence of two
swallowtails. The first one (at lower pressures) is inverted,
as commented earlier, implying that there are no phase
transitions associated with this case, for the phases merging
at the intersection point of the swallowtail do not globally
minimize the free energy (moreover, they are not locally
stable phases). The formation of this inverted swallowtail
can be seen in the CQ − T diagram in the third panel of
Fig. 7: we see that CQ develops an extra divergence in the

negative (CQ < 0) sector, at a finite temperature (larger
than the minimum one). As P continues to increase, the
standard swallowtail describing a first-order phase transi-
tion between stable phases appears. This can be seen in the
CQ − T diagram in the fourth panel, where two phases with
CQ > 0 simultaneously coexist within a range of T. As P
further increases, a critical point (which depends on Q) is
attained at which the standard swallowtail shrinks to zero,
corresponding to a second-order phase transition. This
situation is depicted in the last panel of Fig. 7, in the peak
of CQ, taking place at some finite temperature (again, larger
than the minimum one).
This “reentrant phase behavior,” reported also in [35],

is new when compared to the behavior for hairy black
holes in the theory σ ¼ ∞. It happens within the interval

FIG. 5. Equation of state for Q ¼ 1.50 (left), Q ¼ 2.65 (middle), and Q ¼ 2.90 (right), for the theory with σ ¼ 2. For
Qmin < Q < Q0, two critical points are observed.

FIG. 6. F − T − P for Q ¼ 2.65 and σ ¼ 2. As pressure increases, the inverted swallowtail moves leftward with respect to the
leftmost part of the curve, and a second (standard) swallowtail with a first-order phase transition appears in addition to a zeroth-order
phase transition.
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Qmin < Q < Q0. It is also important to notice that Λ is not
required to be considered a thermodynamic variable for
reentrant phase behavior to occur, because the parameter
that is being varied is temperature. Therefore, once Q is
conveniently fixed (within Qmin < Q < Q0), it is only
necessary to search for different (fixed) values of P for
which reentrant phase transitions occur. For the concrete
case Q ¼ 2.65 in the theory σ ¼ 2, reentrant phase
behavior exists approximately within the tiny interval
4.61 × 10−3 < P < 4.65 × 10−3. These values of P for
which there is reentrant phase behavior were obtained
by solving numerically the equations ð∂P=∂vÞT;Q ¼ 0

and ð∂2P=∂v2ÞT;Q ¼ 0.

2. The grand canonical ensemble

The parametric expressions for the equation of state in
this ensemble are

P ¼ 3

8πσ2

�
x2−σþ
σ − 2

−
xσþ2
þ

σ þ 2
þ x2þ −

σ2

σ2 − 4

þ X2
1

x3σ−4þ v2

�
X2 − 2σ þ 2

X2 − 3σ

2σΦ2

σ − 1
− 1

��
; ð50Þ

T ¼ xþ
4πσ

�
−
ðxσþ − 1Þ3

σX1

vþ 2X1X2

ðσ − 1Þxσ−2þ ðxσþ − 1Þ
Φ2

v

−
X1ðX2 − σÞ
σx2σ−2þ v

�
; ð51Þ

where X1 ≡ ðσ þ 1Þx2σ−2þ þ ðσ − 1Þxσ−2þ and X2 ≡ ðσ þ
2Þxσþ þ 2σ − 2 have been defined for simplicity. The
specific volume v is obtained as usual,

v≡ 3V
2S

¼ xσþðσ þ 1Þ þ σ − 1

ηðxσþ − 1Þxþ
: ð52Þ

In this ensemble, the value of Φ determines in a
remarkable way the thermodynamic behavior of black
holes. For Φ < Φc ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ − 1Þ=ð2σÞp
, there is no critical-

ity, i.e., the conditions for criticality given in (14) are not
satisfied. For Φc < Φ < Φ0ðσÞ, there is one critical point.
The dependence of Φ0 on σ is shown in Fig. 8. Notice
that Φ0ðσÞ < 1=

ffiffiffi
2

p
. For Φ0 < Φ < 1=

ffiffiffi
2

p
, there are three

critical points. For 1=
ffiffiffi
2

p
< Φ < 1, there are two critical

points and, for Φ > 1, there is one critical point.
This rich behavior is depicted in Fig. 9 for different

values of Φ. We see from the upper left panel that for small
Φ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ − 1Þ=ð2σÞp
there are no phase transitions, but

once Φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ − 1Þ=ð2σÞp
we see a new kind of criticality,

in which the local maximum and minimum of PðvÞ are
coincident, but PðvÞ is not single valued, noted in the
previous section. Above the critical point, neither PðvÞ
nor vðPÞ are single-valued functions. For larger values of

FIG. 7. Sequence of snapshots of CQ vs T, withQ ¼ 2.65 and σ ¼ 2, for increasing fixed values of P. By starting from small values of
P, the first three plots show the case where there are two configurations at a given temperature and no swallowtail. By increasing P, CQ

develops a divergence at a finite T, as seen in the third plot, which corresponds to the formation of the inverted swallowtail. For P greater
than this value (fourth plot), the divergence splits in two, and four branches appear within a range of certain values of T: this is, indeed,
the situation when reentrant phase behavior occurs between the two phases with CQ > 0 (see the second plot in Fig. 6). As P further
increases (last plot), the two divergences that previously appeared meet. This is when the standard swallowtail shrinks to zero, giving rise
to a second-order phase transition.

FIG. 8. The number of critical points depends on the value ofΦ.
The values Φc and Φ0 depend on σ.
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Φ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ − 1Þ=ð2σÞp

a novel phase transition is present
(shown in the upper central panel), whose behavior we shall
discuss in the next section. As Φ crosses the next threshold
at Φ ¼ 1=

ffiffiffi
2

p
, two new critical points appear at very low

pressures, shown in the inset of the upper right panel in
Fig. 9; this is the reentrant behavior shown in the middle
diagram of Fig. 5. Over this range of values of Φ, as
temperature increases, we will have the reentrant behavior
discussed in the previous subsection, followed by a novel
phase transition of the same type as for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ − 1Þ=ð2σÞp
<

Φ < 1=
ffiffiffi
2

p
. As Φ becomes larger than 1=

ffiffiffi
2

p
, the middle

critical point disappears, and only the smallest one (cor-
responding to the standard Van der Waals case) and the
largest one (corresponding to the novel case) are present.

For Φ > 1, the Van der Waals critical point vanishes, and
only the one corresponding to the novel case remains.
In order to elucidate the nature of the critical points,

we study the thermodynamic potential vs temperature. In
parametric form we have

G ¼ 1

12η3
−

σ

4ηðxσþ − 1Þ2
�
x2σþ

�
1 −

2σΦ2

σ − 1

�
− 1

�
; ð53Þ

T ¼ xþ
4πησ

�
−
ðxσþ − 1Þ2

σxσþ
þ 2η2X2Φ2

σ− 1
−
η2ðX2− σÞðxσþ − 1Þ

σxσþ

�
;

ð54Þ

where

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ2ðσ − 1Þxσ−2þ
ðxσþ − 1Þ½X 2 − σxσþð3 − 4Φ2Þ�

�
8πP
3

þ 1

σ2 − 4
−
x2þ
σ2

�
1þ x−σþ

σ − 2
−

xσþ
σ þ 2

��s
; ð55Þ

with X2 given in the line below (51). By studying the
thermodynamic potential, we find that, for almost every
critical behavior observed in P − v diagrams, there is a
standard swallowtail typical for large-to-small first-order
phase transitions between stable phases. However, this

swallowtail does not signify a standard Van der Waals
transition, but rather novel phase behavior that we shall
discuss in more detail in the next subsection. The only
exception occurs for the interval Φ0 < Φ < 1=

ffiffiffi
2

p
, where

there is reentrant phase behavior in addition to the novel

FIG. 9. Equation of state P − v for five characteristic values of the conjugate potential, in the model σ ¼ 3. The panels show the cases:
Φ ¼ 0.50 < Φc, Φc < Φ ¼ 0.60 < Φ0, Φ0 < Φ ¼ 0.70 < 1=

ffiffiffi
2

p
, 1=

ffiffiffi
2

p
< Φ ¼ 0.85 < 1, Φ > 1, respectively. Dashed lines corre-

spond to critical behavior.
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behavior. All the different situations are depicted in Fig. 10
and the exceptional case for the reentrant phase behavior
within Φ0 < Φ < 1=

ffiffiffi
2

p
is depicted in Fig. 11. In this case,

there is a reentrant phase transition in the sense that there is
a range of (fixed values of) P for which the system can go
from a large to small to large black hole in the direction of
decreasing temperature.
In Fig. 12, we depict the heat capacity CΦ vs T. The

first plot for small P shows the case where the inverted

swallowtail still does not form. In the second plot, the
inverted swallowtail has formed. This coincides with the
development of a divergence in the heat capacity. As P
increases, the standard swallowtail appears and two branches
with CΦ > 0 develop within a range of T. The reentrant
phase transition occurs between these two stable phases (see
the second plot in Fig. 11). Once P becomes sufficiently
large (last plot), the standard swallowtail shrinks to zero,
corresponding to a second-order phase transition.

FIG. 10. G vs T diagram for five characteristic values of Φ, in the model σ ¼ 3. The panels show the cases: Φ ¼ 0.50 < Φc,
Φc < Φ ¼ 0.60 < Φ0, Φ0 < Φ ¼ 0.70 < 1=

ffiffiffi
2

p
, 1=

ffiffiffi
2

p
< Φ ¼ 0.85 < 1, Φ > 1, respectively. Dashed lines correspond to critical

behavior. These diagrams are consistent with the equation of state depicted in Fig. 9.

FIG. 11. G − T for the special caseΦc < Φ < Φ0. We take Φ ¼ 0.70 in the model σ ¼ 3. For this case, there are three critical isobars.
Here we show only the reentrant phase behavior. As pressure increases from small values, an inverted swallowtail appears (at the first
critical point). Then the branch of large stable black holes intersects the inverted swallowtail and a second swallowtail (a standard one)
forms. This is when a reentrant phase transition takes place, as detailed in the second panel. The standard swallowtail shrinks to zero at
the second critical point.
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One (dimensionless) quantity that provides information
about the criticality properties of the system is the “critical
compressibility factor,” defined as

zc ≡ Pcvc
Tc

: ð56Þ

For both a Van der Waals fluid and the RN-AdS black hole,
zc turns out to be exactly 3=8. Unlike the critical exponents,
which are expected to be universal, zc is known to
differ from one substance to another in ordinary chemistry
[47–49]. In this case, the critical compressibility factor
depends on Φ, as depicted in Fig. 13, for σ ¼ 3. The
dependence of zc on Φ indicates that the conjugate
potential plays the role of a fluid parameter that character-
izes the nature the dual conformal field theory. Also in
Fig. 13, we have depicted the critical pressures for the
whole range of Φ. Notice that, in the limit Φ → Φþ

c ,
P → ∞, and on the other hand, in the limit Φ → ∞,
P → 0.0768.

D. Novel phase transitions

Several of the phase transitions that appear in both the
canonical and grand canonical ensembles have rather

unusual features. First, the free-energy diagrams exhibit
swallowtails whose size increases with increasing pressure,
as is clear from the rightmost diagram in Fig. 1, the two
rightmost diagrams in Fig. 3, and the second and fourth
diagrams in Fig. 10. This kind of phenomenon has been
seen before in Lovelock gravity [50] and is referred to
as a reverse Van der Waals phase transition. It denotes a
situation where condensation of large black holes into small
ones takes place at increasingly higher temperatures and
pressures above a critical point, instead decreasing values
of these quantities, as holds for the standard case [30]; an
example for the class of hairy black holes we are consid-
ering is shown in the middle diagram in Fig. 5, with the
reentrant behavior shown in the right panel for Fig. 6.
However, the P − v diagrams that correspond to the

swallowtails in the third diagram in Fig. 1, the two
rightmost diagrams in Fig. 2, and all but the two leftmost
diagrams in Fig. 9 indicate that something quite different is
going on in these cases. The phase transition for these novel
cases takes place at the temperature Tc2. There is a
“subcritical temperature” Tscð< Tc2Þ at which�

∂v
∂P

�
Tsc

¼ 0;

�
∂
2v

∂P2

�
Tsc

¼ 0: ð57Þ

FIG. 12. Sequence of snapshots of CΦ vs T, with Φ ¼ 0.70 and σ ¼ 3, for the range of P for which there is reentrant phase behavior
(third plot). The fourth plot shows the case when the standard swallowtail shrinks to zero, that is, a second-order phase transition.

FIG. 13. Left: Critical compressibility factor zc vs Φ, for σ ¼ 3, and Φc ≈ 0.5774, Φ0 ≈ 0.6957. Right: Critical pressures vs Φ.
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For T ≤ Tsc, P is a single-valued function of v, while for
T > Tsc there is a region in v where P is triple valued.
For concreteness, we focus on the situation 1=

ffiffiffi
2

p
<

Φ < 1 in the grand canonical ensemble, for which there are
two critical points. We fixΦ ¼ 0.85 and σ ¼ 3. The critical
points are

c1∶ ðP ¼ 5.13 × 10−6; v ¼ 42.67; T ¼ 7.09 × 10−4Þ;
c2∶ ðP ¼ 0.1347; v ¼ 3.8361; T ¼ 0.4789Þ: ð58Þ

This case is interesting because the critical point c1
taking place at the lower pressure is similar to the Van
der Waals one, whereas the second critical point c2, at
higher pressure, has no analog with standard thermody-
namic systems. In Fig. 14, we depict in detail the critical
isotherms for this case. Near the critical point c1, we
observe standard Van der Waals behavior, but around the
critical point c2, the pressure is multivalued: for a given
ðT; vÞ, there are at most three possible values of P, as is
clear from the right diagram in Fig. 14.
In order to understand the distinction between these two

kinds of phase transitions, let us begin by analyzing the
phase transition for the more familiar critical point c1.
Figure 15 depicts the G − T, G − v, and G − P diagrams.11

From G − T, we know that the large-to-small first-order
black hole phase transition is discontinuous in the entropy
S ¼ −ð∂G=∂TÞP in the direction of decreasing temperature.
From the G − P diagram, we know that it is discontinuous
in V ¼ ð∂G=∂PÞT in the direction of increasing pressure,
which is quite intuitive. Essentially, for an ensemble of
large black holes, as the thermodynamic volume decreases,
the pressure increases, until a point is reached where
“condensation” begins, with the large black holes changing
into small ones with no further increase in pressure or free

energy, as is clear from the central panel in Fig. 15. The
pressure at which this occurs is given by Maxwell’s equal-
area law. As volume is further decreased, more and more
large black holes in the ensemble will condense into small
ones, until the entire ensemble consists of small black
holes. As the volume decreases even more, the pressure
significantly increases, since further condensation is impos-
sible. The situation is fully analogous to a gas condensing
into a liquid at a given temperature as the volume of the
system decreases.
Now, consider the second critical point, for which the

corresponding diagrams are depicted in Fig. 16. Here the
swallowtails in the G − T and G − P planes exhibit opposite
behavior compared to the previous case, growing as P
increases (left diagram) and as T increases (right diagram).
The central panel is most instructive—we see that neither
GðvÞ nor vðGÞ are single-valued functions above Tc2. For
these temperatures, the first-order transition corresponds to
what appears to be a form of “‘reverse condensation,” in
which black holes of smaller specific volume condense into
black holes of larger specific volume.
We can understand this behavior by considering the

equation of state and its corresponding G − P diagram, both
illustrated in Fig. 17, with T ¼ 1.62. For this choice of T,
the transition takes place at P ¼ 1, corresponding to the
intersection point of the swallowtail. The arrows indicate
the novel transition from large-to-small specific volumes.
Consider the system at point A, corresponding to a large
black hole of negative free energy. As the specific volume v
decreases, the free energy and pressure both increase until
point B is reached. At this point, the system undergoes
reverse condensation, moving from B to D to F at constant
P, with small-v black holes condensing into larger-v ones.
This all takes place at the swallowtail crossover. After this,
the system is at point F, corresponding to a larger value of
v. The equation of state then indicates that, as P increases, v
will again decrease (and the free energy will increase). The
net effect is a small-v-to-large-v first-order transition,
despite the fact that increasing pressure corresponds to

FIG. 14. Equation of state for Φ ¼ 0.85 (σ ¼ 3). There are two critical isotherms (black dashed curves), one corresponding to the
critical point c1 (left) and the other to the critical point c2 (right).

11In the G − v diagram—with T kept fixed—the issue is that
pressure is not held fixed along a given isotherm, but this is
precisely the case for black hole chemistry.
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decreasing v. Note that points C and E correspond to the
cusps in the swallowtail; the system does not actually
transit through these points.
We emphasize that reverse condensation is a property of

the specific volume v; the thermodynamic volume V
decreases at the first-order transition, as is clear from central

and right panels of Fig. 17. Note that the equal-area law can
be applied here, despite the fact that P is not a single-valued
function of V and vice versa.
This peculiar form of transition takes place because

neither v nor V are monotonically increasing functions of
the horizon size 1=xþ as shown in Fig. 18. An inspection of

FIG. 16. G − T, G − v, and G − P diagrams for the second critical point. The first-order phase transition is discontinuous in S ¼
−ð∂G=∂TÞP and V ¼ ð∂G=∂PÞT , like in the previous case.

FIG. 17. Equation of state P − v and P − V, and the G − P diagram for Φ ¼ 0.85 and T ¼ 1.62 in the model σ ¼ 3. The trajectory of
points is compared side by side for the phase transition that occurs at P ≈ 1. Point A corresponds to the large-v and large-V phase,
respectively. Point B (and (F) corresponds to the intersection point of the swallowtail. Points C and E correspond to the local maximum
and minimum of PðvÞ [and PðVÞ], respectively. Point G corresponds to the small-v and small-V phase, respectively.

FIG. 15. G − T, G − v, and G − P diagrams for the first critical point. The (first-order) phase transition is discontinuous in S ¼
−ð∂G=∂TÞP and V ¼ ð∂G=∂PÞT .
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the central and right panels indicates the distinction
between the two: the transition point B is smaller than
the local maximum of vð1=xþÞ but larger than the local
maximum of Vð1=xþÞ. Hence, during the transition the
thermodynamic volume V and the horizon radius of the
black hole consistently decrease, as is clear from the left
panel, whereas the specific volume increases. During
condensation, the black hole gets smaller in size, but larger
in specific volume, shown in the central panel. Although it
may seem counterintuitive that V decreases while v
increases, this occurs because the entropy decreases con-
siderably, and hence v ¼ 3V=ð2SÞ has a larger local
maximum.
The case σ → ∞ also exhibits similar behavior, but has a

few special features that we discuss in the Appendix.

IV. CONCLUSIONS

We have investigated the thermodynamics of a four-
dimensional asymptotically AdS family of exact hairy
black hole solutions [5], whose scalar field has a nontrivial
self-interacting potential that can be embedded in super-
gravity [18,19]. The Euclidean action was regularized by
using the counterterm method in the presence of a scalar
field satisfying mixed boundary conditions [36] and the
conserved energy was obtained by using the quasilocal
formalism of Brown and York [39]. We have explicitly
shown that the first law is satisfied and the Smarr relation
holds as long as the two parameters of the theory (Λ and α)
are included.
By considering the cosmological constant as a pressure

term, we have analyzed the thermodynamics in the
extended phase space. After revisiting the study of the
special theory σ → ∞ in Sec. II, we studied the general case
in Sec. III. We have proved that the thermodynamic volume
satisfies the reverse isoperimetric inequality for the set of
the hair parameter σ > 1. One of the main new results is the
existence of reentrant phase transitions in both the

canonical and grand canonical ensemble for suitable values
ofQ andΦ, respectively. As pointed out in [51], for a phase
transition to be reentrant, it must involve the transformation
of a system from one state into a macroscopically similar
state via at least two phase transitions through the variation
of a single thermodynamic parameter. In this case, this
parameter is the temperature, while the pressure is held
fixed. As P is not required to be variable in order to have
reentrant phase transition, these results do not restrict one to
the black hole chemistry approach.
For the case σ → ∞, P is double valued in both

canonical and grand canonical ensembles and no reentrant
phase transition was observed. For finite σ, there is a region
of the extended phase space where the pressure becomes
triple valued only in the grand canonical ensemble. This
region, for which Φ > Φc ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ − 1Þ=ð2σÞp
, is where the

second critical point belongs. We have analyzed in detail
this multivaluedness in pressure and the associated phase
transition, and the results are summarized in Fig. 17. We
would like to point out that there also exist examples in
ordinary chemistry systems where P is a multivalued
function [52].
The results presented in this paper, i.e., the multiple

critical points, the reentrant phase behaviors in both
ensembles, and multivaluedness of the pressure and its
associated novel phase transition, are new features of
charged hairy black holes in d ¼ 4 spacetime dimensions.
They do not exist when either the scalar field or its self-
interaction is turned off. Therefore, this study offers
concrete evidence that a self-interacting scalar field can
drastically change and enrich the thermodynamic behavior
of black holes.
In the context of string theory, it has recently been argued

that variations of the cosmological constant can be inter-
preted as variations in the volume of the sphere of
compactification [3,32]. Therefore, in accordance with
our results, namely, the existence of several critical isobars,

FIG. 18. P − x−1þ , v − x−1þ and V − x−1þ for T ¼ 1.62 and Φ ¼ 0.85, in the model σ ¼ 3. The limit x−1þ → 1 corresponds to the large
black hole limit.
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the size of the sphere of compactification leads to a
different thermodynamic behavior of black holes.
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APPENDIX: NOVEL PHASE
BEHAVIOR FOR σ =∞

For σ ¼ ∞, as long asΦ > 1=
ffiffiffi
2

p
(values ofΦ for which

the system exhibits critical phenomena), the specific
volume

v ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φ2 − 1

p
−

ffiffiffi
2

p ð2 ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φ2 − 1

p
T − 8Φ2 þ 3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Φ2 − 1
p

xþ
þOðx−2þ Þ ðA1Þ

goes to a constant value as xþ → ∞. The equation of state
consequently develops a branch characterized by an almost
completely vertical line in P − v. One way to see this is
that, in the very tiny black hole limit, the entropy and the
thermodynamic volume become proportional. Indeed, both
decay in the same order of xþ,

S ¼ 2πð2Φ2 − 1Þ
xþ

þOðx;2þÞ;

V ¼ 4
ffiffiffi
2

p
πð2Φ2 − 1Þ3=2

3xþ
þOðx−2þ Þ: ðA2Þ

Another way to see this proportionality is by writing
xþ ¼ 1=ðη2r2þÞ þ 2 − η2r2þ þOðr4þÞ, obtained from
ΩðxþÞ ¼ r2þ in the limit xþ → ∞, in the expression for
V given in (6). The entropy is simply S ¼ πr2þ and the
volume is

V ¼ 2πr2þ
3η

þOðr4þÞ: ðA3Þ

In any case, V=S ¼ 2=ð3ηÞ, where ηðxþ → ∞Þ ¼
1=ð ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Φ2 − 1
p

Þ can be directly obtained by taking the
limit xþ → ∞ in the expression for η obtained from the
horizon equation fðxþÞ ¼ 0. The equation of state near
the second critical point and the G − P diagram are
depicted in Fig. 19 for Φ ¼ 0.85. For this value of Φ,
vðxþ → ∞Þ ≈ 0.9434. Apart from the fact that the specific
volume tends to a constant value in the limit xþ → ∞, the
phase transition follows the same general features as for
finite σ.
For completeness, we have plotted P − ðxþÞ−1,

v − ðxþÞ−1, and V − ðxþÞ−1. A subtle difference in this
case, compared with the finite σ case, is observed in the
second panel of Fig. 20. After the transition is taking place,
from B to F, the specific volume v still increases a little bit
when moving from F to G. It follows from (A1) that, in the
limit xþ → ∞, ð∂v=∂xþÞT is positive only provided

T >
8Φ2 − 3

2
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φ2 − 1

p : ðA4Þ

ForΦ ¼ 0.85, this inequality is T > 0.47, which is fulfilled
since Tc2 ≈ 0.82 > 0.47. Therefore, the first-order phase
transition associated with the second critical point c2
has the peculiarity that, for the small-S phase, v slightly
increases as S decreases, contrary to the case of finite σ.

FIG. 19. Equation of state P − v, P − V and the corresponding G − P diagram for Φ ¼ 0.85, T ¼ 1.62 in the model σ ¼ ∞. For this
isotherm, the phase transition occurs at P ≈ 3.7.
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