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Big Bang Nucleosynthesis provides us with an observational insight into the very early Universe. Since this 
mechanism of light element synthesis comes out of the standard model of particle cosmology which follows 
directly from General Relativity, it is expected that any modifications to GR will result in deviations in the 
predicted observable parameters which are mainly, the neutron-to-proton ratio and the baryon-to-photon ratio. 
We use the measured neutron-to-proton ratio and compare the theoretically obtained expressions to constrain 
two models in the framework of 𝑓 (𝑇 ,  ) gravity. The theoretically constrained models are then tested against 
observational data from the Hubble dataset and the ΛCDM model to explain the accelerated expansion of the 
Universe.
1. Introduction

The observational discovery of the accelerated expansion of the Uni-

verse [1–10] is enough to make modifications to conventional General 
Relativity (GR) and correspondingly the concordance model of cos-

mology. Various models have been proposed and explored in order to 
account for the large scale behaviour that seems to be missing from 
GR. They include – scalar-tensor theories, direct extensions to GR like 
the 𝑓 (𝑅) class of gravities, teleparallel equivalents to GR and their ex-

tensions (the 𝑓 (𝑇 ) and 𝑓 (𝑄) classes of gravities), massive gravities, 
theories with non-minimally coupled geometry and matter, and so on. 
All these efforts have been made in order to address the issues of the 
large scale structure, horizon problem, fine-tuning problem, matter-

antimatter asymmetry, and the 𝐻0 and 𝜎8 tensions which are of a 5𝜎
significance. From a plethora of available candidates, we now turn to 
a specific class of theories called 𝑓 (𝑇 ) gravity [12–18], where 𝑇 is 
the torsion scalar. It is to be noted that when 𝑓 (𝑇 ) = 𝑇 , the theory 
is equivalent to GR up to a boundary term and hence it is famously 
dubbed as the Teleparallel Equivalent of General Relativity [19]. The 
𝑓 (𝑇 ) framework can be further extended to the 𝑓 (𝑇 ,  ) framework 
which was introduced in [11] where  corresponds to the trace of the 
energy-momentum tensor. By coupling this torsion to the trace of the 
energy-momentum tensor, one can get an interesting behaviour that ex-

plains the different epochs of the evolution of the Universe [20]. For 
more on work in this gravity, check out [21–26].

The phase of Big Bang Nucleosynthesis (BBN), which occurred 
within a few minutes after the big bang, was the one in which the 
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light nuclear elements (D, 3He, 4He, 7Li) were created. The relative 
abundances of light elements can be calculated theoretically and then 
matched with the observed values. As far as the standard model of cos-

mology is concerned, the two match quite well. When we turn to mod-

ified gravities, however, geometrical effects due to non-linear and/or 
non-minimally coupled terms induce different early Universe scenarios 
than those found in the standard model. Observations can thus be used 
to extract constraints on various model parameters of the said mod-

els. BBN provides us with direct observational evidence in the form 
of neutron-to-proton ratio and the baryon-to-photon ratio that can con-

strain cosmological models (refer [27–32] for a detailed report on BBN). 
This is necessary because any predictive late-time model or theory must 
satisfy these early time constraints thrust upon it.

The manuscript is organized as follows – after an introduction to 
the formalism of 𝑓 (𝑇 ,  ) gravity in section 2, we move to the basics 
of constraints obtained from BBN in section 3. Section 4 explores these 
constraints in the context of 𝑓 (𝑇 ,  ) gravity. Section 5 aims to explain 
the late time accelerated era by a thorough comparison of our con-

strained model with the Cosmic Chronometer dataset and ΛCDM model. 
We finally end the manuscript with the conclusion in section 6.

2. Formalism of 𝒇 (𝑻 ,  ) gravity

In this section, we will discuss the fundamental equations required 
in 𝑓 (𝑇 ,  ) gravity theory. To obtain a torsion-based curvature, the 
required connection is called Weitzenböck [35] connection, which is 
defined as
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𝑤

Γ
𝜆

𝜈𝜇
≡ 𝑒𝜆

𝐴
𝜕𝜇𝑒

𝐴
𝜈
= −𝑒𝐴

𝜇
𝜕𝜈𝑒

𝜆
𝐴

(1)

Here 𝑒𝜆
𝐴

and 𝑒𝐴
𝜈

are tetrads. Basically, this connection leads to zero 
curvature instead of zero torsion. The metric tensor related to these 
tetrads is

𝑔𝜇𝜈(𝑥) = 𝜂𝐴𝐵𝑒
𝐴
𝜇
(𝑥)𝑒𝐵

𝜈
(𝑥) (2)

here the Minkowski metric 𝜂𝐴𝐵 = 𝑑𝑖𝑎𝑔(1, −1, −1, −1).
From the above connection, geometrical objects like torsion tensor, 

contorsion tensor, and superpotential tensor can be obtained. The tor-

sion tensor is defined as,

𝑇 𝜆
𝜇𝜈

=
𝑤

Γ
𝜆

𝜈𝜇
−

𝑤

Γ
𝜆

𝜇𝜈
= 𝑒𝜆

𝐴
(𝜕𝜇𝑒𝐴𝜈 − 𝜕𝜈𝑒

𝐴
𝜇
). (3)

From the torsion tensor, contorsion tensor can be obtained as 𝐾𝜇𝜈
𝜌 ≡

−1
2 (𝑇

𝜇𝜈
𝜌 − 𝑇 𝜈𝜇

𝜌 − 𝑇𝜌
𝜇𝜈). Using the two geometrical objects torsion and 

contorsion, another tensor can be obtained which is called superpoten-

tial tensor 𝑆𝜌
𝜇𝜈 . It is defined as

𝑆𝜌
𝜇𝜈 ≡ 1

2
(𝐾𝜇𝜈

𝜌 + 𝛿𝜇
𝜌
𝑇 𝛼𝜈

𝛼 − 𝛿𝜈
𝜌
𝑇 𝛼𝜇

𝛼). (4)

One can construct the torsion scalar 𝑇 using the Torsion tensor (3) and 
superpotential tensor (4) as follows:

𝑇 ≡ 𝑆𝜌
𝜇𝜈𝑇 𝜌

𝜇𝜈
= 1

4
𝑇 𝜌𝜇𝜈𝑇𝜌𝜇𝜈 +

1
2
𝑇 𝜌𝜇𝜈𝑇𝜈𝜇𝜌 − 𝑇𝜌𝜇

𝜌𝑇 𝜈𝜇
𝜈 . (5)

In the modified version of teleparallel gravity, one can extend 𝑓 (𝑇 ) to a 
general function of the torsion scalar 𝑇 and trace of energy-momentum 
tensor  . The modified gravitational action for 𝑓 (𝑇 ,  ) gravity can be 
defined as,

𝑆 = 1
16𝜋𝐺∫ 𝑑4𝑥𝑒[𝑇 + 𝑓 (𝑇 , )] + ∫ 𝑑4𝑥𝑒𝑚 (6)

where 𝑒 = 𝑑𝑒𝑡(𝑒𝐴
𝜇
) =

√
−𝑔, 𝐺 denotes the Newton’s constant and 𝑚 is 

the matter Lagrangian.

We can get the field equations, by varying the action (6) with respect 
to the tetrads, as

(1 + 𝑓𝑇 )
[
𝑒−1𝜕𝜇(𝑒 𝑒𝐴𝛼𝑆𝜌𝜇

𝛼
) − 𝑒𝛼

𝐴
𝑇 𝜇
𝜈𝛼
𝑆𝜈𝜌
𝜇

]
+(

𝑓𝑇𝑇 𝜕𝜇𝑇 + 𝑓𝑇  𝜕𝜇 )
𝑒 𝑒𝛼

𝐴
𝑆𝜌𝜇
𝛼

+ 𝑒
𝜌

𝐴

(
𝑓 + 𝑇

4

)
−

𝑓
2

(
𝑒𝛼
𝐴

𝑒𝑚

𝑇

𝜌

𝛼
+𝑝𝑒

𝜌

𝐴

)
= 4𝜋𝐺𝑒𝛼

𝐴

𝑒𝑚

𝑇

𝜌

𝛼
(7)

where 
𝑒𝑚

𝑇 𝛼

𝜌

denotes the energy-momentum tensor, 𝑓𝑇 = 𝜕𝑓∕𝜕𝑇 , 𝑓𝑇𝑇 =
𝜕2𝑓∕𝜕𝑇 2 and 𝑓𝑇  = 𝜕2𝑓∕𝜕𝑇 𝜕 . In the context of perfect fluid descrip-

tion, the energy-momentum tensor has the diagonal form,

𝑒𝑚

𝑇 𝛼

𝜌

= 𝑑𝑖𝑎𝑔(𝜌, −𝑝, −𝑝, −𝑝) (8)

where 𝜌 and 𝑝 are energy density and the thermodynamic pressure re-

spectively. Here  = 𝜌 − 3𝑝.

Further discussion of the geometry of the universe will be proceeded 
by assuming a spatially flat Friedmann-Lemaitre-Robertson-Walker 
(FLRW) metric,

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)𝛿𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 , (9)

where a(t) is the scale factor as a function of time. For this metric, 
𝑇 = −6𝐻2 and the vierbein field is considered as the diagonal form, 
𝑒𝐴
𝜇
= 𝑑𝑖𝑎𝑔(1, 𝑎, 𝑎, 𝑎) for the above metric.

Using the above metric (9) in the field equation (7), we obtain the 
modified Friedmann equations:

𝐻2 = 8𝜋𝐺
3

𝜌− 1
6
(𝑓 + 12𝐻2𝑓𝑇 ) + 𝑓 (

𝜌+ 𝑝

3
), (10)
2

�̇� = −4𝜋𝐺(𝜌+ 𝑝) − �̇�(𝑓𝑇 − 12𝐻2𝑓𝑇𝑇 )−
Physics Letters B 848 (2024) 138391

𝐻(�̇�− 3�̇�)𝑓𝑇  − 𝑓 (
𝜌+ 𝑝

2
). (11)

The conservation equation for ordinary matter can be written as

�̇�+ 3𝐻(𝜌+ 𝑝) = 0 (12)

and the equation of state reads as 𝑝 = 𝜔𝜌, where 𝜔 is the equation of 
state parameter. By using the Hubble parameter 𝐻 = �̇�∕𝑎 and the above 
equation of state in the conservation equation (12) one can obtain the 
energy density in terms of scale factors as

𝜌 =
𝜌0

𝑎3(1+𝜔) = 𝜌0(1 + 𝑧)3(1+𝜔), (13)

where 𝜌0 is the present density and the redshift 𝑧 = 1
𝑎
− 1.

The Friedmann equations (10) and (11), including the dark component 
can be written as

𝐻2 = 8𝜋𝐺
3

(𝜌+ 𝜌𝐷𝐸 ) (14)

�̇� = −4𝜋𝐺(𝜌+ 𝜌𝐷𝐸 + 𝑝+ 𝑝𝐷𝐸 ) (15)

where

𝜌𝐷𝐸 = 1
8𝜋𝐺

[
−6𝐻2𝑓𝑇 − 𝑓

2
+ 𝑓 (𝜌+ 𝑝)

]
(16)

− 4𝜋𝐺𝑝𝐷𝐸 = 4𝜋𝐺𝜌𝐷𝐸 −
𝑓
2
(𝜌+ 𝑝)−

𝐻(�̇�− 3�̇�)𝑓𝑇  + 12𝐻2�̇�𝑓𝑇𝑇 − �̇�𝑓𝑇 (17)

3. BBN constraints

In the following section, we review the formalism of BBN within the 
𝑓 (𝑇 ,  ) cosmology and hope to extract constraints on various model 
parameters. Since the neutron-to-proton ratio is affected due to expan-

sion, it is important to study the effects of expansion on BBN. It is to 
be noted that the BBN event occurred during the radiation-dominated 
era. For a temperature 𝑇 and the effective number of degrees of free-

dom given by 𝑔∗, one can arrive at the energy density of the relativistic 
particles given by

𝜌𝑟 =
𝜋2

30
𝑔∗𝑇

4 (18)

This 𝜌𝑟 constitutes the energy density of radiation due to both relativis-

tic particles and massless radiation. 𝑔∗ ∼ 10. Equation (14) for GR can 
be written as

𝐻2 = 1
3𝑀2

𝑝

𝜌 (19)

Here note that 𝑀𝑝 =
1√
8𝜋𝐺

= 1.22 × 1019 𝐺𝑒𝑉 is the reduced Planck 

mass1 and 𝜌 = 𝜌𝑚 +𝜌𝑟. Since BBN takes place during the radiation dom-

inated era, we can write it as

𝐻2 ≈ 1
3𝑀2

𝑝

𝜌𝑟 ≡𝐻2
𝐺𝑅

(20)

In order to differentiate the Hubble rate in conventional GR with the 
one obtained in modified gravity, we label the prior with 𝐻𝐺𝑅 while the 
latter is denoted by just 𝐻 . These distinctions in notation shall be useful 
in finding out the deviations in the Hubble rate (Δ𝐻) which in turn can 
be used to calculate the deviations on the freeze-out temperature (Δ𝑇𝑓 ) 
in order to put a constraint on the models. Thus (14) can be used along 
with (20) to get

𝐻 =𝐻𝐺𝑅

√
1 +

𝜌𝐷𝐸

𝜌𝑟
(21)

√

1 𝑀𝑝𝑙 = 8𝜋𝑀𝑝 is the more conventionally used Planck mass.
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The quantity in the square-root can be expanded up to first order due 
to the fact that during the radiation dominated era, 𝜌𝐷𝐸 << 𝜌𝑟 so that

Δ𝐻 =𝐻 −𝐻𝐺𝑅 ≈
𝜌𝐷𝐸

𝜌𝑟

𝐻𝐺𝑅

2
(22)

We can now use the relation (18) to get the expression of the Hubble 
rate as a function of temperature.

𝐻(𝑇 ) =

√
𝜋2𝑔∗
90

𝑇 2

𝑀𝑝

(23)

A simple argument can be used to extract a relationship between tem-

perature and time. In the radiation era, 𝑎(𝑡) ∼ 𝑡1∕2 and consequently, 
𝐻(𝑡) ∼ 1

2𝑡 so that

1
𝑡
∼

√
2𝜋2𝑔∗
45

𝑇 2

𝑀𝑝

(24)

A quantity that holds prime importance in the study of BBN is the 
freeze-out temperature 𝑇𝑓 . Neutrons and protons convert into one an-

other via the weak interactions. If the ambient temperature is greater 
than 1 𝑀𝑒𝑉 , which is high compared to the expansion rate, these reac-

tions observe equilibrium. But as the temperature drops below 1 𝑀𝑒𝑉 , 
the neutron-to-proton ratio “freezes out” at about 1∕6 only to slowly de-

crease by free neutron decay. Thus neutron abundance is calculated by 
knowing the neutron to proton 𝜆𝑝𝑛(𝑇 ) and proton to neutron 𝜆𝑛𝑝(𝑇 )
conversion rates. Neutrons decay into protons (with electrons (𝑒+), 
neutrinos (𝜈𝑒) and anti-neutrinos (�̄�𝑒) as by products) through three dif-

ferent reactions 𝑛 ⟶ 𝑝 +𝑒− + �̄�𝑒, 𝑛 +𝜈𝑒 ⟶ 𝑝 +𝑒− and 𝑛 +𝑒+ ⟶ 𝑝 + �̄�𝑒. 
So then

𝜆𝑝𝑛(𝑇 ) = 𝜆(𝑛⟶𝑝+𝑒−+�̄�𝑒) + 𝜆(𝑛+𝜈𝑒⟶𝑝+𝑒−) + 𝜆(𝑛+𝑒+⟶𝑝+�̄�𝑒) (25)

and its inverse 𝜆𝑛𝑝(𝑇 ) can be used to find the total conversion rate 
𝜆𝑡𝑜𝑡(𝑇 ) = 𝜆𝑝𝑛(𝑇 ) + 𝜆𝑛𝑝(𝑇 ) to yield

𝜆𝑡𝑜𝑡(𝑇 ) = 4𝐴𝑇 3(4!𝑇 2 + 2 × 3!𝑇 + 2!2) (26)

here  = 𝑚𝑛 − 𝑚𝑝 = 1.29 × 10−3𝐺𝑒𝑉 and 𝐴 = 1.02 × 10−11𝐺𝑒𝑉 −4. 
The freeze-out temperature corresponds to the following Hubble rate 
𝐻(𝑇𝑓 ) = 𝜆𝑡𝑜𝑡(𝑇𝑓 ) ≈ 𝑐𝑞𝑇

5
𝑓

. Here 𝑐𝑞 = 4𝐴4! ≈ 9.8 × 10−10 𝐺𝑒𝑉 −4. Using 
(23) at 𝑇 = 𝑇𝑓 ,

𝑇𝑓 =
(

𝜋2𝑔∗
90𝑀2

𝑝
𝑐2
𝑞

)1∕6
≈ 0.6𝑀𝑒𝑉 (27)

Following 𝐻(𝑇𝑓 ) = 𝑐𝑞𝑇
5
𝑓

, we have Δ𝐻 = 5𝑐𝑞𝑇 4
𝑓
Δ𝑇𝑓 . Inserting Δ𝐻 from 

(22),

Δ𝑇𝑓

𝑇𝑓

≈
𝜌𝐷𝐸

𝜌𝑟

𝐻𝐺𝑅

10𝑐𝑞𝑇 5
𝑓

(28)

Incorporating the observational bound, we have the final constraint ex-

pression in terms of the freeze-out temperature||||Δ𝑇𝑓

𝑇𝑓

|||| < 4.7 × 10−4 (29)

4. BBN constraints on 𝒇 (𝑻 ,  ) gravity

4.1. Model 1: 𝑓 (𝑇 ,  ) = 𝛽1𝑇 + 𝛽2
Let us consider the Lagrangian form,

𝑓 (𝑇 , ) = 𝛽1𝑇 + 𝛽2 (30)

Using the functional form (30) in the first motion equation (10) one can 
3

obtain the model parameter 𝛽1 corresponding to the present time as,
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Fig. 1. The model parameter 𝛽2-dependence of |Δ𝑇𝑓∕𝑇𝑓 | for 𝑓 (𝑇 ,  ) = 𝛽1𝑇 +
𝛽2 .

𝛽1 =
1
3

(
Ω𝑚0

+ Ω𝑟0
− 1 +

𝛽2𝑀
2
𝑝

2

(
3Ω𝑚0

+ 8Ω𝑟0

))
(31)

where Ω𝑚0
, Ω𝑟0

are the present density parameters for matter, relativis-

tic particles respectively. Now substituting the model (30) in (16) gives 
us

𝜌𝐷𝐸 =𝑀2
𝑝

(
−3𝛽1𝐻2 +

𝛽2
2
(𝜌+ 5𝑝)

)
(32)

Since in the radiation dominated phase, 𝑝𝑟 = 𝜌𝑟∕3 (From equation of 
state 𝑝 = 𝜔𝜌) and 𝜌𝑚 << 𝜌𝑟 we can rewrite the above equation as,

𝜌𝐷𝐸 =𝑀2
𝑝

(
−3𝛽1𝐻2 +

4𝛽2𝜌𝑟
3

)
(33)

Inserting the above energy density along with the density for relativistic 
particles (18) and (20) in (28) we obtain,

Δ𝑇𝑓

𝑇𝑓

= 𝜋

90
√
10

⎛⎜⎜⎜⎝
(
4𝛽2𝑀2

𝑝
− 3𝛽1

)√
𝑔∗

𝑀𝑝𝑐𝑞𝑇
3
𝑓

⎞⎟⎟⎟⎠ (34)

The linear model passes the BBN constraints (29) for the values of 
model parameter 𝛽2 ∈ [−1.38 × 10−39, −1.26 × 10−39]. This range is rep-

resented by the dashed lines in Fig. 1. For the calculation, we have 
incorporated the fixed parameters as 𝑔∗ ∼ 10, 𝑇𝑓 = 0.0006 𝐺𝑒𝑉 , 𝑐𝑞 =
9.8 × 10−10 𝐺𝑒𝑉 −4 and 𝑀𝑝 = 1.22 × 1019 𝐺𝑒𝑉 . From (31) the range of 
the other model parameter can be obtained as 𝛽1 ∈ [−0.2640, −0.2615]. 
Here the present values of the density parameters are taken from the 
observation [33,34] as Ω𝑚0

∼ 0.3 and Ω𝑟0
∼ 0.00005. Using (32) in the 

first motion equation we obtain,

𝐻2(𝑧) =
𝐻2

0
1 + 3𝛽1

(
Ω𝑚0

(1 + 𝑧)3(1 +
3𝛽2𝑀2

𝑝

2
)+

Ω𝑟0
(1 + 𝑧)4(1 + 4𝛽2𝑀2

𝑝
)
)

(35)

here the relations Ω𝑚 =Ω𝑚0
∕𝑎3 and Ω𝑟 =Ω𝑟0

∕𝑎4 are used.

4.2. Model 2: 𝑓 (𝑇 ,  ) = 𝑇 + 𝛼𝑇 2 + 𝛾
Let us consider the Lagrangian form,

𝑓 (𝑇 , ) = 𝑇 + 𝛼𝑇 2 + 𝛾 (36)

Using the functional form in the first Friedmann equation (10) one can 
obtain the model parameter 𝛼 corresponding to the present time as

𝛼 = 1 [
2 −Ω 𝑏 −Ω 𝑏

]
(37)
18𝐻2
0

𝑚0 𝑚0 𝑟0 𝑟0
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Fig. 2. The model parameter 𝛾 -dependence of |Δ𝑇𝑓∕𝑇𝑓 | for 𝑓 (𝑇 ,  ) = 𝑇 +
𝛼𝑇 2 + 𝛾 .

where Ω𝑚0
, Ω𝑟0

are the present density parameters for matter, relativis-

tic particles respectively, and 𝑏𝑚0
= 1 +

𝛾𝑀2
𝑝

2 , 𝑏𝑟0 = 1 +
4𝛾𝑀2

𝑝

3 . Substitut-

ing (36) along with (37) in the effective density (16) we get,

𝜌𝐷𝐸 =𝑀2
𝑝

[
− 3𝐻2 + 3𝐻4

𝐻2
0

(
2 −Ω𝑚0

𝑏𝑚0
− Ω𝑟0

𝑏𝑟0

)
+ 𝛾

2
(𝜌+ 5𝑝)

]
(38)

Since in the radiation dominated phase, 𝑝𝑟 = 𝜌𝑟∕3 (From equation 
of state 𝑝 = 𝜔𝜌) and 𝜌𝑚 << 𝜌𝑟 we can rewrite the above equation as,

𝜌𝐷𝐸 =𝑀2
𝑝

[
− 3𝐻2 + 3𝐻4

𝐻2
0

(
2 −Ω𝑚0

𝑏𝑚0
− Ω𝑟0

𝑏𝑟0

)
+

4𝛾𝜌𝑟
3

]
(39)

Substituting the above equation along with (18) and (20) in (28) we 
get,

Δ𝑇𝑓

𝑇𝑓

=
𝑀𝑝

10
√
3𝑐𝑞𝑇 5

𝑓

(
− 1

𝑀2
𝑝

+ 4𝛾
3
+

𝜋𝑇 2
𝑓

3
√
3𝐻2

0𝑀
4
𝑝

(
2 −Ω𝑚0

𝑏𝑚0
− Ω𝑟0

𝑏𝑟0

))
(40)

The second model passes the BBN constraints (29) for the model pa-

rameter 𝛾 = 7.61083 × 10−38. In Fig. 2 we observe that the behaviour of 
𝛾 is constant in the BBN region. The other model parameter 𝛼 can be 
obtained from (37) by substituting the present observed values of the 
density parameters and the Hubble parameter 𝐻0 = 1.47 × 10−42 𝐺𝑒𝑉

(∼ 67.2 km 𝑠−1 Mp𝑐−1) as 𝛼 = 4.82 × 1082 𝐺𝑒𝑉 −2. The remaining fixed 
parameters are same as the first model.

Now, inserting the Lagrangian form (36) in the first motion equation 
(10) we obtain,

𝐻2(𝑧) =𝐻2
0×⎛⎜⎜⎜⎝

−1 +
√

1 + (1 + 𝑧)3
(
Ω𝑚0

𝑏𝑚0
+ Ω𝑟0

𝑏𝑟0 − 2
)(

Ω𝑚0
𝑏𝑚0

+ Ω𝑟0
𝑏𝑟0 (1 + 𝑧)

)
Ω𝑚0

𝑏𝑚0
+ Ω𝑟0

𝑏𝑟0 − 2

⎞⎟⎟⎟⎠
(41)

5. Data analysis and results

Though our models have passed the BBN constraints for certain val-

ues of model parameters, its credibility concerning the evolution of the 
Universe is still unknown. So, in this section, we compare our mod-

els with the Cosmic Chronometer (CC) dataset and the standard ΛCDM 
model, using the constrained model parameters from the BBN epoch 
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following the method in [36].
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. Cosmic Chronometer (CC) dataset

In order to account for the cosmic acceleration, various observa-

nal probes are used. To ensure that the probes quantifying cosmic 
olution do not take into account effects of their own evolution, probes 
e standard candles (SNeIa) or standard rulers (Baryon Acoustic Oscil-

ions) are widely used. We have employed the probes based on what 
e called “Cosmic Chronometers” (first discussed in [37]) where rela-

e ages of early-type galaxies are used as standard clocks. A sample of 
data points for the redshift range 0.07 < 𝑧 < 2.42 has been used for 
ich the chi-square estimator has been found out to be

𝐶
=

31∑
𝑖=1

[𝐻𝑡ℎ
𝑖
(𝜃𝑠, 𝑧𝑖) −𝐻𝑜𝑏𝑠

𝑖
(𝑧𝑖)]2

𝜎2
𝐶𝐶

(𝑧𝑖)
(42)

re 𝐻𝑡ℎ
𝑖

is the theoretical value, with 𝜃𝑠 being the vector of cosmolog-

l background parameters, 𝐻𝑜𝑏𝑠
𝑖

is the observed value with 𝜎𝐶𝐶 being 
e standard error in observed values.

. Comparision with the 𝑓 (𝑇 ,  ) models

In Fig. 3, we have plotted the Hubble model (35) for two different 
lues of the model parameter 𝛽2. Further, the curves have been com-

red with the 31 points of the Hubble dataset and the standard ΛCDM 
del. The two model parameter values are the respective upper and 
er bounds of the range of 𝛽2, we obtained from BBN constraints. We 

serve that though this model fits well for the present time and a small 
nge of redshift, for higher redshift it deviates from the observational 
tasets as well as the standard model.

In Fig. 4, we have plotted the Hubble model (41) for the model 
rameter 𝛾 = 7.61083 × 10−38, which is obtained from the BBN con-

aints. Moreover, it has been compared with the 31 points of the 
bble dataset and the standard ΛCDM model for the redshift range 
𝑧 < 2.5. We infer from Fig. 4 that our model with the constrained 

del parameter, is compatible with the observational dataset and 
DM in describing the late time acceleration.

 Conclusion

In this work, Big Bang Nucleosynthesis formalism and observations 
e employed to find the deviation in freeze-out temperature in the 
mework of 𝑓 (𝑇 ,  ) gravity. We assume a linear model and a non-

ear one with squared torsion. In the first model, we find that to 
tisfy the constraint |Δ𝑇𝑓∕𝑇𝑓 | < 4.7 × 10−4, the corresponding model 
rameter ranges have to be 𝛽2 ∈ [−1.38 × 10−39, −1.26 × 10−39] and 
∈ [−0.2640, −0.2615]. Then the second model is explored using BBN 
nstraints. We find that the model parameter 𝛾 remains constant to 
tisfy BBN with the exact value 𝛾 = 7.61083 × 10−38. Using this value 
 obtain the other model parameter 𝛼 as 4.82 × 1082 𝐺𝑒𝑉 −2.

rther, we employ the constrained models from BBN epoch for a thor-

gh comparison with the 31 data points of the Hubble dataset along 
th the standard ΛCDM model. We find that the linear model agrees 
th the observations for a small redshift range, whereas the nonlinear 
del (𝑓 (𝑇 ,  ) = 𝑇 +𝛼𝑇 2 + 𝛾 ) is an excellent candidate to explain the 
e time cosmic acceleration as well as the early BBN era.

It should be noted that the increasing trend of the Hubble parameter 
 both the models with increasing redshift is to be expected since, even 
ough the recession velocity of distant galaxies increases, the num-

r of galaxies in a sphere of a fixed radius 𝑎(𝑡) decreases with time 
using the Hubble parameter to decrease with time or increase with 
dshift.

For the linear model, we observe that the contribution of the trace of 
e energy-momentum tensor corresponding to 𝛽2 is 38 orders of mag-

tude less than that of torsion. This behaviour is expected since all the 
dified gravities must reproduce GR or the TEGR in this case, in a 
practical limit. As for the parameter 𝛽1 ∼ (1), we say that in order to 
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Fig. 3. The error bar plot of 31 points of Hubble datasets along with the Hubble model (for 𝑓 (𝑇 ,  ) = 𝛽1𝑇 + 𝛽2 ) compared with the Λ𝐶𝐷𝑀 model. 𝛽2 =
−1.26 × 10−39 represents the Red Curve and 𝛽2 = −1.38 × 10−39 represents the Blue Curve.

Fig. 4. The error bar plot of 31 points of Hubble datasets along with the Hubble model (for 𝑓 (𝑇 , ) = 𝑇 + 𝛼𝑇 2 + 𝛾 ) compared with the Λ𝐶𝐷𝑀 model.
reproduce the observed behaviour of the Universe in various epochs, 
the contribution from the torsion term has to be reduced by a certain 
amount. Following a similar line of reasoning, we can see that the pa-

rameter 𝛼 has an enormous value but since it is in units of 𝐺𝑒𝑉 −2, its 
effective contribution to the action is very small. An even smaller con-

tribution is that of the  term with 𝛾 being ∼ 10−38.

It is to be noted that the method of analysis employed here is a direct 
consequence of constraints obtained from the BBN era which are then 
imposed on the Hubble function corresponding to the specific 𝑓 (𝑇 ,  )
model. Since the BBN era exhibits accelerated expansion, it is expected 
that our constrained model also shows accelerated expansion for all 
values of redshift including the matter-dominated era which showed 
deceleration. The main reason behind this is the domination of dark 
energy components in the Hubble models. One might have to reduce 
our models to general relativity case to conduct a detailed analysis of 
the intermediating epochs that have shown decelerated expansion of 
the Universe.

We conclude that the model with a small correction to the linear model 
in the form of a squared torsion term can serve as a viable fit to explain 
5

both early time as well as late-time evolution of the Universe.
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