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We propose that the dynamics of Kerr black holes is strongly constrained by the principle of gauge
symmetry. We initiate the construction of effective field theories for Kerr black holes of any integer
quantum spin s using Stückelberg fields, and show that the known three-point Kerr amplitudes are uniquely
predicted using massive higher-spin gauge symmetry. This symmetry is argued to be connected to an
enhanced range of validity for the Kerr effective field theories. We consider the closely related root-Kerr
electromagnetic solution in parallel, for which the dynamical interactions with photons are also constrained
by massive higher-spin gauge symmetry. Finally, the spin-s Compton amplitudes are analyzed, and we
discuss contact-term constraints at s ¼ 2 from Ward identities.
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Introduction.—After the first direct detection of gravi-
tational waves from merging black-hole binaries by the
LIGO/Virgo Collaboration [1], the need for matching
theory with experiment has driven the development of
novel computational methods [2]. Recently, it has become
increasingly clear that the problem of classical gravitational
radiation is deeply connected with modern quantum
approaches. Effective field theory (EFT) posits that well-
separated masses admit an effective description in terms of
point particles [3]. While traditional EFT descriptions of
black holes employ worldline formalisms [3–10], more
recent approaches directly utilize properties of quantum
scattering amplitudes [11,12]. Classical limit [13] and
conversion to bound systems [14] allow for relevant
information to be extracted, such as the effective two-body
potential [15] (see the review [16]). Spinning Kerr black
holes have been studied using amplitude-based methods
[17–31]; however, the inclusion of higher spin-multipole
effects remains poorly understood [31–35], due to diffi-
culties in identifying proper higher-spin amplitudes [36].
Quantum field theory (QFT) provides a natural frame-

work for exploring scattering amplitudes with spin. Gauge
symmetry is essential in covariant formalisms for theories
with spin, ensuring both the correct degrees of freedom and
mild dependence on scales (e.g., renormalizability or

enhanced Wilsonian cutoff). Evidence from low-spin
EFTs [27,37] compatible with known Kerr amplitudes
[19,36,38] points to spontaneously broken gauge symmetry
or enhanced tree-level unitarity properties as useful guiding
principles [27]. We note that spinning black holes may exist
with masses ranging all the way down to the Planck scale,
suggesting that Kerr EFTs should have enhanced range of
validity compared to EFTs of generic compact objects,
such as neutron stars.
Finding a suitable tree-level Compton amplitude asso-

ciated to a Kerr black hole is an important open problem in
view of its relevance [17,18] for the two-body problem at
OðG2

NÞ, where GN is Newton’s constant. While matching
to the Kerr metric fixes the pole part of the Compton
amplitude [19,20,24], a contact-term ambiguity is present
in the opposite-helicity sector [36]. Resolving this ambi-
guity is an ongoing effort [20,27,31–35,39], and it may
require the identification of new physical principles asso-
ciated with black-hole scattering.
In this Letter, we show that known Kerr amplitudes come

from EFTs that enjoy massive higher-spin gauge symmetry,
and demonstrate that this property is highly constraining
when combined with EFT principles, such as low-derivative
counting and tree-level unitary considerations. Using
Stückelberg fields, Ward identities, and results from the
higher-spin literature [40–42], we investigate the constraints
imposed by gauge symmetry at three points, as well as for
root-Kerr [24,43] Compton amplitudes. Based on our
findings, we conjecture that higher-spin gauge symmetry
is a strong selection principle for describing the full
dynamics of Kerr black holes.
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At three points, there is now a firmly established relation
[19,20,23,24,26,28] between the gravitational interaction
of a Kerr black hole and the three-point scattering ampli-
tude [36]

MKerrðΦs
1Φs

2h
þ
3 Þ ¼ M0

h12i2s
m2s ; ð1Þ

where Φs
1;2 denote spin-s mass-m fields and hþ3 a positive-

helicity graviton (parity gives the negative-helicity for-
mula). The spin-0 case M0 ¼ −κðp1 · ε

þ
3 Þ2 describes a

Schwarzschild black hole, where κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
.

We use on-shell Weyl spinors, pi · σji� ¼ mjii [36], and
consider integer spin-smassive polarization tensors [19,20]

εμ1μ2���μsi ¼ εμ1i ε
μ2
i � � � εμsi ; εμi ¼

hijσμji�ffiffiffi
2

p
m

; ð2Þ

where σμ are the Pauli/van der Waerden matrices. The spin-
1 polarization vectors satisfy pi · εi ¼ ε2i ¼ 0, implying
transversality and tracelessness of the tensors (2).
The Kerr amplitude can be re-expressed in terms of its

spin vector Sμ ¼ maμ, where aμ is the Kerr ring radius. For
quantum spin s, we parametrize the spin vector of the
incoming black hole (label 1), using complex SU(2)
coordinates za, which can be seen as projective coordinates
on the 3-sphere group manifold,

Sμ ¼ −
s
2m

ðz̄azaÞ2s−1ðh1̄jσμj1� þ h1jσμj1̄�Þ: ð3Þ

Here (and in the above equations), the Weyl spinors are
taken to be functions of z, namely, j1i ≔ j1aiza,
j1� ≔ j1a�za, j1̄i ≔ j1aiz̄a, and j1̄� ≔ j1a�z̄a, where the
un-bold Weyl spinors carry SU(2) little-group indices.
By suitable choices of little-group frames, one can
relate the incoming and outgoing (label 2) spinors in the
three-point amplitudes by a Lorentz transforma-
tion, j2i ≔ j1̄i þ p3 · σj1̄�=ð2mÞ.
The spin vector is automatically transverse p1 · S ¼ 0,

and moreover gives the quantum-mechanical spin operator
Ŝμ upon acting with derivatives,

ðŜμÞa⃗b⃗ ≔
1

ð2sÞ!2
�Y2s

j¼1

∂

∂z̄aj
∂

∂zbj

�
Sμ; ð4Þ

with the multi-index notation a⃗ ¼ a1a2 � � � a2s. It follows
that Ŝ2 ¼ −sðsþ 1Þ1 and ½Ŝμ; Ŝν� ¼ iϵμνρŜρ, with SO(3)
structure constants ϵμνρ ¼ ϵμνρσp1σ=m. Conversely, the spin
vector can be considered as the expectation value of the
spin operator Sμ ¼ hŜμi ≔ ðz̄Þ2s · Ŝμ · ðzÞ2s, where the za

encode the spin quantum state.
With the introduced variables, the Kerr amplitude Eq. (1)

is equal to the expectation value of an exponentiated spin
operator [19,21,23]:

M0

h12i2s
m2s ¼ M0

�X2s
n¼0

1

n!

�
p3 · Ŝ
m

�
n
�

¼ M0hep3·âi; ð5Þ

where the ring-radius operator is âμ ¼ Ŝμ=m. In the
classical limit, s → ∞, Sμ finite, the quantum variance
vanishes, implying that hðâμÞni ¼ hâμin ¼ ðaμÞn, and one
recovers that the classical amplitude of Kerr is related to
Schwarzschild though the Newman-Janis shift [24,44]
MKerr ¼ M0ep3·a.
As has been established in several works [10,24,43],

there is a closely related electromagnetic root-Kerr solu-
tion, describing a massive spinning state Φs with charge Q
coupled to a photon Aμ. The corresponding three-point
amplitude [36] is very similar to the one for Kerr:

A ffiffiffiffiffiffiffi
Kerr

p ðΦs
1Φ̄s

2A
þ
3 Þ ¼ A0

h12i2s
m2s ¼ A0hep3·âi; ð6Þ

where A0 ¼ 2Qp1 · ε
þ
3 is a charged-scalar amplitude.

Kerr and root-Kerr EFTs.—The infinite family of three-
point Kerr amplitudes gives reasons to expect the existence
of an underlying QFT framework. One may anticipate two
families of Kerr and root-Kerr EFTs parametrized by the
quantum spin s. Supporting evidence is provided by the
existence of well-behaved low-spin quantum Compton
amplitudes (up to spin-2 Kerr and spin-1 root-Kerr [36])
that agreewith classical Kerr results [38]. In Ref. [27], it was
also argued that the corresponding low-spin EFTs are
determined using tree-level unitarity constraints, spontane-
ous symmetry breaking, and restrictive derivative counting.
In the gravitational Kerr case, the EFTs for s ¼ 1=2, 1

and 3=2 are minimally coupled [36] Majorana spinor
(Major.), Proca, and Rarita-Schwinger fields (Rar.-Sch.),
respectively. For the spin-2 Kerr case, the interactions are
compatible with a Kaluza-Klein graviton (KK grav.) [27].
For the gauge-theory root-Kerr case, s ¼ 1=2 is a mini-
mally coupled Dirac fermion, and s ¼ 1 is a W boson.
Furthermore, for spin-3=2 root-Kerr and spin-5=2 Kerr,
these theories admit a higher-spin current that is conserved
up to mass terms, ∂ · J ¼ OðmÞ [27,45–47], which fixes
their Lagrangians and provides a conjecture for the corre-
sponding Compton amplitudes. The spin-3=2 case is a
nonminimally coupled gravitino [42,48] that can be
embedded in a theory that exhibits spontaneously broken
supersymmetry (i.e., a gauged supergravity [49]), and the
spin-5=2 theory has also been featured in the literature
[27,46,47]. The low-spin Kerr and root-Kerr theories are
summarized in Table I. We will now demonstrate how to fix

TABLE I. Kerr and
ffiffiffiffiffiffiffiffiffi
Kerr

p
theories; the unknown higher-spin

(HS) theories for integer s are the subject of this Letter.

EFTs s ¼ 1=2 s ¼ 1 s ¼ 3=2 s ¼ 2 s ¼ 5=2 s ≥ 3

Kerr Major. Proca Rar.-Sch. KK grav. [27] HSffiffiffiffiffiffiffiffiffi
Kerr

p
Dirac W-boson Gravitino HS � � � HS
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the cubic interactions in theories with arbitrary integer spin,
and moreover constrain the contact terms in the Compton
amplitude for the spin-2 root-Kerr case.
Spin-2 root-Kerr theory: Let the complex fields

fΦμν; Bμ;φg collectively describe the charged root-Kerr
matter, of which Φμν is the physical (symmetric) spin-2
field and fBμ;φg are Stückelberg auxiliary fields. The
linearized gauge transformations of the massive fields are
[40–42]

δΦμν ¼
1

2
∂μξν þ

1

2
∂νξμ þ

mffiffiffi
2

p ημνζ;

δBμ ¼ ∂μζ þ
mffiffiffi
2

p ξμ;

δφ ¼
ffiffiffi
3

p
mζ; ð7Þ

where fξμ; ζg are (complex) gauge parameters, the metric is
ημν ¼ diagðþ;−;−;−Þ, and field normalizations are con-
veniently adjusted [40] to match our spin-s discussion. It is
straightforward to find a unique free Lagrangian L0

satisfying δL0 ¼ 0, but let us postpone its introduction.
Instead, we consider three-point Ward identities when

the root-Kerr matter is coupled to a (massless) photon Aμ.
We work in momentum space, and represent all fields as
off-shell plane waves with momenta pi and unconstrained
polarizations Φμν

i ∼ ϵμi ϵ
ν
i , B

μ
i ∼ ϵμi , ξ

μ
i ∼ ϵμi , A

μ
i ∼ ϵμi , only

distinguished by their particle-label subscripts. Let
VΦΦ̄Aðϵi; piÞ, VBΦ̄Aðϵi; piÞ, etc., denote off-shell vertex
functions, then the linearized gauge transformation
Eq. (7) translates into

VξΦ̄A ≔
mffiffiffi
2

p VBΦ̄A −
i
2
p1 ·

∂

∂ϵ1
VΦΦ̄A;

VζΦ̄A ≔
ffiffiffi
3

p
mVφΦ̄A − ip1 ·

∂

∂ϵ1
VBΦ̄A þ m

2
ffiffiffi
2

p
�

∂

∂ϵ1

�
2

VΦΦ̄A:

ð8Þ

and the Ward identities are VξΦ̄Ajð2;3Þ ¼ VζΦ̄Ajð2;3Þ ¼ 0

where the restriction means that they are evaluated on
shell for legs 2 and 3, p2

2 −m2 ¼ p2
3 ¼ pi · ϵi ¼ ϵ2i ¼ 0.

To find the interactions that satisfy the Ward identities,
we write down Ansätze for the vertex functions. We find
that sufficiently large Ansätze have the following schematic
derivative counting:

VΦΦ̄A ∼mðϵ1Þ2ðϵ2Þ2ϵ3
�
p3

m3
þ p
m

�
;

VBΦ̄A ∼mðϵ1Þðϵ2Þ2ϵ3
�
p2

m2
þ 1

�
;

VφΦ̄A ∼mðϵ2Þ2ϵ3
�
p
m

�
; ð9Þ

which in hindsight is compatible with interactions with
∂
s1þs2−1 derivatives, between massive spin-s1 and spin-s2
fields and a spin-1 massless boson. The terms linear in
momentum typically come from the minimally coupled
theory L0, obtained by covariantizing the free theory
∂μ → Dμ ¼ ∂μ þ iQAμ, and the higher-derivative terms
must come from nonminimal couplings involving the
Abelian field strength Fμν ¼ ∂μAν − ∂νAμ. Thus we con-
strain the Ansätze such that all terms nonlinear in momenta

involve p½μ
3 ϵ

ν�
3 .

Imposing the Ward identities on the vertex functions and
plugging in on-shell variables ϵμi → εμi gives the following
amplitude

AðΦs¼2
1 Φ̄s¼2

2 Aþ
3 Þ¼A0

h12i3
m4

ðc1½12�þð1−c1Þh12iÞ; ð10Þ

where c1 is a free parameter. A unique amplitude is
obtained after imposing a current constraint (tree-level
unitarity constraint [27])

p1 ·
∂

∂ϵ1
VΦΦ̄Ajð2;3Þ ¼ OðmÞ: ð11Þ

This gives c1 ¼ 0 and thus precisely the root-Kerr ampli-
tude (6).
Spin-3 Kerr theory: Let the real, symmetric-tensor,

fields fΦλμν; Hμν; Bμ;φg collectively describe the Kerr
black hole, where Φλμν is the physical spin-3 field and
fHμν; Bμ;φg are Stückelberg auxiliary fields. The linear-
ized gauge transformations are [40–42]

δΦλμν ¼ ∂ðλξμνÞ þ
ffiffiffi
3

p

4
mηðλμξνÞ;

δHμν ¼ ∂ðμξνÞ þ
mffiffiffi
3

p ξμν þ
ffiffiffi
5

p

2
mημνξ;

δBμ ¼ ∂μξþ
ffiffiffi
5

p

2
mξμ;

δφ ¼
ffiffiffi
6

p
mξ; ð12Þ

where ξμν is a traceless symmetric tensor. A unique free
Lagrangian L0 invariant under the gauge transformation
can be constructed, but let us first consider three-point
Ward identities. We write up Ansätze for the off-shell
vertices VΦΦh, VHΦh, VBΦh, VφΦh, where h corresponds to
the graviton field hμν. Similar to our previous analysis, we
find that sufficiently large Ansätze have at most ∂s1þs2−2

derivatives, where s2 ¼ 3 and s1 is the spin of the first field
in each vertex. The terms linear and quadratic in derivatives
are chosen so they are compatible with the covariantization
of the free Lagrangian

ffiffiffiffiffiffi−gp
L0, where ∂μ → ∇μ and

ημν → gμν ¼ ημν þ κhμν, which can be checked through
the massless Ward identities of the graviton. For the
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higher-derivative terms we demand that they are built out of
a linearized Riemann tensor, which on shell becomes

Rμνρσ ∼ FμνFσρ ∼ p½μ
3 ϵ

ν�
3 p

½ρ
3 ϵ

σ�
3 , where the polarization of

the graviton is hμν ¼ ϵμ3ϵ
ν
3.

Writing all the vertices as functions of fϵμi ; pμ
i g, the Ward

identities become three functional constraints,

mffiffiffi
3

p VHΦh−
i
3
p1 ·

∂

∂ϵ1
VΦΦh

����
ð2;3Þ;ϵ2

1
→0

¼ 0;

ffiffiffi
5

p

2
mVBΦh−

i
2
p1 ·

∂

∂ϵ1
VHΦhþ

m

8
ffiffiffi
3

p
�

∂

∂ϵ1

�
2

VΦΦh

����
ð2;3Þ

¼ 0;

ffiffiffi
6

p
mVφΦh− ip1 ·

∂

∂ϵ1
VBΦhþ

ffiffiffi
5

p

4
m

�
∂

∂ϵ1

�
2

VHΦh

����
ð2;3Þ

¼ 0;

ð13Þ

where as before the restriction implies that legs (2,3) are
placed on shell. Additionally, we set ϵ21 → 0 given that ξμν

is traceless.
After imposing the Ward identities on the Ansätze, and

imposing the on-shell conditions, we obtain a unique
amplitude exactly matching Kerr,

MðΦs¼3
1 Φs¼3

2 hþ3 Þ ¼ M0

h12i6
m6

: ð14Þ

In this case, the current constraint (11) is not required for
uniqueness, yet it is consistent with the solution.
Spin-s Kerr and root-Kerr EFTs: For the spin-s mas-

sive theories we follow Zinoviev’s [40] approach of
introducing a tower k ¼ 0; 1; 2;…; s of tensor fields and
gauge parameters,

Φk ≔ Φμ1μ2���μk ; ξk ≔ ξμ1μ2���μk ; ð15Þ

where all fields are symmetric tensors, and the gauge
parameters are traceless Trξk ¼ 0, and the fields are
double-traceless TrΦ̃k ¼ 0, where the trace is denoted by
Φ̃k ≔ TrΦk. In terms of these fields, the linearized gauge
transformation can be compactly written as

δΦk ¼ ∂
ð1ξk−1Þ þmαkξ

k þmβkη
ð2ξk−2Þ; ð16Þ

where the k distinct Lorentz indices of the fields, derivative
∂
1 ≔ ∂

μ1 , and metric η2 ≔ ημ1μ2 are to be symmetrized, as
indicated. The numbers αk and βk are [40]

αk ¼
1

kþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs−kÞðsþkþ1Þ

2

r
; βk ¼

1

2

k
k−1

αk−1; ð17Þ

such that the highest-spin gauge parameter ξs decouples
and thus Φs carries the physical degrees of freedom.

The free theories L0 that are invariant under the gauge
transformation (16) can be decomposed into a Feynman-
gauge part LF and a sum over gauge-fixing functions Gk,

L0 ¼ LF þ
1

2

Xs−1
k¼0

ð−1Þkðkþ 1ÞGkGk: ð18Þ

The Feynman-gauge part is completely diagonal

LF¼−
Xs
k¼0

ð−1Þk
2

�
Φkð□þm2ÞΦk−

kðk−1Þ
4

Φ̃kð□þm2ÞΦ̃k

	
;

ð19Þ

and the Gk’s give rise to off-diagonal contributions

Gk ¼ ∂ ·Φkþ1−
k
2
∂
ð1Φ̃kþ1Þ þmðαkΦk− γkΦ̃kþ2−δkη

ð2Φ̃kÞÞ;
ð20Þ

where γk ¼ 1
2
ðkþ 1Þαkþ1 and δk ¼ 1

4
ðk − 1Þαk.

In order to introduce interactions, we proceed as before
and write down Ansätze for the relevant off-shell vertices

VΦkΦsAh ¼ Vmin
ΦkΦsAh þ Vnonmin:

ΦkΦsAh ; ð21Þ

where the minimal interactions are uniquely determined by
the covariantization of L0, and the nonminimal interactions
are built out of the field strength ðFμνÞh, and here we treat
Kerr (hμν ≔ Ah¼2) and root-Kerr (Aμ ≔ Ah¼1) simultane-
ously using the helicity parameter h ¼ 1, 2. We will
suppress the complex nature of the root-Kerr fields, but
it is understood that they carry U(1) charge Q.
Using the linearized gauge transformation (16) one can

define gauge-transformed off-shell vertices

VξkΦsAh ≔ mαkVΦkΦsAh −
i

kþ 1
p1 ·

∂

∂ϵ1
VΦkþ1ΦsAh

þ mβkþ2

ðkþ 2Þðkþ 1Þ
∂

∂ϵ1
·
∂

∂ϵ1
VΦkþ2ΦsAh : ð22Þ

The constraints that we impose on the interactions can then
be summarized as (MC) Minimal-coupling extension of L0

gives Vmin
ΦkΦsAh ; (WI) Ward identities VξkΦsAh jð2;3Þ;ϵ2

1
→0 ¼ 0;

(CC) Current constraint p1 · ð∂=∂ϵ1ÞVΦsΦsAh jð2;3Þ;ϵ2
1
→0 ¼

OðmÞ. Additionally, considering the lowest-derivative sol-
utions that satisfy the above constraints give refined
Ansätze: (PC) Power-counting bound on derivatives in non-
minimal vertices: Vnonmin

Φs1Φs2Ah ∼ ∂
s1þs2−2hðFμνÞh; (ND) Near-

diagonal interactions: if js1 − s2j > h then VΦs1Φs2Ah ¼ 0.
Considering spin-s root-Kerr theory with conditions

ðMCÞ þ ðPCÞ þ ðWIÞ, we obtain the three-point amplitude
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AðΦs
1Φ̄s

2A
þ
3 Þ¼A0

h12i2s
m2s



1þ

Xs−1
k¼1

ck

� ½12�k
h12ik−1

��
; ð23Þ

where ck are unconstrained parameters from the non-
minimal Ansätze. Imposing (ND) constrains the off-shell
vertex, but not Eq. (23), whereas (CC) generates one
constraint,

P
k ck ¼ 0. However, imposing both ðCCÞ þ

ðNDÞ fixes ck ¼ 0, thus uniquely predicting the ampli-
tude (6).
Considering spin-s Kerr theory with conditions

ðMCÞ þ ðPCÞ þ ðWIÞ, we obtain the three-point amplitude

MðΦs
1Φs

2h
þ
3 Þ¼M0

h12i2s
m2s



1þ

�
1−

½12�
h12i

�
2Xs−4
k¼0

c0k
½12�k
h12ik

�
;

ð24Þ

where c0k are unconstrained parameters from the non-
minimal Ansätze. As in the gauge theory, further imposing
(ND) leaves Eq. (24) unchanged. However, in this case
imposing either (CC) or ðCCÞ þ ðNDÞ generates the unique
solution c0k ¼ 0, thus uniquely predicting the Kerr ampli-
tude (1). The above calculations, Eqs. (23) and (24), were
explicitly carried out through s ≤ 6 in root-Kerr and Kerr
theories, and beyond this the results are conjectural—based
on the robust patterns we observed.
We note that the Ward identities can be extended to

nonlinear gauge invariance for the off-shell three-point
functions, which requires Ansätze for the nonlinear parts of
the variation δL ¼ 0. We have implemented this up to
s ≤ 4, and we find that the ðWIÞ þ ðCCÞ þ ðNDÞ con-
straints (on the free coefficients in the amplitudes) are now
superseded by the stronger requirement of non-linear gauge
invariance. More details will be given in Ref. [50].
From quantum to classical Compton.—Perturbation

theory beyond three points requires that we work out
propagators in some simple gauge. The Feynman-gauge
propagator ΔðsÞ for a spin-s field (physical or auxiliary) is
diagonal and has trivial momentum dependence due to the
simplicity of LF, and it acts as a double-traceless projector.
It is unique and we find that it is given by the generating
function

Δðϵ; ϵ̄Þ¼
X∞
s¼0

ðϵÞs ·ΔðsÞ ·ðϵ̄Þs¼ 1

p2−m2þ i0

1− 1
4
ϵ2ϵ̄2

1þϵ · ϵ̄þ 1
4
ϵ2ϵ̄2

;

ð25Þ

where, as before, ϵμ, ϵ̄μ are auxiliary vectors.
Given the root-Kerr EFTs we described, we can now

compute the opposite-helicity Compton amplitude (up to
contact terms), and we obtain the manifestly local form

AðΦs
1Φs

2A
−
3A

þ
4 Þ¼

h3j1j4�2ðUþVÞ2s
m4st13t14

þh3j1j4�h13i½24�Pð2sÞ

m4st13

þh13ih32i½14�½42�P
ð2s−1Þ

m4s þCs; ð26Þ

where tij¼2pi ·pj and PðkÞ¼1=ð2VÞfðUþVÞk−ðU−VÞkg
is a degree-(k − 1) polynomial in the two local variables
V¼ 1

2
ðh1j4j2�þh2j4j1�Þ, U ¼ 1

2
ðh1j4j2� − h2j4j1�Þ −m½12�.

The amplitude contains undetermined contact terms Cs,
where Cs≤3=2 ¼ 0 agrees with the local Compton ampli-
tudes of Refs. [27,36]. Equation (26) provides a novel
compact spurious-pole free result that is useful for exposing
the remaining contact-term freedom [20,36,39]. For s ¼ 2
we used Ward identities to narrow down the unfixed C2 to
three terms; one is a quantum contribution, and the re-
maining two are

C2¼
h13ih32i½14�½42�

m6

n
c1ðh12iþ½12�Þ2þc2ðh12i− ½12�Þ2

o
;

ð27Þ

where the coefficients ci are to be determined. We checked
that the same spin-2 amplitude (26) and (27) can be
obtained using the approach of a chiral massive higher-
spin Lagrangian [51]; the details will be given in Ref. [50].
As before, we can reexpress the Compton amplitude (26)

in terms of the ring-radius spin operator âμ, giving the
operator-valued amplitude

− eâ·q⊥
� ðp1 · χÞ2
ðp1 · q⊥Þ2

−
ðp1 · χÞðâ · χÞ
ðp1 · q⊥Þ

þ 1

2s
ðâ · χÞ2

�

þ Ĉs þOðâ2Þ þOðℏÞ; ð28Þ

where q⊥ ¼ p4 − p3, χμ ¼ h3jσμj4�, and we use the small-
ℏ scalings χ; p3; p4 ∼ ℏ; and za; z̄a ∼ ℏ−1=2 (with constraint
z̄aza ¼ 1) to distinguish between the displayed expressions
and the terms Oðâ2Þ þOðℏÞ. A proper classical limit
should, however, involve s → ∞ (or coherent-state sum
over all s [28]), in which case the â2 ∼ ℏ2sðsþ 1Þ terms are
important. We note that the third term of Eq. (28) depends
on s and thus exhibits spin nonuniversality starting with the
spin quadrupole (see also Refs. [33,52]). However, the c1-
dependent term in Ĉ2 also contains a spin quadrupole that
contributes in the s → ∞ limit, whereas the c2-dependent
term starts at the hexadecapole level. More details will be
given in Ref. [50].
Conclusions.—In this Letter, we propose that the

interactions of spinning black holes are strongly con-
strained by massive higher-spin gauge symmetry involving
Stückelberg fields. We have shown that the known Kerr and
root-Kerr three-point amplitudes come from higher-spin
EFTs obeying: Ward identities, low-derivative counting,
and a current constraint (used in Ref. [27]). Starting from a

PHYSICAL REVIEW LETTERS 131, 221401 (2023)

221401-5



free spin-s formalism [40], we have derived novel spin-s
Feynman-gauge Lagrangian and propagators, and consid-
ered the minimal and nonminimal interactions. While the
nonminimal interactions are strongly constrained by the
massive gauge symmetry, more work is needed for
obtaining presentable forms. We used the introduced
framework to study opposite-helicity Compton amplitudes
in the root-Kerr theory, giving a new spin-s formula.
Undetermined contact terms start at s ¼ 2, and we partially
constrain them using Ward identities. Initial checks of
nonlinear gauge invariance and higher-order interactions
suggest that gauge invariance and QFT methods are well
suited for describing more general dynamics of Kerr black
holes, which may include absorption and decay effects.
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