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1 Introduction and results summary

String theory or supergravity solutions on a maximally symmetric spacetime, with cosmological
constant Λ, times compact extra dimensions, may or may not exhibit scale separation. This
property, important for phenomenology, has recently received a revived interest. A scale-
separated solution admits a large hierarchy between Λ and the typical mass scale mKK of
Kaluza-Klein states coming from the extra dimensions: m2

KK/|Λ| ≫ 1. This hierarchy allows
to have an effective description of physics at low energy in the maximally symmetric spacetime
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only, as in our universe. Scale-separated solutions are however rare, especially when requiring
in addition a parametric control (i.e. an arbitrarily good control on the scale separation
in terms of a parameter): until recently, the only such example was the so-called DGKT
solution [1] (see also [2–4]). This is a solution of 10d massive type IIA supergravity on a
4-dimensional (4d) anti-de Sitter spacetime, times a torus orbifold T 6/Z2

3, together with a
(smeared) orientifold O6-plane. In this solution, the parameter of interest, denoted n, is
related to an F4 flux integer, and it is unbounded as F4 does not enter a tadpole condition.
Interestingly, this parameter n that controls scale separation also governs the classicality or
supergravity approximation of the solution, namely, the string coupling becomes small and
the toroidal volume becomes large in the limit of large n. In this limit, one gets both a (very)
scale-separated solution and a classical string theory background. Last but not least, this
anti-de Sitter solution is perturbatively stable, and can be a vacuum for the 4d scalar fields.
Scale separation, classicality and perturbative stability are rare properties; see e.g. [5] for the
situation of Minkowski and de Sitter supergravity solutions. Scale separation in particular is
so uncommon that it has been conjectured not to exist, within the swampland program [6, 7].
This has led to many discussions [5, 8–19] (see also [20–24] for early works). Constructions of
similar examples in 4d [25–31] and 3d [32–34] have then been performed. These examples are
usually related to the original DGKT, e.g. by T-duality or by considering slight generalizations
such as anisotropy. One observation has been that the conformal dimensions in a would-be
holographically dual CFT take integer values [35–40]. This is also rare enough to be noticed,
and it raised the question whether the peculiarity of scale separation could be related to
this CFT property. It seems not to be the case, as some generalisations of DGKT solutions
were found not to provide integer conformal dimensions, in 4d [41] and in 3d [37], but it
remains an important property of the original DGKT. We will come back to it in this paper,
since we will be interested in its mass spectrum.

One criticism against the DGKT solution is that the O6 source is smeared. On the
covering torus T 6, the corresponding 9 intersecting sources are not localized or backreacted;
only the integrals of their contributions appear in the 10d equations. This is a general issue
of supergravity solutions, whenever facing intersecting sources; it goes beyond this 4d anti-de
Sitter setting. In contrast, a localized solution on Minkowski times a torus for parallel sources
was given in [42]. For the DGKT solution, an approximate localized solution has however
been recently obtained in [43, 44]. To reach this result, the idea there has been to use the
parameter n to construct an extension beyond the original DGKT solution, that would
capture (part of) the source backreaction. It takes the form of a perturbative expansion in
large n, where 0th order fields correspond to the DGKT (smeared) solution, and 1st order
ones are a correction to the former that provides the backreaction; the 1st order coming
as a 1/n power. In this paper, we are going to consider two extensions of DGKT in the
form of such a n-expansion. We will perform the expansion both at a 10d level, to get a
corrected solution to the 10d equations, but also at the 4d level, to get corrections to the
4d theory, critical point, and mass spectrum.

Of particular interest to us are the corrections to the mass spectrum that one can obtain
via such extensions of DGKT. As emphasized, the DGKT solution possesses rare properties,
and whether we can construct more general solutions (here extensions) that share some of
these properties is a first question that motivates our work. We mentioned in particular the
property of the integer conformal dimensions. A natural guess would be that corrections to
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the DGKT solution would modify the mass spectrum, thus altering this latter property (see
e.g. [45] along these lines, in a dual framework). After considering two extensions of DGKT,
including one generalisation of the backreacted solution of [43], we will however conclude
that the mass spectrum is very robust, and the integer property is maintained. Another
motivation for considering the mass spectrum is the recent observation of a mass bound [18]:
almost all supersymmetric and many non-supersymmetric anti-de Sitter solutions (in 4d or
higher), with radius l, admit a scalar whose mass m obeys the bound m2l2 ≤ −2. In DGKT,
depending how some flux signs are chosen (related to supersymmetry), either this claim is
verified, saturating this −2 bound with some axions, or all scalar masses verify m2 > 0; we
detail the mass spectrum in section 2.2.2. The latter case is one of the few known counter
examples to the previous observation. Therefore, we would like to know whether extensions
of DGKT would alter the mass spectrum, with respect to the −2 bound in the former case,
and with respect to positive or negative m2 in the latter case. We will conclude once again
on the robustness of the spectrum within the two extensions considered, preventing us to
observe any evolution with respect to this mass bound.

In section 2, we start by rederiving the 10d smeared DGKT solution, and then reproduce
it as the critical point of a scalar potential within a corresponding 4d theory. We then
compute the mass spectrum. The completeness of the derivation and consistency of the
conventions is useful for later sections. To consider extensions beyond this DGKT solution,
including a backreacted version, one needs a more general compactification setting with warp
factor, dilaton and localized source contributions. We detail such a general warped setting,
with 10d conventions and equations in appendix A.1. Building on the localized results of [43],
we verify explicitly in appendix A.2 how a smearing procedure can reproduce the smeared
source contributions of the 10d solution of section 2. In appendix B.2, we derive a general
4d theory corresponding to such a warped compactification, namely its kinetic terms and
scalar potential. This derivation does not make use of N = 1 supergravity formalism, but
is performed as a direct dimensional reduction, building on [46]; it would be interesting
to compare this derived warped 4d effective theory to the results of [47–54]. We believe
that this theory could find more applications beyond this paper. Having available both a
10d and 4d description of a warped compactification, we can consider n-expansions of the
fields, including of the warp factor.

In section 3, we generalise the n-expansion of [43], for which an approximate backreacted
solution was obtained. We are especially interested in the fluxes H, F4, F6 at 1st order, for
which we allow for general scalings with n. In section 4, we consider another n-expansion,
where on top of the freedom for H, F4, F6, the setting differs in the 1st order scaling of
the metric, the dilaton, and a certain compactification ansatz. The motivation for giving
more freedom in H, F4, F6 is the following. The 4d theory at leading order (LO) in the
n-expansion, corresponding to the DGKT 4d theory, scales with n as n−9/2. When looking
for next-to-leading order (NLO) corrections, one finds most contributions at n−11/2, and
a few corrected axionic terms (not considered in [43]) at n−10/2 or lower. It is however
argued in [43] that bulk α′-corrections could appear at the level n−10/2, while tube α′- and
gs-corrections (referring to the corrections in the region close to the sources) could appear
almost at the same level, namely at n−21/4. This implies that computing corrections to the
mass spectrum due to the backreaction or localization is meaningless, since those would mix
with α′-corrections. In turn, it is hard to conclude on the impact of α′-corrections on the

– 3 –



J
H
E
P
0
1
(
2
0
2
4
)
0
0
8
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2

n− 21
4
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2

LO (DGKT) potential

F
(1)
4 NLO terms

Bulk α′-corrections
NLO axionic terms

Tube α′- and gs-corrections

Most NLO corrections

Figure 1. Scaling with the parameter n of the various terms in the scalar potential of the 4d theory.
The leading order (LO) terms scale at n−9/2 and correspond to the 4d DGKT scalar potential. The
corrections in powers of 1/n, due to the perturbative n-expansions considered in this paper, are broadly
referred to as next-to-leading order (NLO) terms. They appear at various subdominant scaling levels.
They compete with α′- and gs-corrections, whose scaling given here follows [43]. We refer to the main
text for more details.

mass spectrum, as one could be tempted from [45], since those may mix with backreaction
contributions. Our strategy is then to consider more general extensions including H, F4, F6
1st order contributions. To our surprise, those turn out to be very constrained, by flux
quantization (setting H(1) = 0) and then equations of motion (setting F

(1)
6 = 0). Nevertheless,

the 1st order correction F
(1)
4 can still contribute and by adjusting its scaling, it would generate

a scalar potential scaling as n9/2−g with 0 < g < 1/2, therefore higher than the problematic
level n−10/2. We summarize this situation in figure 1.

In our two extensions, things however conspire such that the NLO potential due to F
(1)
4

does not really alter the mass spectrum! For the first n-expansion considered in section 3, F
(1)
4

is forced to vanish at the critical point, as no field can balance this correction. We show this
both with 10d equations and the 4d theory. The spectrum therefore remains the same until its
hits α′-corrections. In section 3.2.3, we still discuss possible refinements of this claim, by re-
analysing possible bulk α′-corrections and arguing that they could actually appear at a much
lower level; this situation deserves more investigation. For the second n-expansion considered
in section 4, F

(1)
4 provides an actual corrected solution at 1st order, thanks to the metric and

dilaton corrections appearing at the same scaling. This solution is obtained both by solving
10d equations and 4d NLO ones. As is however realised in 4d, this correction can eventually
be interpreted (and repackaged) as a redefinition of the parameter n → n′ = n + e(1) n1−g,
with a constant e(1). This parameter can still obey the F4 quantization condition, so this n1−g
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correction is admissible. Viewed as a redefinition of the parameter, we understand why, as
we eventually find out, the mass spectrum is only altered via a correction of the cosmological
constant. As a consequence, m2l2 or the conformal dimensions are left unchanged by this
correction. This shows again the robustness of the spectrum against extensions.

Without a better understanding of the α′- and gs-corrections, or considering different
extensions of DGKT, we conclude that this solution seems to remain robust and very specific,
in its properties and mass spectrum. One aspect we left aside are the blow-up modes, that
could be worth investigating. Indeed, some of the peculiarities of DGKT are due to its orbifold,
but the latter comes at the price of having blow-up modes. Surprisingly still, those are Kähler
moduli and admit m2 > 0. It would be interesting to see if any of the extensions or corrections
mentioned above could affect this spectrum. To that end, one would first need to establish on
firm grounds the scalar potential for those modes, with a clear 10d origin, and then see how it
gets affected by corrections in n, e.g. to the metric; this goes beyond the scope of this work.

2 DGKT

In this section, we review the DGKT anti-de Sitter solution on a torus orbifold [1], first in
10d type IIA massive supergravity and then as the critical point of a scalar potential in a
4d theory. We finally derive the 4d mass spectrum. This provides us with a starting point
for the extensions considered in the next sections.

2.1 10d DGKT solution

We describe here the DGKT solution in 10d type IIA massive supergravity. Conventions
are detailed in appendix A.1. The solution requires a certain amount of notations that
we try to keep minimal.

2.1.1 Compactification ansatz

The solution of 10d type IIA massive supergravity presented in [1] has a 10d spacetime
split as 4d anti-de Sitter times a 6d compact space being a torus orbifold, together with
a space-filling orientifold O6-plane. Let us start with the torus T 6 = T 2 × T 2 × T 2 and
introduce for i = 1, 2, 3 the coordinates zi = y2i−1 + i y2i, i.e. z1 = y1 + i y2 etc. Each T 2 is
made compact with the following discrete identifications

zi ∼ zi + 1 ∼ zi + ei π
3 . (2.1)

From there, we consider the orbifold T 6/Z2
3, and we refer to [1] for the two Z3 actions and

details on the resulting space. Finally, one has the orientifold reflection: zi → −zi. On the
covering torus T 6, the O6-plane can be viewed as 9 localized sources, as detailed e.g. in [43].

The orbifold and orientifold project out many field components of type IIA supergravity,
and the solution ansatz has to respect these projections. To start with, the 6d metric is given by

ds2 = gmndymdyn = 2(κ
√

3)1/3
3∑

i=1
vi ((dy2i−1)2 + (dy2i)2) . (2.2)
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The overall normalisation is for later convenience; we take κ to carry the physical dimension
of a length6, while yi and vi are dimensionless. The freedom in the metric ansatz is carried
by the vi, which will be fixed in the 10d solution, and appear as scalar fluctuations in 4d.

On this 6d space, only few forms can be defined, as they need to be invariant under the two
Z3; they will also appear in the flux ansatz. The even and odd forms are respectively given by

wi = (κ
√

3)1/3 i dzi ∧ dzi , w̃i = 1
κ

wj ∧ wk with {i, j, k} = {1, 2, 3} , (2.3)

vol6 = v1v2v3 w1 ∧ w2 ∧ w3 =
√

|g6| dy1 ∧ . . . ∧ dy6 , (2.4)

Ω = 3
1
4 i dz1 ∧ dz2 ∧ dz3 = 1√

2
(α0 + i β0) , (2.5)

where the normalisations are chosen for future convenience. It will be useful to have the
explicit expressions for some of these forms, namely

α0 =
√

23
1
4
(
dy2∧dy4∧dy6−dy2∧dy3∧dy5−dy1∧dy3∧dy6−dy1∧dy4∧dy5

)
(2.6)

β0 =
√

23
1
4
(
dy1∧dy3∧dy5−dy1∧dy4∧dy6−dy2∧dy3∧dy6−dy2∧dy4∧dy5

)
(2.7)

w̃1 = 4(3κ−1)
1
3 dy3∧dy4∧dy5∧dy6 , w̃2 = 4(3κ−1)

1
3 dy1∧dy2∧dy5∧dy6 , (2.8)

w̃3 = 4(3κ−1)
1
3 dy1∧dy2∧dy3∧dy4 .

The real forms α0 and β0 are even, respectively odd, under the orientifold reflection.
Let us finally give few integrals of these forms. Given the coordinate identifications,

each T 2 corresponds to a parallelogram, whose area is the same as the rectangle defined by
y2i−1 ∼ y2i−1 + 1 and y2i ∼ y2i +

√
3

2 . One therefore gets the following integral∫
T 2

i dzi ∧ dzi =
∫

T 2
2dy2i−1 ∧ dy2i = 2

√
3

2 =
√

3 . (2.9)

Modding out the T 6 by the two Z3 divides the 6d volume by 9. This leads to the following
6d integrals ∫

T 6/Z2
3

w1 ∧ w2 ∧ w3 = κ ,

∫
T 6/Z2

3

wi ∧ w̃j = δij , (2.10)∫
T 6/Z2

3

vol6 = κ v1v2v3 ≡ vol , (2.11)∫
T 6/Z2

3

iΩ ∧ Ω =
∫

T 6/Z2
3

α0 ∧ β0 = 1 , (2.12)

where (2.11) defines the scalar quantity vol.
We can now present the ansatz for the 6d background fluxes, allowed by the projections.

We start with the following ones

F4 =
√

2 eiw̃
i , H = −pβ0 , F0 = −

√
2 m0 , (2.13)

where the normalisations and signs are due to our conventions, detailed in appendix A.1. The
quantities m0, p, ei, referred to as flux numbers in the following, will be related to integers
thanks to flux quantization; we can already specify their physical dimension

m0 ∼ length−1 , p ∼ length2 , ei ∼ length5 . (2.14)
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We take in addition for this solution

F2 = 0 , (2.15)

as is standard for a smeared solution on a toroidal manifold. F6 can be left free in the ansatz,
but the equations of motion will set F6 = 0.

Axions do not enter the 10d solution, but as fluctuations, they are still constrained by
the geometry and the allowed forms. They are parameterized as follows

B2 =
3∑

i=1
bi wi , C3 =

√
2 ξ α0 , (2.16)

where bi, ξ will appear as 4d scalars, and one has C1 = 0.
Finally, the dilaton ϕ will be fixed to a constant value in the 10d solution, and will be

considered as a scalar fluctuation in the 4d theory. We could also give more detail on the
O6-plane whose contribution appears in the 10d equations; the fact it will taken smeared
requires however a longer discussion that we leave to the next subsection. Having specified
the 10d geometry and the compactification ansatz of the fields, we now show how the 10d
equations are solved, fixing the free parameters and expressing the whole solution in terms
of the flux numbers only.

2.1.2 Solution

We show here how the previous ansatz leads to a solution of 10d equations. As we will see, the
solution is said to be smeared: the first consequence is that the dilaton ϕ is constant and there
is no warp factor, i.e. the spacetime is a direct product of a 4d anti-de Sitter spacetime and the
6d manifold. With respect to the more general ansatz of appendix A.1, this sets eA = 1. This,
together with the ansatz previously presented, simplify the 10d equations of appendix A.1.

We start with the flux equations of motion (A.7)–(A.10). All exterior derivatives on
internal forms vanish. Provided that either H or F4 is non-vanishing, as desired here, we
deduce the requirement

F6 = 0 . (2.17)

All those equations are then satisfied. Among the others, (A.6) and (A.15)–(A.17), the
non-trivial equations boil down to

F2 Bianchi identity: − HF0 = T10
7 vol⊥ (2.18)

dilaton e.o.m.: 2RS
4 + eϕ T10

7 − |H|2 = 0 (2.19)

4d Einstein equation: 4RS
4 = eϕ T10

7 − 2|H|2 + e2ϕ(|F0|2 − 3|F4|2) (2.20)

6d Einstein: 0 = e2ϕ 1
3!F4 mpqrF pqr

4 n + 1
2HmpqH pq

n (2.21)

+ eϕTmn + gmn

8
(
−eϕT10 − 2|H|2 + e2ϕ(|F0|2 − 3|F4|2)

)
,

with m = 1, . . . , 6 and indices are lifted with the 6d metric gmn. RS
4 denotes the Ricci scalar

associated to the 4d metric gS
µν in (A.1), and we refer to appendix A.1 for further notations.

The source contributions Tmn will be defined below.
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Before solving these equations, we need to clarify the situation of the sources, namely
the O6-plane. The contributions T I

10 and alike are defined in appendix A.1 with localized and
backreacted sources. The DGKT solution is however smeared, meaning that the δ-functions
appearing in those quantities are replaced by 1; similarly, the warp factor that plays the
role of the Green’s function for these δ-functions (see e.g. [42]) is set to a constant so that
its derivatives vanish. Overall, smearing amounts to consider the integral of equations of
motion, instead of their localized version. If one would know the localized solution, this
smearing procedure could in principle be performed to get the corresponding constant value
for T I

10, and other smeared quantities. This is done to some extent in [43] starting with the 9
localized sources on the torus covering. We revisit this smearing procedure in appendix A.2
to match the smeared DGKT solution. In this subsection, we take a different path: we rather
consider the torus orbifold, on which there is only one O6. This corresponds to having only
one source set I = 1, so we drop the label I in above equations. We do not know the localized
solution for it, but we follow [1] considering that there exists a smeared version, described
by a constant quantity T10. Instead of fixing T10 by its localized definition together with a
smearing procedure, it gets fixed here by solving the various equations.

A related matter is to determine the volume forms vol|| and vol⊥. The O6 is said in [1] to
wrap the cycle along α0. We thus take vol|| to be proportional to α0, and vol⊥ proportional to
β0, obeying the standard constraint vol|| ∧vol⊥ = vol6. It is not straightforward to understand
what are here the corresponding 3 dimensions wrapped, since both α0 and β0 are a sum of four
3-forms along different directions. In both cases however, the directions in each 3-form share
the same metric volume

√
8
√

3 κ v1v2v3. The two volume forms should then be proportional to
this factor, and what remains to be determined is an overall numerical factor. The constraint
vol|| ∧ vol⊥ = vol6 leaves one possible relative factor between the two forms. The Bianchi
identity involves T10

7 vol⊥, so this normalisation ambiguity is also present in T10
7 (since the

other side, −HF0, is fixed). The quantity T10
7 also appears alone in further independent

equations, so this ambiguity is eventually fixed. With this knowledge, we finally pick

vol⊥ = 1
2

√
κ v1v2v3 β0 , vol|| = 2√

κ v1v2v3 α0 . (2.22)

The Bianchi identity is then solved by

T10
7 = − pm02

√
2

√
κ v1v2v3

. (2.23)

Having only an O6-plane, we must have T10 > 0, so pm0 < 0.
Finally, we will also use an alternative, or effective, description of the above smeared source.

One may effectively consider each of the four 3-forms in α0 as a subspace wrapped by an O6,
carrying 1/4 of the total charge. Doing so, we then consider four sets of sources, I = 1, . . . , 4,
along these 4 subspaces. We introduce the corresponding volume forms vol||I , vol⊥I

, with

vol|| = ∑
Ivol||I , vol⊥ = 1

4
∑

Ivol⊥I
, vol||I ∧ vol⊥I

= vol6 , (2.24)

– 8 –
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together with the (smeared) charge contributions for each set T 1
10 = T 2

10 = T 3
10 = T 4

10 = 1
4T10,

and T10 = ∑
IT I

10. The Bianchi identity (2.18) can be rewritten as

−HF0 =
4∑

I=1

T I
10
7 vol⊥I

. (2.25)

This alternative, effective description is useful to solve the Einstein equation, where Tmn

defined as follows [55] appears

Tmn =
∑

I

δ
m||I
m δ

n||I
n gm||I n||I

T I
10
7 . (2.26)

Here, m||I refers to the directions along the O6 in set I; those are precisely easier to identify
when considering the four sets, rather than in the full α0. We get that 2 sets I contribute
to each direction m, giving thus half a charge of T10

Tmn = gmn
1
2

T10
7 . (2.27)

A cross-check of this result is that gmnTmn = 3
7T10 as it should. Having explicitly determined

the source contributions, we are ready to solve the remaining equations.
The solution, as given in [1], is essentially captured by the background values for the

4d fluctuations in terms of the flux numbers: those are

vi = v

|ei|
= 1

|ei|

√
5
3

∣∣∣∣e1e2e3
κm0

∣∣∣∣ , eϕ = 3
4 |p|

( 5
12

κ

|m0e1e2e3|

)1/4
, bi = ξ = 0 .

(2.28)
The above gives the useful relation

eϕ = 5
4
√

2
|p|

√
κ v1v2v3|m0|

. (2.29)

Let us now verify that this is indeed a solution of the above equations. The dilaton and the
Einstein equations require the flux squares: those are given in general by

|H|2 = p2

κ v1v2v3
, |F4|2 =

∑3
i=1 e2

i v2
i

(κ v1v2v3)2 . (2.30)

Using the background values (2.28) and (2.29), we obtain the convenient expressions

eϕ T10
7 = 5

2
p2

κ v1v2v3
, e2ϕ|F4|2 = 27

16
p2

κ v1v2v3
, e2ϕ|F0|2 = 25

16
p2

κ v1v2v3
. (2.31)

The dilaton e.o.m. (2.19) then fixes the 4d Ricci scalar as follows

RS
4 = −3

4
p2

κ v1v2v3
, (2.32)

its sign allowing us to verify that this is an anti-de Sitter solution. The 4d Einstein equa-
tion (2.20) offers the first non-trivial check of the above quantities, and is satisfied. The
other non-trivial check is to satisfy the 6d (trace-reversed) Einstein equations (2.21). To
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verify this, we first compute each of the quantities appearing: those are proportional to
vk for m, n = 2k − 1, 2k − 1 and 2k, 2k

e2ϕ

3! F4 mpqrF pqr
4 n = 9

4
(κ

√
3)

1
3 p2

κv1v2v3
vk ,

1
2HmpqH pq

n = (κ
√

3)
1
3 p2

κv1v2v3
vk , eϕTmn = 5

2
(κ

√
3)

1
3 p2

κv1v2v3
vk

gmn

8
(

−eϕT10−2|H|2+e2ϕ(|F0|2−3|F4|2)
)

= −23
4

(κ
√

3)
1
3 p2

κv1v2v3
vk , (2.33)

where we used (2.27) for Tmn. With the above quantities, it is straightforward to verify that
the 6d Einstein equations are satisfied. We have then verified that the DGKT solution indeed
solves the smeared 10d equations of type IIA supergravity.

For completeness, one may consider the source quantization for one O6, following the
definitions (A.2)–(A.4) together with the flux quantization (see e.g. [56]) to reach the fol-
lowing equalities∫

T10
7 vol⊥ = 2 × 2π

√
α′

∫
H = (2π

√
α′)2 h3 , F0 = (2π

√
α′)−1 f0 , (2.34)

with the flux integers f0, h3 ∈ Z. Applied to the Bianchi identity, the above integrals give
a tadpole condition

f0h3 = −2 . (2.35)

This condition is not needed to solve the 10d equations, nor in the 4d analysis; we will
still come back to it when considering extensions of the DGKT solution. Expressing the
tadpole condition in terms of p, m0, or T10, would be interesting but this requires to know∫

β0. That question is related to the smearing procedure mentioned previously, as it considers
the integral over the localized definition of T10, with the quantized nature of the source. We
thus discuss these subtleties in appendix A.2.

In the following, we show that this 10d solution can be obtained as a critical point of
a scalar potential in a 4d effective theory.

2.2 4d description

We now provide a 4d effective theory for the 10d compactification setting described above.
This 4d theory is of the form

S =
∫

d4x
√

|g4|
(

M2
p

2 R4 − 1
2 g̃ij∂µφi∂µφj − V

)
, (2.36)

where g̃ij denotes the field space metric, and Mp the Planck mass. We show that the
previous 10d solution can be obtained as a critical point of the scalar potential V . Having
determined the kinetic terms, we then compute the mass spectrum at this anti-de Sitter
solution. Most of these results follow [1], with few extensions. This presentation will be
useful for the next sections.

To derive the 4d theory, in particular the scalar potential with background fluxes, we
follow [46], whose conventions are compatible with the above 10d ones and with the toroidal
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compactification setting. The 4d theory comes from a direct dimensional reduction of 10d
supergravity; this approach is useful in view of the solution extensions considered in the next
sections. For the DGKT setting alone, an alternative could be to use 4d N = 1 supergravity,
where the 4d real fields, the saxions {vi, ϕ} and the axions {bi, ξ}, pair up into 3 complex
Kähler moduli and the axio-dilaton. The interest of this compactification is indeed the absence
of complex structure moduli. The orbifold however comes at the price of having 9 extra Kähler
moduli corresponding to the blow-up modes (or twisted sector); we ignore those in this work.

2.2.1 4d scalar potential and critical point

We start with the general potential derived in [46]. Considering only the fields in the ansatz
detailed in section 2.1.1, this potential first boils down to

1
(2π

√
α′)6

2
M2

p

V = e2ϕ

vol

(1
2 |H|2 − eϕ T10

7 + e2ϕ

2

[
F 2

0 +
∣∣F0B2

∣∣2 +
∣∣∣∣F4 + 1

2F0 B2 ∧ B2

∣∣∣∣2
+
∣∣∣∣C3 ∧ H + F4 ∧ B2 + 1

6F0 B2 ∧ B2 ∧ B2

∣∣∣∣2 ])
(2.37)

where fluxes are given by their background values, and gauge potentials B2 and Cq are the
4d axions. T10 has here the off-shell expression of [46],1 but it can equivalently be given by
the tadpole cancellation condition or Bianchi identity that should hold in any case, so we
can use here the expression (2.23). The expression (2.37) of the potential is the same as
in [46], except that we gave it in terms of the dimensionful volume “vol” defined in (2.11).
In that case, the Planck mass does not depend on the background volume or dilaton (those
are fully included in the fields), and is thus simply given here by Mp = (πα′)−1/2, with
α′ = l2s . Our V has mass dimension 4; comparing to [1, (3.20)] where the potential has
mass dimension −4, we get the following relation

2
(2π)7α′4 VDGKT = Vhere . (2.38)

We further compute the potential in terms of the 4d fields with the compactification ansatz
of section 2.1.1 and obtain

2/M2
p

(2π
√

α′)6
V = p2

2
e2ϕ

vol2
−2

√
2|pm0| e3ϕ

vol 3
2

+m2
0
e4ϕ

vol + e4ϕ

vol3
∑

e2
i v2

i (2.39)

+e4ϕ
(

m2
0

vol
∑ b2

i

v2
i

− 2κm0b1b2b3

vol3
∑ eiv

2
i

bi
+ 1

vol3
(
−ξp+∑eibi

)2)+O(b4
i , ξb3

i )

where the sums are on i = 1, 2, 3. This reproduces the potential in [1], as can be verified
with (2.38), and up to 2π

√
α′ overall factors that were missed in [1, (3.21)], as can be seen

using e.g. (2.14).
Introducing V1,2 for the first and second line of the potential (2.39) (neglecting higher

dependence in the axions than quadratic), we rewrite V = V1 + V2 using the following
1The expression for T10 in [46] allows for a B-field dependence, coming from the DBI action. Here however,

there is no B2 component on the world-volume of hypothetical D6 parallel to the O6, as can be seen in (2.16),
so we do not need to include this dependence.

– 11 –



J
H
E
P
0
1
(
2
0
2
4
)
0
0
8

simplifying variables:

r2
i =

√
|m0|
E

|ei|vi , g = eϕ

√
vol

1
|p|

√
E

|m0|
, E = |e1e2e3|

κ
, b̃i = |ei|bi , ξ̃ = |p|ξ ,

(2.40)
where one verifies that ri, g are dimensionless. We rewrite the potential as follows

2/M2
p

(2π
√

α′)6
V =

2/M2
p

(2π
√

α′)6

(
V1 + V2

)
= p4|m0|

5
2

E
3
2

(
Ṽ1 + Ṽ2

)
, (2.41)

with

Ṽ1 = 1
2

g2∏
r2

i

− 2
√

2 g3 + g4∑ r4
i∏

r2
i

+ g4∏ r2
i , (2.42)

Ṽ2 = |m0|
E

g4∏
r2

i

(∏
r4

i

∑ b̃2
i

r4
i

− 2∏ r2
i

∑
sir

2
i

b̃j

r2
j

b̃k

r2
k

+ (ξ̃ + ∑
sib̃i)2

)
, (2.43)

where si = sign(m0ei), while products and sums are on i = 1, 2, 3, and the sum in the second
axionic term contains 3 terms, each including the 3 indices. We used that pm0 < 0. This
expression of the potential shows that the dependence on flux numbers is only an overall
factor; changing those will therefore not affect the critical point, nor the mass spectrum
(except for the signs si), up to an overall rescaling. This is a very specific property of DGKT.

Having determined the scalar potential, we now find its critical point. Since it is (at
least) quadratic in the axions bi, ξ, we consider the critical point solution given by

bi = ξ = 0 . (2.44)

The first derivative of the potential with respect to the saxions, evaluated at the critical
point, thus only involves V1 to which we restrict. We disagree with [1, (3.26)] and we thus
generalize the procedure of [1] by keeping three different variables vi or ri to determine the
critical point; this will however lead to the same final critical point. We compute

g∂gṼ1 + 2∑ ri∂ri Ṽ1 = 4g4∏ r2
i

(
4 − 3√

2
(g∏ r2

i )−1 − 5
4(g∏ r2

i )−2
)

⇒ g
∏

r2
i

∣∣
0 = 5

4
√

2
,

(2.45)

where the last value is obtained at the critical point, setting the above line to 0. Using then
∂gV = 0, one gets the relation at the critical point

1
3
∑

r4
i

∣∣
0 = 9

25
∏

r4
i

∣∣
0 . (2.46)

Using finally ∂riV = 0, one concludes on the values

r2
1 = r2

2 = r2
3
∣∣
0 ≡ r2 ⇒ (2.46) : r4 = 5

3 , (2.45) : g
∣∣
0 =

√
27
160 , (2.47)

at the critical point, as in [1]. From those, with (2.40) and (2.44), one recovers the background
values given in 10d in (2.28).
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These field values allow us to evaluate the potential at the critical point

2/M2
p

(2π
√

α′)6
V |0 = −p4|m0|

5
2

E
3
2

(3
5

) 5
2 27

28 , (2.48)

verifying that we have an anti-de Sitter solution. We can relate the latter to the 4d Ricci
scalar in 4d Einstein frame

R4 = 4 V |0
M2

p

= −(2π
√

α′)6 p4|m0|
5
2

E
3
2

(3
5

) 5
2 27

27 . (2.49)

Following conventions of [46], the 4d metric in 10d string frame, respectively its Ricci scalar,
are related to the 4d metric in 4d Einstein frame, respectively the above Ricci scalar (on
the solution), by

gS
µν = (2π

√
α′)6 e2ϕ

vol gµν , R4 = (2π
√

α′)6 e2ϕ

vol RS
4 . (2.50)

We then compute RS
4 , and verify that it matches the one obtained in the 10d solution (2.32).

2.2.2 4d kinetic terms and masses

We now provide the kinetic terms in the 4d theory (2.36); this will allow us to compute the
mass spectrum at the above critical point. The kinetic terms for the saxions are computed
directly from 10d supergravity, using known results, in appendix B.1. They are given by

Skinsax = −1
2

∫
d4x

√
|g4| 2M2

p

(
(∂ln g)2 + (∂ln r1)2 + (∂ln r2)2 + (∂ln r3)2

)
. (2.51)

From this expression, we can easily read the canonically normalized fields ĝ, r̂i. The kinetic
terms for the axions are simpler to obtain and are generically given in [46, (2.23)]. We deduce
here the following kinetic terms, that we rewrite in terms of the different field variables,
in particular (2.40)

Skinax = −
M2

p

4

∫
d4x

√
|g4|

(
|∂B2|2 + e2ϕ|∂C3|2

)
= −

M2
p

4

∫
d4x

√
|g4|

(∑ 1
v2

i

(∂bi)2 + 2e2ϕ

vol (∂ξ)2
)

= −1
2

∫
d4x

√
|g4|

M2
p

2
|m0|
E

(∑ 1
r4

i

(∂b̃i)2 + 2g2(∂ξ̃)2
)

. (2.52)

Since g, ri are 4d fields, we refrain from going to a canonical basis for the axions. We now
have all ingredients to compute the mass spectrum.

In our conventions, the masses squared are the eigenvalues of the mass matrix M i
j =

g̃ik∇k∂jV . At the critical point and in the canonical basis, they boil down to those of
M̂ i

j = δik∂k∂jV . The field space metric is block diagonal in the axions and the saxions.
The Hessian of the potential at the critical point is also block diagonal in the axions and
the saxions. So we can treat both independently.
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We start by the saxions, only having to consider for them the contribution of Ṽ1. We
get the following evaluation at the critical point

g2∂2
g Ṽ1|0 =

(3
5

) 5
2 11×9

26 , r2
i ∂2

ri
Ṽ1|0 =

(3
5

) 5
2 9×17

26

gri∂g∂ri Ṽ1|0 =
(3

5

) 5
2 9

24 , rjri∂rj ∂ri Ṽ1|0 =
(3

5

) 5
2 9

8 .

(2.53)

We deduce the mass matrix in the canonical basis {ĝ, r̂i}

M̂ = (2π
√

α′)6

2/M2
p

p4|m0|
5
2

E
3
2

δik∂k∂j Ṽ1|0

= (2π
√

α′)6

26
p4|m0|

5
2

E
3
2

(3
5

) 5
2

9


11
4 1 1 1
1 17

4 2 2
1 2 17

4 2
1 2 2 17

4

 , (2.54)

giving the masses squared

m2
sax = (2π

√
α′)6

28
p4|m0|

5
2

E
3
2

(3
5

) 5
2

9
(
35, 9, 9, 9

)
= |V |0|

M2
p

(70
3 , 6, 6, 6

)
. (2.55)

Using the following relation between the masses squared in the 4d anti-de Sitter bulk and the
conformal weights ∆ of the single trace operators in a would-be dual 3d CFT

∆ = 1
2

3 ±

√
9 + 12m2 M2

p

|V |0|

 , (2.56)

rewritten for convenience, we obtain here the conformal weights

∆sax =
(
10, 6, 6, 6

)
. (2.57)

We turn to the axions, for which the only contribution comes from Ṽ2. We first compute
the Hessian at the critical point: we get

E

|m0|
r6

2g4 ∂2
ξ̃
Ṽ2|0 = 1 ,

E

|m0|
r6

2g4 ∂2
b̃i

Ṽ2|0 = 34
9 ,

E

|m0|
r6

2g4 ∂ξ̃∂b̃i
Ṽ2|0 = si ,

E

|m0|
r6

2g4 ∂b̃i
∂b̃j

Ṽ2|0 = −5
3sk+sisj .

(2.58)

We deduce the mass matrix (in non-canonical basis {ξ̃, b̃i}) at the critical point

g̃ij∂j∂kV |0 = (2π
√

α′)6 p4|m0|
5
2

E
3
2

2g4

r2


1

2g2r4
s1

2g2r4
s2

2g2r4
s3

2g2r4

s1
34
9 (−5

3s3 + s1s2) (−5
3s2 + s1s3)

s2 (−5
3s3 + s1s2) 34

9 (−5
3s1 + s2s3)

s3 (−5
3s2 + s1s3) (−5

3s1 + s2s3) 34
9



= 3 |V |0|
M2

p


16
9

16
9 s1

16
9 s2

16
9 s3

s1
34
9 (−5

3s3 + s1s2) (−5
3s2 + s1s3)

s2 (−5
3s3 + s1s2) 34

9 (−5
3s1 + s2s3)

s3 (−5
3s2 + s1s3) (−5

3s1 + s2s3) 34
9

 (2.59)
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Computing the eigenvalues, we conclude

m2
ax = |V |0|

M2
p

1
3


(
88, 10, 10, 10

)
for s1s2s3 = −1 , i.e. e1e2e3m0 < 0(

− 2, 40, 40, 40
)

for s1s2s3 = 1 , i.e. e1e2e3m0 > 0
(2.60)

Recall that the Breitenlohner-Freedman bound in 4d is given by m2M2
p /|V |0| ≥ −3/4, so the

negative mass squared obtained above still provides a stable anti-de Sitter solution. This
spectrum gives the following conformal weights with (2.56)

∆ax =


(
11, 5, 5, 5

)
for s1s2s3 = −1 ,(

2, 8, 8, 8
)

for s1s2s3 = 1 ,
(2.61)

where ∆ = 2 can be traded for ∆ = 1. As a side remark, note that only s1s2s3 = −1 gives
a supersymmetric solution [1, (5.17)].

As pointed out already, the peculiar form of the potential allows to get a mass spectrum
that only depends on the flux numbers through an overall factor: the value of the potential
itself at the critical point. This leads to universal conformal weights independent of the
flux numbers (except for the signs si).

3 Warping DGKT

The 10d DGKT solution presented in section 2.1.2 is smeared: the O6-plane sources are not
localized or backreacted, their contributions as well as the warp factor eA and the dilaton
are constant. A more complete, backreacted solution would rather allow for varying warp
factor and dilaton, and localized source contributions. An ansatz for such a solution is
presented in appendix A.1. Starting with 10d massive type IIA supergravity and O6-planes,
we provide there the 10d equations resulting from such a compactification ansatz. We also
indicate how our conventions match those of [43]. In section 2.1.2 and appendix A.2, we
show how taking a smeared limit on these equations (with eA = 1) brings us back to the
setting of DGKT, with a smeared solution.

While we know the equations and ansatz for a backreacted solution, finding it is an open
problem. An approximate solution, beyond the smeared limit, has however been proposed
in [43] (see also [44]) using a perturbative expansion in a discretized parameter n. The 0th

order in this n-expansion is the DGKT (smeared) solution, and the 1st order provides the
approximate warped and localized solution.

The parameter n corresponds to a common scaling parameter of the three F4 flux numbers
ei; it can also be understood as a common integer to the three components in the quantized
flux F4. Importantly, the DGKT solution allows this parameter to be chosen arbitrarily large,
playing a crucial role in the parametric scale separation and parametric control on classicality
of the solution. This is why extensions of the DGKT solution based on a n-expansion can be
considered. As mentioned, one such extension can be used to get an approximate warped and
backreacted solution, and this is what we focus on in this section. We discuss aspects of this
extension first in 10d and then in 4d. One motivation is to know how the 4d mass spectrum
would be altered at 1st order. A different extension is then considered in the next section.
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In this section, we consider the following n-expansion of the 10d fields of appendix A.1

gmn = g(0)
mnn1/2 + g(1)

mnn−1/2 + O(n−3/2)
gmn = gmn (0)n−1/2 + gmn (1)n−3/2 + O(n−5/2)

eAl ≡ w = w(0)n3/4 + w(1)n−1/4 + O(n−5/4)
e−ϕ ≡ τ = τ (0)n3/4 + τ (1)n−1/4 + O(n−5/4)

F0 = F
(0)
0 n0

F2 = F
(0)
2 n1/2 + F

(1)
2 n0 + O(n−1/2)

H = H(0)n0 + H(1)n−sh , 0 < sh < 1

F4 = F
(0)
4 n + F

(1)
4 n1−s4 , 0 < s4 < 1

F6 = 0 + F
(1)
6 ns6 , 1 < s6 < 2 − sh , s6 < 2 − s4

(3.1)

where w, τ are notations of [43], and l is our 4d anti-de Sitter radius in 10d string frame.
The 0th order fields should be given on-shell by the DGKT solution. One recognises their
scaling with n: starting with gmn, τ , this is seen thanks to (2.28), with ei ∼ n, E ∼ n3. For
w, this is due to the anti-de Sitter radius l, whose scaling can be read from (2.49) and related
equations, with −12 l−2 = RS

4 ∝ Eg−2R4 ∝ E−1/2. Finally, we recall that F
(0)
2 = F

(0)
6 = 0

in the DGKT solution, the fluxes F0 and H do not scale at 0th order, but F4 scales as n

by definition. To this, we could add the scaling the 4d Einstein frame metric: it can be
read from R4 in the DGKT solution

gµν = g(0)
µν n9/2 + . . . (3.2)

This is however not needed for now. At 1st order, the scalings in (3.1) are those of [43],
provided one picks sh = s4 = 1

2 , s6 = 1; we leave ourselves more freedom here on these three
scalings for future purposes, and do not fix their values. Note that sh > 0 and s4 > 0 are
necessary by definition of the expansion, the other bounds will be motivated below. Also,
strictly speaking, the value s6 = 1 of [43] is excluded by our bound s6 > 1, but this can
be ignored for now as that bound will only be required later. In addition, one can verify
the following relation at 1st order

gmn (1) = −gmp (0)g(1)
pq gqn (0) , (3.3)

consistent with the above scaling for the inverse 6d metric. Finally, note that F0 is not
corrected, as it is meant to be an independent quantized scalar.

We consider the n-expansion (3.1), first in the 10d warped setting of appendix A.1, and
then in a corresponding 4d warped theory.

3.1 10d extended solution

As verified in section 2.1.2 and appendix A.2, smearing equations and quantities of ap-
pendix A.1 gives the back the DGKT compactification ansatz and solution. The n-expansion
presented above is meant in the same way. Plugging the field expansion (3.1) in the 10d
equations of appendix A.1, one can develop them at leading order (LO) and next-to leading
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order (NLO) in n. The LO, which only involves 0th order fields, should reproduce, or at
least be compatible with the DGKT solution. This is verified to some extent in [43]; since
our conventions match, this is also true for us. At NLO, 1st order fields appear. This is
where a solution was found in [43], that matches the expectations of what an approximate
backreacted solution would be. For completeness, we give this solution in our conventions
(the only difference being the RR sign, see appendix A.1)

F
(1)
2 = +4

∑
q,t=0,1,2

∗(0)
6

(
dβ
(
Re
(
α2aq+2t za

))
∧ d

(
Im
(
α2q+2t z1

))
(3.4)

∧ d
(
Im
(
α4q+2t z2

))
∧ d

(
Im
(
α2t z3

)))
,

w(1)

w(0) = − τ (1)

3τ (0) = 1
ν1ν2ν3τ (0)

∑
q,t=0,1,2

β
(
Re
(
α2aq+2t za

))
, (3.5)

u(1)
a = − ν2

a

ν1ν2ν3τ (0)

∑
q,t=0,1,2

α4aq+4tβ
(
Re
(
α2bq+2t zb

))
, (3.6)

where β (Re −→z ) = −2
∫ ∞

0
ds

[
1 −

3∏
a=1

θ3

(
2Re za,

4π2

ν2
a

s

)]
+ constant , (3.7)

for θ3(σ, τ) =
∞∑

n=−∞
e2πin σ−τn2

. (3.8)

The solution is expressed in terms of the zi defined in section 2.1.1, and α = ei π
3 . The νi

are related to our vi as in (A.22) and only have a 0th order contribution, no 1st order one.
The 6d metric is nevertheless corrected at 1st order by the u

(1)
a , with u

(0)
a = 0; we refer to [43,

(4.12)-(4.14)] about it. The function β plays the role of generalized Green’s function (see [42]),
in such a way that dF

(1)
2 will give a δ-function, and similarly for the Laplacian of w and τ .

This NLO solution, expressed in terms of 1st order fields, does not involve 1st order
corrections to H, F4, F6. This is because those decouple from the rest of the equations, and
can consistently be set to zero. We devote the rest of this subsection to these fluxes. We
allow more freedom in their scaling as indicated in (3.1) than in [43], and make important
observations on their 1st order contributions.

3.1.1 H, F4 and F6 fluxes: decoupling at NLO

We now expand the various equations at NLO, with an interest in H, F4 and F6 at 1st

order. We start with the Bianchi identities (BI) given in (A.6). Using that F
(0)
2 = 0, those

are given at NLO by

dH(1) = 0 (3.9)

dF
(1)
2 − H(0) ∧ F

(0)
0 =

∑
I

T I
10
7 vol⊥I

(3.10)

dF
(1)
4 n1−s4 − H(0) ∧ F

(1)
2 = 0 (3.11)

The F2 BI is the one considered in [43] and solved by the solution detailed above. The F4 BI
has two terms that we kept for illustration: since s4 < 1, the second term H(0) ∧ F

(1)
2 (which
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does not seem to vanish with the above solution) is subdominant and should then be dropped
at NLO. This leaves us with closed H(1), F

(1)
4 , and F

(1)
6 is necessarily closed.

We turn to the flux equations of motion given in (A.7)–(A.10). Using the metric scaling,
we first get the following Hodge star action at 1st order on dy1..p = dy1 ∧ . . . ∧ dyp

∗6 dy1..p = ∗(0)
6 dy1..p n(3−p)/2 + ∗(1)

6 dy1..p n(1−p)/2 . (3.12)

When acting on a flux given schematically by Fp = F
(0)
p nf0 + F

(1)
p nf1 , we get at NLO

∗6Fp = n(1−p)/2+f0
(
∗(1)

6 F (0)
p + ∗(0)

6 F (1)
p n1+f1−f0

)
. (3.13)

Since in the scaling (3.1) we always have 1 + f1 − f0 > 0, the second term dominates; for F6
the first term vanishes anyway. Furthermore, we can compare ∗(0)

6 F
(1)
p times the 0th order of

e4Al4 or e−2ϕ, to ∗(0)
6 F

(0)
p times their 1st order: e4Al4 or e−2ϕ diminish by 1/n between the

two orders, while the fluxes diminish by less than 1/n. This means that the contribution
with ∗(0)

6 F
(1)
p is dominant and e4A and e−2ϕ can be set to their 0th order. We finally get

the following NLO flux equations

d(∗(0)
6 F

(1)
2 ) = 0 (3.14)

d(∗(0)
6 F

(1)
4 )n−s4 + H(0) ∧ ∗(0)

6 F
(1)
6 ns6−2 = 0 (3.15)

d(∗(0)
6 F

(1)
6 ) = 0 (3.16)

d(τ (0)2 ∗(0)
6 H(1))n−sh − F

(0)
4 ∧ ∗(0)

6 F
(1)
6 ns6−2 = 0 (3.17)

where we used that F
(0)
2 = 0, H(0) ∧ ∗(0)

6 F
(0)
4 = 0 and that w(0) and τ (0) are constant. The

LO F4 and H equations require that s6 − 2 < 0, already implied by the conditions s6 < 2 − s4,
s6 < 2 − sh, in (3.1). In addition, those two conditions on s6 imply that the second terms
in the F4 and H equations at NLO are subdominant. This makes H(1), F

(1)
4 , F

(1)
6 co-closed.

F
(1)
2 is also co-closed, which is satisfied by the above solution.

We conclude that H(1), F
(1)
4 , F

(1)
6 are harmonic forms (with respect to the 0th order

metric), with the scaling constrained as in (3.1). We also note that they decouple from
the other equations so far, and can thus be ignored or set to zero as done in [43], with
a more general scaling.

We now turn to the remaining equations, namely the dilaton, the 4d and 6d Einstein
equations given in (A.15)–(A.17). To compute them at NLO, let us first provide the following
schematic expansion, at LO + NLO

For Fp = F (0)
p nf0 +F (1)

p nf1 , (3.18)
|Fp|2 ∼ |F (0)

p |2 n2f0− p
2 +2F (0)

p F (1)
p (g−1(0))p nf0+f1− p

2 +pF (0)
p F (0)

p (g−1(0))p−1g−1(1) n2f0− p
2 −1 .

In addition, one has

2f0 − p

2 > f0 + f1 − p

2 > 2f0 − p

2 − 1 , (3.19)

which makes the last term subdominant, hence not to be considered at NLO. Indeed, by
definition, f1 < f0 giving the first inequality, that guarantees that the LO is dominant. The
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second inequality boils down to f1 > f0 − 1, a property that we already noticed for our fluxes
in (3.1) (for F6, one uses F

(0)
6 = 0). This derivation of the NLO for |Fp|2 will be useful in

the following. For now, let us consider the LO: we get

LO : e−ϕ|H|2 = τ (0)|H(0)|2 n−3/4 , eϕ|Fp|2 = 1/τ (0) |F (0)
p |2 n−3/4 for p = 0, 2, 4 . (3.20)

We can compare this contribution to that of ∆6e−ϕ that appears in all equations (A.15)–
(A.17). We first establish that the Christoffel symbol goes as Γ ∼ Γ(0) + Γ(1) n−1. Then,
using that τ (0) is constant, we get at NLO

∆6e−ϕ = ∆(0)
6 τ (1) n−3/4 . (3.21)

We conclude that in each of the equations (A.15)–(A.17), the LO flux contributions have
the same scaling as the NLO of ∆6e−ϕ. Therefore, the NLO version of these equations only
involves the 0th order of the fluxes, as already indicated in [43]. Once again, H(1), F

(1)
4 , F

(1)
6

decouple and can be ignored or set to zero; we also do not get any constraint on our 1st

order scalings sh, s4, s6 from these remaining equations at NLO. The only constraint we thus
obtained for H(1), F

(1)
4 , F

(1)
6 with the general scaling in (3.1), is that they are harmonic forms.

3.1.2 H, F4 and F6 fluxes: quantization and (N)NLO

Even though these fluxes at 1st order decouple in equations at NLO, there are important
reasons to consider them, as we will see in 4d. There is then a crucial observation to be
made. The bottom line of the previous study is that H(1), F

(1)
4 , F

(1)
6 have to be harmonic:

this implies that they must be quantized. Harmonic forms on the torus orbifold with the
orientifold are constrained as in the initial flux ansatz: in other words, these fluxes have to
be on the same cycles as their 0th order counterparts. This gives

H = −(p + p(1))β0 , F4 =
√

2 (ei + e
(1)
i n−s4)w̃i , F6 = f (1)d6y , (3.22)

where we introduced the 1st order flux numbers p(1), e
(1)
i , f (1). Note that those should carry

(part of) the scaling in n, in agreement with (3.1). Given that the DGKT (0th order) fluxes
are already quantized, the 1st order contributions should be quantized independently. The
quantization gets written as follows∫

H = (2π
√

α′)2 (h3 + h
(1)
3 n−sh) ,

∫
i
F4 = (2π

√
α′)3 (f4i n + f

(1)
4i n1−s4) ,∫

F6 = (2π
√

α′)5 f
(1)
6 ns6 , with h3 , h

(1)
3 n−sh , f4i n , f

(1)
4i n1−s4 , f

(1)
6 ns6 ∈ Z .

(3.23)

We deduce the flux numbers quantization

p = −(2π
√

α′)2∫
β0

h3 , p(1) = −(2π
√

α′)2∫
β0

h
(1)
3 n−sh , (3.24)

ei = (2π
√

α′)3
√

2
∫

w̃i
f4i n, e

(1)
i = (2π

√
α′)3

√
2
∫

w̃i
f

(1)
4i n, f (1) = (2π

√
α′)5∫

d6y
f

(1)
6 ns6 . (3.25)

The condition (h(1)
3 /nsh) ∈ Z is constraining, because 0 < sh < 1. The coefficient h

(1)
3 is a

fixed number but n is like a variable that can be sent to arbitrary large values; in particular,
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the expansion considered before is valid only in the limit of large n. It is therefore clear
that the quantization condition h

(1)
3 n−sh ∈ Z cannot be satisfied for arbitrary n. To allow

the large n limit, we set

h
(1)
3 = 0 , p(1) = 0 , H(1) = 0 . (3.26)

This situation is very similar to that of F0, which is not corrected beyond the 0th order.
In addition, we recall the tadpole condition (2.35), giving with F0 = (2π

√
α′)−1 f0 that

f0h3 = −2, i.e. |h3| = 1 or 2. Getting the integer h
(1)
3 n−sh smaller than such an |h3|, in

order to have the 1st order subdominant to the 0th order, is very limited (and not much
subdominant). So again for consistency of the expansion, we are led to (3.26).

We now come back to the H-flux equation of motion at NLO. In that equation (3.17),
the F6 term was subdominant thanks to the condition s6 < 2 − sh in (3.1). If H(1) = 0, one
has however no access to sh so this condition cannot be checked. Another way to see the issue
is to start directly with H(1) = 0 (as one does for F0): the resulting NLO equation would just
be F

(0)
4 ∧ ∗(0)

6 F
(1)
6 = 0. Note that further terms in F

(1)
2 would appear in (3.17) with a scaling

n−1; the F
(1)
6 term remains dominant, avoiding a mixing with those, thanks to the bound

s6 > 1 in (3.1). Then, the only solution to the resulting NLO equation F
(0)
4 ∧ ∗(0)

6 F
(1)
6 = 0

is F
(1)
6 = 0. As we will see, this situation is similar to the one in the 4d scalar potential,

where F
(1)
6 can generate a linear term in the axions, leading to an analogous equation; one

solution will then be to make F
(1)
6 vanish. For these reasons, we set

f
(1)
6 = 0 , f (1) = 0 , F

(1)
6 = 0 . (3.27)

The NLO equations and the quantization of fluxes therefore lead to very important constraints
on H(1), F

(1)
4 , F

(1)
6 , even with the general scalings of (3.1), leaving for now only F

(1)
4 non-zero.

We finally come back to the 6d Einstein equation (A.17). As explained in section 3.1.1,
this equation at NLO only involved 0th order fluxes. A priori, one should not consider
NNLO, since such an order can potentially involve 2nd order fields, that go beyond the
extension one wants to consider here. The n-dependence for 2nd order fields is proposed in the
expansion (3.1) under the symbol O(n#), following [43]; we did not propose any for H, F4, F6
for which we allowed more freedom in the scaling. Taking this expansion into account, let
us revisit the 6d Einstein equation (A.17), aiming to look at the NNLO. The schematic
n-expansion for the terms appearing in that equation is as follows

−e−2ϕRmn

+gmn

4

(
e−ϕ∆6 e−ϕ + (∂e−ϕ)2 + 4e−ϕ−A∂peA∂pe−ϕ

)
+4e−2ϕ−A∇n∂meA + 2e−ϕ∇m∂ne−ϕ − 2∂me−ϕ∂ne−ϕ

∣∣∣∣∣∣∣∣∣∣
∼ n3/2

(
1 + n−1 + O(n−2)

)

+ e−2ϕ

4 HmpqH pq
n − gmn

8 e−2ϕ|H|2 + e−ϕ

2 Tmn − gmn
7
16e−ϕ T10

7

+gmn

16 (|F0|2 + 3|F6|2)

∣∣∣∣∣∣ ∼ n1/2
(
1 + n−1 + O(n−2)

)

+ 1
2×3!F4 mpqrF pqr

4 n − 3gmn

16 |F4|2
∣∣∣ ∼ n1/2 (1 + n−s4

)
+1

2F2 mpF p
2 n − gmn

16 |F2|2
∣∣∣ ∼ n−1/2

(
1 + O(n−1/2)

)
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where we used the argued H(1) = 0, F
(0)
6 = F

(1)
6 = 0, together with F

(0)
2 = 0 and the

definition of the source contributions T10 and Tmn. The above is easily obtained thanks to
the fact that the metric, the warp factor and the dilaton evolve by 1/n between each order.
We recover that the LO is given by the first terms, namely the Ricci tensor and derivatives of
warp factor and dilaton, at 0th order. The NLO is given by 1st order contributions of the
latter, together with 0th order fluxes and sources, as mentioned already. The surprise comes
at the next level, that we refer to as NNLO: thanks to 0 < s4 < 1, it is given by( 1

2 × 3!F4 mpqrF pqr
4 n − 3gmn

16 |F4|2
)

NNLO
n1/2−s4 = 0 . (3.28)

Indeed, all other contributions, including 2nd order fields, appear at n−1/2 which is a lower
order. This is surprising because this gives a new constraint on F

(1)
4 , which does not involve

2nd order fields, and therefore should a priori be obeyed. This is not mentioned in [43],
even though s4 = 1

2 considered there is captured by the above.2 In addition, all terms
entering the LO are actually vanishing (since fields at 0th order are constant), so the LO
equation is somehow unsatisfactory. Such an LO equation could be ignored, and one may
promote the above NNLO to NLO, then to be considered. This hierarchy will be made
clearer in 4d with the scalar potential, where we will see that the above constraint on F4
indeed has to be considered.

We rewrite (3.28) more explicitly, using the 0th order metric to raise indices

1
3!F

(0)
4 mpqrF

(1) pqr
4 n − 3

8g(0)
mn

1
4!F

(0)
4 pqrsF

(1) pqrs
4 = 0 . (3.29)

Contracting it with an inverse metric gives the second term in (3.29) to vanish, which in
turn requires the first term to vanish

(3.29) ⇒ 1
4!F

(0)
4 pqrsF

(1) pqrs
4 = 0 ⇒ 1

3!F
(0)
4 mpqrF

(1) pqr
4 n = 0 . (3.30)

We rewrite it more explicitly and get

∀ i ̸= j ∈ {1, 2, 3} , ei e
(1)
i v2

i + ej e
(1)
j v2

j = 0 ⇒ e
(1)
i = 0 ⇒ F

(1)
4 = 0 , (3.31)

where we used that in the DGKT solution, all F4 components are non-zero: e1e2e3 ̸= 0.
The (N)NLO constraint (3.28) therefore requires F

(1)
4 to vanish! The closer look we took

at fluxes H, F4, F6 has thus set important constraints on them, starting with quantization
and eventually forcing them all to vanish at 1st order. We will revisit these constraints
from a 4d perspective.

2The NNLO 6d Einstein equation, as derived from the scaling of [43] (included in the above analysis) would
take the following form

1
2F

(1)
2 mpF

(0) p
2 n − g

(0)
mn

16 |F2|2 + e−2ϕ(0)

4 H(1)
mpqH(0) pq

n − g
(0)
mn

8 e−2ϕ(0)
|H|2 + 1

12F
(1)
4 mpqrF

(0) pqr
4 n − 3g

(0)
mn

16 |F4|2 = 0 ,

where the squares of fluxes are the contraction of the 0th and 1st order components, and all terms scale as
n0. The DGKT solution, F

(0)
2 = 0, would cause the first two terms to vanish, while the flux quantization

constraint would make the terms involving H(1) to vanish, leaving us with equation (3.28). This eventually
gives the solution for F

(1)
4 presented in (3.31).
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3.2 4d theory and solution

In appendix A.1, we have provided the equations of 10d type IIA supergravity with sources
in a warped compactification ansatz. In this section, we consider a 4d effective theory for
such a compactification. We derive in full generality in appendix B.2 such a “warped 4d
theory” from 10d type IIA supergravity, and repeat the result here. We use conventions
of [46], slightly different than those of [43], and our 4d theory is more general. It is obtained
using the following 10d string frame metric

ds2 = τ(x)−2 e2A(y) gµν(x) dxµdxν + gmn(x, y) dymdyn , (3.32)

with the 4d field

τ2 = V6ϕ ≡ (2π
√

α′)−6
∫

d6y
√

|g6| e2A−2ϕ , (3.33)

and gµν ends up being the 4d Einstein frame metric. The action for the resulting 4d theory
is given by∫

d4x
√

|g4|
(

M2
p

2 R4−Vpart (3.34)

−
M2

p

4

(
V−2

6ϕ (∂V6ϕ)2− 1
2∂µgmn ∂µgmn+|∂B2|2+|∂C1,3|2

∫
d6y

√
|g6|e2A

(2π
√

α′)6 V6ϕ

))
+SF6 .

The terms captured by SF6 are given in (B.16); they cannot be better detailed in all generality
without some knowledge of the fields dependence on y. These terms eventually contribute to
the scalar potential. The other part of the scalar potential is given by

Vpart =
M2

p

2 (2π
√

α′)−6 V−2
6ϕ

∫
d6y

√
|g6|e4A−2ϕ

(
−R6+12e−2A(∂eA)2+8e−A∆6eA−4(∂ϕ)2

−eϕ
∑

I

T I
10
7 + 1

2 |H|2+ e2ϕ

2

[
F 2

0 +
∣∣F2+F0B2

∣∣2
+
∣∣∣∣F4+C1∧H+F2∧B2+ 1

2F0 B2∧B2

∣∣∣∣2 ]) .

(3.35)

We recall from [46] that we consider here only background fluxes, while the axions B2, C3
are 4d fluctuations. The source term in the potential can also be rewritten in general using
the Bianchi identity, as explained around (B.21).

With this general warped 4d theory at hand, we can apply the n-expansion (3.1) of the
fields to get a corresponding 4d theory order by order. At LO, we will recover the theory
used for the DGKT solution, and we will then consider the higher orders corrections. In this
expansion, we use for simplicity that F

(0)
2 = 0, F

(0)
6 = 0, C1 = 0, and that w(0), τ (0), g

(0)
mn are

independent of y. In the above general 4d theory, we also see a new ingredient w.r.t. 10d:
the axions. In order to perform an n-expansion of the 4d theory, we consider

B2 = B
(0)
2 n1/2 + B

(1)
2 nb

C3 = C
(0)
3 n3/2 + C

(1)
3 nc (3.36)

with b < 0 , c < 1 .
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As we will see, their 0th order scalings are fixed by requiring that their kinetic terms, as well
as their scalar potential contributions, scale in the same manner as the rest of the action at
LO.3 In the 4d DGKT solution, B

(0)
2 = C

(0)
3 = 0, so one could as well ignore these fields. It

will still be useful to have a 4d off-shell notion for this scaling, in particular in the potential.
Regarding the 1st order, it would a priori be enough to require b < 1

2 , c < 3
2 . The more

stringent scalings above is a choice to have their 1st order contributions subdominant at NLO,
as we will see. We are now ready to expand the warped 4d theory order by order.

3.2.1 4d theory at LO

We first discuss 0th order and then 1st order fields contributions.

• 0th order and LO

We first consider the 0th order contributions of the various fields: those will contribute
to the LO of the 4d action. We start with the kinetic terms in (3.34): at 0th order in the
fields, they boil down to

−
M2

p

4

(
V(0)

6ϕ

−2
(∂V(0)

6ϕ )2 − 1
2∂µg(0)

mn ∂µgmn (0) + |∂B
(0)
2 |2 + |∂C

(0)
3 |2 e2ϕ(0)

)
. (3.37)

Note that we neglected to consider the 4d metric. As mentioned around (3.2), the 4d metric
in Einstein frame scales at 0th order as n9/2. We deduce the following first part of the 4d
action in terms of 0th order fields

∫
d4x

√
|g4|

M2
p

2

(
R(0)

4 (3.38)

− 1
2

(
V(0)

6ϕ

−2
(∂V(0)

6ϕ )2− 1
2∂µg(0)

mn ∂µgmn(0)+|∂B
(0)
2 |2+|∂C

(0)
3 |2 e2ϕ(0)

))
n−9/2 .

This is the LO expression of this part of the action, as there is no other contribution. Note
that here and in the following, it will not be necessary to expand the overall 4d volume
given by

√
|g4|.

We turn to the scalar potential. Using the independence of w(0), τ (0), g
(0)
mn with respect to y,

and the same for F6 + . . . , the F6 contribution (B.16) becomes at LO (given by 0th order fields)

SF6 = −
M2

p

4

∫
d4x

√
|g4|

[
e4ϕ

(2π
√

α′)−6 ∫ d6y
√

|g6|

∣∣∣∣C3∧H+F4∧B2+ 1
6F0 B2∧B2∧B2

∣∣∣∣2
]0

,

3One may be bothered by the fact that the axions do not scale at 0th order as their internal flux counterparts.
Those should however be considered as independent quantities, because the above axions are 4d fluctuations.
This can be seen through their associated field strength, which has components given by ∂µB2 or ∂µC3,
i.e. with one 4d leg, contrary to the 6d H and F4. This emphasizes the independence of those fields and of
their n-scaling.
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where the superscript 0 denotes the 0th order (with n included). From this and (3.35), we
deduce the following potential at LO

V =
M2

p

2
e2ϕ(0)

(2π
√

α′)−6 ∫ d6y
√

|g(0)
6 |

(
− eϕ

∑
I

T I
10
7 + 1

2 |H|2 + e2ϕ

2

[
F 2

0 +
∣∣F0B2

∣∣2 (3.39)

+
∣∣∣∣F4 + 1

2F0 B2 ∧ B2

∣∣∣∣2 +
∣∣∣∣C3 ∧ H + F4 ∧ B2 + 1

6F0 B2 ∧ B2 ∧ B2

∣∣∣∣2 ]
)(0)

n−9/2 .

Contrary to the other pieces of the action, we will see that 1st order fields could have
contributed to this LO scalar potential, but they actually do not; 0th order fields are thus
enough. We verify that the complete 4d theory at LO scales as n−9/2.

The LO 4d theory matches perfectly the one used in DGKT. Indeed, the kinetic terms
correspond to the ones obtained for DGKT, given in (B.4) or (2.51) for the saxions and (2.52)
for the axions. The scalar potential agrees with the DGKT one given in (2.37). This was
already mentioned in [43], even though we provided a more general analysis, including axions.
As emphasized, it was enough to consider 0th order fields; we turn to 1st order contributions
at LO, the fate of which is still very instructive.

• 1st order and LO

Some terms in the scalar potential of the warped 4d theory (3.35) turn out to give
the same scaling as above, namely n−9/2, while contributing a priori with 1st order fields.
In that case, 1st order fields can also be said to contribute at LO. There are three such
terms: we show here that they all vanish, because they are total derivatives that integrate
to zero, as briefly mentioned in [43].

The first one is the term in R6. Since g
(0)
mn is independent of y, the 0th order of R6 vanishes,

since it is built on derivatives of the metric. The next order will come from having a single g
(1)
mn

or gmn (1), acted upon by the two derivatives of R6; the other (inverse) metrics involved being
0th order. Using the definition of R6 and Christoffel symbols, we get schematically at 1st order

R6 ∼ gmn (0)∂
(
gpq (0)∂g(1)

rs

)
n−3/2 = ∂

(
gmn (0)gpq (0)∂g(1)

rs

)
n−3/2 . (3.40)

The complete term in the potential (3.35) then goes as follows

V−2
6ϕ

∫
d6y

√
|g6| e4A−2ϕ R6 ∼

 (2π
√

α′)12 e2ϕ(∫
d6y

√
|g6|

)2


(0)∫

d6y

√
|g(0)

6 | ∂
(
gmn (0)gpq (0)∂g(1)

rs

)
n−9/2 ,

(3.41)
where the extra factors are all necessarily at 0th order. The scaling is indeed the LO one in
n−9/2, with a 1st order field. Since |g(0)

6 | is independent of y, this becomes a total derivative,
that we thus integrate to zero, so this term eventually does not contribute.

The second term is in e−A∆6eA. The same reasoning applies, where this time we use
that w(0) is independent of y: we get

e−A∆6eA ∼ 1
w(0) gmn (0) ∂∂w(1) n−3/2 . (3.42)
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This complete term in the potential has the same prefactor as before, giving the same overall
scaling in n−9/2. As above, it becomes a total derivative that we set to zero.

The third occurrence of a 1st order field is through the source term. One may replace
the T I

10 or T10 = ∑
I T I

10 (at 0th order) using the Bianchi identity, as in (B.21). We then
get the following LO term

V−2
6ϕ

∫
e4A−ϕ

∑
I

vol||I ∧ (dF2 − H ∧ F0) (3.43)

∼

 (2π
√

α′)12 e3ϕ(∫
d6y

√
|g6|

)2


(0)∫ ∑

I

vol(0)
||I ∧

(
dF

(1)
2 − H(0) ∧ F

(0)
0

)
n−9/2 . (3.44)

Since sources are wrapping cycles, dvol(0)
||I = 0, so the 1st order contribution of F

(1)
2 becomes

a total derivative, which then integrates to zero.
It is important to note that these appearances of 1st order fields at LO coincide with 10d

equations considered in [43]. For instance the F2 Bianchi identity that is solved involves F
(1)
2 .

Similarly, as discussed in section 3.1.1, the Einstein equations involve 1st order contributions
from the Ricci tensor and the warp factor, while fluxes contribute at 0th order. We mentioned
a doubt in section 3.1.2 on whether those equations should be considered as NLO or actually
LO; from the 4d perspective here, we would rather choose the latter. Consistently with
this choice, turning to the 4d NLO in the following, we will see appearing the next order
equation that constrains the F4-flux (3.29).

3.2.2 4d theory at NLO and critical point

We now develop the warped 4d theory at NLO in the n-expansion (3.1); we only consider
its scalar potential. Because of flux quantization discussed in section 3.1.2, we consider
H(1) = 0; we leave at first the possibility of having F

(1)
6 . We also consider F

(0)
2 = 0. We

start with the first terms of the scalar potential (3.35), and provide the following schematic
LO and NLO expansion

V−2
6ϕ

∫
d6y

√
|g6| e4A−2ϕ

(
− R6 + 12e−2A(∂eA)2 + 8e−A∆6eA − 4(∂ϕ)2

−eϕ∑
I

T I
10
7 + 1

2 |H|2 + e2ϕ

2
[
F 2

0 + |F2|2
])
∣∣∣∣∣∣∣∣∣ ∼ n−9/2

(
1 + n−1

)
.

(3.45)
This can be understood as follows. Most LO contributions come from 0th order fields; going
to 1st order fields to get to NLO diminishes the scaling by 1/n (for the metric, the warp factor
and the dilaton, which is what contributes here), hence the NLO scaling above. The other LO
contributions come from 1st order fields, as total derivatives. For those terms (R6, e−A∆6eA

and dF2),4 we have to be more cautious: there are two possibilities for the NLO. First it can
be the product of two 1st order fields; the new 1st order field w.r.t. to LO is either a metric,
a warp factor or a dilaton, so we reach the scaling indicated above. Second, the NLO can
be due to a single 2nd order field times 0th order fields. In that case, the single 2nd order

4For the source contributions, one may either use the definition of T I
10 in terms of metrics, or replace it by

the Bianchi identity; in both cases, the reasoning leads to the same scaling.
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field has to be under a derivative, leading eventually to a total derivative contribution, as
explained previously at LO. So such NLO contributions are set to zero. We conclude that
the terms considered above have NLO contributions that scale as n−11/2.

The remaining terms in the scalar potential depend on F4, F6 and the axions. For those,
a threshold will rather be n−10/2. For now on, we therefore restrict further the scaling of
F4 given in (3.1) towards

F4 = F
(0)
4 n + F

(1)
4 n1−s4 , 0 < s4 <

1
2 . (3.46)

This will allow us to get F4 contributions dominant, and higher than n−10/2. An important
motivation for this restriction will be the topic of the next subsubsection, α′-corrections, as
those are argued in [43] to appear at n−10/2. Note that the following discussion of F4, F6 and
axionic contributions is not done in [43]; the above scaling restriction also does not include
the value s4 = 1

2 of [43], so we deviate from now on from that reference.
Let us start with the following term from (3.35), that we develop at LO and NLO

schematically as follows

V−2
6ϕ

∫
d6y

√
|g6| e4A−2ϕe2ϕ |F2 + F0B2|2 (3.47)

∼ · · · ×
(
(F0B

(0)
2 )2 n−9/2 + 2F

(1)
2 F0B

(0)
2 n−10/2 + 2F 2

0 B
(0)
2 B

(1)
2 n−10/2+b

)
+ subdominant ,

where omitted prefactors are 0th order fields. As anticipated, the restriction b < 0 avoids
contributions of 1st order axions, leaving as NLO contribution the term in F

(1)
2 F0B

(0)
2 n−10/2.

Interestingly, this term is linear in the axion.5 As mentioned, this term will be subdominant
to the F4 terms, so we do not consider it.

We turn to the following F4 terms, read from the warped 4d effective action (3.35): we
develop it schematically at NLO and on our compactification ansatz

V−2
6ϕ

∫
d6y

√
|g6|e4A−2ϕe2ϕ

∣∣∣∣F4+C1∧H+F2∧B2+ 1
2F0 B2∧B2

∣∣∣∣2 (3.48)

∼ ·· ·×n−10/2
(

F
(0)
4 + 1

2(F0 B2
2)(0)

)(
F

(1)
4 n1/2−s4 +F

(1)
2 B

(0)
2 n0+F

(0)
0 B

(0)
2 B

(1)
2 nb

)
+subd. ,

where omitted prefactors are 0th order fields. The last two terms are of order n−10/2 or lower,
while the F

(1)
4 term is of higher level thanks to the restriction (3.46), as anticipated.

We are left with the contributions from SF6 in (B.16). We first get the scaling

SF6 ∼ n−9/2−3(1+n−1)×scaling of (F6+C3∧H+F4∧B2+ 1
2F2∧B2∧B2+ 1

6F0B2∧B2∧B2)2 ,

where the square does not involve the metric. At NLO, we get schematically

n−10/2−1
(

C3∧H+F4∧B2+ 1
6F0 B3

2

)(0)(
F

(1)
6 ns6 +C

(1)
3 ∧H(0) nc+F

(1)
4 ∧B

(0)
2 n3/2−s4

)
+ subd. ,

5Less schematically, this term can be written as being proportional to the 6-form B
(0)
2 ∧ ∗(0)

6 F
(1)
2 . It would

be interesting to check whether this vanishes, given the solution (3.4).
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where several terms were shown to be subdominant (to the F
(1)
4 one) thanks to b < 0 and

the restriction on s4 (3.46). As anticipated in (3.36), the scaling c < 1 also makes the C
(1)
3

term subdominant, and with a lower scaling than n−10/2. On the contrary, (3.46) allows
the F

(1)
4 term to scale higher than n−10/2. Finally, let us focus on the F

(1)
6 term, which also

scales higher than n−10/2 thanks to s6 > 1 in (3.1). This term is problematic because it
generates a linear term for both 0th order axions, the rest of their potential being quadratic.
This would change the 0th order axions in the solution, by giving them a non-zero value,
contrary to (2.44). To avoid this, a first requirement is s6 < 3

2 , making the term subdominant
to LO; note this requirement can also be seen from a (F (1)

6 )2 term not written above. We
further want this contribution to be lower at our NLO, so that the 0th order axions are left
unchanged. This leads us to pick the more stringent scaling (with respect to 3

2 and to (3.1))

s6 <
3
2 − s4 . (3.49)

This effectively makes F
(1)
6 disappear from the 4d theory at NLO, which amounts to set

F
(1)
6 = 0; this is consistent with the discussion in section 3.1.2. The only dominant term

in SF6 is finally the one in F
(1)
4 ; considering no dependence on y for F

(1)
4 as in (3.22), SF6

gets simplified as at 0th order.
To summarize, starting from the warped 4d theory (3.34), using the scalings (3.1)

and (3.36), restricting further to

0 < s4 <
1
2 , 1 < s6 <

3
2 − s4 , (3.50)

we get the following scalar potential at NLO

2
M2

p

[ ∫
d6y

√
|g6|

(2π
√

α′)6 e4ϕ

](0)

VNLO

=
(

F
(0)
4 + 1

2F
(0)
0 B

(0)
2 ∧ B

(0)
2

)
· F

(1)
4 n−9/2−s4

+
(

C3∧ H + F4∧ B2 + 1
6F0 B2∧ B2∧ B2

)(0)
·
(
F

(1)
4 ∧ B

(0)
2

)
n−9/2−s4 . (3.51)

The dot is the contraction of forms with the 0th order 6d metric, from which the scaling has
been extracted. We get an NLO scaling at n−9/2−s4 , which as argued is above n−10/2.

The axion terms in VNLO are at least quadratic, so their critical point can consistently
be set at B

(0)
2 = C

(0)
3 = 0. The first derivative of VNLO with respect to the saxions, at the

critical point, therefore only involves the term without axion, that we denote V 1
NLO

2
M2

p

V 1
NLO =

[
(2π

√
α′)6 e4ϕ∫

d6y
√

|g6|

](0)

F
(0)
4 · F

(1)
4 n−9/2−s4 ∝ e4ϕ

vol3
3∑

i=1
eie

(1)
i v2

i , (3.52)

where the last expression captures the dependence on the saxions. It is then straightforward
to show that

∂ϕVNLO = ∂viVNLO = 0 ⇒ ∀i, e
(1)
i = 0 ⇒ F

(1)
4 = 0 , (3.53)
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where we used that ∀i, ei ̸= 0. As in 10d with the (N)NLO equations discussed in section 3.1.2,
we obtain that the solution requires F

(1)
4 = 0 at this n-level.

So in the end, VNLO = 0 and there is no correction to the potential, the critical point or
the mass spectrum above n−10/2. We now turn to this n-level and the related α′ corrections.

3.2.3 Hitting the α′-corrections

Bulk α′-corrections to the 4d theory are said in [43] to arise at order n−5 = n−10/2, while we
recall from above that the LO order 4d theory is at n−9/2. Once one reaches α′-corrections,
the 4d theory gets modified, so the perturbative corrections to the mass spectrum due to
the n-expansion alone are not meaningful anymore. Those could still be computed, but
α′-corrections should as well be taken into account and this would then change the result.
In addition, α′-corrections are not fully known, so it seems out of sight to be able to fully
compute corrections to the mass spectrum once these corrections appear. Interestingly, we
tried above to get NLO corrections above the α′-correction level of n−10/2, thanks to a specific
scaling F

(1)
4 , but we eventually showed that such a correction to the solution is not admissible

and enforces F
(1)
4 = 0. The 4d theory, the critical point and the mass spectrum are therefore

robust against corrections, at least until that level.
It is interesting to revisit the arguments presented in [43] regarding the bulk α′-corrections.

As is well-known in type II supergravities, those arise at α′3, corresponding to 8-derivative
terms. They could involve a mixture of supergravity fluxes and metric contractions; however,
fluxes typically lead to subdominant terms because of the extra inverse metrics necessary to
contract their indices, and the dilaton factors on RR fluxes. A dominant m-derivative term
is then rather given by considering only metric contractions and derivatives (e.g. Riemann
or Ricci tensors). An estimate of its scaling is schematically given by

(g−1)
m
2 g−1 (∂)mg ∼ n− m

4 , (3.54)

where the scaling is obtained from 0th order metrics. Such terms come with a 0th order
prefactor e2ϕ/

√
|g6| ∼ n−3. The overall scaling of a dominant m-derivative term is then given

by n− m+12
4 = n− 9

2 × n− m−6
4 . This leads to the mentioned n−10/2 for 8-derivatives, i.e. the

first α′-correction. To this, let us add the string loop corrections, which as argued in [43],
grow with g2

s = τ−2 ∼ n− 3
2 . The l-loop then adds a factor n− 3l

2 to the LO scaling, bringing
us here lower than n−10/2 for the first correction at l = 1.

While the above arguments prevent us from pursuing the computation of corrections to
the 4d theory, we note however that the evaluation of the α′-correction scalings could be
refined. Indeed, the 2-derivatives term, given e.g. by R(0)

6 should appear at n− 9
2 +1. We recall

however that this does not happen because this contribution vanishes, since 0th order metrics
are constant. This allows the LO to be at n− 9

2 . The above argument, counting the scaling
in (3.54), would face the same issue. To get a non-vanishing term, the metric acted upon
by the derivatives should be non-constant, which only happens at 1st order (note that this
point and the following reasoning hold true for the torus orbifold considered in this paper,
but things could be different on a general Calabi-Yau manifold). Considering ∂g(1) instead
of ∂g(0) lowers the scaling by n−1. This is what happens for us at LO, where R(1)

6 appears
instead of R(0)

6 . But as argued in section 3.2.1, this term becomes a total derivative that gets
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n− 9
2

n− 10
2

n− 21
4

n− 11
2

?

LO (DGKT) potential

NLO axionic terms

Tube α′- and gs-corrections

Most NLO corrections

Bulk α′-corrections

Figure 2. Analogue to figure 1, with the level of bulk α′-corrections reassessed for the torus orbifold.
We refer to the main text for more details.

integrated to 0. The same would be true here, if all other fields are the 0th order metric and
dilaton, which are constant. To get a contributing term, one needs a second 1st order (inverse)
metric, which further reduces the scaling by an extra n−1. We deduce the actual scaling to be

α′3
∫

e2ϕ(0)√
|g(0)

6 |

(
g(0)−1)4

g(1)−1
∂8g(1) ∼ n−7 = n− 9

2 × n− 5
2 , (3.55)

much lower than n−10/2. It then becomes relevant to compare this to the scaling of flux
terms, or of string loop corrections.

If α′-corrections appear at a lower level than n−10/2, as indicated in figure 2, then
the previous perturbative corrections could be considered. Indeed, we recall that most of
them were appearing at n−11/2 as in (3.45). We also found few axionic terms appearing
in (3.47), (3.48) and possibly coming from SF6 , that would scale as n−10/2 or lower; it would be
interesting to reexamine those in detail. However, another type of corrections were discussed
in [43]: the α′- and gs-corrections in tube regions around the sources, where the backreaction
cannot be neglected. It was argued that those would arise at n−21/4, so very close to the
previously mentioned n−10/2; we refer to the discussion in [43] about these corrections. A
more advanced study then seems required to determine the precise n-level of the various
corrections, including ours. The 4d theory, the critical point and the mass spectrum appear
at first to be robust against corrections until they hit α′- or gs-corrections, but as suggested,
a more thorough analysis of the various corrections involved would be welcome.
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4 New DGKT extension

As explained at the beginning of section 3, the 10d DGKT solution admits an unbounded
discretized parameter n, common to the three components of F4. This parameter allows
to consider extensions of this solution as a perturbative expansion in n: the 0th order is
nothing but the 10d DGKT solution, and corrections to the 10d fields appear at 1st order.
A first n-expansion was given in (3.1), generalising the one of [43], and was studied in the
previous section. We consider in this section a new n-expansion, given as follows in terms
of the fields defined in appendix A.1

gµν = g(0)
µν n9/2 + g(1)

µν n9/2−g , 0 < g < 1
gµν = gµν (0) n−9/2 + gµν (1) n−9/2−g ,

gmn = g(0)
mnn1/2 + g(1)

mnn1/2−g ,

gmn = gmn (0)n−1/2 + gmn (1)n−1/2−g

eAl = w = w(0)n3/4 + w(1)n3/4−w , 0 < w < 1
e−ϕ = τ = τ (0)n3/4 + τ (1)n3/4−t , 0 < t < 1 (4.1)

F0 = F
(0)
0

F2 = F
(1)
2 n0 ,

H = H(0)n0 + H(1)n−sh , 0 < sh < 1/2 ,

F4 = F
(0)
4 n + F

(1)
4 n1−s4 , 0 < s4 < 1/2 ,

F6 = F
(1)
6 ns6 , 1 < s6 < 2 − sh , s6 < 2 − s4

Once again, 0th order fields match the DGKT solution, with F
(0)
2 = 0, F

(0)
6 = 0. We recall

that g
(0)
µν , g

(0)
mn, w(0), τ (0) are independent of y. The same holds for F

(0)
0 , H(0), F

(0)
4 , which are

quantized. The scalings chosen at 1st order make the corresponding fields and corrections
dominant over the scalings of [43], except for F2. The 1st order solution of [43] might then
be recovered at a subdominant order, but we will not investigate this. Further motivations
for the scalings chosen will appear later in this section. We will use this new n-expansion
in the warped compactification 10d setting of appendix A.1, and then in the corresponding
4d theory. We will see how the solution and the mass spectrum get corrected.

Before doing so, let us specify more the compactification ansatz for the 1st order fields.
We first take g

(1)
µν , g

(1)
mn, w(1), τ (1) to be independent of y. Regarding the metric, we consider a

much more restricted ansatz, respecting the orbifold and orientifold constraints: similarly
to the 0th order metric in (2.2), we choose at 1st order

g
(1)
11 = g

(1)
22 , g

(1)
33 = g

(1)
44 , g

(1)
55 = g

(1)
66 , g(1)

mn = 0 for m ̸= n . (4.2)

We introduce accordingly the quantities v
(1)
1 , v

(1)
2 , v

(1)
3 , independent of y, together with the

0th order ones v
(0)
i = vi/n1/2; none of those carry any n. They obey

i = 1, 2, 3 : v
(1)
i

v
(0)
i

≡
g

(1)
2i−1,2i−1

g
(0)
2i−1,2i−1

=
g

(1)
2i,2i

g
(0)
2i,2i

. (4.3)
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We finally introduce v(0) = |ei|
n v

(0)
i = v/n3/2 (without sum on i), which also carries no n.

We introduce as well for convenience v(1)

v(1) = |ei|
n

v
(1)
i (no sum) ⇒ v

(1)
i

v
(0)
i

= v(1)

v(0) . (4.4)

Introducing such a v(1) is a priori a further restriction on the possible solutions, as it imposes
an isotropy among the i, but we choose to look here for such “simple” solutions. We comment
more on this ansatz at the end on the section 4.2.2.

The fact g
(1)
mn is diagonal has several technical implications. First, any component g

(1)
mn

can be viewed as proportional to g
(0)
mn with a factor independent of y, namely a ratio v

(1)
i

v
(0)
i

.

As a consequence, the Hodge star at 1st order ∗(1)
6 (with one g

(1)
mn or gmn (1)) on any form is

proportional to ∗(0)
6 . Second, we can rewrite the metric expansion as follows, knowing that

the components are diagonal and using that gmn (1) = −gmp (0)g
(1)
pq gqn (0)

gmn = g(0)
mn n1/2

(
1 + g

(1)
mn

g
(0)
mn

n−g

)
, gmn = gmn (0) n−1/2

(
1 − g

(1)
mn

g
(0)
mn

n−g

)
, (4.5)

for fixed m = n. Finally, the following quantity will often appear, and it gets simplified

6∑
m=1

g
(1)
mm

g
(0)
mm

= 2
3∑

i=1

v
(1)
i

v
(0)
i

= 6 v(1)

v(0) . (4.6)

We now have all tools to consider the n-expansion (4.1) with the specified compactification
ansatz in 10d and in 4d.

4.1 10d extended solution

4.1.1 Equations at NLO and flux quantization

We consider here the complete 10d equations presented in appendix A.1 and expand them
order by order. As mentioned in section 3, 0th order fields should contribute to LO equations,
and satisfy them as being the DGKT solution. We are then interested in NLO with 1st

order fields. We start with the flux equations of motion (A.7)–(A.10) and focus first on
H, F4, F6. Thanks to the above ansatz, in particular the independence on y, and the fact
that H(0), F

(0)
4 are harmonic, we get at NLO

d(∗(0)
6 F

(1)
4 ) n2−s4 + H(0) ∧ ∗(0)

6 F
(1)
6 ns6 = 0 (4.7)

d(∗(0)
6 F

(1)
6 ) = 0 (4.8)

e−2ϕ(0)d(∗(0)
6 H(1)) n2−sh − F

(0)
4 ∧ ∗(0)

6 F
(1)
6 ns6 = 0 (4.9)

where we used s6 > 1 from (4.1). Using as well s6 < 2−s4, s6 < 2−sh, the F6 terms are then
subdominant, making the fluxes H(1), F

(1)
4 , F

(1)
6 co-closed w.r.t. the 0th order metric. Looking

now at the Bianchi identities (A.6) at NLO, it is easy to see that they require these forms to
be closed. We conclude that H(1), F

(1)
4 , F

(1)
6 are harmonic w.r.t. the 0th order metric.

This situation has already been encountered with the previous extension, and discussed
in section 3.1.2. These harmonic fluxes have to be quantized. An ansatz for them, compatible
with the orbifold and orientifold, was given in (3.22), followed by the quantization of their flux
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numbers. As argued there, this together with the large n expansion led to the requirement
in (3.26) of a vanishing H(1). The H-flux e.o.m. additionally led, given the scalings chosen,
to having a vanishing F

(1)
6 . The reasoning holds true here so we consider from now on

H(1) = 0 , F
(1)
6 = 0 . (4.10)

We finally turn to the F2 equations. Simply because both H and F4 components are
along the same directions at 0th and 1st order (see (3.22)), one has H ∧ ∗6F4 = 0. So one
gets at NLO the equations

d(∗(0)
6 F

(1)
2 ) = 0 (4.11)

dF
(1)
2 − H(0) ∧ F

(0)
0 =

∑
I

T I
10
7 vol⊥I

(4.12)

None of our corrections (except F
(1)
2 ) are y dependent, so we will not be able to solve the

dilaton or Einstein equations with a localized source contribution, defined in appendix A.1. So
we have to smear our source contributions, and the solution to be obtained will be a smeared
correction to DGKT. Note that smeared or not, T I

10
7 vol⊥I

is not metric dependent and is only
counting the number of O6, so this quantity does not get corrected by our 1st order fields.
A first way to solve the above equations is to take this source contribution as smeared and
then consider a harmonic F

(1)
2 (possibly vanishing). Another option could be to maintain a

localized Bianchi identity, and replace H(0) ∧F
(0)
0 for the smeared source contribution as done

in [43]; in that case, the above equations completely decouple from the rest of the equations.
As we will see, there is no other F

(1)
2 contribution to the other equations at NLO, so in the end

we do not need to bother about this field. In the 4d theory at NLO, it will also not appear.
Coming back to the source contributions T I

10 appearing in the dilaton and Einstein
equations, those only get corrected due to corrections of the metric. At 0th order, one could
trade ∑I T I

10 for T10 and use a universal dependence on the metric: those quantities all go
as 1/

√
g⊥, where √

g⊥ ∼ |g6|1/4. Since corrections are only those of the metric, then the 1st

order correction to this source contribution is easily obtained from this metric dependence:
we compute using (4.6)

T10 = T
(0)
10 n−3/4

(
1 − 3

2
v(1)

v(0) n−g

)
, (4.13)

where the 0th order DGKT value is T
(0)
10 n−3/4. Similarly, following the discussion around (2.26),

we get the relation Tmn = 1
2gmn

T10
7 . From this, we get the following corrected expression

Tmn = 1
2 g(0)

mn

T
(0)
10
7 n−1/4

(
1 − 1

2
v(1)

v(0) n−g

)
. (4.14)

These expressions will provide a solution at 1st order to the remaining equations.
We turn to the dilaton and the Einstein equations given in (A.15)–(A.17), in view of

developing them at NLO and solving them. First, using the independence of the metric,
dilaton and warp factor w.r.t. y, true for us both at 0th and 1st order, the equations simplify
to the following ones

0 = 2e−2ARS
4 − |H|2 + eϕ T10

7 , (4.15)
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0 = − 4|H|2 − e2ϕ
6∑

q=0
(q − 1)|Fq|2 + 3eϕ T10

7 , (4.16)

0 = 1
2HmpqH pq

n +
(

e2ϕF2 mpF p
2 n + e2ϕ

3! F4 mpqrF pqr
4 n

)
+ eϕTmn

+ gmn

8 (
6∑

q=0
(1 − q)e2ϕ|Fq|2 + 8e2ϕ|F6|2 − 2|H|2 − eϕT10) . (4.17)

Those match the equations (2.19)–(2.21) solved in 10d by DGKT, showing once again the
compatibility when using only 0th order quantities, corresponding to LO. When developing
these equations at NLO, 1st order fields must appear.

The first equation above, the dilaton e.o.m., need not be solved as it only defines e−2ARS
4 .

The 4d cosmological constant is related to R4 the Ricci scalar of the 4d Einstein frame metric.
On-shell, the two Ricci scalars are related by RS

4 = V6ϕ R4, where V6ϕ is defined in (B.11).
We then rewrite the above equation as follows

R4 = (2π
√

α′)6 e2ϕ∫
d6y

√
|g6|

(1
2 |H|2 − 1

2eϕ T10
7

)
, (4.18)

and will consider later its expansion at NLO.
We turn to the other two equations to solve. Using that F6 = 0 and verifying that F2

contributions are subdominant (to the F4 ones), one is left with the following equations
to expand and solve

0 = − 4|H|2 + e2ϕ(|F0|2 − 3|F4|2) + 3eϕ T10
7 , (4.19)

0 = 1
2HmpqH pq

n + e2ϕ

3! F4 mpqrF pqr
4 n + eϕTmn

+ gmn

8 (e2ϕ|F0|2 − 3e2ϕ|F4|2 − 2|H|2 − eϕT10) . (4.20)

This leaves three 1st order field contributions, from the metric, the dilaton and F4. Having
them all to contribute at the same level at NLO requires to fix their scalings in (4.1) as

t = g = s4 , (4.21)

which constrains the range of g, t. With this choice, we are now ready to expand and solve
these remaining equations at NLO.

4.1.2 Solution

We have proposed in (4.1) a new n-expansion at 1st order beyond the DGKT solution.
After (4.1), we have specified further our 10d solution ansatz. We have started developing
and solving the 10d equations at NLO, restricting further our solution. We are left with
the Einstein equations (4.19) and (4.20) to expand at NLO and solve, which we do in the
following. Our variables are three 1st order fields: the metric, the dilaton and F4, whose
scaling are now related as in (4.21). Let us make already the following observation on the
F4-flux (3.22): due to equation (4.20), a solution with the above ansatz will need to satisfy

∀ i : e
(1)
i

ei
≡ e(1) , (4.22)
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meaning that e
(1)
i is proportional to ei with the same proportionality factor ∀ i, given by

the symbol e(1). This isotropy is related to the isotropy of the metric components, and the
symbol v(1) introduced in (4.4). We now find a solution with this simplified solution ansatz.

We start with equation (4.19). We consider it at NLO, making 1st order fields appear.
We reconstruct 0th order quantities that we denote with a superscript 0 (i.e. containing the
n dependence). We get at NLO the following quantities

e−2ϕ|H|2 =
(
e−2ϕ|H|2

)0
(

2τ (1)

τ (0) −3v(1)

v(0)

)
n−g , e−ϕT10 =

(
e−ϕT10

)0
(

τ (1)

τ (0) − 3
2

v(1)

v(0)

)
n−g

|F4|2 =
(
|F4|2

)0
(

−4v(1)

v(0) +2e(1)
)

n−g , (4.23)

where we used (4.13). Note that F0 does not contribute at NLO when considering e−2ϕ× (4.19).
Focusing then on

(
e2ϕ
)0

e−2ϕ × (4.19), we use the 0th order results (2.30) and (2.31) to
eventually rewrite (4.19) at NLO as

−1
2

τ (1)

τ (0) + 21v(1)

v(0) − 81
8 e(1) = 0 . (4.24)

We turn to (4.20) and proceed similarly. We get the following quantities at NLO

e−2ϕ 1
2HmpqH pq

n =
(

e−2ϕ 1
2 |H|2gmn

)0
(

2τ (1)

τ (0) − 2v(1)

v(0)

)
n−g (4.25)

1
3!F4 mpqrF pqr

4 n =
(2

3 |F4|2gmn

)0
(

2 e(1) − 3v(1)

v(0)

)
n−g (4.26)

e−ϕTmn =
(1

2 gmn e−ϕ T10
7

)0
(

τ (1)

τ (0) − 1
2

v(1)

v(0)

)
n−g (4.27)

gmn

8
(
−e−ϕT10 − 2e−2ϕ|H|2 + |F0|2 − 3|F4|2

)
=
(

gmn

8

)0 [τ (1)

τ (0)

(
−e−ϕT10 − 4e−2ϕ|H|2

)0
+ v(1)

v(0)

(1
2e−ϕT10 + 4e−2ϕ|H|2 + F 2

0 + 9|F4|2
)0

+ e(1)
(
−6|F4|2

)0 ]
n−g (4.28)

where we used (4.14). These are all ingredients needed to rewrite
(
e2ϕ
)0

e−2ϕ × (4.20). To
that end, we use again the 0th order results (2.30) and (2.31), and rewrite (4.20) at NLO as

τ (1)

τ (0) + 3v(1)

v(0) − 9
4e(1) = 0 . (4.29)

Combining (4.29) with (4.24), we get the following 10d solution

τ (1)

τ (0) = 3
4e(1) ,

v(1)

v(0) = 1
2e(1) . (4.30)
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We use the above to compute the correction to the cosmological constant. From (4.18),
we first obtain at LO and NLO

R4 − R0
4

(2π
√

α′)6
=
(

e2ϕ∫
d6y

√
|g6|

)0 [τ (1)

τ (0)

(
−|H|2 + 3

2eϕ T10
7

)0
+ v(1)

v(0)

(
−3|H|2 + 9

4eϕ T10
7

)0 ]
n−g .

Using the 0th order results (2.30), (2.31), as well as the expressions for the 4d Ricci
scalar (2.32), (2.50), and the solution (4.30), we finally obtain

R4 = R0
4

(
1 − 9

2 n−g e(1)
)

. (4.31)

Note that this is compatible with having a 1st order correction to the 4d metric in n−g, as
indicated with the initial ansatz (4.1).

We summarize the 10d solution obtained at NLO: it is given by the expansion (4.1) with
all 1st order fields independent of y, except F

(1)
2 , and

g
(1)
11 = g

(1)
22 , g

(1)
33 = g

(1)
44 , g

(1)
55 = g

(1)
66 , g(1)

mn = 0 for m ̸= n,

i = 1,2,3 :
g

(1)
2i−1,2i−1

g
(0)
2i−1,2i−1

=
g

(1)
2i,2i

g
(0)
2i,2i

= v
(1)
i

v
(0)
i

= v(1)

v(0) with v(0,1) = v
(0,1)
i

|ei|
n

(no sum) , v
(0)
i = vi

n1/2

gmn(1) = −gmn(0) v(1)

v(0) ,

T10 = (T10)0
(

1− 3
2

v(1)

v(0) n−g

)
, Tmn =

(1
2 gmn

T10

7

)0
(

1− 1
2

v(1)

v(0) n−g

)
,

H(1) = 0 , F
(1)
6 = 0 , F4 =

√
2ei

(
1+e(1) n−s4

)
w̃i with ei ∼ n,

0 < g = t = s4 <
1
2 , (4.32)

τ (1)

τ (0) = 3
4e(1) ,

v(1)

v(0) = 1
2e(1) ,

R4 = R0
4

(
1− 9

2 n−g e(1)
)

. (4.33)

In addition, F
(1)
2 and w(1) drop out of the equations at NLO; they can equivalently be set

to zero at this order. Contrary to the n-expansion (3.1) studied in the previous section,
we obtain here a non-vanishing correction in F4 that gets related to that of the metric and
the dilaton. The scalings allow precisely here such a relation. Before commenting more on
this solution, we now turn to its 4d description.

4.2 4d description

We consider here the new n-expansion (4.1) and compactification ansatz previously detailed
within a 4d effective theory. We start from the general warped 4d effective theory given
in (3.34) and will expand it accordingly at NLO. To that end, we need, as for the other
expansion, the scaling of the 4d axions. We give it as follows

B2 = B
(0)
2 n1/2 + B

(1)
2 n1/2−b , b > 0 , (4.34)

C3 = C
(0)
3 n3/2 + C

(1)
3 n3/2−c , c > 0 .
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We then have all ingredients to expand the 4d theory at NLO. From the resulting 4d
theory, we will recover the previous 10d solution (4.30) as a 4d critical point. We will finally
investigate the corrections to the mass spectrum.

4.2.1 4d theory

We start with the warped 4d effective theory in (3.34) and expand it at LO and NLO. We
use the expansion (4.1) as well as the above axion scalings, together with the independence
of most of the fields w.r.t. y. We perform as explained in section 3.2.1 an integration to
zero of the F2 total derivative, and use F6 = 0. We get at first the following 4d theory,
to be further expanded at LO and NLO∫

d4x
√

|g4|
(

M2
p

2 R4 − V (4.35)

−
M2

p

4

(
V−2

6ϕ (∂V6ϕ)2 − 1
2∂µgmn ∂µgmn + |∂B2|2 + e2ϕ|∂C3|2

))
,

with
2

M2
p

1
(2π

√
α′)6

V (4.36)

= e2ϕ∫
d6y

√
|g6|

(
1
2 |H|2 + eϕ∫

d6y
√

|g6|

∫
vol|| ∧ H ∧ F0 + e2ϕ

2

[
F 2

0 +
∣∣F0B2

∣∣2
+
∣∣∣∣F4 + 1

2F0 B2 ∧ B2

∣∣∣∣2 +
∣∣∣∣C3 ∧ H + F4 ∧ B2 + 1

6F0B2 ∧ B2 ∧ B2

∣∣∣∣2 ]
)

where vol|| is meant here generally, to possibly include metric corrections. The quantity
eϕ∫

d6y
√

|g6|

∫
vol|| ∧ H ∧ F0 could also be traded for −eϕ T10

7 . Note that as explained in
section 3.2.2, the F2 NLO contributions are subdominant to the F4 ones, so they have
been already dropped.

We further consider the compactification ansatz, allowing us to introduce the 4d fields.
Respecting the orbifold and orientifold projections, we take the following ansatz (in line
with 10d considerations)

i = 1, 2, 3 : g2i−1,2i−1 = g2i,2i = 2(κ
√

3)1/3 vi , (4.37)

B2 =
3∑

i=1
biw

i , C3 =
√

2 ξ α0 ,

where together with ϕ, the above vi, bi, ξ are our 4d fields. We slightly abuse of notations:
those fields were used already for DGKT in 4d, but we now consider them to contain both
0th and 1st order contributions. In agreement with the above n-expansions and notations,
they can be written as

vi = v
(0)
i n1/2 + v

(1)
i n1/2−g , 0 < g < 1/2 (4.38)

e−ϕ = e−ϕ(0)
n3/4 + e−ϕ(1)

n3/4−g

bi = b
(0)
i n1/2 + b

(1)
i n1/2−b

ξ = ξ(0)n1/2 + ξ(1)n1/2−c .
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We also detail the background fluxes: as in the 10d solution ansatz, F0, H only have a 0th

order contribution, contrary to F4

F0 = −
√

2 m0 , H = −pβ0 , F4 =
√

2 ei

(
1 + e(1) n−g

)
w̃i , (4.39)

with ei ∼ n. Using these ingredients in the above 4d theory, we rewrite it as follows

∫
d4x

√
|g4|

(
M2

p

2 R4 − V (4.40)

−
M2

p

4

((
∂lnκv1v2v3

e2ϕ

)2
+

3∑
i=1

(∂lnvi)2 +
3∑

i=1

1
v2

i

(∂bi)2 + 2 e2ϕ

κv1v2v3
(∂ξ)2

))
,

with

2
M2

p

1
(2π

√
α′)6

V (4.41)

=
(

p2e2ϕ

2(κv1v2v3)2 + 2
√

2pm0
e3ϕ

(κv1v2v3) 3
2

+ e4ϕ

κv1v2v3

[
m2

0 +
(
1 + e(1) n−g

)2∑
i

e2
i v2

i

(κv1v2v3)2

+ m2
0

3∑
i=1

b2
i

v2
i

− 2m0κ
(
1 + e(1) n−g

) b1b2b3
(κv1v2v3)2

3∑
i=1

eiv
2
i

bi

+ 1
(κv1v2v3)2

(
−ξp +

(
1 + e(1) n−g

) 3∑
i=1

eibi

)2

+ O(b4
i , ξb3

i )
])

.

Remarkably, the effective 4d theory just obtained matches formally the DGKT 4d theory
given in (2.39), and (2.51), (2.52), up to the map

ei → ei

(
1 + e(1) n−g

)
, vi, ϕ, bi, ξ (DGKT) → vi, ϕ, bi, ξ (here) . (4.42)

Studying the extremum, as well as the mass spectrum, will then be straightforward.
We have not developed the theory at LO and NLO. The previous identification with

DGKT makes such a development unnecessary. As we will see, if one nevertheless performs
such a development, we recover the 10d solution obtained via such an expansion. Note
also that the NLO correction to the theory is in n−g with respect to the LO, because of
the correction of F4, of the fields and of R4. Since 0 < g < 1/2, we get the NLO at order
n−9/2−g > n−10/2, i.e. above the level where α′- and gs-corrections may appear, as discussed
in section 3.2.3. This motivates us further to consider the new n-expansion (4.1).

4.2.2 Critical point, mass spectrum and interpretation

Given the formal matching of our 4d theory with the DGKT one, indicated in (4.42),
determining the critical point and the resulting mass spectrum is straightforward: we will
follow appendix 2.2.1 and 2.2.2. We start with the critical point. As in (2.44), we get
here that the axions vanish

bi = ξ = 0 , (4.43)
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which comes from the fact that the potential is at least quadratic in them. Turning to the
saxions, we can proceed as for DGKT: we first introduce some fields ri, g as in (2.40), including
in their definition the ei correction of (4.42). The potential then gets similarly simplified,
and is formally the same as (2.42) and (2.43), up to overall factors. The extremum values for
ri, g can be read from (2.47). Translating back to vi, ϕ, we obtain at the critical point

vi|ei| = (vi|ei|)0
(
1 + e(1) n−g

)1/2
,

eϕ

√
κv1v2v3

=
(

eϕ

√
κv1v2v3

)0 (
1 + e(1) n−g

)−3/2
,

(4.44)
where the numerics are absorbed within the 0th order field values. Using the vi expan-
sion (4.38), with (vi|ei|)0 = v

(0)
i n1/2|ei|, we expand and rewrite the first equality as

1 + v
(1)
i

v
(0)
i

n−g = 1 + 1
2e(1) n−g . (4.45)

We note that the ratio is independent of i and can thus be written as v
(1)
i

v
(0)
i

= v(1)

v(0) , as with
the 10d notations. The second equality above can be rewritten into

e−ϕ =
(
e−ϕ

)0 (
1 + e(1) n−g

)3/4
, (4.46)

then further expanded and compared to the ϕ expansion in (4.38). Eventually, we get the
following critical point values

v(1)

v(0) = 1
2e(1) ,

e−ϕ(1)

e−ϕ(0) = 3
4e(1) . (4.47)

Those reproduce precisely the 10d solution (4.30), that was obtained by solving the NLO
expansion of the 10d equations.

The value of the potential at the extremum and the 4d Ricci scalar can be obtained
from the DGKT ones (2.49), with the mapping (4.42)

R4 = 4 V |0
M2

p

= (R4)0
(
1 + e(1) n−g

)−9/2
≃ (R4)0

(
1 − 9

2e(1) n−g
)

. (4.48)

The last expression, obtained by expanding, matches precisely the value of the 10d
solution (4.33).

We turn to the mass spectrum, for which we follow again the DGKT derivation of
section 2.2.2. As above, we introduce the fields ri, g, b̃i, ξ of (2.40), including in their definition
the ei correction of (4.42). Note that the signs si are left unchanged by the correction of (4.42)
for sufficiently large n. As mentioned above, each part of the potential (for the saxions and
the axions) only depends on the fluxes by an overall factor, so the correction (4.42) only
affects the potential in this way. The same is true for the kinetic terms: the fluxes only
appear though an overall factor for the axions, and not at all for the saxions. The mass
spectrum computation could then only be altered by such a correction to overall factors. As
can be seen in the mass matrices (2.54), (2.59), or in the masses (2.55), (2.60), the overall
factor is in the end the same for the saxions and axions, and is in addition nothing but the
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vacuum value of the scalar potential V |0. The only change in the mass spectrum is thus the
correction to V |0, that can be read in (4.48). In other words, the masses obtained are

m2 =
(
m2
)0 (

1 + e(1) n−g
)−9/2

≃
(
m2
)0
(

1 − 9
2e(1) n−g

)
, (4.49)

m2

|V |0|
=
(

m2

|V |0|

)0

given in (2.55) and (2.60) . (4.50)

We conclude that the mass spectrum is barely changed at 1st order by the new n-expansion (4.1).
Indeed, since the ratio m2/|V |0| is not corrected, the conformal dimensions are unchanged.
They equate the same integers as given in (2.57) and (2.61).

The 4d description finally allows us to reinterpret the new n-expansion (4.1), together
with the compactification ansatz considered. We have seen that the 4d theory was formally
the same as DGKT up to the map (4.42), that redefines the 4d fields and the F4-flux. The
change of the latter can be viewed as

n → n + e(1) n1−g ≡ n′ , (4.51)

where we recall that e(1) is a constant and 0 < g < 1/2. As shown around (3.23), the
quantization of the F4-flux is still possible with such a correction, contrary to the H-flux. In
the end, the n-expansion (4.1) can then be understood as being only a redefinition of the
discretized parameter n of DGKT to n′, making use of the fact that it is still possible to
satisfy the quantization conditions and get flux integers with a lower power of n, namely
n1−g. Another interpretation, that we followed, is to view it as a correction to (or extension
of) DGKT with a parameter n. In that case, the corrections are however very specific
as they only alter the masses through the cosmological constant. Let us emphasize that
interpreting the new expansion (4.1) as a simple redefinition n → n′ of DGKT was not
obvious from the start, especially not from 10d, where we solved equations perturbatively
in the parameter n; this is more easily seen in the 4d theory where the treatment was not
perturbative. Getting to this interpretation also required constraints from the 10d equations
and the flux quantization to set some fluxes to zero and refine the scalings.6 Let us also
stress that taking rather the point of view of a correction to DGKT, then not only the flux
is corrected, but also the metric, the dilaton and the cosmological constant. It remains a
remarkable property of DGKT that the conformal dimensions are eventually not changed,
making again its spectrum robust under possible extensions.
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6One may argue that provided a smeared and isotropic ansatz, the only solution to 10d equations is DGKT.
The ansatz considered in this section being close to this, one may not be surprised that we eventually obtain
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A 10d elements

A.1 Warped 10d type IIA supergravity

In this appendix, we detail our conventions for 10d massive type IIA supergravity. For them,
we follow [57, appendix A], and [55, appendix A] for the multiple source sets. In addition, we
consider a compactification ansatz on a 6d manifold, with a warp factor in the 4d part of the
metric, and give here the resulting 10d equations split on 4d and 6d. We finally compare for
future purposes our equations to those of [43], finding a perfect match upon translation.

We start with the following 10d string frame metric

ds2 = e2A(y) gS
µν(x)dxµdxν + gmn(y)dymdyn , (A.1)

split as a warped product of a 4d spacetime and a 6d compact space. The 4d volume form
associated to gS

µν is volS4 , and RS
4 is the corresponding Ricci scalar. We denote with an S

these 4d quantities, to be later distinguished from those in 4d Einstein frame. In addition,
we consider the dilaton to have only internal (6d) dependence: ϕ(y).

Prior to giving the 10d supergravity equations, split on 4d and 6d, let us recall our
notations for the (space-filling) O6-plane contribution. We first introduce various notations
with the following rewriting of DBI action, where we consider no world-volume B-field

SDBI
−cpTp

∣∣∣∣∣
O6

=
∫

Σ7
d7ξ e−ϕ

√
|i∗[g10]| =

∫
10

e−ϕvolS4 ∧ vol|| ∧ δ⊥
3 (A.2)

=
∫

d10x e−ϕ
√

|P [g10]| δ(⊥) ,

referring to [57, (A.7)] for more details. We also introduce the transverse volume form vol⊥
such that vol|| ∧ vol⊥ = vol6. We further recall the concept of source set labeled by I: one
set is made of the sources that wrap the same internal submanifold. We consider here one O6
source (i.e. one DBI action) for each set I and no D6, and then use the notation [55, 57]

T I
10
7 = 2 × 2π

√
α′

√
|P [g10]|

|g10|
δ(⊥) . (A.3)

We then have the following relation between previously introduced quantities for one set I

2π
√

α′ × 2δ⊥I
3 = T I

10
7 vol⊥I

. (A.4)

We also denote

T10 =
∑

I

T I
10 . (A.5)

Finally, we complete our compactification ansatz as follows: we consider all flux-forms
H, F0, F2, F4, F6 to be internal. The form F6 comes from the 10d 4-form RR flux, split as
F 10

4 = e4AvolS4 ∗6 F6 + F4. This gives the square |F 10
4 |2 = |F4|2 − |F6|2. With all these

ingredients, we are ready to give the 10d equations in string frame, split on 4d and 6d.
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To start with, the flux Bianchi identities are given by
dH = 0
dF0 = 0

dF2 − H ∧ F0 =
∑

I

T I
10
7 vol⊥I

dF4 − H ∧ F2 = 0

(A.6)

and the flux equations of motion are given by

e−4Ad(e4A ∗6 F2) + H ∧ ∗6F4 = 0 (A.7)

e−4Ad(e4A ∗6 F4) + H ∧ ∗6F6 = 0 (A.8)

d(e4A ∗6 F6) = 0 (A.9)

e−4Ad(e4A−2ϕ ∗6 H) −
4∑

q=0
Fq ∧ ∗6Fq+2 = 0 . (A.10)

The 10d version of the dilaton equation of motion is given in [57, (A.14)]. We combine it
here with [57, (C.5)] and [58, (2.28)] to write it as follows

0 = 2e−2ARS
4 + 2R6 − |H|2 + eϕ T10

7 (A.11)

− 2e−4A(∂e2A)2 − 8e−2A∆6e2A + 2e−4ϕ(∂e2ϕ)2 − 4e2ϕ∆6e−2ϕ − 8e2ϕ−2A∂me2A∂me−2ϕ .

We finally turn to the Einstein equations. The trace-reversed 10d Einstein equation is
obtained using [57, (A.15), (2.14)]

RMN = 1
4HMP QH P Q

N + e2ϕ

2

(
F2 MP F P

2 N + 1
3!F

10
4 MP QRF 10 P QR

4 N

)
+ eϕ

2 TMN −2∇M ∂N ϕ

+ gMN

4

(
−eϕ

4 T10− 1
2 |H|2+ e2ϕ

4 (|F0|2−|F2|2−3|F 10
4 |2)−∆ϕ+2|∂ϕ|2

)
, (A.12)

and we give in the bulk of the paper the definition of the source energy-momentum tensor
TMN . From there, we first get the 4d Einstein equation, proportional to its trace: we obtain
it using [57, appendix C]

0 = 2e−2ARS
4 + |H|2 + e2ϕ

2

6∑
q=0

(q − 1)|Fq|2 − eϕ

2
T10
7

− 4e−2A∆6 e2A − 4e−4A(∂e2A)2 − e2ϕ∆6 e−2ϕ − 6e2ϕ−2A∂me2A∂me−2ϕ .

(A.13)

The 6d (trace-reversed) Einstein equation is obtained using in addition [58, (2.23c)]

0 = Rmn − 1
4HmpqH pq

n − e2ϕ

2

(
F2 mpF p

2 n + 1
3!F4 mpqrF pqr

4 n

)
− eϕ

2 Tmn

− gmn

4

(
− eϕ

4 T10 − 1
2 |H|2 + e2ϕ

4 (|F0|2 − |F2|2 − 3|F 10
4 |2) + 1

2e2ϕ∆6 e−2ϕ (A.14)

+ e2ϕ−2A∂pe2A∂pe−2ϕ

)
− 2e−2A∇n∂me2A + e−4A∂me2A∂ne2A + 2∇m∂nϕ .
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For convenience, we rewrite the above dilaton, 4d and 6d Einstein equations as follows

0 = 2e−ϕ−2ARS
4 + 2e−ϕR6 − e−ϕ|H|2 + T10

7
− 24e−ϕ−2A(∂eA)2 − 16e−ϕ−A∆6eA − 8∆6e−ϕ − 32e−A∂meA∂me−ϕ , (A.15)

0 = − e−2ϕ−2ARS
4 − 1

2e−2ϕ|H|2 − 1
4

6∑
q=0

(q − 1)|Fq|2 + e−ϕ

4
T10
7

+ 4e−2ϕ−A∆6 eA + 12e−2ϕ−2A(∂eA)2 + e−ϕ∆6 e−ϕ + (∂e−ϕ)2 + 12e−ϕ−A∂meA∂me−ϕ .

(A.16)

0 = − e−2ϕRmn + e−2ϕ

4 HmpqH pq
n + 1

2

(
F2 mpF p

2 n + 1
3!F4 mpqrF pqr

4 n

)
+ e−ϕ

2 Tmn

− gmn

8 e−2ϕ|H|2 + gmn

16 (
6∑

q=0
(1 − q)|Fq|2 + 8|F6|2) − gmn

7
16e−ϕ T10

7

+ gmn

4
(
e−ϕ∆6 e−ϕ + (∂e−ϕ)2 + 4e−ϕ−A∂peA∂pe−ϕ

)
+ 4e−2ϕ−A∇n∂meA + 2e−ϕ∇m∂ne−ϕ − 2∂me−ϕ∂ne−ϕ . (A.17)

Having presented the 10d type IIA supergravity equations split as 4d and 6d on a warped
compactification ansatz, in our conventions, let us compare them to those of [43]. Starting
with the dilaton and Einstein equations (A.15)–(A.17), we find a perfect agreement with [43,
(2.9)-(2.11)] thanks to the following translation

e−ϕ ≡ τ , eA × constant ≡ w , (A.18)

δ⊥I
3 ≡ δi3 ,

1
2π

√
α′

T I
10
7 ≡ 2δ(πi) ,

1
2π

√
α′

Tmn ≡ 2∑Πi,mnδ(πi) , (A.19)

where here and in the following the left-hand side are our notations and the right-hand side
those of [43]. One should also note that 2π

√
α′ = 1 in [43]. This translation is based on

the definitions of quantities in each set of conventions, and one then verifies the matching
of the equations.

Let us add more details on the warp factor and the map of conventions. The 4d metric
(in 10d string frame) in [43] is w2gs

µν where gs
µν is said to be the AdS metric with unit radius,

so that w effectively carries the AdS scale. In general, the AdS metric is proportional to
l2 where l is the AdS radius, and in 4d, one has for the AdS Ricci scalar Rs

4 = −12/l2;
gµν sRs

µν = −12 is indeed used in [43] (we use a label s, which is absent in that reference;
this is to avoid confusion with our metrics). Our 4d metric in (A.1) is denoted e2AgS

µν , where
gS

µν denotes the complete AdS metric. We conclude on the matching

eA l ≡ w , (A.20)

recalling that l is here our 4d anti-de Sitter radius in 10d string frame, and verify the
matching of the RS

4 terms in the above 10d equations.
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Regarding flux equations, we get a matching of equations (A.6) and (A.7)–(A.10) with [43,
(2.3)-(2.8)],7 except for a sign difference in the non-trivial Bianchi identity in (A.6). That
sign has no physical impact and can be compensated by changing the sign of RR fluxes
(which leaves all other equations unchanged): we get

Fq here ≡ −Fq there . (A.21)

Having mapped our conventions to those of [43], we can for instance import the analysis
and solutions worked-out there.

A.2 Smearing source contributions

In [43] is considered a smearing procedure, mentioned in section 2.1.2. We use it here to
reproduce (to some extent) the smeared source contributions in the smeared DGKT solution
of section 2.1.2, starting from their localised definitions. Note that the smeared 10d solution
is not fully explicited nor verified in [43], and we bridge here this gap.

The map between our conventions and those of [43] on source contributions is given
in (A.19). Those involve 6d metric components so let us first map those. Our notations
follow [1]: the metric is given in (2.2). In [43], a similar symbol v

(0)2
i is unfortunately used

with a different meaning. We then change that notation as follows: v
(0)2
i in [43] → ν2

i ,
and map the notations

2(κ
√

3)1/3 vi ≡ ν2
i n1/2 . (A.22)

We verify the matching of the 6d volume computation, recalling that the work in [43] is done
on the covering torus T 6 instead of the orbifold T 6/Z2

3

9 vol =
∫

T 6
d6y

√
g6 = 9 κv1v2v3 ≡

(√
3

2

)3

ν2
1ν

2
2ν

2
3 n3/2 . (A.23)

This can be found in [43, (2.14), (4.18)], and here in (2.11); the orbifold divides this vol-
ume by 9.

We now start considering the source contributions. From the definitions (A.2)–(A.4)
giving the source quantization, we reached in section 2.1.2 the integral

∫ T10
7 vol⊥ = 2×2π

√
α′.

Using in addition the (smeared) solution value for vol⊥ (2.22), we deduce the following value
of the smeared source contribution in the DGKT solution

1
2π

√
α′

T10
7 = 4

(
√

vol
∫

T 6/Z2
3

β0

)−1

. (A.24)

We then need to compute the above integral. It is unclear to us how to do so, and on
which 3d space to perform it. We still propose the following result, which will pass various
consistency check ∫

T 6/Z2
3

β0 = 1
2

√
2 3

1
4 , (A.25)

7The sign between the two terms in the H-flux e.o.m. seems at first sight different. This is due to a
difference in the Hodge star conventions: in d dimensions on a p-form, they differ by a sign (−1)p(d−p). This
leads to a minus sign only on the H-flux, eventually giving the same equation.
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where one recognises the factor
√

2 3 1
4 in β0 (2.7). Going to the covering torus brings a factor

9 to this integral. T10 becomes the sum of the different set contributions, T10 = ∑
I T I

10. We
deduce that the smeared contribution on the covering torus is

1
2π

√
α′

∑
I

T I
10
7 = 18 × 4

√
2 3 1

4
√

vol
. (A.26)

According to the map (A.19), the above should be the smeared version of 2∑i δ(πi) in [43],
where the sum is done on the 9 sources on the covering torus. The smearing procedure
described in [43, (2.13), (2.14), (4.18)] leads to the following replacement

∀i , δ(πi) → 8
ν1ν2ν3 n3/4 = 4

√
2 3 1

4
√

vol
. (A.27)

Since the result is independent of i, we get that

2
∑

i

δ(πi) = 18 × 4
√

2 3 1
4

√
vol

, (A.28)

which matches the result (A.26). In section 2.1.2, the value of T10 was rather fixed through
the Bianchi identity. From the above expression, the value of section 2.1.2 can now be
recovered from its definition and source quantization, or the flux quantization and tadpole
condition (2.23).

It would also be interesting to recover vol⊥ in the smeared solution (2.22), or T10vol⊥,
from the smearing procedure of [43]. vol⊥ would then appear as an effective transverse
volume built from the sum of all those on the covering torus. Doing so would require the
volumes volπ̃i , where π̃i is the dual cycle to the wrapped one πi. Those are however not
made explicit in [43], and we refrain from doing so.

Nevertheless, another related quantity can be obtained through smearing: the source
energy-momentum tensor Tmn. While we have its value in the smeared solution, let us
reproduce it as an effective quantity from smearing, as done above for T10. We start in [43]
with ∑

iΠi,mnδ(πi): in the smeared limit, since δ(πi) becomes independent of i, that quantity
becomes proportional to ∑

iΠi,mn. We read that sum from [43, table 2] and get∑Π(0)
i,11 = ∑Π(0)

i,22 = 9
2ν

2
1 ,

∑Π(0)
i,33 = ∑Π(0)

i,44 = 9
2ν

2
2 ,

∑Π(0)
i,55 = ∑Π(0)

i,66 = 9
2ν

2
3 ,

(A.29)
while ∑Π(0)

i,mn = 0 for m ̸= n. In other words, we deduce in the smeared limit for m, n =
2k − 1, 2k − 1 and 2k, 2k

∑
iΠi,mnδ(πi) = 9

2ν
2
k n1/2 δ(πi) = ν2

k n1/2

2
∑

i δ(πi) . (A.30)

Using the mapping to our notations (A.19) (having verified above the match between δ(πi)
and T I

10), we get

Tmn = (κ
√

3)1/3 vk
T10
7 . (A.31)

One verifies that this is precisely the smeared value of the DGKT solution (2.33), thanks
to (2.29). We conclude that the smearing procedure, as described in [43], is able to reproduce
the values of the smeared source contributions of the DGKT solution given in section 2.1.2.
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B 4d elements

B.1 DGKT saxions kinetic terms

We derive here the saxions kinetic terms from 10d supergravity for the DGKT setting,
allowing us to have consistent conventions. This result is used in section 2.2.2. To get these
kinetic terms, we use known results; a more general and complete derivation is provided in
appendix B.2. In [56] was considered the following 10d string frame metric split in 4d and 6d

ds2
10 = τ−2gµνdxµdxν (B.1)

+ ρ
(
σ−4

1 σ2
2((dy1)2 + (dy2)2) + σ2

1σ−4
2 ((dy3)2 + (dy4)2) + σ2

1σ2
2((dy5)2 + (dy6)2)

)
,

with 4d fluctuations τ, ρ, σ1, σ2 and the 4d dilaton τ = e−ϕρ
3
2 used to go to 4d Einstein frame.

Then, the 4d kinetic terms were found in [56, (D.16)] to be given by

Skin = −
M2

p

2

∫
d4x

√
|g4|

(
2(∂lnτ)2 + 3

2(∂lnρ)2 + 12
(
(∂lnσ1)2 + (∂lnσ2)2 − ∂lnσ1∂lnσ2

))
.

The following 6d metric

ds2
6 = R2

1

(
(dy1)2 + (dy2)2

)
+ R2

2

(
(dy3)2 + (dy4)2

)
+ R2

3

(
(dy5)2 + (dy6)2

)
, (B.2)

corresponds to the previous one with

ρ
3
2 = R1R2R3 , σ1 =

(
R3
R1

) 1
3

, σ2 =
(

R3
R2

) 1
3

. (B.3)

From these results, we obtain the following kinetic terms

Skin = −
M2

p

2

∫
d4x

√
|g4| 2

(
(∂lnτ)2 + (∂lnR1)2 + (∂lnR2)2 + (∂lnR3)2

)
. (B.4)

We now apply the above results to the 10d metrics of interest. The relation between the 10d
string frame 4d metric and the 4d Einstein frame one is given in (2.50). Comparing to (B.1),
we can identify τ−2 to (2π

√
α′)6 e2ϕ

vol . Given the definition of g in (2.40), we deduce τ−1 ∝ g.
Turning to the 6d metric, comparing (B.2) to (2.2), and using the definition of ri in (2.40),
we get R2

i ∝ vi ∝ r2
i . We conclude on the following kinetic terms for the 4d fields of interest

Skin = −1
2

∫
d4x

√
|g4| 2M2

p

(
(∂ln g)2 + (∂ln r1)2 + (∂ln r2)2 + (∂ln r3)2

)
. (B.5)

B.2 Warped 4d theory: kinetic terms and scalar potential

We work out here in full generality a 4d effective theory obtained by dimensional reduction
of 10d type IIA supergravity with sources, on a warped compactification. We will use it
in the main text for the extensions of DGKT.

We start by considering the following 10d string frame metric

ds2 = τ(x)−2 e2A(y) gµν(x) dxµdxν + ρ(x) gmn(x, y) dymdyn , (B.6)
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which is more general than (A.1). The 4d Einstein frame metric will eventually be given by
gµν . We first compute the corresponding 10d Ricci scalar: it will contribute to the kinetic
terms and the potential for this warped compactification. It is given as follows

R10 = τ2 e−2A R4 + ρ−1
(
R6 − 12e−2A(∂eA)2 − 8e−A∆6eA

)
− e−2A ∇µ

(
3τ4∂µτ−2 + τ2ρ−1gmn∂µ(ρgmn)

)
− 9

2e−2A τ6(∂τ−2)2 − 2e−2A τ4∂µτ−2∂µ(ρgmn)ρ−1gmn

− τ2

4 e−2A ∂µ(ρgmn)ρ−1gmn∂µ(ρgpq)ρ−1gpq + τ2

4 e−2A ∂µ(ρgmn)∂µ(ρ−1gmn) .

(B.7)

In the above, R4 and R6 are respectively built from gµν , 4d derivatives, and gmn, 6d
derivatives. The 4d squares and covariant derivatives are built with gµν , while the 6d squares
are built with gmn. Note that the 10d Ricci scalar for the purely warped 10d metric (A.1)
can also be read from [58, (2.28)], and the one for the metric (B.6) without warp factor can
be read from [56, (D.2)], and [59, (4.8)] in d dimensions.

The above formula can have interesting applications, given its generality. For our purposes
however, we set ρ = 1: the resulting metric from (B.6), namely

ds2 = τ(x)−2 e2A(y) gµν(x) dxµdxν + gmn(x, y) dymdyn , (B.8)

will be enough for the 4d fields to be considered. We then simplify and rewrite the above

R10 = R6 − 12e−2A(∂eA)2 − 8e−A∆6eA (B.9)

+ τ2 e−2A
(
R4 − ∇µ

(
3τ2∂µτ−2 + gmn∂µgmn

)
− 3

2τ−4(∂τ2)2 + τ−2∂µτ2 ∂µ(gmn)gmn

− 1
4∂µ(gmn)gmn∂µ(gpq)gpq + 1

4∂µgmn∂µgmn
)

.

The first line will contribute to the 4d scalar potential, while the others will give the
kinetic terms.

We now write the 10d Ricci scalar (B.9) as the first line plus τ2 e−2A (R4 + . . . ) for
simplicity, and denote the determinant of the 10d metric (B.8) by |G|. We obtain

1
2κ2

10

∫
d10x

√
|G| e−2ϕ R10 (B.10)

=
M2

p

2

∫
d4x

√
|g4| τ−2 V6ϕ

(
(R4 + . . . )

+ (2π
√

α′)−6 V−1
6ϕ τ−2

∫
d6y

√
|g6| e4A−2ϕ

(
R6 − 12e−2A(∂eA)2 − 8e−A∆6eA

) )
with V6ϕ = (2π

√
α′)−6

∫
d6y

√
|g6| e2A−2ϕ (B.11)

=
∫

d4x
√

|g4|
(

M2
p

2 (R4 + . . . ) − VR

)
with τ−2 = V−1

6ϕ ,

and VR = −
M2

p

2 (2π
√

α′)−6 V−2
6ϕ

∫
d6y

√
|g6| e4A−2ϕ

(
R6 − 12e−2A(∂eA)2 − 8e−A∆6eA

)
,
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with 2κ2
10 = (2π)7α′4 and M2

p = (πα′)−1. Note that τ2 = V6ϕ allows to reach the 4d Einstein
frame, with metric gµν . We follow conventions of [46], adapting them to the fact that A and
ϕ depend on internal coordinates. We have minor differences with conventions of [43].

In the following, we assume (which will be true in our applications) that the dependence on
4d versus 6d coordinates, in |g6| and in eϕ, factorizes. As a consequence, ∂µln|g6| and ∂µlneϕ

are independent of 6d coordinates. We are then able to factorize out a 6d integral as follows

∂µV6ϕ

(2π
√

α′)−6
=
∫

d6y e2A ∂µ(
√

|g6|e−2ϕ)

=
∫

d6y e2A
√

|g6|e−2ϕ
(1

2∂µln|g6| + ∂µln e−2ϕ
)

= V6ϕ

(2π
√

α′)−6

(1
2gmn∂µgmn − 2∂µϕ

)
.

(B.12)

In other words, we get

2∂µϕ = −V−1
6ϕ ∂µV6ϕ + 1

2gmn∂µgmn = −τ−2∂µτ2 + 1
2gmn∂µgmn , (B.13)

where all terms are only 4d dependent. We use this to compute the contribution from the
10d dilaton kinetic term, minus the 6d square on 6d derivatives

4(∂ϕ)2
10 − 4(∂ϕ)2

6 = τ2 e−2A
(
τ−4(∂τ2)2 + 1

4∂µ(gmn)gmn∂µ(gpq)gpq − τ−2∂µτ2 ∂µ(gmn)gmn
)

.

This allows us to conclude

1
2κ2

10

∫
d10x

√
|G| e−2ϕ

(
R10 + 4(∂ϕ)2

10

)
=
∫

d4x
√

|g4|
(

M2
p

2

(
R4 − 1

2V−2
6ϕ (∂V6ϕ)2 + 1

4∂µgmn ∂µgmn
)

− VRϕ

)
,

(B.14)

where we integrated to zero the 4d total derivative in (B.9), and with

VRϕ = −
M2

p

2 (2π
√

α′)−6 V−2
6ϕ

∫
d6y

√
|g6|e4A−2ϕ

(
R6−12e−2A(∂eA)2−8e−A∆6eA+4(∂ϕ)2

)
,

in which we have 6d derivatives and metric.
We turn to the fluxes and their contribution to the scalar potential. For those we follow

the procedure described in [46] which takes care of the bulk terms as well as the Chern-Simons
ones, and the need to distinguish the background fluxes from the axion fluctuations. For the
contribution of the 6d fluxes to the scalar potential, we first get the following expression,
with a 6d integral as above already for R6

Vf =
M2

p

2 (2π
√

α′)−6 V−2
6ϕ

∫
d6y

√
|g6|e4A−2ϕ

(1
2 |H|2+ e2ϕ

2

[
F 2

0 +
∣∣F2+F0B2

∣∣2 (B.15)

+
∣∣∣∣F4+C1∧H+F2∧B2+ 1

2F0 B2∧B2

∣∣∣∣2 ]) .
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In addition, one has to consider possible 4d fluxes: the 4d component of F4 gives rise to the
F6 term. Following [46, (2.13)], we get for it the term

SF6 = −
M2

p

4

∫
d4x

√
|g4| (2π

√
α′)6

V2
6ϕ

∫
d6y

√
|g6|e−4A

(
(2π

√
α′)−6

∫
6
(F6+. . .)

)2
, (B.16)

F6+. . . = F6+C3∧H+F4∧B2+C1∧H∧B2+ 1
2F2∧B2∧B2+ 1

6F0B2∧B2∧B2 .

Trading the 6d integral squared for a flux square would require to know more on the
y-dependence of the fluxes and the 6d metric, a simplification we do not consider for now.

From the 10d flux terms, we can also obtain the kinetic terms for the axions, that we
take to be only dependent on 4d coordinates (and we neglect for simplicity here the possible
y dependence of the 6d metric entering the squares). Proceeding as before, we obtain

Skinaxw =
∫

d4x
√

|g4|
M2

p

2

(
−1

2 |∂B2|2 − 1
2 |∂C1,3|2

∫
d6y

√
|g6|e2A

(2π
√

α′)6 V6ϕ

)
. (B.17)

Finally, we consider the sources contributions to the scalar potential. Starting from the
DBI action for one O6 per set I, we eventually obtain

Vsources = −
M2

p

2 (2π
√

α′)−6 V−2
6ϕ

∫
d6y

√
|g6| e4A−2ϕ eϕ

∑
I

T I
10
7 , (B.18)

where the definition of T I
10
7 is given in (A.3).

Putting all pieces together, we conclude with the full action for the warped 4d theory,
obtained from type IIA supergravity with sources, with the 10d metric (B.8). There, we
took τ2 = V6ϕ, the latter being defined in (B.11). The action is

∫
d4x

√
|g4|

(
M2

p

2 R4−Vpart (B.19)

−
M2

p

4

(
V−2

6ϕ (∂V6ϕ)2− 1
2∂µgmn ∂µgmn+|∂B2|2+|∂C1,3|2

∫
d6y

√
|g6|e2A

(2π
√

α′)6 V6ϕ

))
+SF6 ,

with

Vpart =
M2

p

2 (2π
√

α′)−6 V−2
6ϕ

∫
d6y

√
|g6|e4A−2ϕ

(
−R6+12e−2A(∂eA)2+8e−A∆6eA−4(∂ϕ)2

−eϕ
∑

I

T I
10
7 + 1

2 |H|2+ e2ϕ

2

[
F 2

0 +
∣∣F2+F0B2

∣∣2
+
∣∣∣∣F4+C1∧H+F2∧B2+ 1

2F0 B2∧B2

∣∣∣∣2 ]) ,

(B.20)

and where the F6 term (B.16) provides the rest of the potential.
Let us add that the source term in the potential can be rewritten using the Bianchi identity,

here given by (A.6), which should hold in any case. Combining relations around (A.3), we
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get the rewriting∫
d6y

√
|g6| e4A−ϕ

∑
I

T I
10
7 =

∫
e4A−ϕ

∑
I

T I
10
7 vol||I ∧ vol⊥I

=
∫

e4A−ϕ
∑

I

vol||I ∧ (dF2 − H ∧ F0) , (B.21)

where one may project dF2 − H ∧ F0 on each transverse space I. For our applications, it
won’t be necessary since the vol||I will be enough for this projection, so that dF2 − H ∧ F0
can be factorized as above.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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