
J
H
E
P
1
2
(
2
0
2
3
)
1
6
4

Published for SISSA by Springer

Received: July 28, 2023
Revised: September 19, 2023

Accepted: December 13, 2023
Published: December 27, 2023

Dilute axion stars converting to photons in the Milky
Way’s magnetic field

A. Kyriazis

Department of Physics, University of Florida,
Gainesville, FL 32611, U.S.A.

E-mail: akyriazis@ufl.edu

Abstract: In this paper we examine the possibility of dilute axion stars converting to photons
in the weak, large-scale magnetic field of the Milky Way and show that they can resonate with
the surrounding plasma and produce a sizable signal. We consider two possibilities for the
plasma: free electrons and HII regions. In the former case, we argue that the frequency of the
photons will be too small to be observed even by space-based radio telescopes. In the latter
case, their frequency is larger, safely above the solar wind cut-off. We provide an estimate of
the flux as a function of the decay constant and show that for fa < 2 × 1011 GeV, the signal
will be above the radio emission of the solar system’s planets and it could potentially be
detected by the NCLE instrument which is on board the Chang’e-4 spacecraft. Finally, we
calculate the time scale of decay of the axion star and demonstrate that back-reaction can
be neglected for all physically interesting values of the decay constant, while the minimum
time scale of decay is in the order of a few hours.
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1 Introduction

The axion, initially proposed as a solution to the strong CP problem [1, 2], is now one of the
most well-motivated candidates of dark matter [3–5]. The axions are stable bosons, with large
occupation numbers and can re-thermalize through their gravitational interactions forming a
Bose-Einstein condensate (BEC) [6, 7]. Owing to the large occupation number of the ground
state, the BEC condensate has been treated classically as a localised, coherently oscillating
clump called an axion star, if the kinetic pressure is balanced by gravity and axiton or oscillon,
if it is balanced by self-interactions. Generally, when an axion star is supported only by its
self-interactions, such as the cosine potential, it is considered dense with radius mR ∼ 1 [8]
and also decays through scalar radiation on a time-scale of 103m−1 [9, 10].

On the other hand, if both gravity and the leading term in the self-interactions are taken
into account, the size is mR ∼ Mpl

fa
, where Mpl = 1√

8πG
= 2.4×1018 GeV is the reduced Planck

mass and fa is the axion decay constant [10, 11]. Since the axion decay constant ranges
from 109 GeV < fa < Mpl in the case where the Peccei-Quinn symmetry is broken during
inflation and 109 GeV < fa < 1011 GeV in the classic axion window [12], these axion stars
can be quite large for a wide range of decay constants. In contrast to dense axion stars, they
are also long-lived, which makes them cosmologically very interesting [13]. However, it has
been shown that dilute axion stars become increasingly unstable as fa approaches Mpl [14],
because their binding energy becomes large and relativistic contributions need to be taken
into account. Therefore, we will limit our analysis in the range 109 GeV < fa < 1015 GeV.

The axion can also interact with electromagnetic fields and several venues have been
proposed for their detection [15]. Of particular interest is the Primakoff effect [16], which
is the interaction of an axion with a magnetic field to produce a real photon.
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The universe is abundant with magnetic fields and many astrophysical settings have
been considered in the literature as possible “laboratories” where the axion to photon
conversion could be detected. These range from pulsars [17–22] and magnetars [23–25], to
white dwarfs [26–28], to AGN’s [29, 30], to the galactic magnetic field [31–34].

In this paper, we will consider the possibility of an axion star converting to photons
in the Milky Way’s magnetic field. The strength of the magnetic field is of the order 1µG
and its coherence length is of the order of the galactic scale [35]. We will confirm that the
flux emitted from dense axion stars in this magnetic field is negligible [18]. However, there
is the possibility of resonant conversion of axion stars to photons, if they find themselves
in some region with cold plasma. By resonance, we mean that the axion mass equals the
plasma frequency. It has been shown that in that case, the emitted power scales as (mR)6,
enhancing it significantly for dilute axion stars [36, 37]. The end result of the main calculation
of this paper will be an expression for the emitted spectral flux density of dilute axion stars
in some region with cold plasma.

When it comes to the plasma, the average electron density in the Milky Way is of the order
of ne ∼ 0.03cm−3, which implies a plasma frequency of the order ωp =

√
4παne

me
∼ 10−12eV [38].

In the case of diffuse nebulae consisting of ionized hydrogen, the electron density ranges from
100-1000 cm−3, with plasma frequencies in the 100-200 kHz range [39]. Because of energy
conservation, the plasma frequencies that we estimated above will be the frequencies of the
monochromatic photons that are emitted from the axion star. In the former case, those
electromagnetic waves will be blocked by the solar wind, but in the latter case, they are in
principal detectable by current space based radio telescopes, such as the NCLE [40].

Since the QCD axion’s mass and decay constant must satisfy the equation mafa ≈
(108eV)2, due to the range of decay constant we are considering, our analysis does not cover
the QCD axion, so we will only consider Axion-Like Particles (ALP’s), for which the axion
mass and the decay constant are independent [41].

In addition, we will demonstrate that our neglect of back-reaction effects is valid for
fa > 107 GeV and therefore for the entirety of the parameter space we are investigating.
Finally, we will place a lower bound in the decay time scale, which will be in the order
of a few hours.

To motivate our idea further, we can make an order of magnitude estimate of the axion
star number in the Milky Way: let’s assume that only 1% of the Milky Way’s dark matter
mass, 1012M⊙,is distributed in axion stars. A dilute axion star has a mass of the order 10Mplfa

m .
For m ∼ 10−12eV and fa ∼ 1013 GeV, a typical axion star mass is 10−4M⊙. These should be
distributed over the galactic halo, but since we are only interested in those in the galactic disk,
their number is 1014 Vdisk

Vhalo
∼ 1011, where we used a typical radius of the halo 30 kpc and a disk

radius of 15 kpc and height of 300 pc [42]. This is indeed a huge number which makes the
study of their resonant conversion in the Milky Way’s magnetic field an intriguing possibility.

The paper is organised as follows: in section 2, we establish our formalism that describes
a dilute axion star. In section 3, we review some properties of the Milky Way’s magnetic
field, its free electron and HII distribution and finally discuss some prospects of detection
of the emitted radiation by radio telescopes. In section 4, we outline the derivation of the
conversion of an axion star to photons in a constant magnetic field, in the presence of cold
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plasma, and apply it to the case of a dilute star, while we also give an estimate of the
spectral flux density of photons that will arrive at Earth from such an event. In section 5
we estimate the decay time-scale of the axion star and we conclude in section 6 with some
comments on future venues for research.

2 Dilute axions stars

In this paper we will mainly focus on dilute axion stars with gravitational as well as attractive
self interactions. Also, we focus on ALP’s for which the axion decay constant fa and the axion
mass ma are independent from each other. The action for a scalar field ϕ which describes the
axion star, coupled to a gravitational potential Φ with attractive λϕ4 interactions is [43]:

S = −
∫
d4x

√
−g

(1
2g

µν∂µϕ∂νϕ+ 1
2m

2ϕ2 − λ

4!ϕ
4
)

(2.1)

with metric:

ds2 = −(1 + 2Φ(x⃗, t))dt2 + dx⃗ · dx⃗ (2.2)

Throughout this paper we will assume that λ = O(1)m2

f2
a

and we’ll ignore the order 1
constant, since we are interested in order of magnitude estimates. In the non-relativistic limit:

ϕ = 1√
2m

(ψe−imt + ψ⋆eimt) (2.3)

the equation of motion is the Gross-Pitaevskii equation:

i∂tψ = − 1
2m∇2ψ +mΦψ − λ

8m2 |ψ|2ψ (2.4)

while the potential satisfies the usual Poisson equation:

∇2Φ = 4πGm|ψ|2 (2.5)

A stationary, spherically symmetric solution to the above equations is given by ψ = e−iµtχ(r),
where µ can be considered as the chemical potential. As a side remark that will be useful
later on, we observe that if we insert this Ansatz into equation (2.3), we get:

ϕ =
√

2
m
χ(r) cos(ωt) (2.6)

where we have identified the frequency ω with ω = µ + m [44]. Since we are interested in
bound states, it holds that 0 < ω

m < 1. This matches the Ansatz of the scalar field ϕ that
has been used by other authors to study non-relativistic axion stars [10, 36, 37], with the
difference of the

√
2
m factor in front.

To continue, we define the small parameter δ = 4m2

λM2
pl

. Notice that if we plug in the value

of λ in terms of the axion mass and decay constant, we get δ = 4 f2
a

M2
pl

, which is indeed small
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Figure 1. The mass-radius graph of dilute axion stars for three different values of fa. Note that we
have reverted back to the usual definitions of the dimensionless mass and radius that are found in the
literature. The star becomes smaller as fa → Mpl.

for a wide range of physically relevant decay constants [12]. We rescale the wavefunction, the
potential and the lengths to find the dimensionless forms of the above equations:

χ(r) =
√

m

4πGδχ̃(r), x⃗ =
⃗̃x√
δm

, Φ = δΦ̃ + µ

m
(2.7)

The equations of motion become:

∇̃2χ̃ = 2
(
Φ̃χ̃− χ̃3

)
(2.8)

∇̃2Φ̃ = χ̃2 (2.9)

They satisfy the boundary conditions χ̃′(0) = 0, χ̃(x̃ → ∞) = 0, Φ̃′(0) = 0, while the condition
Φ(x̃ → ∞) = 0 implies that Φ̃(x̃ → ∞) = − µ

δm . We see from the last equation that µ
m ∼ δ ≪ 1

for the entire range of axion decay constants that we are considering. Therefore, in this
non-relativistic limit, we will set µ = 0 and ω = m.

Equations (2.8) can be solved with the shooting method: for a given central amplitude of
the scalar field χ̃0, we vary the central amplitude of the potential Φ̃0 until we find a solution
that satisfies the boundary conditions [45]. Having found the solution, we can also compute
the rescaled mass of the axion star M̃ = 4πGmM√

δ
:

M̃ ≈
∫
d3x̃χ̃2 (2.10)
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as well as the radius that contains 99% of its mass. The mass-radius graph generally
contains two different branches, the dilute and the transition branch [10, 44–46]. We are
only interested in the dilute branch whose mass-radius graph is depicted in figure 1 and
we confirm that M ∼ 1

R . We have also verified that the dimensionless radius scales with
the central amplitude as mR ∼ 1√

χ̃0

3 Properties of ISM and radio telescopes

Before tackling the question of the emitted flux of photons from the axion star, we will
consider some properties of the ISM of the Milky Way, such as its large scale magnetic field
and two different regions where a resonant conversion may take place, the free electrons
and HII regions in nebulae.

3.1 Galactic magnetic field

The magnetic field of the galaxy that we are considering in this work has two components,
a large scale one and a small scale one.

The large scale component is coherent on length scales of the order of the galaxy and
its strength is typically around 1.5 − 2µG. It reaches 6µG in the solar neighborhood and
even 10µG towards the galactic center. Its structure also seems to follow the spiral arms [35].
For the purposes of this discussion, the important point is that it is coherent on scales much
larger than the size of the axion star and we will consider a value of 1µG for its strength.
We will say a few things about the small scale component towards the end, but we will
ignore it for the remainder of this paper.

3.2 Free electron density

Regarding the free electron density in the Milky Way disk, that is of the order 0.03cm−3 [38].
Detailed models of the electron density in the Milky Way indicate that the electron density
can be as high as ne = 0.2cm−3 in the thin disk, while the Local Arm has relatively low
density with ne = 0.0057cm−3.

The plasma frequency is given by [38]

ωpl = 8.97kHz
(

ne

cm−3

)1/2
∼ 6 × 10−12eV

(
ne

cm−3

)1/2
(3.1)

Given the range of values for the electron density quoted above, the range of plasma
frequencies, and therefore axion masses, that we can probe are 0.6 KHz–4 kHz → 4×10−13eV–
26.3 × 10−13eV. Unfortunately, any electromagnetic waves coming from space with frequency
below 30 MHz are blocked by the ionosphere. In addition to that, the solar wind at the
Earth’s radius can block frequencies that are below 30 kHz. Thus, we conclude that axion
stars conversions in environments with free electrons will not produce a detectable flux.

3.3 HII regions

We turn to diffuse and planetary nebulae in the interstellar medium with HII regions, that
is, ionized hydrogen and electrons. These are formed by stars with temperatures T ∼ 104K
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that emit UV photons that can ionize the surrounding hydrogen gas, forming the well-known
Strömgren radius [47]. The ionization fraction x = ne

n , where n is the number density of
protons and neutral hydrogen atoms, is equal to unity and the electron densities are generally
in the range 100 − 1000cm−3 [39, 48]. From equation (3.1), these densities correspond to
plasma frequencies 90 − 285kHz ⇒ 6 × 10−11 − 2 × 10−10eV. There are also ultracompact
HII regions that can reach densities ne ≥ 104cm−3 [49], which would correspond to plasma
frequencies ωpl ≥ 897kHz = 5.9 × 10−10eV. We see that the frequency of photons produced
in HII regions will be safely above the solar wind’s cut-off frequency at the Earth’s location.
We have ignored here the contribution of protons to the plasma frequency since their mass
is much greater than the electron mass.

3.4 Radio telescopes

One way to observe the low frequencies we are considering here is with lunar or space based
telescopes that will not face the issue of the ionosphere. So far, there have been four space or
lunar based missions that probed frequencies below 10 MHz [50], with the most recent one
being the Netherlands Chinese Low Frequency Explorer (NCLE) on board the Chang’e-4
satellite, which has landed on the far side of the Moon and is able to detect frequencies in
the range 80 kHz–80 MHz [40]. Hence, it could potentially detect a radio signal from the
conversion of an axion star to photons in a HII region. Several other proposals of radio
telescopes in space are also described in [50] that aim to probe the frequency range that
is relevant in this paper.

4 Spectral flux density

Having discussed the different environments where the conversion of an axion star to photons
may take place, let us now turn to the calculation of the emitted flux of radio photons that
will arrive to Earth when the conversion takes place in a HII region. We will derive an
expression for the emitted power from a dilute axion star and demonstate that it can be much
larger than the flux from a dense axion star, as well as the flux of the solar system’s planets.

To begin, we briefly review the derivation of the emitted flux from an axion star in an
external, constant magnetic field. The interaction of the axion with the electromagnetic
field is given by the interaction Lagrangian:

Lint = −gaγ

4 ϕFµνF̃
µν (4.1)

We will make a few simplifying assumptions: firstly, we expand the electromagnetic
fields and current in the small parameter gaγϕ0:

E = E(0) + E(1) + . . . , B = B(0) + B(1) + . . . (4.2a)

We also assume zero background electric field and consider the Ansatz of the ax-
ion field ϕ(r, t) = ϕ0cos(ωt)sech(r/R). This choice implies that we will not take back-
reaction effects into account, something that we will justify in the next section. The
interaction Lagrangian (4.1) implies the effective current and charge densities Jeff =
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−gaγsin(ωt)sech(r/R)B0 and ρeff = −gaγ∇φ · B0. Using the usual definition of electric
and magnetic fields in terms of the potentials, we obtain the wave equations:(

−∇2 + ∂2

∂t2

)
A0 = ρeff (4.3a)(

−∇2 + ∂2

∂t2

)
A = Jeff (4.3b)

where A and A0 are first order in gaγϕ0.
In Lorentz gauge, it is enough to solve equation (4.3b), since we can always solve for

A0 from the equation ∂tA
0 + ∇ · A = 0.

The details of the solution are analyzed in [36, 37, 51] and we will only give the main
result here for the emitted power per solid angle:

dP

dΩ = π4(gaγφ0ω
2R2)2

32kω

(tanh(πkR/2)
cosh(πkR/2)

)2
|B0|2 (4.4)

where k is the wave-vector of the emitted photons and it is equal to k = ω
√

1 − ω2
p

ω2 , if we also
include cold plasma. We have implicitly assumed that the gyrofrequency ωB =

√
4παB0
me

is
much smaller than the frequency of radiation ω, which is true for the values we are considering
here: ωB = 10−15eV ≪ ω = 10−10eV. One final assumption is that the propagation of the
photons is perpendicular to the galactic magnetic field, because we are mainly interested
in an order of magnitude estimate of the effect.

We see that when the axion star is far from resonance, the power peaks for sizes ωR ∼ 1
while it is exponentially suppressed if ωR ≫ 1. We are interested in studying the power
emitted when the star is in resonance, so we take ω → ωp ∼ 10−10eV. The power becomes:

dP

dΩ(ω → ωp) ≈ (gaγϕ0)2

128
(πωR)6

ω2

(
1 −

ω2
p

ω2

)1/2

|B0|2 (4.5)

In the spirit of the order of magnitude estimate that we are attempting, let us assume
that this conversion takes place 1 kpc away from Earth, which is a typical galactic distance.
We define the spectral flux density of the incoming radiation as S = 1

r2B
dP
dΩ where B is the

Doppler shift of the central frequency and we estimate it as B ∼ 0.1ω
2π . For a dense axion star,

the value of the spectral flux density is of the order: S ∼ 10−21Jy, which is indeed negligible.
However, the (ωR)6 term is promising: dilute axion stars with ωR ≫ 1 can significantly

enhance the flux that arrives at Earth. To find the power emitted from a dilute axion
star in resonance, we make the substitution ϕ0 →

√
1

2πGδ, which comes from combining
equations (2.7) and (2.6). Assuming that gaγ ∼ α

fa
and with the approximation ω ≈ m,

our estimate is:

S ∼ 10−21Jy 1
δ2

(1kpc
r

)2(10−10eV
m

)3 (
B0

1µG

)2
(4.6)

where we have also approximated mR ∼ 1√
δ
. We see that since δ ≪ 1 for a wide range of

decay constants, this flux can be quite huge.

– 7 –



J
H
E
P
1
2
(
2
0
2
3
)
1
6
4

We would like to compare this flux density with the fluxes that come from the planets
of our solar system. In the frequency range 100-300 kHz, the largest flux comes from
Saturn which reaches approximately 10−19 W

Hz m2 = 107Jy [52]. Setting the electron density
to 400cm−3, we find that S > 107Jy for fa < 2 × 1011 GeV.

5 Decay time scales

We estimate in this section the time that it will take for the axion star to convert all its
mass to photons. The mass of a dilute axion star is of the order of M ∼ 10faMpl

m [10]. We
assume the star is in resonance with the surrounding plasma. The timescale over which the
star will lose the entirety of this mass is roughly given by:

T = M

P
∼ 104M

2
plmδ

5/2

B2
0

(5.1)

where we have estimated the emitted power to be P ∼ 10−3 1
δ2

B2
0

m2 . We are ignoring back-
reaction effects here, so in order for this estimation to make sense, we need T > 2π

m , the
decay time scale needs to be longer than the period of the radiation [37].Solving for the
small parameter δ, we find

δ >

(
10−2B0
mMpl

)4/5

⇒ fa > Mpl

(
10−2B0
mMpl

)2/5

(5.2)

For B0 = 1µG and m = 10−10eV, this gives the lower bound fa ⪆ 107 GeV. This tells us that
for most of the parameter space, back-reaction can indeed be ignored. For fa = 109 GeV,
the lower bound on the decay timescale is T ∼ 3hr.

6 Conclusions and outlook

We have considered the possibility of axion stars converting to photons in the magnetic field
of the Milky Way. The high number of axion stars in the galactic disk that we estimated
in the Introduction make this a possibility worth considering. We showed that the weak
magnetic field of the galaxy is not enough to efficiently convert a dense axion star to photons
in vacuum. However, if an axion star is in a plasma and its frequency is close to the plasma
frequency, the dependence of the emitted flux on (mR)6 implies that a dilute axion star
will produce a sizable flux.

Beginning from this observation, we considered two different possibilities of a plasma in
the Milky Way, the free electrons and the diffuse nebulae with HII regions. In the former
case, we argued that the photons produced will have frequencies far below the solar wind
cut-off and we will never be able to observe them with lunar based radio-telescopes. In
the latter case, however, the electron density is 104 time larger, leading to photons with
frequencies ν ≥ 100kHz safely above the solar wind threshold and within the target range
of current lunar based telescopes, such as NCLE.

Our main calculation involved the estimation of the spectral flux density that will arrive
at Earth if a dilute axion star resonated with its surrounding plasma and converted its
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mass to photons. We showed that for axion decay constants fa < 2 × 1011 GeV the flux is
larger than the radio flux emitted from Saturn, which is the dominant one from the solar
system’s planets in this frequency range.

Finally, we estimated the time scale over which the star will radiate. We demonstrated
that back-reaction effects can be ignored for the entirety of the parameter space that we
consider in this work and found that an axion star will need at least a few hours to lose
all its mass. However, it is an open question whether the star will transition to different
configurations as it decays, so that it eventually moves out of resonance. Ref. [53] did this
analysis for dense axion stars supported by their self-interactions and found that the axion stars
grow in size, their frequency increases and they go out of resonance after a certain time-scale.
It is not clear whether the same thing can happen with dilute stars because, to a very good
approximation, ω ∼ m. An analysis in the vein of [54] could shed some light on this question.

A coulpe of more comments are in order regarding this proposal. Firstly, we have ignored
the small scale component of the galactic field that is related to the turbulent Interstellar
Medium . This component has a shorter correlation length than the large-scale component
we used in this study and its strength is 5.5µG [35]. It has been shown that it can enhance
the conversion of diffuse axions to photons by many orders of magnitude and it should be
taken into account in future work [31, 33].

Also, we have not considered the distribution of axion stars in the galactic plane, which, to
our knowledge, is not known. This makes it difficult to estimate the number of conversions that
we could potentially observe. A more detailed study should take the axion star distribution
into account, combined with the disribution of HII in the Milky Way, as shown in [55]. This
should provide us with an accurate estimation of the frequency of these events.
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