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We apply the exact Wentzel-Kramers—Brillouin (WKB) analysis to a couple of 1D
Schrodinger-type equations reduced from the Stark effect of hydrogen in a uniform electric
field. By introducing Langer’s modification and incorporating the Stokes graphs, we prove
the exactness of the Bohr—-Sommerfeld quantization conditions for the Borel-resummed
quantum WKB periods in the specific parameter regions of the electric field intensity and
magnetic quantum number. It is also found these quantization conditions get modified with
an additional suppressed contribution when the parameters vary beyond the specific re-
gions. We also present thermodynamic Bethe ansatz (TBA) equations governing the quan-
tum periods in the absence of Langer’s modification and discuss its wall-crossing and ana-
lytic continuation. Numerical calculations are conducted to compare the complex resonant
frequencies from our quantization conditions against ones from the Riccati-Padé method;
the TBA equations are also confirmed by comparing its expansions with all-order quantum
periods.

Subject Index A10, A64, B85

1. Introduction

The Stark effect describing hydrogen under an external electric field [1] is one of the earli-
est examples considered of quantum mechanics since its invention. The external field leads
bound states for hydrogen to resonant states, whose energy becomes complex £ = E,. + i['/2.
E, represents the peak of the energy spectra and I' stands for the width related to the ion-
ization rate. There are many approaches based on perturbation theory to solve this problem
[2-7]. But the perturbative expansions for the Stark effect are asymptotic, so additional nu-
merical methods such as the Borel-Padé technique are necessary. There are also WKB-type
approaches that rely on the fact that the 3D Schrédinger equation for the Stark effect is sepa-
rable under parabolic coordinates. Both of the separated equations take the form of the 1D
Schrédinger equation with a linear and inverse potential in addition to a centrifugal term.
To satisfy the correct boundary condition at origin, Kramers and especially Langer [8] intro-
duced the so-called Kramers—Langer substitution or Langer’s modification used in this paper,
see Ref. [9]. A comprehensive interpretation can be found in Ref. [10] in terms of two-A nota-
tion in an enlightening perspective. The successive research on the Wentzel-Kramers—Brillouin
(WKB) method for the Stark problem is almost entirely based on Langer’s modification,
e.g. Refs. [11-14]. These works mainly rely on the period integrals in the classically allowed
region, which will be notated as classical WKB periods.
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The main purpose of this paper is to study the Stark effect by using the exact WKB analy-
sis. This can be achieved by the Borel resummation of formal / power series in the framework
of resurgence theory [15-18]. The analytic behaviour of the Borel-resummed WKB solution
is determined by Stokes graphs, and the relation of WKB solutions for different Stokes re-
gions is described by connection formulas [19-21]. In quantum mechanical problems, one im-
poses boundary conditions for the wave functions, then these deduce the exact quantization
conditions (EQCs) for the eigenvalue problems in terms of the quantum period [22-25]. It is
Borel-resummed quantum WKB periods that appear to connect the solutions with different
normalizations. The discontinuity of the quantum periods is captured by the Delabaere—Pham
formula (DP formula) [26,27]. In this paper, we apply the exact WKB analysis to the Stark
effect to obtain the EQCs.

The development of the WKB analysis invoked the study of integrable models and is formed
into the so-called ordinary differential equation / integrable model (ODE/IM) correspon-
dence [28,29]. The ODE/IM correspondence indicates there is a relationship between the Y-
functions in integrable models and quantum periods from the WKB analysis. Specifically, Y-
systems derived from the Wronskian relations coincide with equations followed by quantum
periods from the DP formula [30]. These studies introduce new techniques into integrable
models and are fed back into the research on the ordinary differential equation side. Es-
pecially, the ODE/IM correspondence introduces thermodynamic Bethe ansatz (TBA) equa-
tions for quantum periods, which provides a nonperturbative completion for these asymp-
totically defined quantities in the WKB analysis. This correspondence has been summa-
rized explicitly for polynomial potentials [30,31] and also potentials with regular singularity
[32]. As one analytically continues the parameters in the potential, the TBA equations get
modified when wall-crossing of quantum periods happens [33]. We would like to consider
these kinds of TBA equations corresponding to the reduced 1D equations for the Stark
effect.

This paper is organized as follows. In Sect. 2, we review the fundamentals of the ex-
act WKB analysis. Our work starts from Sect. 3, which focuses on the application of
the exact WKB analysis to the Stark effect. We consider Langer’s modification and all-
order quantum corrections and write down the EQCs from the Stokes graph. It is found
the Bohr—Sommerfeld (BS) quantization condition for the Borel-resummed periods is al-
ready exact in the specific parameter regions but gets an additional term when the pa-
rameters vary beyond these regions. Our EQCs are numerically tested against the Riccati—
Padé method (RPM) [34]. Sect. 4 is devoted to finding integral TBA equations for quan-
tum periods. However, these TBA equations are established for bare effective potentials with-
out Langer’s modification, which is different from the prescription adopted in Sect. 3. We
have discussed the wall-crossing of the TBA equations [33] and also the analytic continu-
ation [35,36] in relation to the parameters for the Stark effect. We conclude our results in
Sect. 5.

2. Exact WKB analysis and connection formulas

In this section, we give a brief review to mention fundamental aspects and fix the notations
of the exact WKB analysis. We intensively consult the work of Refs. [19-21,24,25] and the
references therein for this section.
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2.1.  Review of the all-order WKB expansions
The Stark effect involves a couple of 1D Schrodinger equations which will be discussed in
Sect. 3. Let us consider the equation for a generic potential Q(x, h):

d2
(—hZ@ o, h)) V() =0, (1)
where

O(x, h) = Qo(x) + Oa(x) 2
consists of one classical potential Qy(x), and an additional A-dependent term Q,(x)h?, usually
called quantum potential. In the exact WK B analysis, the coordinate x and the reduced Planck
constant & are taken to be complex variables, and # is regarded as an expansion parameter. One
starts the WK B analysis by setting an ansatz:

1 X
Y(x) =exp <i_'z / P(x, h)dx) , 3)

where
P(x,h) = pu(x)R" )
0

is a formal power series. Substituting the above solution for a wave function into Eq. (1), we
arrive at the Riccati equation:

P (x) = Qo(x) — P*(x) + 1* Qa(x). )

This equality holds to all orders; matching order by order reduces to the following recursive
relations for p,(x):

n—1
Pn(x) = " 2o (; Pn—i(X)pi(x) + P;l(x)> , nx=3, (6)
with
AW =0, p=—29 e L (R4 — o).
0 ’ 2po(x)’ 2po(x) ! :
The odd and even powers of P(x, h)
Peen(x, 1) = Y poa(OR™, Poaa(x, 1) = ) prari ()R, )
0 0
were related by
P h) = hd log P. h 8
odd(xv )— _Ea og even(xv ) ( )

Hereafter we omit h-dependence in the function P(x, /). Then the WKB solution (3) can be
expressed in terms of Peyen(X) as

PEC) = ﬁ exp (i% / ' Pevenoc)dx) , ©)

where a is a reference point for the integral, and is often exclusively chosen as a turning point,
that satisfies Qp(a) = 0. The prescription £ in the exponential signifies the properties of the
solutions: exponentially suppressed, exponentially growing, or oscillatory in the given region of
x. The generic solution normalized at a consists of the linear combination of two independent
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components ¥E(x):

bl = e (h f Pevenoc)dx) b e ( : / Peven(x)dx) . (10)

One can formally include the all-order quantum corrections into the wave function by expand-
ing Eq. (9) to orders of h:

YE(x) = exp <i% / xpo(x)dx> Z Y (R (11)
a n=0

Hereafter, we specify po(x) = /Qo(x). This formal series includes an exponential prefactor
and a formal power series with its coefficients x-dependent. It is of course divergent in general.
The Borel resummation provides a procedure to deal with this sort of divergent series. We will
consider its utilization in the formal series in Eq. (11).

2.2.  Stokes graphs and connection formulas

2.2.1.  Borel resummation and Stokes graphs. We consider a generic form of formal series
with an exponential prefactor, which appears at the formal expansion of the WKB solution for
the wave function in Eq. (11):

Sy =e 2> a,h", ag(-1,-2,-3,--}, (12)

n=0
where 4 is a constant independent of 7 and a, diverges factorially @, ~ n!. Its Borel transform
is

BLA1(z) = 2_(; ﬁ(z — Ay, (13)

which transforms the divergent formal series (12) into a well-defined function in the new vari-
able z. This function has a finite radius of convergence and can be analytically continued to a
domain including the real z-axis, with possible singularities, such as poles. We often call this
complex z-plane the Borel plane. If there is no singularity along the positive real line, one can
define the Laplace transform of Borel-transformed function B[ f](z) as

SUf1(h) = LIBLf1(2)] = f:o dze”*BLf1(2)- (14)

It is the Borel resummation or simply Borel resum of the original formal series (12), and we say
the formal series (12) is Borel summable in this case. The directional Borel resummation can be
defined similarly if there is no singularity in the direction with angle 6:

Solf1(h) = Lo BLf1(2)] = /A dze” 7 BLf1(2). (15)
One may note this sort of directional summation is equivalent to writing
Sslf1(h) = Solf1(e” ), (16)

which indicates the Borel resummation for formal series at the angle 6 is equivalent to the
resummation at angle 0 by rotating & to ¢ h. We will omit the subscript 0 in S; when # = 0. It
is much more fruitful to look at the singularities in the Borel plane; let us simply consider there
is a single pole along the 6 ray, then the integral defined in Eq. (15) makes no sense. But we can
bypass the pole by small deformation from above and below; this suggests defining the lateral
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—zo(z)

v

Z()(:L')

Fig. 1. The Borel plane for the Borel transform of " (x). The arrow represents the integral contour for
6 = 0. The right red point denotes the corresponding Borel pole.

Borel resummation for Eq. (12) as
So£[f1(h) = %lil}) Lo+s[BLF1(2)]. (17)

Let us now consider the formal series expansion for the wave function in Eq. (11). We will
study its Borel singularities and Borel summability. The general Borel resummation procedure
is applicable, but the expansion coefficients /7, are parameter-dependent on x. This parameter-
dependence promotes the singularities in the Borel plane to be x-dependent and then defines
curves in the coordinate x-plane, which are Stokes lines introduced later. At first, we do a Borel
transform of Eq. (11) to suppress the divergence:

o0 + X
Bv; ()] () = ; %(;C) (z£z)"", z= %/a po(x)dx. (13)

Now we obtain a convergent function defined in some domain in the z-plane; it is generally
meromorphic with possible singularities and one can further continue the function into the
whole z-plane. Its Laplace transform can be defined accordingly unless the integral contour
encounters Borel poles:

e’ oo

Sy [wE] (h) = / e FB[YEW] )z, 60 = arg(h). (19)

FZzo0
Figure 1 shows the definition of Sy[y](h) for & = 0. Hereafter we will use ¥(x) to repre-
sent Borel-resummed wave functions for simplicity without confusion. It has been proved that
+2z¢(x) are singular points of the Borel transform (18) [19]. The location of +zy(x) depends on
the coordinate x, so the integral contour can touch the Borel pole zo(x) in Fig. 1 by moving in
the complex x-plane. This condition can be expressed as

1 X
Im 7 / po(x)dx =0, (20)

which defines Stokes lines emanating from a turning point a. Moreover, the real part tells us
which one in ¥X(x) is growing or decreasing, so we attach each line + or — to specify the
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II

Fig. 2. The Stokes lines emanating from a simple turning point a. £ labels the orientations of the Stokes
lines. The arrow indicates the continuation path from Stokes region I to I and the red wavy line is the
branch cut.

behaviour of the solutions. It is determined by the sign of the following quantity:

1 X
Rei_i/a po(x)dx. (21)

The positive value indicates v+ (x) increases exponentially, whereas v~ (x) decreases exponen-
tially. If it is negative, v~ (x) increases whereas ¥ *(x) decreases.

For each turning point, one can define the corresponding Stokes lines, and there are three
Stokes lines for a simple turning point, i.e. the simple zero of Qy(x). Fig. 2 shows the Stokes
lines emanating from simple turning point a to complex infinity. One Stokes line might start
from one turning point, the origin or infinity, and end at another turning point, the origin or
infinity. The Stokes line connecting two turning points is degenerate and can be resolved by
saddle reduction via introducing a small deformation for integral contour § — 6 £ §.

The Stokes lines divide the coordinate plane into several adjacent regions, called Stokes re-
gions. The collection of all the Stokes lines composes Stokes graphs. In each Stokes region,
the formal series of the WKB solutions is Borel summable to define the analytic solution
for each region. However, if one continues the solution in one region to another adjacent
region by crossing a Stokes line, one of the components in ¥+ gets a discontinuity whereas
the other one does not. This is quantitatively described by the connection formula in the next
subsection.

2.2.2.  Connection formulas and quantum periods. As discussed in Sect. 2.2.1, the Borel sin-
gularities for WKB solutions are captured by the Stokes lines. These singularities introduce
discontinuities when the WKB solution in one Stokes region is continued across the Stokes
line to an adjacent region. In general, this property is concluded by the following connection
formula [21,24].
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o If crossing a Stokes line anticlockwise at which the 1+ is dominant, 1t gains a discontinuity
controlled by ¢, whereas 1~ doesn’t change,

Yty T, YT -y (22)
As aforementioned, the symbol for the Borel resum is omitted.

o If crossing the Stokes line anticlockwise at which the ¥~ is dominant, ¢~ gains a disconti-
nuity controlled by ¥*, whereas ¥ remains unchanged,

U2 A AN A (23)

o If crossing a Stokes line clockwise, the formulas differ by flipping the 4 to — in front of the
I

o If crossing a branch cut emerging from a turning point anticlockwise (clockwise), the dom-
inant and subdominant components exchange (with a minus sign),

vt — £y, ¥ — £y T, +for anticlockwise, — for clockwise. (24)

One defines the matrix M, and M_ to represent Egs. (22) and (23),

welp ) e )

which is called the monodromy matrix. Then the connection formulas state that the WKB
solutions in one Stokes region can be obtained via multiplication of the monodromy matrix
by the solutions in the adjacent region, specifically

+I JrH
=M 7], (26)
(wa,l> <wa,ll>

which is represented in Fig. 2 where M = M.
Furthermore, the two independent wave functions normalized in a turning point ¢; denoted
as wjj, and wj; normalized in another turning point a, are related by normalization coefficients

N* defined as

aya
1 [*
N;az = exp (j:£ / Peven(x)dx) , (27)
ay
which induces the following connection formula to relate wave functions normalized in a, to
ap.

Yo (X) = Ny Vs (). (28)

In the latter context, we will intensively use the following notation:

1
V, = exp <£ f Peven(x)dx) , (29)
y

where y is the cycle encircling two turning points a; and a,. It is usually called Voros multipliers
or Voros symbols in the literature. In the same way as for the monodromy matrix, we can express
the above connection formula in matrix form, which transforms the wave function basis at
turning point a, to a;:

Vi) Vi) vio0
! = Nalaz 3 ) Nalaz - _1 . 30
(‘/’al (x)) (‘paz(x)) ( 0V 2) .
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Of equal significance, we rename the quantity ¢, Peyen(X)dx the quantum period or quantum
WKB period corresponding to the cycle y:

M, (h) = f Prven()dx. 31)
Y

It is now necessary to re-explain notations. Corresponding to Eq. (1), there exists a classical
curve

¥ = Qo(x), (32)
which is called the WKB curve. Geometrically it defines a Riemann surface Xwgg, and the
quantum period is the integral of meromorphic differential Peyen(x)dx along the one-cycle y €
H{(Zwxg). The leading order of the quantum period is often called the classical WKB period
or classical period

no = ﬁ po(x)dx, (33)

which plays an important role in the history of quantum mechanics. The well-known BS quan-
tization condition can be written in terms of the classical period as

1
Hg/o)zzﬂih<n+§>,n=0,1,2,..., (34)

where y is specified to be one cycle around the classically allowed region. It is widely used for
two-turning-point problems by accounting for the classical period integral encircling turning
points a; and a; in the classically allowed region. Here i appears since our notation for po(x) =
VvV (x) — E, which is different from the conventional choice po(x) = VE — V(x).

We note that Peyen(x) is defined by the recursive relation in Eq. (6). Then the Voros symbols
(29) and quantum periods (31) are asymptotic series in f:

M, (h) = 7§ (i Pan(x, h)h2"> dx ~ i m{n™, (35)
14

n=0 n=0
with their coefficients diverging factorially:
i ~ (2n)l. (36)
Since the WK B solutions in this subsection are resumed functions, one should regard the Voros
symbols and quantum periods as Borel-resummed quantities, but we will omit the notation of
Borel resum S.

So far, we have introduced Stokes graphs which are fully determined by the classical potential
0Oo(x), and connection formulas based on the all-order wave function and its Borel summability.
With these ingredients, we can analytically continue the WK B solution defined in one Stokes re-
gion to another region and rewrite the solutions in one Stokes region as the linear combination
of the wave basis for another region. In the content of the WKB analysis, these combination
coefficients rely on Voros symbols. In practice, proper boundary conditions are imposed for
problems of interest, which give an additional condition for these coefficients. The equality
that fulfils the boundary conditions is called the EQC, which is a functional relation in terms
of Voros symbols as follows:

Qs V) =0, (37)

where V,, with i = 1, 2, ---, r are Voros symbols on the relevant one-cycle y;. For example, the
EQC for a harmonic oscillator can be written as

14V, =0, (38)
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which is the BS quantization condition (34). We intend to derive the EQCs for the Stark problem
in the next section by following the above strategy.

3. Stark effect and its quantization conditions

Let us write down the Schrodinger equation for the Stark effect of hydrogen in a uniform elec-
tric field F oriented in the z-axis:
h? 1
(—7v2 ——+ Fz) U=FEWV, (39)
where atomic units are adopted, and E represents the energy. r denotes the radial coordinate.
We keep a reduced Planck constant A, which is set to 1 in the numerical calculations of the
energy spectrum.

3.1.  Langer’s modification and boundary conditions
We introduce the parabolic coordinates (&, n, ¢) which are defined by

x+iy=.Ene¥, &=r+z,

1
z=5E—n), n=r-z (40)
r=5(E+n), tang =2,

2 X

where r = \/x2 + y2 + 22,0 <&, n < +oo,and 0 < ¢ < 2. If we consider an ansatz for wave
function W as

1 .
N img 41
@W1(§)W2(77)€ (41)

the 3D Schrodinger Eq. (39) reduces to a couple of Schrodinger-like equations with a centrifu-
gal term:

&> F_E A, Rm-1)
2
( hd§2+25_5_?+T)%(5)_0

&> F E 4, Rm-1)
e ——p— = = =0, 42
where A| and A, are separation constants satisfying 4| + 4, = 1. One can relate the parameters
above to those of the potential in the standard form given by Eq. (1) with

E(Z-l— D

Qu(x) = uox + uy +%, 0a(x) = 43)

This enables us to write down the expressions for Qy(x) in terms of F, E, and A4, , corresponding
to the equations in &£- and n -coordinates, respectively:
E 4, F E 4,
0¥ = Tx— 5 2L or @y = —x -2 - 22 (44)
X 2 X
In both cases, ¢ and m are related by

Z-i-l
2

=’%’ (45)

Equations (42) are suitable for the WKB analysis including all-order expansions but do not
provide an accurate leading-order approximation around the origin to the wave function. We
use the generalization of the Kramers—Langer substitution [9,10] by

2
R+ 1) — R0+ = )2 — % (46)
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or in terms of m as

R*(m* — 1) N h%m2 B h_z @7

4 4 4

Here another parameter #; is introduced as an implicit factor, while 7 is an explicit expansion
parameter. The different partitions of the centrifugal term as above represent different expan-
sion schemes but give the same physical solution when #; = A. The WKB expansions for Eq.
(47) do not match term by term except for the first order and infinite order; see Ref. [10] for
detailed discussion. Since #; is not involved in power expansions, we can directly set it to 1 at
the beginning. This generalized Langer’s modification suggests splitting the centrifugal term
into two parts as

2 F E 4 2 R
—h2—2+—5————1+m—2——2
de 4 2 & 482 4¢

(_ ,d> F E A4 m* R

W ——p—— -2 = 0. 48
T r T T 4n2)wz(n) (48)

)‘/f1(5)=0,

Now we can set

_F_ E A R
Qo(s)—zf—f—?-i-@, Qz(f)——@, (49)
for &-coordinates and
F E 4, 1
Qo) ==Zn=5 ="+ g5 Q) =-75 (50)

for n-coordinates. Let us then check the behaviours of the wave functions at the boundaries. It
is enough to take account of the leading-order WKB solution of Eq. (9) at this stage:

I o
PO~ s e (ig / Po(x)dx>- (51)

We temporarily set i = 1 for simplicity, and consider the £é-equation at first. Near the origin,
the inverse square term dominates the wave function:

m? |m| 1

Qo(§) ~ 2 po(§) ~ — ¢ (52)

2 &
Then the wave function near the origin behaves like

4 N 1 § N %:l:"zil,v gﬁ-‘rl’ fOI‘—|—,
00~ sew(= [ o) ~ & {g_e, o (53)

where Eq. (45) is used at the last step. We then obtain one normalizable solution ;" (§), that is
proper for the Stark problem, and one divergent solution v, (§). Now let us turn to consider
the behaviour of the solution at infinity: the dominant contribution to py(§) is

F F
Qu(&) ~ T&. pol§) ~ FE2. (54)

It is easy to find the following asymptotic approximation:
i) ~ g et (55)

We get one increasing solution and one exponentially suppressed solution; the latter is what
we expect, namely ¥, (§) at the asymptotic infinite region. The wave function for the -
equation can be analyzed in the same way. Near the origin, it is entirely the same as that for the
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log10(F) logio(F)

o o o o o o 0 o o o o o o
A o o o o o o o o o o
[T i i i 2 & & @ % s % E
o A o A A A
o [e] o o A a o A A A A A
i o o o o o g o o A
(a) Distinct regions for the £-equation (b) Distinct regions for the n-equation

Fig. 3. The left and right panels show the three distinct regions of parameters (F, m) for the &- and 7-
equations, respectively, according to the Stokes graphs. We will denote these three regions, I, II, I11 from
small F'to large F respectively for both equations. m takes values from % to 3 with steps of a half-integer,
whetras F = 0.03, 0.05, 0.1, 0.5, 1, 5, 10. We use the logarithmic axis for F.

&-equation:

" 1l G for+,
VEG) ~ exp(i / Po(n)dn> ~ g {"_K - (56)

n~*,  for

1
Vv po(n)

The boundary condition requires the 15" component to survive. At the large-n region, the dom-
inant part for po(n) changes to

Qo) ~ ~n. polm) ~ iz, 57)

[SIE

then the wave function asymptotically behaves like

V)~ ie
This time we obtain one outgoing wave v/, (1) and one ingoing wave ¥, (1); the former satisfies
the required boundary condition.

Next we are going to apply connection formulas from Sect. 2 to relate the wave functions
from one Stokes region to another region and impose the above boundary conditions, which
generates a functional relation for the quantum periods and gives us EQCs for the Stark prob-
lem.

%)

(58)

3.2.  Quantization conditions

The quantization conditions can be derived from the Stokes graphs incorporating boundary
conditions discussed in the last section. For Egs. (48), there are three turning points a, b, and
¢ when m # 0. As for the m = 0 case, we will deal with it separately in a later calculation. One
can plot the Stokes lines starting from each turning point by solving the condition in Eq. (20).
The Stokes graph can be established by combining all the Stokes lines in the complex &- or
n-coordinate plane.

We find the interesting phenomenon that the Stokes graph changes its topology when chang-
ing the values of F and m. These are three distinct regions of parameters in the (F, m)-plane
for both equations (see Fig. 3) and each of them corresponds to a special configuration of the
Stokes graphs as graphically shown in Fig. 4. These regions are delimited by the curves in the
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(c) Stokes graph for £-equation in region II¢  (d) Stokes graph for n-equation in region II,,

(e) Stokes graph for &-equation in region III; (f) Stokes graph for n-equation in region III,

Fig. 4. Stokes graphs and their transitions. The orange cross denotes three turning points a, b, and c,
respectively. The blue point is the origin. The red wavy lines are branch cuts and the green arrow repre-
sents the continuation path. y, v, and y, are one-cycle encircling turning points, dashed lines indicate
the contour enters the second sheet after crossing a branch cut. The Stokes lines are represented by black
lines with 4+ and — indicating the orientation. Iy, I,,, and I, are adjacent Stokes regions.
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(F, m)-plane characterized by

1 C C
m / JOuE)E =0, Tmo / JOoE)dE = 0, (59)
b a

for the £-equation and

1 C
m / JOo(n)dy = 0, (60)
b

for the n-equation. Once the above conditions are satisfied, one Stokes line connects two turning
points, and the Stokes graph becomes degenerate. These conditions are involved, since E, 4, »
depend on F and m, and are determined with F and m specified. There is no simple way to
determine the delimited curves explicitly to our knowledge. In principle, one can figure out
the corresponding Stokes graph for specified F and m with E and 4, , determined by other
methods to confirm which region it belongs to. We use F; 1(m) and F: »(m) to denote the first
and second critical values of F for a specified m, and the similar notations F, 1(m) and F, »(m)
for the n-equation.

Let us now focus on the Stokes graph for the £-equation in the region I;; its Stokes graph is
shown in Fig. 4(a). To derive the quantization condition, we have to know the relation of the
wave functions between the origin and infinity, which can be accomplished by using connection
formulas from Sect. 2. One can continue the solutions at infinity to the origin along the green
arrow depicted in Fig. 4(a); this procedure can be written as follows.

(1) We start from the wave function basis in Stokes region I, normalized at . It is necessary
at first to cross the branch cut which exchanges the exponentially suppressed and growing
solutions; this progress can be written as

wi©) ~ \voL®©
where the operator ¢ maps the function in one square sheet to one in another sheet.
(2) Now we are working in the same sheet, we continue the wave functions wjflx (&) to cross

the Stokes line labelled by + anticlockwise to get a basis in the intermediate region I,
normalized at the same turning point ¢ by the multiplication of the monodromy matrix

M,
+ +
Vo (8) V1, ()
(3) We obtain the basis in the region I, normalized at a, to continue the procedure along

the green line. It is necessary to arrive at the basis normalized at b for the same Stokes
region [,,,. It is accomplished by the normalization matrix

) )
aln 5N = Ny [ 72 63
(w;lm (& )) ’ (w,,,lm €) (63)

(4) In the same way as for the second step, by crossing a Stokes line labelled by + anticlock-
wise, one gets the basis in the region Iy normalized at b:

v ©\ _ L (n© o
(z/f,;m@)) = *(w,;IO@) ‘ (64
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(5) We finally pull back the normalization from b to a for comparison:
+ +
Vi) Ui ()
Accounting for all these transformations, the two bases are related as

i\ v voar e (F®Y _ (B 40 V)0,,6) y
(tw;flm(é)> M| =) Vo () > (%)

where V), 1s the Voros symbol, and y is the trajectory enclosing turning points b and a. This
expression relates the wave function basis at positive infinity to that around the origin. We note
that this formula is very similar to the Q-function in the ODE/IM correspondence [28] and
also the numerical method used in Refs. [5,6]. The boundary conditions for Egs. (53) and (55)
require Vo, and twilm to vanish, which deduces the following quantization condition:

1
0 =14V, =1 +exp  § Prn(ed ) =0 a
Y
We can then write down the BS-type quantization condition
1
I, (h) = % Poen(§)dE = 2min <n5 + 5) ,ng=0,1,2,.--, forregion I¢, (68)
Y

where n; denotes the quantum number corresponding to the £-coordinate. Let us emphasize
that the quantum periods should be understood as their Borel resummation. This quantization
condition was presented for the Stark problem a long time ago, e.g. in Ref. [13], where the
leading-order contribution is considered. Here we derive it rigorously and show it is exactly
satisfied when considering quantum corrections.

Then, we turn our attention to the Stokes graph for the £-equation in regions Il;, as shown
in Fig. 4(c). We follow a similar process as discussed before. The connection of the solutions
from infinity to the origin for Fig. 4(c) is given by the matrix multiplication

(l ;Im(g)) = M+Na<?M+NCbM+Nchca( ilo(é))

Wi () G
_ ( S ® i+ Yy, + Vylvnw;h@)) | ©)
V,1,(6)
Then the boundary condition requires
AWy Vy) =14V, +V,, =14V, (1+V,") =0, (70)
which is the EQC for region Il;. In the last equality, we use the fact
I, +I1,, =II, or V,V,=YV,. (71)

We can write the quantization condition of the modified BS type from Eq. (70) as
| 1
I, (h) + log (1 + e*ﬁ”n””) = 2rih <nS + 5) ,ne =0,1,2,---, forregionll;.  (72)

Here I, (h) and I1,, (k) are also Borel-resummed quantities. It was found that V,, gives an
exponentially suppressed contribution, so the BS quantization condition still gives an approx-
imation in the small-4 limit. The additional logarithmic term plays a role in nonperturbative
correction. This becomes readily apparent by expanding the logarithmic term.

It is obvious that the connection problem for region IIl; is the same as that for region Iz from
the configuration of the Stokes graphs, Figs. 4(a) and 4(e). So we can directly write down the
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(a) F < Fer(1), =0 (b) F < Feq(1),0=06>0

() F>Fei(1),0=0>0 (d) F>Fea(1),0=0

Fig. 5. The transition of Stokes graphs for the &-equation with rotating 6 = arg(h).
EQC:

1
I, (h) = % Poyen(§)dE = 2min (l’lg + 5) ,ng=0,1,2,---, for region I1l¢. (73)
¥

One may wonder about the continuity of these three EQCs, which is clarified by the saddle
reduction of the Stokes graphs. It is proven the saddle reduction induced by Eq. (59) is equiva-
lent to the rotation of 7. Fig. 5 shows the transition of the Stokes graphs between regions Iz and
II; by tuning F and rotating 6 = arg(h). One starts from a Stokes graph for F' < F¢ (1) with
arg(h) = 0 and m = 1 fixed, whose mutation by rotating & with a small § does not change the
configuration of the Stokes graph as indicated in Figs. 5(a) and 5(b). The Stokes graph moves to
Fig. 5(c) continuously by increasing F with arg(#) fixed. Then as we continuously change arg(h)
to 0 with F fixed, the Stokes graph becomes Fig. 5(d). During this process, turning points b and
¢ are connected by one Stokes line at an angle ¢ with 0 < ¢ < §. And quantum period IT, (h)
exhibits singularities in its Borel plane at direction ¢; the discontinuity of the quantum period
is given by the DP formula [26]:

exp (%& [ny]) — exp (%5_ [ny]> (1 +exp (—%5 [nyl])> , (74)

where Sy are two lateral Borel summations for & = 0 defined in Sect. 2. The DP formula en-
sures the EQC or complex resonant frequency is continuous during the transition of the Stokes
graphs. Furthermore, it gives the resurgent structure of the quantum periods, which indicates
the discontinuity of the perturbative contribution is governed by the nonperturbative term. See
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Refs. [37,38] for a similar discussion. The continuity of the EQCs between regions Il and III
can be clarified following the same argument.

The derivation of quantization conditions for the n-equation is parallel to the above analysis.
The boundary condition sorts out the ¥ () component at the origin and infinity, and there is
no relevant branch cut to cross. One can write down the relation of the wave functions along
the continuation path by matrix multiplication:

v () - ~1 11 (1)
a,1so =M NacM—Nc M NCN(?a .
(1//;130(77)> ! e (‘/’a,ro(n)
_ (VD ) = (VY Vv, (1) (75)
WV, () + (L V) v, (n)

for region I,
er (77) —1 —1 WJFI ('7) +1 (77) - i(l + Vy)iﬁ] (77)
d- oo =M_ " NyM_ " Np, | %% =|"%h B %0 76
(w;lm(n)> v Nap Mo o (z/ra,%(n) ) 7o
for region II,, and
v () 1 -1 -1 .G
B loo =M NyeM_ NpyM_ Np-Ney @l
(w;lm(m) e e (wa,h,m)
— ;,_Io(n) —i(l+ Vy, + Vylv)/z)wglo(n)
w;lo(n)

for region I1I,,. We use M;l because of the clockwise continuation. The quantization condition
can be written as

(77)

1
IT,(h) + log (1 + e n (h)) =2mih <n,, + 5) , for region1,), (78)
1
I1,(h) = %Peven(n)dn = 2mih (nn + E) , for region I1,,, (79)
1
IT, (h) + log (1 R (h)> = 2mwih (n,7 + 5) , for region I1I,,, (80)

where n, takes values in nonnegative integers. The quantum periods are Borel-resummed as
well. Similarly, the last term’s contributions are exponentially small, so it can be neglected in the
semiclassical limit. The continuity of the two EQCs comes from Eq. (74) by a similar argument.

3.3.  Computation and results

Now we utilize the quantization conditions in the last subsection to compute complex reso-
nant frequencies and compare them with the results from the RPM [34] that shows very high
precision. We first establish the classical periods in terms of elliptic integrals.

3.3.1.  Classical periods. Let us parametrize the potential Qy(§) in the £-equation as
o + & +wé +uzs  up(§ —a)§ — b)(E — o)

00(&) = = = = , (81)
where the coefficients in the potential are related to Stark parameters as per Eq. (49). We con-
sider the relevant period corresponding to one-cycle y which appears in the quantization con-
dition. The integrals for one-cycle y; can be obtained by the rotation of roots a — b, b — ¢,
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and ¢ — a. The classical period is

“d
N —2yi [ VE=aE-hiE -0

=M/;?J<K%H4HM+Mﬂ@ﬁk», (82)

where
_ble+2a)+cla—c) —c? 4 ac + bc + 2ab
o 3 - 3 ’
_(c—a)(a+b+c)7 k2=a—b’ ol — . (83)

3 a—c a

K(k), E(k), and (a2, k) are the elliptic integrals of the first, second, and third kinds, respec-
tively [39]. The numerical calculation is a bit subtle since the turning points and integral con-
tours are all in the complex coordinate plane, so one should be careful about the branch cuts

and sheets. Similarly, for the n-equation, we parametrize the potential Qy(n) in Eq. (50) as

ugn® + uin® +uon +us  uo(n — a)(n — b)(n — ¢)

[ =

Qo(n) = 5 = 5 (84)
n n
The classical period is evaluated as
b
dn
Y =20 [ L/ir=a =5 =0

=4 [0 (sK(k) — tE(k) — beTl (o, K)} (85)

c—a
where 1y = —% is negative, which gives an overall imaginary unit i. These formulas have already

appeared in the literature, e.g. Ref. [13], but the conventions are different from an imaginary
unit 7. It is almost impossible to compute a quantum period by direct integration, yet there is a
systematic method based on the Picard—Fuchs equation to evaluate these quantities. It can be
sketched by introducing the following fundamental periods.

3.3.2.  Fundamental periods. We first define the differential

1
}\.1 = auﬂ/ Qo(.X)dX = de,

1
- 175} d = d 5
#2 = de QI =

1
)\.3 = 8u3\/ Q()(X)dx = mdx (86)

We use x to represent & or n uniformly for simplicity. It was found that all p,,(x) can be expressed
by the combination of the above fundamental differentials up to a total derivative

3
pan(x) =Y " + (). (87)
i=1

The A expansions for the quantum periods can be evaluated by determining the Picard—Fuchs

coefficients cl(.") and the fundamental periods, which are defined as

(M= §h. i=1.2.3, (38)
Y

17/30



PTEP 2024, 013A02 K. Ito and J. Yang

It can be evaluated in terms of elliptic integrals:

l C
(Ie); = f f M M( mK(k)+«/—a—cE(k)),

i 1
(Hé)z_f b & Qo(é) = Vi Ja—e k)

i) %k / i 1
TR bE\/Qo(S T JiaJa—c

Similarly, the fundamental periods for n-coordinates are evaluated as follows:

(a2, k). (89)

1 c
) = ——— K(k) — /¢c—aE(k) ),
(M = ——= (=K - ve=akh))
1 1 1
I,); =——+ K(), (II —T(a", k 90
( 77)2 \/U_O m ( ) ( 77)3 \/—am ( ) ( )
where 1 is negative as well. Then the quantum periods are given by
Me (1) = 321" (e (Mg 1 + ¢ (e o + (T )3 ) 1)
n=0
where the Picard—Fuchs coefficients for the first several orders are listed as follows:
2u 4y
(0) 1 (0) 2 (0)
A= e =3 G T
(1) Uup ( Uup ( 2 6u0u2) + 9u0u1u3)
a = 12 (= 18uquiuzuz + ug (27uor3 + 4u3) + 4ujus — uh3)’
uo (Quotrus — 6urus + uyu
C;]) _ 0( ouuU3 1 3 1 2) Cél) — O (92)

12 (= 18uguiurus + ug (27uor3 + 4u3) + 4ujus — uhi3)’

The higher-order coefficients are too long to list here. We use short notations uy = f;, U = —
ur=—Ay,and us = ”’72 for the £-equation, and ug = — £,
for the n-equation here. The computation indicates all c(”) 0 for n > 0. All these coefﬁ01en
are independent of the one-cycle from its definition, so they also apply to y; and y».

§ 1| by

b
uy = E u2=—(1 — 1) andu3 ’

3.3.3.  Numerical calculations. Although we have derived the EQCs in terms of Borel-
resummed quantum periods, it is of course impossible to calculate all-order quantum correc-
tions explicitly. However, one can solve the EQCs by accounting for the first several orders of
quantum periods. Owing to the divergence of all-order expansions of quantum periods, nu-
merical techniques such as the Borel-Padé method are necessary.

It is straightforward to calculate the complex energy by simultaneously solving quantization
conditions for the &- and n-equations. We show the numerical results for F = 0.03, 0.1, 10 and
m from 0 to 3 in half-units in Table 1. As aforementioned, % in the EQCs are set to 1 in the
numerical calculations. m = 0 is a special case where the turning point b collapses to 0, and
the elliptic integral of the third kind II(«?, k) in T, (k) becomes zero. The authors in Ref. [13]
adopted the BS quantization condition with a » — 0 limit, but the numerical test suggests it is
better to incorporate an additional term regardless of F. Specifically, the EQCs for the m = 0
case can be written as

I1, (h) + log (1 + exp (—%l‘[m(h))) =2mih (n + %) . (93)
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Table 1. Complex resonant frequencies E for distinct magnetic quantum number m with electric field
strength from weak to very strong. The first row stands for the results computed from the quantization
conditions in Eqgs. (68) and (79) for F = 0.03, 0.1, and the conditions in Egs. (72) and (80) for F = 10.
The m = 0 case is calculated separately as explained in the text. Here only classical periods IT® are
considered. The second row is for the RPM. [a] means 10~¢; this notation is also used later.

F 0.03 0.1 10
m=0 —0.500961 — 2.151[8]i —0.517428 — 0.016599i 0.576449 — 4.28595i
—0.502074 — 1.119[8]i —0.527418 — 0.007269i 0.608272 — 5.57802i
m= % —0.226066 — 0.047773i —0.274726 — 0.092727i 2.03209 — 7.57066i
—0.240498 — 0.007357i —0.275297 — 0.099408i 2.29507 — 7.89113i
m=1 —0.153377 — 0.041476i —0.157815 — 0.197065i 3.37685 — 9.53549i
—0.153357 — 0.044424i —0.154012 — 0.201879i 3.59267 — 9.82232i
m= % —0.103499 — 0.084042i —0.071613 — 0.289995i 4.50685 — 11.2655i
—0.101927 — 0.085442i —0.070198 — 0.293556i 4.69979 — 11.5350i
m=2 —0.065022 — 0.122749i —0.003934 — 0.373115i 5.51089 — 12.8427i
—0.064236 — 0.123769i —0.003500 — 0.376159i 5.68990 — 13.1015i
m= % —0.034074 — 0.158318i 0.053511 — 0.449190i 6.42954 — 14.3096i
—0.033645 — 0.159169i 0.053447 — 0.451947i 6.59891 — 14.5609i
m=73 —0.007590 — 0.191361i 0.104412 — 0.519933i 7.28523 — 15.8465i
—0.007353 — 0.192112i 0.104058 — 0.522512i 7.44738 — 15.9374i

Table 2. Complex resonant frequencies for # =5 and m = 1, 2, and 3. The first and second rows repre-
sent the results from BS quantization conditions and EQCs, respectively. Here only contributions from
classical periods I are included.

F=5 m=1 m=2 m=3

Ist-order BSQC 2.32739 — 7.03055i 3.54168 — 9.13333; 4.58412 — 10.9252i
Ist-order EQC 1.70365 — 5.72785i 3.12615 — 7.76650i 4.26965 — 9.58103
RPM 1.87776 — 5.82185i 3.24425 — 7.91809i 4.37684 — 9.72372i

where I1,,,(R) is the quantum period corresponding to the one-cycle encircling two distinct
turning points. It is computed as IT, () in the next section, where we use subscript y 1, to dis-
tinguish it from y in this section.

As for nonzero m, we adopt EQCs for proper regions derived in the previous section. We note
that the two equations may take different types of quantization conditions even for the same
F and m from Fig. 3. At this stage, we only consider the first-order contribution, namely 1.
For convenience to compare with other methods, both quantum numbers 7 and n,, are set to
be 0. It is the worst case for applying the WKB method since the WK B method approximates
much better for large-n states, whose calculations are also straightforward. We find even the
first-order WKB analysis gives good estimation for a wide range of parameter choices. F =
0.03 is already a strong field intensity in the atomic unit. If one examines for a very weak field
F, the result shows high precision as in Ref. [13]. The calculation indicates that even for a very
strong field, e.g. F' = 10 here, the approximation is also efficient.

We also find the effect of the logarithmic term in modified BS quantization conditions. Table 2
shows the complex energies for a strong field intensity ¥ = 5 and m = 1, 2, 3. Quantization
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Table 3. Complex energy frequencies for electric field strength F'= 0.005 with magnetic quantum number
m = 0and m = 3, respectively. Here we use BS quantization conditions for both cases since the logarithmic
corrections for m = 0 are very tiny and can be ignored.

magnetic quantum number(72) 0 3

O(h%) —0.5000265658500433 —0.0402674 — 0.0326842;
O(h?) —0.5000562669655335 —0.0401851 — 0.0327634i
O(h*) —0.5000562847698887 —0.0401867 — 0.0327546i
O(h®) —0.5000562847937314 —0.0401877 — 0.0327561i
O(hd) —0.5000562847937927 —0.0401869 — 0.0327561i
RPM —0.5000562847937930 —0.0400286 — 0.0328640i

conditions including the logarithmic term give closer results to exact values. Our observation
further implies the imaginary part gets corrected significantly by the additional modified term.

One of the new results in this paper is to include the quantum corrections to IT”. Table 3
exhibits the results for F = 0.005 by including the first several orders of quantum periods. The
energy level for the ground state is really precise, and the imaginary part of complex energy
for this case is very small' and neglected here. However, the improvement for m = 3 is not so
satisfactory. One quick reason may be that the quantum corrections are very large compared
with classical periods for this case, where the numerical approximation does not perform very
well even when the Borel-Padé technique is adopted.

It is not expected in general that the present method entirely matches with standard pertur-
bation theory results for each order of # except for the first order. This is because our method
is based on Langer’s modification, which is just a kind of expansion scheme. Different schemes
give different results, but they all coincide to include all-order / expansions. In practice, we
use the first several leading orders to approximate the exact Borel-resummed quantum WKB
periods as a numerical approach.

4. TBA equations and analytic continuation

The quantum period is the fundamental ingredient in the WKB analysis. However, it can also
be formulated into integral equations, namely, TBA equations from an alternative approach
based on the ODE/IM correspondence. The solutions of the TBA equations reproduce the
Borel-resummed quantum periods exactly. TBA equations including centrifugal terms have
been discussed in Refs. [32] and [36]. They correspond to the Stark problem without Langer’s
modification, which implies different (unphysical) boundary conditions at the origin for the
wave function and different WKB cycles. These TBA equations are therefore not relevant to
the spectral problem of the Stark effect with Langer’s modification for general . However, for
m = 0, both setups are the same. Then we can check the WKB correction of quantum periods
precisely.

4.1. Singular potentials and quantum periods

Let us now revisit the Stark problem without Langer’s modification to reconsider Eq. (42),
which is uniformly written as Eq. (43). We will consider quantum periods from the WKB
expansions at first. We use the same notations for Qy(x), I1(h), and y which should not be

' Approximately 107¢ as shown in Ref. [40].
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confused with the prescription adopted in the last section. The classical and quantum periods
can be written in terms of elliptic integrals.

4.1.1 Classical periods Denote two turning points e; and e; of Qp(x) in Eq. (43):

x> +urx +ur  up(x —e)(x — er) —uy £ ui — 4uour
Qo(x) = . = . , el = e : 94)

One can define three one-cycles on the Riemann surface defined by y* = Qy(x), which encircle
e; and ey, 0 and e, 0 and e; and are denoted as y, 1, and », respectively. Then the classical
periods corresponding to these three cycles are represented by the elliptic integrals as

“ 42 + k)E(—k) — 8(1 + k)K(—k
l‘I§,‘”=2/€1 \/mdx=2i(ez—e1)2\/zjl) SRl )6k2( L ),

Hgl)) — 2/0"’1 /Qp(x)dx = g‘ /uoe?m ((1 + m)E (%) —(m— I)K(%)> ,

0 4 3 1 1
no = 2/6 JOo(x)dx = —5,/”0762 <(1 + —)E(m) - <E - 1) K(m)) , (95)

where m = f—f and k = ;—: — 1. These periods are related by their definitions:

(0) () ) _
I, + T+ 1,7 = 0. (96)
The quantum periods are evaluated by the Picard—Fuchs method as well, which is composed

of a combination of fundamental periods.

4.1.2 Fundamental periods Define the fundamental differentials first for Qg(x):

1
)L] = au]\/ Q()(X)dx = 2\/ﬁd)ﬂ

1
)\2 = 8142\/ Q()(X)dx = mdx, (97)

and the associated fundamental periods

(I,); = f A (98)

14

They are represented as

B ezL__ ) 6_1 _ B € dx L 2i _
(ny)l—fel T = 21\/;1@( o). (Hy)z—/;l ¥ v A

(" dx ugme; 1 1
(H)”/l)l—/o m_z u—%<(l+m)E<E)—(m—1)K<n—q))

[Z5) 4 1
_u_l \/uoelmK(E)’ (1o
e dx 2 1
M= [ = —uoelmK(n_a>’ (101)
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B 0 dx B 4£ m
Mo = [ s =y Ko
3
—2 |22 ((1 n l) E(m) — (l . 1) K(m)) : (102)
mul m m

0 dx m
(Hh»:=lz;7aig==—;Q55Kmn. (103)

As with Eq. (87), there is a similar relation

2
pan() =) c"ai+d(x), (104)
i=1
which suggests writing down quantum periods by
M(w = Y 2 ()1 + (s ). (105)
n=0
where the subscripts y, p1, and 7, are omitted. The Picard—Fuchs coefficients c(l'g can be ob-
tained similarly as for Eq. (92); they are of course different although we abuse the same nota-
tions. The first several coefficients are listed as follows:
2u 4u
(0) 1 (0) 2
a=3 a =3
1 60(¢+1 1
% ( ( + )+ I Uuop ) ’ (1) _ Uply

c(l) = C T A .
! uy u% — 4140142 2 12 (uf — 4uou2)

6
where £ is related to m by Eq. (45).

: (106)

4.2.  TBA equations for the minimal chamber
Now we study the quantum period with its relation to the TBA equations. Let us consider

(—hzd—z Fupx+u + 24 w) ¥(x)=0. (107)
dx? X x2

The TBA equations for Eq. (107) within —1 < ¢ < 1 were first proposed in Ref. [32]:

* do'log (1 — Y (8")) (1 — e 2™V (9"))

o 27 cosh (8 —0") '

* de’"log (1 + Y1(9"))

w27 cosh(@—0)

Here —log Y;(0) and — log ¥ (9) correspond to the energies of the pseudo-particles in the inte-

log Y1(0) = —mlee +/

log V() = —e’ + / (108)

grable system. A new parameter & = —logh called the rapidity is introduced, which takes the
semiclassical limit 4 — 0 to & — oo. The leading contribution in the large-6 expansion of the
Y-functions is captured by the classical period:

B@)~ et =i § Oy = —im
14

Y@O)~eh m=¢ JO(x)dy =N (109)
7

Moreover, the higher-order expansions of the Y-function for large 6 are consistent with all-
order quantum periods from the viewpoint of their analyticity and asymptotics. When the mass
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Table 4. The first three order expansions of the quantum periods for the n-equation from TBA equa-
tions and the Picard—Fuchs method for m = 0 and F = 0.005.

n m" e nw e
1 —0.17229336876340  —0.00405302352020  0.17229336876307i  — 0.00405302352018
2 0.03925568525637  6.009535667649[7]  0.03925568525630i 6.009535667620[7]
3 —0.04967657873047  —4.680585382632[10]  0.04967657873075i  — 4.680585382628[10]

parameters m1; and 72 are complex, we set

my = |my| €%, m= |n%|ei‘ﬁ, (110)
then the driving term in Eq. (108) becomes mje’ = |my|e?+® and e = |ii|e?+®. We shift
0 — 0 — ip for Y(0) and 0 — 6 — i¢ for Y (0) so that the TBA equations become
< do'log (1 — ¥V (0" —ig)) (1 — e 2" (0" — i)
w0 2T cosh (0 — 0" — iy + ig)

’

10g1’1(9—i¢1)=—|m1|€9+/

- . ©do log(1+Y, (0 —i
log V(6 — i) = —|rin|e” +/ o’ logd+ 116 —id)) (111)
—co 27 cosh (0 — 0" — i + i¢)
These equations hold when
AT
o1 — @l < =, (112)

2
which defines a region in the space of parameters u, 1, and u. It is called the minimal chamber.

If we rotate A to redefine a new constant i = ifi, then the equation for the n-coordinate becomes

., d> F E A, Rm*-1)

R4 = i Wt A T 4

( dn2+4n+2+n+ a2

We find that the parameters for the ground state with m = 0 lie in the minimal chamber now.

We solve these TBA equations iteratively via the Fourier discretization by taking m; and 7z as

the initial seed and compute the expansions for the first several orders by the large-6 expansion
for log Y(0):

)wz(n) = 0. (113)

—log Y1(0) ~ mye’ + Y " m{"el 727,

n>1

—log ¥(0) ~ e’ + > ™l (114)
n>1

The expansion coefficients are

) — % /[R 2 Tlog (1 — 7 (6')) + log (1 — e ¥ (67))] 49,

o — %/eanl)e/ log (1 + 1 (¢')) 49, (115)
R

where we suppose 11 and 1 are real. The ODE/IM correspondence implies the following rela-
tionship:
im{" = (=1ym{, m® =ny, (116)

where m(lo) = my and /9 = 771 are mass parameters. Numerical results are listed in Table 4 for

= —% orm=0and F=0.005, where E and 4, are substituted as input parameters. We utilize
the precise value of E in Table 1 and A4, from the RPM to compute the classical period 1,
which equivalently gives mass parameters m and #71. Large-6 expansions m" are compared with
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Table 5. The first four order expansions of the quantum periods for fictitious parameters uy = 1, u; =
-3,y =1,and £ = %

n m” ® e )
1 1.4753093535348 0.0720517742848  — 1.4753093522562i 0.0720517728119
2 0.2019237645206 0.0000700313547 0.2019237643494i 0.0000700315059
3 0.2508765451711  —0.0045008552377 ~ —0.2508765449614i  — 0.0045008554033
4 — 1.4745761911756 0.0180119220334  — 1.4745761905853i 0.0180119208494

the quantum periods I calculated by the Picard—Fuchs method for the first several orders to
find them in good agreement.

4.2.1  Continuation of £. The authors in Ref. [36] found that as ¢ goes from —1 < £ < 0 to £
> 0, the TBA equations get modified from the singularities of the Y-equations in the complex
6-plane [35]. When 0 < ¢ < 0.28, which is named the first modified region in Ref. [36], the TBA
equations are

1 1 — Zniﬁff 0’ 1 — —2711'@)"7 0’ 0 o (£)
de’log ((1 —e ) (1—e ( )))+10g<e + ie )

log Y1(6) = —m¢’ / ¢ e
og 11(0) me R 27 cosh (0 —6) et — jen(®)

. ) 6’ log (1 + Y; (8'))
log Y(0) = —mie’ / : 117
0g Y (©) me g 2 cosh (6 —0’) (7
where o (£) is the zero of 1 — 2™ ¥ () in the |[Im(0)| < Z strip, and is determined by
) N R do’ log (1 + Y1 (6"))
it = —log Y (a1(£)) = “1“)—/— . 118
4 og ¥ (e1(0)) = rme v 27 cosh (a1 (£) — 0) (118)

The algorithm for solving these TBA equations refers to Ref. [36]. In this case, expansions of
the quantum periods are also modified by « ().

(n) . @n—1)0’ il §r (17 2wl (7 , _eCn=Den®
m = (1) (;/{Re {log (1 — &7 (6")) +log (1 — ¥ (6'))} do +217>

2n—1

A = % / 2D 1og (14 Y, (6')) 6. (119)
R

However, it seems the parameters ug, u;, and u, for £ > 0 are already outside the minimal
chamber. But we can test the relationship (116) for some fictitious value, ug = 1, u; = —3, up
=1,and ¢ = %, to confirm this correspondence holds on with ¢ correction. This is not covered
in Ref. [36]. We list the numeric results in Table 5 to compare with those evaluated from the
Picard—Fuchs method. See also Ref. [41] for further discussions.

As ¢ increases steadily, the second singular point for the Y-function gets involved, and the £
enters into the second modified region 0.28 < ¢ < 0.5. The TBA equations for this region are

do’ log ((1 — &Y (8")) (1 — e Y (9"))) n ¢’ + ien®
2w cosh (0 —6') 08 et — jenn (@) ]’
do’log (1 + Y3 (6")) | ¢ +ied®

g 2 cosh (6 — @) ¥ — jed© ]’

log Y1(0) = —mé’ +/
R

log Y (0) = —mie’ +

(120)
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Table 6. The first four order expansions of the quantum periods for vy = 1, u; = =3, up = 1, and £ = %
n m" Q) e g

1 2.6562188814454 0.1978678217639 —2.6562188791176i 0.19786781876613
2 1.9329727067243 —0.0054720259650 1.9329727050823; —0.00547202448659
3 1.6659668485245 0.0005791023097 — 1.6659668471070i 0.00057910105643
4 6.7514239599655 0.0064465654840 6.7514239558741i 0.00644657053159

where o1 (£) and &(¢) are determined by

il = e — / log(1+ Y, (0)) d&" e 4 e
N g cosh (c;(£) — 07) 27 e () — jed(t)

_ o2ty (g’ _ 2wty g/ / Q) | i ai(0)
_ni:mled(z)_/log((l e Y(Q))(l e Y(Q)))d—e—lo <e + je™ )
R

cosh (@(¢) —0") 2 ed(t) — jeen(0)
(121)
In this case, the quantum periods are modified by «(¢) and &(¢) as follows:
m _ =" Qn—1)0' 2wl Yy (g ol (g ), e D@
m" = e {log (1 — &Y (6")) + log (1 — e ™Y (0'))} A0’ + 2i
b4 R 2n —1
R (_l)n 1)’ e(Zn—l)o}((J)
m = / eV log (1 + Y1 (9')) d0' + 2i——— (122)
b4 R 2n —1

Table 6 shows the first four expansions of the quantum periods computed from the above ex-
pansions and the Picard—Fuchs method. We also adopt unphysical moduli parameters uy = 1,
Uy =-3, upy=1,and ¢ = % They are all consistent for the given precision.

One can find that the quantum periods calculated directly from the Picard—Fuchs method
agree well with the evaluation from the TBA side for a wide range of parameter choices, which
verifies the generalized ODE/IM correspondence.

4.3. Analytic continuation and wall-crossing
The TBA Eqgs. (111) are valid only when Eq. (112) is satisfied. The kernel function
1

cosh (0 — 6 — iy + idp)

(123)

has poles at
9/=e—i¢1+i$+%+inn, nez, (124)

where 0 — ig + i — % locates below the real axis and 6 — i) + i + % above the real axis.
These poles correspond to the singularities of the Borel transforms of the quantum periods.
When ¢ — ¢ increases and crosses over ¢, — ¢ > 5, the pole 6 — i¢; + i + % moves down
and crosses the real axis. The 6’-integral picks the residue at this pole. Similarly, the second
equation in Eq. (111) picks the pole at 6 — igy; + i — % This phenomenon is the wall-crossing
of the TBA equations. The TBA equations after wall-crossing are modified as per Appendix B
in Ref. [32].

We find that the situation is simplified for a special choice of ¢, where the quantum periods
follow compact TBA equations for the double-well potential. First, one notes that under the
coordinate transformation x — z? and rescaling of the function ¥ (x) — z%qﬁ(z), the original
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Eq. (107) becomes

&2 166(6 + 1)+ 3
( R (g2 + 22 +4u2)+h2%
Z

i ) $(z) = 0. (125)

For ¢ = —, %, or equivalently m = %, the centrifugal term vanishes. The original equation is
mapped to one with a double-well potential, whose TBA equations are already established, e.g.
in Refs. [30,31]. We denote the quantum periods related to Eq. (107) as HE"I) for one-cycle y and
f[g") for one-cycle 7; defined at the beginning of this section. Quantum periods related to Eq.
(125) are denoted as Hf:i and f[f!”) for corresponding cycles.

We consider a specific case F = 0.03 with m = % The turning points for Eq. (125) are ,/e;
and +,/e; with e, the turning points for Eq. (107). Then the classical periods are defined as

o Ve - Ve -
m,;=2 f O (x)dx, HEIO) =2 / Qf(x)dx, for &-variable,
Ja _ e

o Jer R —Jer
q{ =2 f Of(x)dx, TP =2 f Ol (x)dx, forn-variable, (126)
Je Jer

where Qf(x) = 4uoz* + 4u1 2> + 4us is the quartic potential. The higher orders can be evaluated
from the Picard—Fuchs method as well. Let us now consider the TBA equations for Eq. (125).
For parameters in the n-variable, the corresponding TBA equations are in the minimal chamber
as

log (1+ Y (6")) d¢’
cosh(@ —0") 27’
log(1+ Y, (0"))do’

log Y(0) = —ime? +2 —— 127
e Y () me /[R cosh(6 —6') 2w (127)

log Y1(6) = —me® +f
R

The TBA equations for the £-variable are now in the maximal chamber. Eq. (5.21) in Ref. [30]
gives the explicit form of these equations; the mass parameters are related by m, = i, m; =
my — im, and my; = 2my — im while m; is the same as we used in this paper. Then we find
the quantum periods and the large-6 expansion of the quartic TBA equations are related as
follows:

1'[("; = (-1)y"*hn ] = mg"), (—1)”+1iﬁ£]”) = 211" = /™, for £-equation,

M) = (1)) = m{”, (=10 = 210 = (= 1)'m®™, for n-equation. (128)

Table 7 shows the numerical calculations for the &-equation with /' = 0.03 and m = %, where
the corresponding TBA equations are in the maximal chamber, and Table 8 gives results for the
n-equation, with its TBA Eq. (127) in the minimal chamber. Numerical calculations confirm
the correspondence (128) very well.

In this section, we have considered TBA equations related to the Stark problem without
Langer’s modification. These equations on the one hand confirm the validity of the ODE/IM
correspondence and give an alternative computational approach for quantum periods on the
other hand. Unfortunately, we have not found consistent EQCs in terms of these quantum
periods without Langer’s modification.
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Table 7. The expansions of the quantum periods with F = 0.03, m = % for the &-equation.

n m” )

0 4.3446402338816 + 15.4257466346279i —0.0012584924834 — 9.4789003437673i
1 0.0266639256955 — 0.0235576487819i 0.0012417895471 + 0.0537580797986i
2 —1.62952996522[4] — 4.09974572924[4]i 1.7792731990[5] + 3.62538591473[4]i
n n®) 211"

0 4.3446402284715i — 15.4257465764022 —0.0012584915174 — 9.4789004189858i
1 —0.0266639257692i — 0.0235576485732 0.0012417895565 + 0.0537580805588i
2 —1.62952996537[4]i + 4.09974571511[4] 1.77927321993[5] + 3.62538594870[4]i
: n fy

0 4.3446402030184 + 15.4257466285002i —0.00125855204757 + 9.4789002636561
1 0.0266639255426 — 0.0235576487255i —0.0012417898853i + 0.0537580793133
2 —1.62952995392[4] — 4.09974572875[4]i 1.77927341291[5]i — 3.62538588259[4]

Table 8. The expansions of the quantum periods with F = 0.03, m = % for the n-equation.

n m” o

0 0.4640679572901 — 0.6555218319259i —0.4550034327887 — 8.8968672576106i
1 0.0007954104344 — 0.054482181983i 0.3863907823625 + 0.5839673005070i
2 0.0001177964828 — 0.00150265463061 —2.2800851644720 + 0.6221615219336i
n n® 211"

0 0.4640679650555i 4+ 0.6555217872253 —0.4550034419775 — 8.8968672279807i
1 —0.0007954088972i — 0.0544821836255 —0.3863907817713 — 0.5839672972422i
2 0.0001178053284i + 0.0015026585094 —2.2800851547326 + 0.6221615231299i
n H;"{ i

0 0.4640679052528 — 0.6555218495485i 0.4550034203263i — 8.8968672224660
1 0.0007954117778 — 0.0544821822247i —0.3863907794426i + 0.5839672977885
2 0.0001177955168 — 0.0015026454486i 2.2800851542317i + 0.6221615160777

5. Discussion and conclusion

In this paper, we have applied the exact WKB analysis to the well-known Stark problem to
resolve the energy frequency and ionization rate simultaneously. This method has several ad-

vantages.

* First, it gives the complex resonant frequency including E, and ionization rate at the same
time, and it applies to a wide range of parameter choices for F and m.

e Second, the analysis is exact as the term exact WKB implies. We have derived the EQCs by
utilizing Stokes graphs and found the BS quantization condition is already exact in the spe-
cific parameter regions, which clarifies the validity of the WKB approximation and quanti-
zation conditions in Refs. [12-14].

e Third, the method presented in this paper is fully analytic in principle, except for the final
numerical calculation, which makes it possible to investigate the asymptotic behaviour in
the limit of the parameters.
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 Finally, this method can be systematically extended to higher orders, which is crucial to
knowing the large-order behaviour of the asymptotic expansions of the quantum periods,
even its nonperturbative contributions.

We have examined our formulation by numerical calculations which are compared with the
results generated by the RPM in Ref. [34] to find agreements. It is proved that this method
including Langer’s modification and quantum corrections gives a complete resolution of the
Stark problem.

In addition, we have discussed the TBA systems related to the Stark problem in the absence of
Langer’s modification. It gives much more information on the quantum periods by the ODE/IM
correspondence. We confirmed the corrections introduced in Ref. [36] by comparing the expan-
sions of the logarithm of the Y-functions with quantum periods computed from the Picard—
Fuchs method. We also discussed the wall-crossing of the TBA equations during the change
of the parameters and wrote down the corresponding quartic TBA equations for special ¢. All
these equations were tested by numerical calculations. However, there are still some aspects to
be improved.

 First, we have not found self-consistent EQCs for all parameters for the bare equation in
Sect. 4 without Langer’s modification from the corresponding Stokes graphs, which mo-
tivated us to consider the Stark problem at the beginning. We expect to achieve this to a
large extent since this method is exact if all-order quantum corrections are included, and
TBA equations are applicable in this prescription. The failure might come from the non-
matching of wave functions at the semiclassical level, which shows the essence of Langer’s
modification in the WKB method.

e Second, it seems not to be easy to get directly the explicit formula for energy frequency from
our EQCs to compare with other perturbative formulas. We are also expecting to find a com-
pact form of the TBA equations after wall-crossing as in the case of polynomial potentials.
There are some references on this topic like Refs. [20,21] or from the Gaiotto-Moore-Neitzke
formalism [33], see e.g. Ref. [42]. A TBA equation with both ¢ correction and wall-crossing
included is also an open question. It is possible to write down the TBA equations including
Langer’s modification, but their complete forms are still lacking. We would like to consider
them in our future work.

The present WKB and TBA approach can also be applied to a variety of fields such as the
quasi-normal modes of black holes and the quantum Seiberg—Witten curve, which opens up
the potential of our method [43-45].
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