
J
H
E
P
0
1
(
2
0
2
4
)
1
0
3

Published for SISSA by Springer

Received: November 26, 2023
Accepted: January 8, 2024

Published: January 19, 2024

Gauge boson mass dependence and chiral anomalies in
generalized massless Schwinger models

Howard Georgi

Center for the Fundamental Laws of Nature,
Jefferson Physical Laboratory, Harvard University,
Cambridge, MA 02138, U.S.A.

E-mail: hgeorgi@fas.harvard.edu

Abstract: I bosonize the position-space correlators of flavor-diagonal scalar fermion bilinears
in arbitrary generalizations of the Schwinger model with nF massless fermions coupled to
nA gauge bosons for nF ≥ nA. For nA = nF , the fermion bilinears can be bosonized in
terms of nF scalars with masses proportional to the gauge couplings. As in the Schwinger
model, bosonization can be used to find all correlators, including those that are forbidden in
perturbation theory by anomalous chiral symmetries, but there are subtleties when there is
more than one gauge boson. The new result here is the general treatment of the dependence
on gauge boson masses in models with more than one gauge symmetry. For nA < nF , there
are fermion bilinears with nontrivial anomalous dimensions and there are unbroken chiral
symmetries so some correlators vanish while others are non-zero due to chiral anomlies.
Taking careful account of the dependence on the masses, I show how the nA < nF models
emerge from nA = nF as gauge couplings (and thus gauge boson masses) go to zero. When
this is done properly, the limit of zero gauge coupling is smooth. Our consistent treatment of
gauge boson masses guarantees that anomalous symmetries are broken while unbroken chiral
symmetries are preserved because correlators that break the non-anomalous symmetries go
to zero in the limit of zero gauge coupling.

Keywords: Field Theories in Lower Dimensions, Anomalies in Field and String Theories,
Nonperturbative Effects

ArXiv ePrint: 2310.13823

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2024)103

mailto:hgeorgi@fas.harvard.edu
https://arxiv.org/abs/2310.13823
https://doi.org/10.1007/JHEP01(2024)103


J
H
E
P
0
1
(
2
0
2
4
)
1
0
3

Contents

1 Introduction 1

2 Cluster decomposition 5

3 Anomalies 8

4 Examples 9

5 Conclusions 10

1 Introduction

In this note, I analyze the position-space correlators of flavor-diagonal scalar fermion bilinears
in arbitrary generalizations of the massless Schwinger model and focus on the behavior of
gauge anomalies in the limit in which some gauge couplings go to zero. We will see that
when the dimensional gauge couplings are properly accounted for (which I believe is done
here for the first time) the limit is smooth.

We consider a general Schwinger model in 1+1 dimensions with nF massless Dirac
fermions, ψα for α = 1 to nF , and nA ≤ nF vector bosons, Aµ

j for j = 1 to nA.
The Lagrangian is (using summation convention where it does not cause confusion)

LAf =
(

nF∑
α=1

ψα (i ̸∂ − eαj A̸j) ψα

)
− 1

4F
µν
j Fjµν (1.1)

Note that we have assumed that the gauge couplings are diagonal in the fermion space.
This is important to ensure that the model is exactly solvable. We could have non-diagonal
couplings as long as the couplings to different gauge bosons commute with one another. But
then we can simultaneously diagonalize them with a unitary transformation on the fermion
fields, so we will assume that the gauge bosons only couple to diagonal fermion currents.
The gauge couplings are an nF × nA matrix, e in which

eαj is the coupling of the jth vector to the αth diagonal fermion current. (1.2)

If nF < nA, there are linear combinations of the gauge bosons that do not couple to anything
and can be safely ignored, so we will always assume that nF ≥ nA.

Each of the massless fermions generates a contribution to the vector boson mass matrix [1]
and we will use our freedom to redefine the vector fields to diagonalize the physical vector
boson mass so we can write1

∑
α

eαjeαj′ = πm2
j δjj′ m2

j = 1
π

∑
α

e2
αj (1.3)

1This transformation may obscure charge quantization. See the discussion at the end section 4.
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Then the mj are the physical gauge boson masses. The basis of the fermions is fixed up to
unbroken flavor symmetries because the currents must be diagonal. And unless some gauge
boson masses are equal, the basis of the gauge boson fields is also fixed by (1.3).

We work in Lorenz gauge,

∂µA
µ
j = 0 (1.4)

Then a generalization of the arguments of [1]2 shows that the gauge invariant correlation
functions to all orders in perturbation theory can be found using the free-field Lagrangian
describing massless fermions, Ψα, massive bosons, Bj , and massless scalar ghosts, Cj

L =
(

nF∑
α=1

iΨα ̸∂Ψα

)
−
m2

j

2 B2
j + 1

2∂µBj∂
µBj −

1
2∂µCj∂

µCj (1.5)

using the replacements

Aµ
j = ϵµν∂ν (Bj − Cj) /mj (1.6)

ψα = e−i(π)1/2 (eαj/mj)(Cj−Bj)γ5Ψα (1.7)

The massive and the massless free scalar propagators, respectively, are3

−i ⟨0|TBj (x)Bk (0) |0⟩ = δjk

∫
d2p

(2π)2
e−ipx

p2 −m2
j + iϵ

= −δjk
i

2πK0
(
mj

√
−x2 + iϵ

)
(1.8)

−i ⟨0|TCj (x) Ck (0) |0⟩ = −δjk

∫
d2p

(2π)2
e−ipx

p2 + iϵ
= −δjk

i

2π ln
(
ξmj

√
−x2 + iϵ

)
(1.9)

ξ ≡ eγE/2 where γE is Euler’s constant (1.10)

The arbitrary dimensional constant in the logarithmic ghost propagators has been fixed so
that the Bj and Cj propagators exactly cancel when the gauge couplings vanish, mj = 0.

We will focus on the position-space correlators of the flavor-diagonal fermion-bilinear
scalar operators

Oα+ ≡ ψ∗
2α ψ1α = e

−2i
∑

j
(eαj/mj)(Bj−Cj)Ψ∗

2αΨ1α

Oα− ≡ ψ∗
1α ψ2α = e

2i
∑

j
(eαj/mj)(Bj−Cj)Ψ∗

1αΨ2α = O∗
α+

(1.11)

While (1.11) gives a complete description of the Oα± correlators to all orders in pertur-
bation theory, the nonperturbative effects of gauge anomalies are much more transparent if
we bosonize. For massless free fermions in 1+1, any non-zero correlator of diagonal fermion
bilinears can be calculated by replacing the bilinears with exponentials of free massless
scalar fields according to

Ψ∗
2αΨ1α → ξMα

2π e−2iπ1/2Dα Ψ∗
1αΨ2α → ξMα

2π e2iπ1/2Dα (1.12)

2For details and definitions, see [2]. The conjecture in the paper was shown to be false in [3] but we can
still use the calculational tools.

3K0 is the modified Bessel function of the second kind.
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The Mαs are arbitrary and correlated with the propagators of the bosonization fields, Dα.

−i ⟨0|TDα (x)Dβ (0) |0⟩ = δαβ
∫

d2p

(2π)2
e−ipx

p2 + iϵ
= δαβ i

2π ln
(
ξMα

√
−x2 + iϵ

)
(1.13)

There is no mass in the position space correlators of the fermion bilinears and the mass Mα

is introduced by the bosonization procedure which requires a mass to get the dimensions
right. Eq. (1.12) is a straightforward consequence of Fermi-Dirac statistics. Then

Oα± = ξMα

2π e
∓2i
∑nA

j=1(eαj/mj)(Bj−Cj)
e∓2iπ1/2Dα (1.14)

The key to using (1.14) most effectively will be to cancel the ghost fields with linear
combinations of the bosonization fields. This will be easier if we change notation slightly.

First, we define an orthogonal nF × nF matrix ηαj where the α index labels the fermion
as usual but the j index is extended to make the matrix square and a subset b of the j
indices are associated with the gauge fields.

η ηT = I ηαj = eαj

mj
√
π

for j ∈ b (1.15)

we can write

Oα± = ξMα

2π e
∓2iπ1/2

∑
j∈b

ηαj(Bj−Cj)
e∓2iπ1/2Dα (1.16)

Now we can define linear combinations of the bosonization fields

Dj ≡ ηαjDα (1.17)

and write

Oα± = ξMα

2π e
∓2iπ1/2

∑
j∈b

ηαj(Bj−Cj)
e
∓2iπ1/2

∑
j

ηαjDj (1.18)

In this form, it looks like we can cancel the Dj fields for j ∈ b with the ghosts. That
is precisely what happens in the original Schwinger model and in the Schwinger model
with flavors. But in general, this cancellation is not exact because of the different masses
associated with different gauge couplings.

The Dj propagator is

−i ⟨0|TDj (x)Dk (0) |0⟩ =
∑

α

ηjαηkα
i

2π ln
(
ξMα

√
−x2 + iϵ

)
(1.19)

Thus for the Dj for j = 1 to nA to exactly cancel the ghosts Cj we must have∑
α

ηαjηαk logMα = δjk logmj for j or k ∈ b (1.20)

and (1.18) would be most useful if the Dj propagator were diagonal for all j. In general,
this is impossible and the most useful thing we can do is to choose a common bosonization
mass Mα = m for the Dαs:

Mα = m for all α. (1.21)
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so that

−i ⟨0|TDj (x)Dk (0) |0⟩ = δjk
i

2π ln
(
ξm
√
−x2 + iϵ

)
(1.22)

We could always cancel the ghost for a single j by choosing m = mj . This is the way the issue
is typically handled in models with a single gauge boson but it is not adequate for nA > 1.

If we adopt (1.22), we can almost cancel the ghosts in general.

Oα± = ξm

2π e
∓2iπ1/2

∑
j∈b

ηαj(Bj−Ej)
e
∓2iπ1/2

∑
j∈b′ ηαjDj (1.23)

where b′ is the complement of b and the Ej are “constant” fields

Ej = Cj −Dj for j ∈ b (1.24)

with propagators

−i ⟨0|TEj (x) Ek (0) |0⟩ = δjk
i

2π log (m−mj) (1.25)

so the Wick expansion gives

⟨0|Te2iπ1/2Ej(x) e∓2iπ1/2Ej(0)|0⟩ = (mj/m)±2 (1.26)

The Ej fields keep the engineering dimensions right while eliminating the dependence
on the arbitrary bosonization mass m. Eqs. (1.23)–(1.25) can be used to calculate any
matrix element that is non-zero in perturbation theory and we can simplify (1.23) further
by eliminating the Ej operators.4

Look at a general perturbatively non-zero correlator involving only bilinears (no higher
powers). If there are nα Oα+s there must also be nα Oα−s or the correlator would vanish
in perturbation theory. We can look separately at the contributions from each Ej because
the propagators don’t mix. So we are interested in

⟨0|T
nα∏
r=1

e2iπ1/2ηαjEj(xr) e−2iπ1/2ηαjEj(yr)|0⟩ (1.27)

We have put arguments (xr) and (yr) on the Ej from Oα+ (xr) and Oα− (yr) for notational
convenience, but the Ej are constant operators so the Wick expansion of (1.27) is independent
of the coordinates. The contribution from contractions of the Ej (xr)s with the Ej (yr)s is(

m2
j

m2

)n2
αη2

αj

(1.28)

The contribution from contractions of the Ej (xr)s with Ej (x′r)s is(
m2

j

m2

)−(n2
α−nα)η2

αj/2

(1.29)

4Note that we will soon use (1.23) to calculate other matrix elements, but because these more general
results follow from the perturbative calculation and cluster decomposition, the simplification will work in
general.
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as is the contribution from contractions of the Ej (yr)s with Ej (y′r)s. So the total contribution is

(
m2

j

m2

)nαη2
αj

(1.30)

This means that we can associate a factor

Nα =
∏
j∈b

(
mj

m

)η2
αj

(1.31)

with each operator in each Oα+-Oα− pair and completely capture the effects of the Ejs for
perturbatively non-zero correlators.

Now we can eliminate the Ejs and write

Oα± = ξm

2π e
2±iπ1/2

∑
j∈b

ηαj(Ej−Bj)
e

2∓iπ1/2
∑

j∈b′ ηαjDj →

ξm

2π Nα e
−2±iπ1/2

(∑
j∈b

ηαjBj+
∑

j∈b′ ηαjDj

) (1.32)

We can use (1.32) to calculate any correlator that is non-zero in perturbation theory.
A particularly nice feature of (1.32) is the way it encodes the diagonal chiral symmetries.
The theory is invariant under global translations of the massless Dj fields for j ∈ b′. These
translations generate the nF − nA unbroken chiral symmetries on the fermion bilinears.

Oα± has j chiral charge qj = ±ηαj for δDj = θj with j ∈ b′. (1.33)

There are no unbroken chiral transformations from translations of Dj for j ∈ b, because these
Djs have been eaten by the ghosts. The corresponding chiral transformation from translations
of the Bj for j ∈ b are softly broken by the Bj mass terms generated by the gauge anomalies.

2 Cluster decomposition

While we only calculate to all orders in perturbation theory, in some situations, cluster
decomposition gives us nonperturbative information. For any combination of no fermion
bilinears in some region of space-time, we can look at a correlator that also includes all the
conjugate fields in a region far away in space as in〈

0
∣∣∣∣∣T

no∏
u=1

Oαusu(xu)O∗
αusu

(z + yu)
∣∣∣∣∣ 0
〉

(2.1)

where the su are ±1, as in (1.11) and the xa and ya are clustered in some region of size ℓ
(−(xa − xb)2 < ℓ2) around the (arbitrary) origin and z is a large space-like 2-vector. This
correlator is calculable in perturbation theory. Using (1.32), we can write it as

(
ξm

2π

)2no
(∏

u

Nαu

)2

(X Y Z) (2.2)
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where
X =

∏
u ̸=u′

exp
[
− 2susu′

∑
j

ηαujηαu′ j∆j(xu − xu′)
]

Y =
∏

u ̸=u′

exp
[
− 2susu′

∑
j

ηαujηαu′ j∆j(yu − yu′)
]

Z =
∏
u,u′

exp
[
2susu′

∑
j

ηαujηαu′ j∆j(z + yu′ − xu)
] (2.3)

where

∆j(x) =


K0

(
mj

√
−x2 + iϵ

)
for j ∈ b

− log
(
m
√
−x2 + iϵ

)
for j ∈ b′

(2.4)

We can now study the correlator as −z2 goes to infinity.
If b′ ̸= ∅, that is for nF > nA the correlator will in general go to zero, with the Z

factor falling off like
1(

m
√
−x2 + iϵ

)2
∑

j∈b′ Q2
j

(2.5)

where Qj is the total j chiral charge of the operators in the X region,

Qj =
∑

u

suηαuj (2.6)

Thus
∑

j∈b′ Q2
j is the anomalous dimension of the leading operators in the operator product

expansion of the set {Oαusu(xu)} and I will refer to this as the anomalous dimension of the
set and we will have more to say about it below.

But we will begin by assuming that nA = nF so there are no massless fields (b′ = ∅) and

∆j(x) = K0
(
mj

√
−x2 + iϵ

)
∀ j (2.7)

Then for sufficiently large z, all the Bessel functions go to 0 and Z → 1. If the correlator is
non-zero as the regions move infinitely far apart, it must factor into a product of contributions
in the two regions.〈

0
∣∣∣∣∣T

no∏
u=1

Oαusu(xu)O∗
αusu

(z + yu)
∣∣∣∣∣ 0
〉

−→
−z2→∞

(
ξm

2π

)2no
(∏

u

Nαu

)2

X Y (2.8)

This gives non-perturbative information about anomalies. Conversely, if the correlators in the
two regions are forbidden by unbroken symmetries, the correlator (2.1) must vanish as z → ∞.

The above argument means that for nA = nF , up to phases [4–6] that are arbitrary
and that we will set to zero, we can use (2.1)–(2.4) to calculate any correlator using (1.32)
whether or not it is non-zero in perturbation theory and the result is〈

0
∣∣∣∣∣T

no∏
u=1

Oαusu(xu)
∣∣∣∣∣ 0
〉

=
(
ξm

2π

)no
(∏

u

Nαu

)
∏

u ̸=u′

exp
[
− 2susu′

∑
j

ηαujηαu′ jK0

(
mj

√
−(xu − xu′)2 + iϵ

)]
(2.9)
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This makes sense because when b′ = ∅ with no D fields, there are no global chiral symmetries
that are not broken by the gauge boson mass terms. So there are no constraints on the use
of (2.1)–(2.4). Because the bosonization mass m is arbitrary, it will cancel explicitly in (2.9),
so we can also write (2.9) entirely in terms of the mjs as〈

0
∣∣∣∣∣T

no∏
u=1

Oαusu(xu)
∣∣∣∣∣ 0
〉

=
(
ξ

2π

)no
(∏

u

Mαu

)
∏

u ̸=u′

exp
[
− 2susu′

∑
j

ηαujηαu′ jK0

(
mj

√
−(xu − xu′)2 + iϵ

)]
(2.10)

where
Mα =

∏
j∈b

m
η2

αj

j (2.11)

Equations (1.31), (2.9), (2.11), and (2.10) are the basic technical results of this note.
Eqs. (1.31), (2.9) and (2.11), (2.10) are equivalent, but (1.31), (2.9) is more convenient
for taking mjs to zero which we will do in the next section. The mj dependence in (1.31)
and (2.11) is useful in understanding the structure of the general theory.

Now we can use (1.31), (2.9) to analyze the general theory for b′ ̸= ∅. While we could do
the general analysis directly, constructing the general theory as the limit of (2.9) as some
gauge couplings go to zero automatically includes the nonperturbative effects of the gauge
anomalies and will give us insights into their structure. It may seem surprising that this
works at all because the corresponding limit in 3+1 dimensions is quite dangerous. But
here everything goes smoothly because we have properly included the important dimensional
parameters in (1.31).

In particular, look at the limit mj → 0 for some j in (2.9). Because of the product
structure of the correlator, we can focus just on the factors that depend on j:(∏

u

(
mj

m

)η2
αuj

) ∏
u ̸=u′

exp
[
−2susu′ηαujηαu′ jK0

(
mj

√
−(xu − xu′)2 + iϵ

)]
(2.12)

If mj

√
−(xu − xu′)2 is much less than 1 for all the coordinate pairs, we can approximate

the Bessel functions by logs:(∏
u

(
mj

m

)η2
αuj

) ∏
u ̸=u′

exp
[
2susu′ηαujηαu′ j log

(
mj

√
−(xu − xu′)2 + iϵ

)]
(2.13)

This can be written

(
mj

m

)(
∑

u
η2

αuj)+
(∑

u ̸=u′ 2susu′ ηαujηαu′ j

) ∏
u ̸=u′

exp
[
2susu′ηαujηαu′ j log

(
m
√
−(xu − xu′)2 + iϵ

)]
(2.14)

=
(
mj

m

)(
∑

u
suηαuj)2 ∏

u ̸=u′

exp
[
2susu′ηαujηαu′ j log

(
m
√
−(xu − xu′)2 + iϵ

)]
(2.15)
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Now we can take the limit mj → 0. The limit vanishes unless

Qj =
∑

u

suηαuj = 0 (2.16)

This is expected from (1.33). In (2.16), Qj is the total j chiral charge of the product of
operators in the correlator. The limit is just the statement that the correlator vanishes if
the product of operators carries an unbroken chiral symmetry. But (2.15) shows us exactly
how the limit is approached.

If Qj vanishes, the first factor in (2.15) is 1, the mj dependence disappears, and the
bosonization mass m shows up in the second factor in the expected way for a bosonization
field. Notice that it was critical here to include the N(α) factor.

We can now find the correlators for a general model by starting with all gauge couplings
non-zero and then taking gj → 0 for j ∈ b′, so in general the collections of no operators
that have non-zero correlators will satisfy

Qj =
∑

u

suηαuj = 0 ∀ j ∈ b′ (2.17)

The correlators are then simply〈
0
∣∣∣∣∣T

no∏
u=1

Oαusu(xu)
∣∣∣∣∣ 0
〉

=
(
ξm

2π

)no
(∏

u

Nαu

)
∏

u ̸=u′

exp
[
− 2susu′

∑
j

ηαujηαu′ j∆j (xu − xu′)
] (2.18)

where as in (2.4)

∆j(x) =


K0

(
mj

√
−x2 + iϵ

)
for j ∈ b

− log
(
m
√
−x2 + iϵ

)
for j ∈ b′

(2.19)

3 Anomalies

Obviously, as mj ∝ gj → 0, the gauge anomalies associated with Aµ
j disappear. But the

requirement of (2.17) puts interesting constraints on the form of the remaining anomalies
for mj = 0. In general a set of operators Oαusu satisfying (2.17) can be decomposed into
irreducible sets which cannot be split into subsets satisfying (2.17). These always include any
single operators {Oα+} and {Oα−} for which ηαj = 0 ∀j ∈ b′ and the ± pairs, {Oα+, Oα−} for
each α for which ηαj ̸= 0 for any j ∈ b′. I will refer to any other irreducible sets as “anomaly
sets” because they are related to the remaining gauge anomalies. They are characterized
by a set of integers nα:

S(nα) consists of |nα| copies of Oα sgn(nα) for each α (3.1)

In terms of the nα, (2.17) is∑
α

|nα| sgn(nα)ηαj =
∑

α

nαηαj = 0 ∀ j ∈ b′ (3.2)

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
1
0
3

Then (1.15) implies that nα is a linear combination of ηαj for j ∈ b,

nα =
∑
j∈b

Njηαj (3.3)

for some Nj . It makes sense that the irreducible anomaly sets depend only on the remaining
gauge couplings.

4 Examples

If there is only one gauge boson, there is only one ηαj for j ∈ b — call it ηα1. Then (3.3) is

nα ∝ ηα1 (4.1)

which fixes the irreducible anomaly sets (if they exist) up to a sign (which is just associated
with complex conjugation of all the bilinears). But nα exists if an only if the components
of ηα1 are commensurate.

Here is the 2-flavor Schwinger model with b = {1}:

ηα1 =
(

1/
√

2
1/

√
2

)
ηα2 =

(
−1/

√
2

1/
√

2

)
nα =

(
±1
±1

)
(4.2)

The irreducible anomaly sets are {O1±, O2±}.
Here is a similar model again with b = {1} but gauge couplings that differ by a factor of 2.

ηα1 =
(

2/
√

5
1/

√
5

)
ηα2 =

(
−1/

√
5

2/
√

5

)
nα =

(
±2
±1

)
(4.3)

The irreducible anomaly sets are {2 × O1±, O2±}.
Again with b = {1}

ηα1 =

 n1/
√
n2

1 + n2
2

n2/
√
n2

1 + n2
2

 ηα2 =

−n2/
√
n2

1 + n2
2

n1/
√
n2

1 + n2
2

 (4.4)

Now if n1 and n2 are relatively prime,

nα =
(
±n1
±n2

)
(4.5)

and the irreducible anomaly sets are {n1 × O1±, n2 × O2±}. If n1 and n2 have a common
factor nc the irreducible anomaly sets are {(n1/nc) × O1±, (n2/nc) × O2±}.

Finally for b = {1}, if the gauge couplings are not commensurate — as in.

ηα1 =
(√

2/3√
1/3

)
ηα2 =

(
−
√

1/3√
2/3

)
(4.6)

there are no anomaly sets. [7]
If there is more than gauge boson, more complicated scenarios are possible. If the

components of ηαj are commensurate for each j ∈ b, there is an independent pair for anomaly
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sets for each j ∈ b and they may be reducible. For example, with two gauge bosons, b = 1, 2,
we could have a “diagonal color” model: [8–12]

ηα1 =

 1/
√

2
−1/

√
2

0

 ηα2 =

 1/
√

6
1/
√

6
−2/

√
6

 ηα3 =

 1/
√

3
1/
√

3
1/
√

3

 (4.7)

The irreducible anomaly sets are {O1±, O2∓}, {O2±, O3∓}, and {O3±, O1∓}.
But incommensurate charges can further eliminate all the anomaly sets as in (4.6) or

just limit them, as in this example (again with b = 1, 2):

ηα1 =


1/2(

2 +
√

2
)
/4(

2 −
√

2
)
/4

 ηα2 =


−1/2(

2 −
√

2
)
/4(

2 +
√

2
)
/4

 ηα3 =

 1/
√

2
−1/2
1/2

 (4.8)

Here because the only linear combination of ηα1 and ηα2 with commensurate components
is ηα1 + ηα2, the only irreducible anomaly sets are {O2±, O3±}.

One might ask5 whether commensurate components of the ηαj vectors is associated
with quantization of charge. That is obviously the case for nA = 1, as shown in exam-
ples (4.2), (4.3), (4.6). For nA > 1, the situation is more complicated because generically, the
mass-eigenstates of the gauge fields will be linear combinations of the fields in the original
Lagrangian. But the ηαj for j ∈ b′ are orthogonal to ALL of the ηαj for j ∈ b and thus
to any linear combination. So if there is any linear combination of the ηαj for j ∈ b with
commensurate coefficients, it will be associated with an anomaly set AND the corresponding
combination of gauge fields will be coupled to a quantized charge. For example, in (4.8), the
combination ηα1 + ηα2 describes a coupling to a quantized charge.

In general, the independent anomaly sets will be associated with the independent linear
combinations coupled to quantized charges. This is exactly what we would expect from
Coleman’s interpretation of a θ parameter as a background electric field [13]. Only the
linear combinations corresponding to quantized charges will have θ parameters because a
background field coupled to a non-quantized charge can be canceled by pair production of
massless fermions. Thus the independent anomaly sets will be associated with the independent
θ parameters. This connection can be obscured in models with more than one gauge boson
by a nontrivial gauge boson mass matrix, but we have shown how a complete analysis of
the mass dependence describes the general case.

5 Conclusions

While the physics is trivial, the correlators in generalizations of the massless Schwinger model
depend in nontrivial ways on the gauge boson masses. I believe that the complete analysis
of the mass dependence in this note clarifies the relationship between models with different
numbers of gauge bosons and chiral anomalies.

5As a clever referee did.
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