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1 Introduction

The Large Hadron Collider (LHC) has been a cornerstone in advancing our understanding of
particle physics. However, the complexity of the data generated necessitates sophisticated
methods for feature extraction and analysis. Traditional approaches often fail to capture
intricate relationships among the data points, especially when considering infrared and
collinear (IRC) safe observables. In this context, neural networks have shown promise [1–15]
but are not without limitations. These include issues regarding interpretibility [16–22],
uncertainty quantification [23–30], and a better handle and design of the physical biases [31–
40] of the neural networks for better physics generalization capabilities. The intricate nature
of the underlying physical description warrants a thorough understanding of these algorithms,
particularly as a precise understanding of the Standard Model background within perturbative
Quantum Chromodynamics (pQCD) is needed to discover new physics.

With the recorded events naturally represented as sets (of variable sizes) of different
reconstructed particles or raw detector hits, point clouds are the natural representation of
the recorded data, and architectures to process such data efficiently, particularly Graph
Neural Networks [41–48], have been used successfully for LHC phenomenology. However,
graphs do not expose higher-order correlations within the data by design, concentrating on
two-particle correlations — the natural generalisation being hypergraphs. This generalisation
is diagrammatically shown in figure 1 for a three-prong top jet where the graph’s edges
are defined in terms of two particles, while the order three hyperedges can look into the
relevant three-prong structure of the top jet. This paper addresses these challenges by
introducing Hypergraph Energy-weighted Message Passing Networks (H-EMPNs) designed to
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Graph Hypergraph

Figure 1. Visualisation of the inter-relations of jet constituents as captured by a graph structure
(left) and a hypergraph structure with order-three hyperedges (right). In a graph structure, the edges
correlate two constituents at a time and are shown as a line segment connecting two nodes. Instead,
the order-three hyperedges simultaneously link properties of three jet constituents at a time and are
shown as a triangle with vertices coinciding with three nodes. Thus, hypergraphs are more expressive
structures and can access higher-order correlations amongst jet constituents.

extract three-particle correlations better than existing IRC-safe feature extractors. We first
examine the universal approximation capabilities of existing infra-red and collinear safe neural
network models like Energy Flow Networks (EFNs) [31] and Energy-weighted Message Passing
Networks (EMPNs) [36] in approximating any IRC safe observable expressible in terms of
C-correlators [49, 50] looking into any general N -body phase space. Finding that EFNs are
restricted N = 1, and EMPNs have an arguably weak capability for approximating any N ̸= 2n

C-correlators, we present H-EMPN as a more robust and versatile model capable of efficiently
approximating any general IRC safe observable for any general N . Our method leverages the
power of message-passing in graphs and hypergraphs to capture higher-order relationships
among the data points, thereby providing a more comprehensive feature extraction mechanism.

Restricting ourselves to N = 3 for the top vs QCD jet tagging scenario, where the
dominant information lies in the 3-body decay phase space of the top quark, we find that
H-EMPNs outperform EMPN, which look up to N = 4 interparticle correlations, confirming
our initial observation. We demonstrate the efficacy of H-EMPNs through empirical tests
to showcase the learned graph representations. Furthermore, we discuss the architectural
nuances of H-EMPN, providing insights into its design and training procedures. By doing
so, we aim to establish H-EMPN as a powerful tool for LHC phenomenology, opening new
avenues for applications in collider phenomenology.

Specifically, in section 2, we discuss the universal approximation of any IRC safe observable
by EFNs and EMPNs by taking its correspondence to any generic C-correlator. In section. 3,
we devise H-EMPNs that can approximate any general C-correlator. The architecture and
training details are presented in section 4, while the results are presented in section. 5. We
conclude in section 6.
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Notation. In the following discussions, we are given the set of four vectors of the jet
constituents

S = { p1, p2, . . . , pnpart.} ,

with npart being the number of constituents. These particles will be indexed via small
Roman subscripts, while the number of message-passing operations will be indexed as Greek
superscripts. Unless otherwise stated, all summations will be over the set S. The four
vectors are given in terms of the relative hardness zi = pi

T /
∑
pj

T and the rapidity-azimuth
variables p̂i = (yi, ϕi). Bold-faced alphabets like hi and G denote vector quantities with
their italicised counterparts hi and G acting as a placeholder for a component. As we will
consider inference on networks after training rather than the training itself, we will not
explicitly write the dependence of function approximators on the tunable parameters. For
instance, g(α)(h(α−1)

i ,h(α−1)
j ) denotes a MultiLayer Perceptron (MLP) at the αth message

passing step, h(α−1)
i and h(α−1)

j correspond to the updated node features in the previous
operation of particle i and j, respectively, in S.

2 Universal approximation of IRC safe observables

In present scientific literature, it is well-known that MLPs are universal function approxi-
mators [51–53]. Without going into mathematical rigour, a parametrized function f(x,Θ)
of a vector x and tunable parameters Θ, is a universal approximator if it can approximate
any continuous function up to any arbitrary precision in a compact domain and range. On
the other hand, physical observables like momenta or position live in an underlying metric
space, and notions of completeness have long been the bread-and-butter of physicists to
study physical systems. The complete set of IRC safe observables is essential at the LHC
and the subject of our present investigation. Any IRC safe observable O can be expanded
in a basis of C-correlators [49] as

O ≈
Nmax∑
N=0

CfN
N , CfN

N =
∑
i1

∑
i2

. . .
∑
iN

Ei1Ei2 . . . EiN fN (p̂i1 , p̂i2 , . . . p̂iN ) , (2.1)

where fN is symmetric to any permutation of its arguments. Energy Flow Polynomials
(EFPs) [50] expand O in a basis of polynomials of energy using the Stone-Weierstrass
approximation theorem. In this section, we take a look into the approximation capabilities of
existing IRC safe neural networks, namely Energy Flow Networks [31], and Energy-weighted
Message Passing Network (EMPN) [36], comparing the functional form to any arbitrary
N in the basis of C-correlators. As the C-correlators are complete, the network-extracted
observables would be expressible as a linear sum of different C-correlators, and we investigate
the terms in the sum (as given in eq. (2.1)) that are optimally extracted via these observables.

Although we rely on the statement of universal approximation theorems, it is important
to remember that we will strictly talk about the existence of such approximators and not
concentrate on the method of finding such a function. However, presently available gradient
descent algorithms are powerful enough to efficiently find an approximation given that we
have the desired output value on a large enough number of samples. This numerical nature
of finding a practical working point in the weight space is one of the significant concerns
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regarding the interpretability of neural networks in general. Our aim is not to tackle this more
difficult problem but to systematically establish the capability of IRC-safe feature extractors
based on their ability to approximate different C-correlators. Moreover, we concentrate
on the extracted features rather than the final observable approximated by the complete
network, i.e. we do not consider the function approximation done by the downstream MLP,
which takes the extracted IRC safe features, as this would be akin to a usual multi-variate
approach of physics motivated features.

As we will study the general behaviour of the approximated function whose weights are
frozen after some training procedure, we will not discuss the explicit dependence of the neural
networks on their tuneable parameters in the following discussions.

2.1 Energy Flow Networks

Energy Flow Networks are infra-red and collinear safe deep sets model which learns a per-
particle map of each particle’s directional coordinates p̂i and undergoes an energy-weighted
sum to form a fixed length representation of any variable cardinality constituent set. Without
loss of generality for a multi-dimensional representation, a single IRC safe observable can
be written as

C1 =
∑

i

zi g1(p̂i) ,

where g1(p̂i) represents a parameterised multilayer perceptron. We have specifically denoted
the observable as C1 to make it self-evident the per-particle map essentially approximates any
general Cf1

1 . This is because the MLP g1 is a universal approximator and can approximate
any function f1 suiting a particular objective up to a required precision. In a practical
implementation, several related IRC safe observables are approximated, which are fed to a
downstream network for classification. The direct implementation of EFNs can, therefore,
only extract features expressible in terms of C1.

2.2 Energy-weighted message passing networks

An energy-weighted message passing operation for any general parametrised function ḡ(α)

can be written as

h(α+1)
i =

∑
j∈N [i]

ω
(N [i])
j ḡ(α+1)(h(α)

i ,h(α)
j ) ,

where h(α)
i is the input node features for the αth message passing operation and

ω
(N [i])
j = pj

T∑
k∈N [i] p

k
T

are the energy weights dependent on the IRC safe neighbourhood set N [i], with ω
(S)
j = zj ,

for the whole set S. For notational convenience in the following discussions, we will take
the sum over the full set of particles in the jet and replace zj in place of ω(N [i])

j without
loss of generality. Therefore, we have

h(α+1)
i =

∑
j

zj g(α+1)(h(α)
i ,h(α)

j ) (2.2)
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with the function g(α+1) expressed as a product of a Heaviside step functions Θ(∆Rij < R0)
and the original message function ḡ(α+1) as

g(α+1)(h(α)
i ,h(α)

j ) = Θ(∆Rij < R0) ḡ(α+1)(h(α)
i ,h(α)

j ) .

Here, ∆Rij is the Euclidean distance in the rapidity-azimuth plane between particle i and j

while R0 is the graph’s radius. The requirement of symmetry in the argument of f2(p̂i, p̂j)
for Cf2

2 and its absence in eq. (2.2) is not a contradiction as the node features themselves are
defined for each particle and hence are not IRC safe observables. In contrast, the IRC safe
graph representation will generally be expressible as some linear combination of CfN

N .
We have h(0)

i = p̂i which gives p̂i = p̂j =⇒ h(α)
i = h(α)

j for any α ≥ 0 and any two
collinear particles i and j. The IRC safe graph representation is obtained as

G(L) =
npart∑
i=1

zi h(L)
i ,

after L iterations. As we shall see in the following, the complexity of the extracted features
via EMPNs will depend on the value of L.

Explicitly for L = 1, we have h(1)
i = ∑

j zj g(1)(p̂i, p̂j) which gives

G(1) =
∑
i,j

zi zj g(1)(p̂i, p̂j) .

If the symmetry is enforced in g(1), the approximated observable will contain a Cf2
2 term

alone. At the same time, a non-symmetric g(1) would also have a Cf1
1 component.

For L = 2, we have

G(2) =
∑
i,j

zi zj g(2)(h(1)
i ,h(1)

j )

=⇒ G(2) =
∑
i,j

zi zj g(2)(
∑

k

zk g(1)(p̂i, p̂k),
∑

l

zl g(1)(p̂j , p̂l)) .
(2.3)

The complicated nature of the arguments makes it difficult to ascertain the exact behaviour of
the functional approximation. One expects the universal approximator g(2) to be expressible
as a linear combination of CfN

N ’s up to N = 4. However, due to the presence of four angular
arguments and four energy weights, it hints against the efficient approximation of any CfN

N

for any N < 4.
The situation is even more futile for L = 3 with eight angular arguments and eight

energy-weighted sums. For a particular L, we have 2L angular arguments and the same
number of energy-weighted sums. Even if one extracts the graph features at each stage α,
and gets a concatenated graph representation for each α > 0 up to α = L, we have the
efficient extraction of 2, 22, 23, . . . 2L terms the sum in eq. (2.1) for any general IRC safe
observable O. Although, for jet substructure applications, one does not need to go to very
high N , we already run into a problem for top-tagging, which has valuable information in
the 3-prong structure of the energy deposits.
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3 Hypergraph energy-weighted message passing networks

As discussed above, although powerful, Graph Neural Networks cannot look into higher-order
relational information amongst the nodes efficiently. Therefore, in this section, we develop
IRC-safe point cloud architectures capable of efficiently extracting higher-point correlation.

A possible way to extend the capabilities of IRC safe feature extraction to higher-point
correlations is to directly implement the form of C-correlators as

HN =
∑
i1

∑
i2

. . .
∑
iN

zi1zi2 . . . ziN ΘN (p̂i1 , p̂i2 , . . . , p̂iN ) ΦN (p̂i1 , p̂i2 , . . . , p̂iN ) ,

where ΘN are step functions for reducing the sums to localised information, and ΦN are
the neural networks approximating a correlated set (as the output of ΦN in general, is a
vector) of fN ’s for the particular training objective. For IRC safety, both ΘN and ΦN should
be symmetric under the permutation of its arguments. The step function ΘN for each N

essentially endows an N -uniform hypergraph structure onto the constituent set similar to
the radius filter Θ(∆Rij < R0) endowing a graph structure for the case of N = 2. Therefore,
the concatenated hypergraph representations

X = ⊕NHN ,

up to Nmax would extract IRC safe features to be fed to a downstream MLP for some task.
We do not follow this approach for the following reasons. It is well-known [54–57] that

automatic feature extraction works best with deeper networks. Depth can only be brought
into ΦN in the above expression, which does nothing to the IRC-safe feature extraction process.
The complexity can be increased by increasing N , which increases the width of the network,
thereby increasing the model complexity sharply. Although the factorisation of the extracted
features in energy and angular components could lead to better all-order behaviour in QCD
and is indeed interesting, one needs to have proper control of the behaviour of the parameter
optimisation before we can hope to answer such questions as demonstrated in reference [33].

Our approach is based on one-particle and two-particle messages to construct a hybrid
message-passing neural network that can extract higher point correlations in a recursive
approach. Although it is easily generalisable to higher-point information, we restrict ourselves
up to 3-point interactions due to the increasing complexity.

3.1 IRC safety with heterogenous source and destination embeddings

The basic observation which makes it possible to build a higher-point IRC safe feature
extractor is that the requirement of IRC safety for EMPN is still valid even when the node
embedding for the source ψS(p̂i), and destination ψD(p̂i) are different as long as they are
separately equal in the collinear limit of two particles. If a particle q has two collinear
daughters r and s, then we have

ψS(p̂q) = ψS(p̂r) = ψS(p̂s) , and ψD(p̂q) = ψD(p̂r) = ψD(p̂s)

when p̂q = p̂r = p̂s, even if ψS(p̂i) ̸= ψD(p̂i). More importantly, the embeddings ψS and ψD

need not be functions of just a single particle. They can also be the updated node features
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of the α-hop IRC safe neighbourhood after α energy-weighted message passing operations
(as given in eq. (2.2)). For an IRC safe neighbourhood of i, where a particle q splits to two
daughters r and s, we have N [i] ∋ q =⇒ N ′[i] ∋ r ∧ N ′[i] ∋ s when p̂q = p̂r = p̂s.

Let us look closer into the statement that we need not have the same embedding in the
argument of the message function in an Energy-weighted Message Passing operation even
though the statement logically follows from the non-requirement of symmetry of the message
function. Since we have heterogeneous source and destination embeddings, we need to fix a
uniform direction of messages. We will take the direction of all messages as originating from
a neighbourhood node j ∈ N [i] to the destination node i. Therefore, we have

H(α+1,β+1)
i =

∑
j

zj g(α+1,β+1)(h(α)
D,i,h

(β)
S,j ) ,

where h(α)
D,i and h(β)

S,j are the destination and source node embeddings, respectively, and
g(α+1,β+1) is the corresponding message function. As the destination and source node
embeddings differ, the message-passing operations are indexed separately with α and β,
respectively. The source embedding satisfying h(β)

S,q = h(β)
S,r = h(β)

S,s in the collinear limit
makes the updated node representation H(α+1,β+1)

i equal for i /∈ {q, r, s}, in the splitted and
unsplitted case since zq = zr + zs. Explicitly, we have

zq g(α+1,β+1)(h(α)
D,i,h

(β)
S,q) = zr g(α+1,β+1)(h(α)

D,i,h
(β)
S,r) + zs g(α+1,β+1)(h(α)

D,i,h
(β)
S,s) . (3.1)

Additionally, we require the equality of the destination embeddings h(α)
D,q = h(α)

D,r = h(α)
D,s when

i ∈ {q, r, s}. However, we can have h(α)
D,q ̸= h(β)

S,q , as this is not needed to satisfy eq. (3.1).
Therefore, H(α+1,β+1)

i satisfies H(α+1,β+1)
q = H(α+1,β+1)

r = H(α+1,β+1)
s , in the collinear limit

of the two daughters r and s of q.

3.2 Building higher point IRC safe feature extractor

It is now straightforward to build an IRC-safe message-passing operation which looks into
three-particle correlations. The structure of the two-particle energy-weighted operation is
kept the same as eq. (2.2), and then combined with destination embedding ψD(p̂i) and source
embedding ψS(p̂i) of the angular coordinates to give an effective three particle message
passing of the form

H(1,2)
i =

∑
j

zj g(1,2)(ψD(p̂i),h(1)
S,j) ,

H(2,1)
i =

∑
j

zj g(2,1)(h(1)
D,i, ψS(p̂j)) .

(3.2)

As the destination and source embeddings are different, h(1)
D,i and h(1)

S,i denote node features
updated after two separate message-passing operations as given in eq. (2.2) with different
message functions g(1)

D and g(1)
S , respectively. The IRC safe feature would be a graph-level

representation after an energy-weighted summed graph readout on H(1,2)
i and H(2,1)

i , as

G(1,2)
3 =

∑
i

zi H(1,2)
i , G(2,1)

3 =
∑

i

zi H(2,1)
i . (3.3)

– 7 –



J
H
E
P
0
1
(
2
0
2
4
)
1
1
3

We shall see in the following discussions that these two representations look at distinct
topological structures in the graph; the IRC safe representation for the order three feature
extraction is constructed as a concatenation of these two components

G3 = G(1,2)
3 ⊕ G(2,1)

3 .

We can ascertain the behaviour of G3 by writing down its dependence on the particle’s
four vectors:

G3 =
∑
i,j

zi zj

(
g(1,2)(ψD(p̂i),

∑
l

zl g(1)
S (p̂j , p̂l))

⊕ g(2,1)(
∑

l

zl g(1)
D (p̂i, p̂l), ψS(p̂j)

)
.

Three energy weights and three angular arguments hint that the learning procedure would
directly start looking at the three-particle interrelations. It is important to note that any
IRC safe observable looking into n body phase space, by definition, approaches its n− 1 body
phase space limit when one particle approaches the soft or collinear limit. In other words,
eq. (2.3) will also look into the three-body limit of any four-particle combination when one is
soft or collinear to any other particle. However, we expect the above form to extract better
the three-particle correlations required for tagging three-prong jets like top quarks.

A schematic representation of the feature extraction procedure using different source and
destination embeddings of order one and order two operations is shown in figure 2. We focus on
the red node whose neighbours are the coloured. On the top left, the per-particle embeddings
for the source and destination can only look into the individual particle information. On
the right, however, the energy-weighted message-passing operation gathers information from
each node’s neighbourhood, which are shown with the identically coloured arrows for the
coloured nodes. The order three feature extractors are built by combining the per-particle
destination embedding with the order-two source embedding (on the left) and the order-two
destination embedding with the per-particle source embedding (on the right).

From a feature extraction perspective, there are two essential differences in comparison
to the L = 2 case given in eq. (2.3):

• One argument in both g(1,2) and g(2,1) is an embedding of the angular coordinates
of a single particle and hence contain single-particle information. In contrast, both
arguments already contain the aggregated neighbourhood information in g(2).

• The embedding of the two arguments in g(1,2) and g(2,1) have independently trainable
weights while they are shared for g(2).

The first difference makes it possible for the function g(1,2) to effectively extract the relation
of node i with the updated neighbourhood information of its neighbours (2-hop neighbour-
hood of i), while the function g(2,1) looks at the aggregated node feature of i’s immediate
neighbourhood with individual nodes in the same neighbourhood. The difference is also
seen in figure 2, where on the left H(1,2)

i looks into the features of the nodes within each
coloured circle with the red node, while on the right, H(2,1)

i looks into the feature of the

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
1
1
3

Order One Order Two

Figure 2. The figure shows a schematic representation of the message passing operation to build
hybrid order three node representations for Hypergraph Energy-weighted Message Passing Networks
by combining order one and two node representations.

aggregated neighbourhood information of the red node with the individual nodes within
its neighbourhood. This essential difference in the feature extraction procedure makes it
imperative to devise the two separate message-passing operations as they need to extract
topologically different features within the graph.

It is straightforward to generalize this procedure to any arbitrary N , with substantial
flexibility to choose the extractor guided by the requirement to divide N into two parts in
any possible way. Any feature extractor looking into less than N correlations can be used to
extract features from topologically distinct paths of length N within the graph. Due to the
different combinatorial factors involved, the complexity rises relatively fast with increasing
N , and we restrict our discussion to N = 3.

– 9 –



J
H
E
P
0
1
(
2
0
2
4
)
1
1
3

Classifier
Network

MLP
2

128

128

128

E-EdgeConv

4

128

128

128

MLP
2

128

128

128

E-EdgeConv
4

128

128

128

E-EdgeConv
256
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128
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1

Energy-weighted Global Sum Readout

Figure 3. The architecture of the H-EMPN network utilized in this study is shown as a flowchart.

To look into the learnt features of the order one and two feature extractors, we define
the graph representation as a concatenation of the source and destination embeddings as

G1 = GD,1 ⊕ GS,1 =
∑

i

zi (ψD(p̂i) ⊕ ψS(p̂i)) ,

G2 = GD,2 ⊕ GS,2 =
∑

i

zi (h(1)
D,i ⊕ h(1)

S,i) .
(3.4)

This gives the concatenated graph readout to be fed to the classifier network as

G = G1 ⊕ G2 ⊕ G3 . (3.5)

4 Network architecture and training

To gauge the properties of the proposed network, we utilise the public top-tagging dataset [58]
for a supervised classifier. These events were generated with Pythia 8.2.15 [59] and were
showered and hadronised without MPI effects. The showered events additionally underwent
a parametrised detector response via Delphes3 [60] with the default ATLAS detector card.
The particle-flow objects of the Delphes output were used as inputs to construct anti-kT [61]
jets with R = 0.8 via FastJet [62]. with additional requirements of pT within the range
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[550, 650] GeV, and pseudorapidity |η| < 2. Further, for the signal events, the top quark
and its decay products’ parton level information were used to reject falsely reconstructed
jets with the partons falling outside the jet’s area. The training data comprises 1.2 million
samples, while the test and validation datasets contain 400k samples. The network analysis
uses PyTorch-Geometric [63].

We compare order three Hypergraph Energy-weighted Message Passing Networks (H-
EMPNs) with L = 2 EMPNs. For a reasonable comparison with the H-EMPN, we will
extract the graph features for α = 1 and α = 2 stages separately for the EMPN and feed
the concatenated graph representation into the classifier network. As shown in figure 3, the
IRC-safe feature extractor module for the H-EMPN, in total, contains two per-particle maps
for ψD and ψS , and four energy-weighted edge convolution (E-EdgeConv) operations to give
the updated node embeddings h(1)

D,i, h(1)
S,i , H(1,2)

i , and H(2,1)
i . Including the classifier MLP,

which takes in the concatenated graph readout, we have seven MLPs. We have one for each
per-particle map and a message function for each E-EdgeConv operation from the feature
extractor module. All these seven MLPs contain two hidden layers with 128 nodes and a
rectified linear unit activation function. Except for the classifier network, which has a one-
dimensional output with sigmoid activation, all other MLPs have a 128-dimensional output
layer with a linear activation function. The per-particle maps take the rapidity-azimuth
coordinates p̂i = (∆yiJ ,∆ϕiJ ) of each constituent i as inputs with the differences taken from
the jet axis defined by the four-vector pµ

J = ∑npart

k=1 pk
µ. For a destination node embedding

hS,i and source node embedding hD,i, the message function takes in the concatenated vector
hS,i ⊕ hS,i − hS,j as the input. The EMPN network sequentially applies the E-EdgeConv
operation twice to the input graph’s node features. The first and the second E-EdgeConv
operations have the same MLP architecture corresponding to the ones that give h(1)

D,i (or h(1)
S,i)

and H(1,2)
i (or H(2,1)

i ), respectively. The classifier MLP for the EMPN and H-EMPN takes
in 256 and 768-dimensional concatenated graph representations, respectively. The whole
network is trained using the binary-cross entropy loss function.

We construct graphs with R0 ∈ {0.4, 0.5, 0.6} and R0 → ∞ corresponding to complete
graphs.1 For all these four instances of input graphs, we train each network five times from
random initialization for 100 epochs with the Adam optimizer [64] and a learning rate of 0.001.
A decay-on-plateau condition is applied to the learning rate with a decay factor of 0.5 if
the validation loss does not decrease for three epochs. The epoch with minimum validation
loss is used for inference for each training instance.

5 Results

5.1 Performance

The receiver operator characteristics (ROC) curve for the network with highest area under
the ROC (AUC) curve from all training instances between the signal acceptance ϵS and the

1Strictly speaking, the maximum value that R0 can take is determined by the jet’s diameter as we are
always confined to particles contained in the jet. We use the R0 → ∞ limit for defining the complete graph, as
we are using sequential recombination algorithms and the maximum area of the jet is not compactly defined
even for the anti-kt algorithm which gives almost conical jets.
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Figure 4. The receiver operator characteristics curve for the best performing network (in terms
of AUC) over the five training instances for R0 = 0.4 and R0 → ∞ for the EMPN and H-EMPN
for different ranges of signal acceptance ϵS . The figure on the top shows 1/ϵb in log scale over the
full range of ϵS , while on the center and right, it is shown in linear scale over different regions of
ϵS to highlight the differences.

inverse of background acceptance 1/ϵB for the two models for R0 = 0.4 and R0 → ∞ is
shown in figure 4. We see that the EMPN has almost an overlapping ROC curve for these
two radii, while for the H-EMPN, there is a noticeable improvement. The area under the
receiver operator curve for the EMPN and H-EMPN for different graph construction radii are
tabulated in table 1. The values correspond to the mean over the five training instances, while
the errors correspond to the standard deviation. For R0 = 0.4, the EMPN and H-EMPN
have almost identical discrimination power with an AUC of 0.9823 and 0.9821, respectively.
As the radius increases, there is a steady increase for the H-EMPN, while for the EMPN, it
increases for R0 = 0.5 and stays at a similar value for R0 = 0.6 and there is a noticeable dip
in performance when going to complete graphs with R0 → ∞. This trend can be understood
from the structural difference between the EMPN and H-EMPN and the three-prong nature of
the top jet. The EMPN’s feature extraction is sequential, with the second E-EdgeConv being
fed by the first E-EdgeConv’s updated node features. With increasing radius, the feature-
extraction, which looks at aggregated two-particle correlations, suffers from a redundancy of
the information as the first E-EdgeConv already looks at a much larger neighbourhood in the
rapidity-azimuth plane. On the other hand, the H-EMPN has a much larger width, with four

– 12 –



J
H
E
P
0
1
(
2
0
2
4
)
1
1
3

Area Under the ROC Curve

Model R0 = 0.4 R0 = 0.5 R0 = 0.6 R0 → ∞

EMPN 0.9823 ± 0.00015 0.9827 ± 0.00009 0.9826 ± 0.00024 0.9825 ± 0.00015

H-EMPN 0.9821 ± 0.00012 0.9826 ± 0.00010 0.9828 ± 0.00029 0.9834 ± 0.00012

Table 1. The table shows the mean AUC for five training instances evaluated on the test dataset of
the public top-tagging dataset for different architectures. The errors shown are the standard deviation
of the five training instances.

1/ϵB at ϵS = 0.5

Model R0 = 0.4 R0 = 0.5 R0 = 0.6 R0 → ∞

EMPN 235 ± 7 250 ± 2 246 ± 4 255 ± 6

H-EMPN 236 ± 2 258 ± 6 258 ± 11 276 ± 6

Table 2. The table shows the background rejection at a signal acceptance of 50% for different models.
The values correspond to the mean from the evaluation of the test dataset for five different training
instances from random initialization, while the standard deviations are shown as errors.

modules taking the input jet constituents parallelly, which are then combined non-trivially
to feed the order-three feature extractors. Even though the order-three extractors take in
the updated order-two node features from the full jet in the R0 → ∞ limit, the combination
with the per-particle maps drives the extraction process to look at any relevant three-prong
structure in the whole jet. From a purely QCD perspective, the radius R0 puts in an additional
scale beyond the jet radius, and going to the R0 → ∞ limit takes away this dependence in
the feature extraction procedure. Although it is possible to define R0 as a function of the
IRC safe kinematic information of the jet which could possibly improve the feature extraction,
we do not consider this as our aim is to move towards theoretically transparent ways of
improving feature extraction. Therefore, the H-EMPN can extract features from the full jet
more efficiently without being restrained by an arbitrary angular scale R0.

The AUC paints a global picture of the discrimination power of a binary classifier;
however, a classifier is almost always used at a specific working point, depending on the
analysis. This practical aspect demands a local figure of merit, which we show with the inverse
of the background acceptance ϵB, the background rejection 1/ϵB, at fixed values of signal
acceptance ϵS . The background rejection for the EMPN and H-EMPN for the different graph
construction radii are shown for ϵS = 0.5 and ϵS = 0.3 in tables 2 and 3, respectively. The
values are averaged over the five training instances, with the standard deviations shown as
errors. Although the trend for separate models is similar to that of the AUCs, the H-EMPN
already starts having a noticeably better background rejection for R0 = 0.5 even though the
EMPN has a nominally higher AUC. As a matter of fact, except for R0 = 0.4 at ϵS = 0.3,
the H-EMPN has a numerically higher mean background rejection for all other instances.
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1/ϵB at ϵS = 0.3

Model R0 = 0.4 R0 = 0.5 R0 = 0.6 R0 → ∞

EMPN 819 ± 39 882 ± 11 839 ± 31 895 ± 36

H-EMPN 817 ± 33 917 ± 25 911 ± 34 995 ± 48

Table 3. The table shows the background rejection (1/ϵB) at a signal acceptance (ϵS) of 30% for
different models. The values correspond to the mean from the evaluation of the test dataset for five dif-
ferent training instances from random initialization, while the standard deviations are shown as errors.
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Figure 5. The two-dimensional histogram of the QCD (above) and top (below) test datasets in
the two-dimensional latent space obtained after a t-SNE embedding of the 128-dimensional graph
representation G(1) (left) and G(2) (right) of the best performing EMPN trained with complete graphs.

5.2 Visualizing the latent graph representation

In this section, we investigate whether all the graph representations that the H-EMPN
learns can contribute to separating the signal and the background for the final classifier
output. We choose the best-performing complete graph, which has the possibility of the
highest information redundancy besides being the strongest classifier. Although a relatively
high linear correlation with the network output does point to the classification using that
particular information, it is defined for each component of the graph representation, which
dilutes the importance of the underlying vector representations. Moreover, the absence of
linear correlation does not imply the lack of discriminatory information, as neural networks
can be highly non-linear functions of their inputs.
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Figure 6. The two-dimensional histogram of the QCD (above) and top (below) test datasets in
the two-dimensional latent space obtained after a t-SNE embedding of the 128-dimensional graph
representation GD,1 (left), GD,2 (center) and G(1,2)

3 (right) of the best performing H-EMPN trained
with complete graphs.

We look into the separating power of the different graph representations by visualizing
them in a two-dimensional latent space using the t-distributed Stochastic Neighbourhood
Embedding (t-SNE) [65] — an unsupervised data representation technique, where high
dimensional data is embedded non-linearly in a lower dimensional space by maximally
conserving the neighbourhood information endowed by a Euclidean metric in both spaces.
In other words, nearby points in the high-dimensional representation get mapped to a local
neighbourhood in the low-dimensional space. As it is an unsupervised technique, no explicit
class information (QCD and top for our case) is fed when learning the map, and the clusters
that arise in the low-dimensional space are a consequence of their proximity in the high-
dimensional space. Therefore, a well-separated cluster in the lower-dimensional space implies
that the higher-dimensional space also has well-separated regions.

We use the implementation of t-SNE in Scikit-learn [66] package to embed the various
128-dimensional graph representations of the test dataset evaluated on the best performing
EMPN and H-EMPN for the complete graph in a two-dimensional space separately for each
representation. The class-wise two-dimensional histogram in the embedding space (t1, t2)
for G(1) and G(2) for the EMPN are shown in figure 5. We can see that both the graph
representations have relatively distinct regions in (t1, t2) for the QCD samples (shown above)
and top samples (shown below). Similarly, the two-dimensional histograms for the graph
representations constructed out of the destination and source node-embeddings for the H-

– 15 –



J
H
E
P
0
1
(
2
0
2
4
)
1
1
3

−100

−50

0

50

100

GS,1, GS,2 G
(2,1)
3

−100 0 100

−100

−50

0

50

100

−100 0 100−100 0 100
0

2

4

6

8

a.
u

×10−5

Q
C

D
T

op

t 2
→

t1 →

H-EMPN

Figure 7. The two-dimensional histogram of the QCD (above) and top (below) test datasets in
the two-dimensional latent space obtained after a t-SNE embedding of the 128-dimensional graph
representation GS,1 (left), GS,2 (center) and G(2,1)

3 (right) of the best performing H-EMPN trained
with complete graphs.

EMPN are shown in figures 6 and 7, respectively. All these embedded graph representations
exhibit clear clustering of the QCD and top samples in different regions, confirming that the
H-EMPN has extracted discriminating features from all of its component modules.

Although the EMPN and H-EMPN can utilize their constituent graph representation
to separate the QCD jets from top jets as seen from these two-dimensional histograms, we
reiterate the qualitative differences between these two networks from the QCD perspective.
The L = 2 EMPN looks up to order four relations. In contrast, the H-EMPN in its present
guise only looks up to order three — the sequential application of E-EdgeConv (to give
H(1,2)

i and H(2,1)
i ) takes in the per-particle map with single particle information rather than

an updated node feature with the local neighbourhood information in one of its arguments.
However, we can see the better ability of the H-EMPN network from its performance studies
and potentially better behaviour in QCD with its greater efficacy in the absence of an
arbitrary angular scale R0. Since we took the top vs QCD jets classification example, we
already knew that there is beneficial information in the three-prong structure within the
jet, which prompted our design of the specific H-EMPN.2 The first observation from the
finite R0 cases is that the H-EMPN architecture is more critical in extracting the order
three relational information from the jets than the L = 2 EMPN. On the other hand, our

2The situation may be different, for instance, in the quark vs gluon case where the separating information
is not in the hard prong structure but the soft radiation pattern surrounding the one prong core within the jet.
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a priori knowledge of QCD, prompting the design of the H-EMPN, validates that physical
inductive biases, or more specifically, QCD, have an important role in the design of performant
feature extractors. Therefore, rather than throwing a currently “fashionable network” under
the hood, designing architectures based on the underlying physical intuition can help push
the performance boundaries of deep learning algorithms and gain (at least) a qualitative
understanding of their inner workings.

6 Conclusions

This study delved deep into the intricacies of generalised automatic infrared and collinear
safe feature extraction for LHC phenomenology, focusing on the potential of Graphs and
Hypergraphs. Hypergraphs are a generalisation of traditional graphs. While a standard graph
consists of vertices connected by edges, each connecting exactly two vertices, a hypergraph
allows edges to connect any number of vertices, offering a more flexible way to represent
relationships between entities.

First, we explored the behaviour of energy-weighted message passing and its capability to
approximate general infrared and collinear safe observables. We highlighted the significance
of IRC-safe observables, especially in the context of data interpretation at LHC experiments.
The study further explored the capabilities of Energy Flow Networks and Energy-weighted
message-passing networks, shedding light on their potential and constraints utilising the
usage of multilayer perceptrons as universal function approximators within the architecture
with the IRC-safe observables expressible in terms of C-correlators.

To enhance the capabilities of IRC safe feature extraction, especially for higher-point
correlations, a novel method was introduced by leveraging the form of C-correlators and
heterogenous source and destination node embeddings. This approach presents a renewed
outlook on feature extraction.

Qualitatively assessing the two models, while the EMPN model provides a robust
foundation for feature extraction, the H-EMPN model, designed to look at order-three
interparticle relations, demonstrates an edge in performance metrics even though the EMPN
model via the application of two-message passing operations could theoretically look up to
order-four. This suggests that incorporating hypergraph structures in the H-EMPN model
offers enhanced capabilities in extracting higher-point correlations, making it a promising
tool for more intricate analyses in LHC phenomenology.

Our findings underscore the potential of hypergraph-based methods in enhancing the
extraction of IRC-safe features. The research paves the way for further exploration into LHC
phenomenology, focusing on optimising feature extraction techniques.
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