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Exploiting an evolution scheme for parton distribution functions (DFs) that is all-orders exact, contemporary 
lattice-QCD (lQCD) results for low-order Mellin moments of the pion valence quark DF are shown to be 
mutually consistent. The analysis introduces a means by which key odd moments can be obtained from the 
even moments in circumstances where only the latter are available. Combining these elements, one arrives at 
parameter-free lQCD-based predictions for the pointwise behaviour of pion valence, glue, and sea DFs, with 
sound uncertainty estimates. The behaviour of the pion DFs at large light-front momentum fraction, 𝑥 ≳ 0.85, is 
found to be consistent with QCD expectations and continuum analyses of pion structure functions, i.e., damping 
like (1 − 𝑥)𝛽parton , with 𝛽valence ≈ 2.4, 𝛽glue ≈ 3.6, 𝛽sea ≈ 4.6. It may be possible to test these predictions using data 
from forthcoming experiments.
1. Introduction

As increasing investment is directed toward uncovering the origin 
of a nuclear size mass scale in Nature, i.e., understanding the emer-

gence of hadron mass [1–8], there is a growing appreciation of the role 
that can be played by experimental studies of pion (and kaon) struc-

ture [9–17]. This emphasises the need for robust theoretical predictions 
of, inter alia, pion distribution amplitudes (DAs) and functions (DFs). 
Concerning DAs, modern predictions – see, e.g., Ref. [1, Secs. 3, 8 D], 
might be tested using the Drell-Yan process [18,19]; and regarding DFs, 
analyses of existing data have been revisited [20–26] and many contin-

uum and lattice studies have recently been completed – see, e.g., Refs. 
[1,27–38].

It is worth recalling that a parton DF is a probability density dis-

tribution: pℎ(𝑥; 𝜁) 𝑑𝑥 is the number of partons within a hadron ℎ that 
carry a light-front fraction 𝑥 of the hadron’s momentum when this is 
resolved at scale 𝜁 . Each DF is an essentially nonperturbative quantity, 
relating directly to the wave function of the hadron [39,40]; so, charting 
DF 𝑥-dependence is one of the keys to understanding hadron structure. 
In connection with the pion, almost all theory studies have focused on 
valence quark DFs, because they are the most straightforward. Notwith-
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standing that, some analyses have recently tackled sea and glue DFs – 
see, e.g., Refs. [27,34,41,42].

Models and continuum Schwinger function methods (CSMs) typi-

cally yield the full 𝑥-dependence of the DF [1,43]. Considering lattice-

regularised QCD (lQCD), gaining access to the 𝑥-dependence once 
seemed an insurmountable problem; yet, today, methods have been 
proposed and are being developed for lQCD that also provide access 
to the functional dependence [44–46]. Issues remain, however, in some 
cases concerning the domain of support, which should be restricted to 
𝑥 ∈ [0, 1], and, in others, a need to solve or skirt an “inverse problem”. 
Consequently, a continuing focus of lQCD is the calculation of DF Mellin 
moments:

M 𝑛
p (𝜁) = ⟨𝑥𝑛⟩𝜁p =

1

∫
0

𝑑𝑥𝑥𝑛p(𝑥; 𝜁). (1)

There are also challenges with calculating such Mellin moments 
[43]. For instance, the ability to compute higher moments using lQCD is 
limited by statistical precision and, at a more basic level, by the break-

ing of 𝑂(4) symmetry introduced by lattice discretisation. In the calcu-

lation of higher-order moments when working with local operators, this 
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Table 1

Lattice QCD results for Mellin moments of the pion valence-quark 
DF at 𝜁 = 𝜁2 = 2 GeV [36,38] and 𝜁5 = 5.2 GeV [35,37]. As dis-

cussed in connection with Eq. (8), the column labelled “G Eq. (8)” 
provides the 𝜒2 odd-moment completion of the Ref. [38] even mo-

ments.

𝑛 [36, J] [38, G] G Eq. (8) [35, A] [37, S]

1 0.254(03) 0.271 0.23(1) 0.18(3)
2 0.094(12) 0.1104(73) 0.087(05) 0.064(10)
3 0.057(04) 0.054(8) 0.041(04) 0.030(05)
4 0.0388(46) 0.023(05)
5 0.037(24) 0.014(04)
6 0.0118(48) 0.009(03)

introduces lattice-spacing power-divergences in the mixing with lower-

dimensional operators, which restricts access to only those moments ⟨𝑥𝑛⟩, 𝑛 ≤ 3 [35]. Computation of higher-order moments is possible us-

ing nonlocal operators, in hybrid lQCD studies that exploit features of 
the frameworks introduced to make DF 𝑥-dependence available [36,37]. 
Notably, however, in some implementations of the Ioffe-time approach 
[45], only even moments of the valence quark DF are accessible [38]. 
This is an issue because the 𝑛 = 1 moment contains much important in-

formation, e.g., it gives the momentum fraction carried by the valence 
quarks and can serve as the key to an evolution kernel between the 
subject DF at any two resolving scales [47,48].

Given a collection of lQCD calculations of some sets of low-order 
Mellin moments, a number of questions arise. For instance: having been 
obtained from distinct lattice setups, at different resolving scales, and 
using dissimilar algorithms, are they mutually consistent; and suppos-

ing they are, is it possible to obtain a robust reconstruction of the DF, 
with reliable uncertainties, from the available lQCD-determined Mellin 
moments? Herein, we exemplify an approach to these questions and 
their answers using the pion valence quark DF moments reported in 
Refs. [35–38], which are listed in Table 1. Sketching briefly, these 
computations, respectively: employ local operators to obtain low-order 
moments, with a practitioner-chosen fit used to infer higher moments; 
reconstruct the DF from a lattice cross-section using a practitioner cho-

sen fitting function, with low-order moments derived therefrom; extract 
low-order moments from a pseudo-DF; and employ a pseudo-DF scheme 
that only provides direct access to low-order even moments.

2. DF evolution

In discussing DFs, QCD evolution is crucial [49–52]. We employ the 
all-orders scheme described succinctly in Ref. [47, Sec. III] and detailed 
in Ref. [48]. Here, to assist in making the presentation self-contained, 
we reiterate some points that are pertinent to the analysis of pion DF 
moments.

There are two primary principles.

P1 – There exists at least one effective charge, 𝛼1𝓁(𝑘2), such that, when used 
to integrate the one-loop DGLAP equations, an evolution scheme for parton 
DFs is defined that is all-orders exact.

Charges of this type are reviewed in Ref. [53]. They need not be 
unique, but a suitable process-independent charge is not excluded. That 
explained and calculated in Ref. [54] has proved valuable, e.g., serving 
to deliver a unified set of predictions for pion, kaon, and proton (unpo-

larised and polarised) DFs, and pion fragmentation functions that agree 
with much available data [23,29,33,55]. In being defined via observ-

ables, each such 𝛼1𝓁(𝑘2) is [53]: consistent with the renormalisation 
group; renormalisation scheme independent; everywhere analytic and 
finite; and supplies an infrared completion of any standard running cou-

pling.

P2 – The hadron scale, 𝜁 < 𝑚𝑝, where 𝑚𝑝 is the proton mass, is that scale 
2

at which valence (quasiparticle) degrees-of-freedom carry all properties of 
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the given hadron, including, but not limited to, the entirety of its light-front 
momentum. 𝜁 is the initial scale for all-orders DF evolution.

It follows from P2 that the glue and sea momentum fractions vanish 
at 𝜁 in every hadron; hence, since DFs are nonnegative on 𝑥 ∈ [0, 1], 
gℎ(𝑥; 𝜁 ) ≡ 0 ≡ Sℎ(𝑥; 𝜁 ). To date, it has been found that the same value 
of 𝜁 serves well for all hadrons. Regarding the pion, P2 entails

u𝜋(𝑥; 𝜁 ) = u𝜋(1 − 𝑥; 𝜁 ) , 2M 1
u𝜋
(𝜁 ) = 1 . (2)

Kaon- and nucleon–like systems are discussed, respectively, in Refs. [28,

29]. It is worth stressing that glue and sea DFs are nonzero ∀𝜁 > 𝜁 ; 
moreover, notwithstanding P2, even on 𝜁 ≃ 𝑚𝑝, a significant fraction of 
a given hadron’s light-front momentum is lodged with glue and sea.

At this point it is, perhaps, worth highlighting that P1 does not 
require proof. It is true by definition, as explained in Ref. [56] and re-

viewed elsewhere [53, Sec. 4]. The merits of such a scheme are judged 
by its efficacy. Likewise P2, which is definitive of the all-orders scheme.

P2 cannot be invalid, but it might be ineffectual. As noted above, how-

ever, widespread use [23,29,33,55] indicates, on the contrary, that P2
is very effective.

We now list three key corollaries of P1, P2 for pion-like bound states 
[47,48].

C1 – Since the hadron scale DF of a ground-state pseudoscalar meson is 
necessarily unimodal [1, Sec. 3], then each moment of a realistic DF is 
bounded from above and below:

1
2𝑛

≤ M 𝑛
u𝜋
(𝜁 ) ≤ 1

1 + 𝑛
, (3)

where the lower bound is provided by the moments of a bound state 
built from two infinitely heavy valence degrees-of-freedom and the up-

per expresses the moments of a pointlike system [47].

C2 – Each moment of a DF at scale 𝜁 is completely determined by the 
value of this moment at the hadron scale and the first moment at 𝜁 , viz. 
for pion-like systems,

M 𝑛
u𝜋
(𝜁) = M 𝑛

u𝜋
(𝜁 )

[
2M 1

u𝜋
(𝜁)

]𝛾𝑛
0 ∕𝛾10

, (4)

where 𝛾00 = 0 and, for 𝑛𝑓 = 4 quark flavours, 𝛾1,20 = 32∕9, 50∕9. The 
higher-𝑛 results are listed elsewhere [48, Eq. (6a)]. Hereafter, we write 
𝛾

𝑛∕1
0 = 𝛾𝑛

0 ∕𝛾10 .

Using Eq. (4), one obtains a form of Eq. (3) valid at any scale:

1
2𝑛

≤ M 𝑛
u𝜋
(𝜁)∕[2M 1

u𝜋
(𝜁)]𝛾

𝑛∕1
0 ≤ 1

1 + 𝑛
. (5)

C3 – Using Eqs. (2), (4), one readily finds that each odd-order Mellin 
moment is completely determined by the set of lower-order even mo-

ments; hence,

M 2𝑛+1
u𝜋

(𝜁) =
[2M 1

u𝜋
(𝜁)]𝛾

(2𝑛+1)∕1
0

2(𝑛+ 1)

×
2𝑛∑

𝑗=0,1,…
(−)𝑗

(
2(𝑛+ 1)

𝑗

) M 𝑗
u𝜋
(𝜁)

[2M 1
u𝜋
(𝜁)]𝛾

𝑗∕1
0

. (6)

Any DF whose Mellin moments satisfy the Eq. (6) recursion relation is 
linked by evolution to a symmetric distribution at 𝜁 . This is already 
known to be true [47] for the lQCD studies reported in Refs. [35–37]

and will herein be established for that in Ref. [38].

3. Odd moments from even

It was shown elsewhere [47] that the moments reported in Refs. 
[35–37] are mutually consistent and comply with all constraints de-
scribed in Sec. 2. It is now natural to enquire after the moments in Ref. 
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[38, G]. This is a novel case because the method used therein only de-

livers even moments, with good signals for 𝑛 = 2, 4, 6 – see Table 1.

The question as to compatibility of the Ref. [38, G] moments with 
the earlier studies can be addressed by considering the following 𝜒2

measure:

𝜒2
G =

∑
𝑗=A,J,S

𝑛𝑗∑
𝑚=2

a𝑚
𝑗

[R 𝑚
𝑗
(𝜁𝑗 ) − R 𝑚

G (𝜁G)]
2

([𝜎𝑚
𝑗
]2 + [𝜎𝑚

G]
2)

, (7a)

R 𝑚
𝑗
(𝜁𝑗 ) = M 𝑚

𝑗
(𝜁𝑗 )∕[2M 1

𝑗
(𝜁𝑗 )]

𝛾
𝑚∕1
0 , (7b)

where we have dropped the u𝜋 subscript, because it is understood that 
only the pion is being discussed, replacing it with a label that indicates 
the source of the moment employed; 𝑛𝑗 is the number of moments in 
lQCD study “𝑗”, with 𝜁𝑗 being that study’s resolving scale; and a𝑚

𝑗
= 1

if moment 𝑚 is reported in study 𝑗 and zero otherwise, with M 𝑚
𝑗

, 𝜎𝑚
𝑗

being the related moment and its uncertainty. Since the “G” moments 
do not include 𝑚 = 1, this measure is presently ill-defined.

One way of proceeding is to introduce M 1
G(𝜁G) as a parameter and 

find that value for this moment which minimises 𝜒2
G. With that value in 

hand, the 𝑛 = 3, 5 moments can be obtained using Eq. (6). Continuing in 
this way, one has a five-term minimisation with one fitting parameter, 
i.e., four degrees of freedom; and the value

M 1
G(𝜁G) = 0.271 (8)

provides the minimum, with 𝜒2
G∕ degree-of-freedom = 0.95∕4 = 0.24. 

This moment and the 𝑛 = 3, 5 moments obtained by recursion, Eq. (6), 
are also listed in Table 1. Standard error propagation methods entail 
that the uncertainty grows with 𝑛. It can only be reduced by increasing 
the precision of the lower-order even moments.

It is here worth stressing that our odd-moment completion of the 
even moments reported in Ref. [38] makes neither assumptions about 
the form of the P1 effective charge nor the value of the P2 hadron scale. 
It is therefore significant that using the PI charge elucidated in Ref. [54], 
denoted �̂�(𝑘2) and recorded explicitly elsewhere [23, Eq. (13)], along 
with the first moment from Ref. [35], one finds

M 1
A(𝜁G) = M 1

A(𝜁A) exp
⎡⎢⎢⎢⎣
−

𝛾10
2𝜋

𝜁𝐺

∫
𝜁𝐴

𝑑𝑧

𝑧
�̂�(𝑧2)

⎤⎥⎥⎥⎦
(9a)

= 0.269(9) , (9b)

a value which agrees with the minimisation – Eq. (8). It is further no-

table that repeating this procedure for all the moments reported in 
Ref. [38], one arrives at the following comparisons:

𝑛 2 4 6
M 𝑛

G(𝜁G) 0.1104(73) 0.0388(46) 0.0118(48)
M 𝑛

A(𝜁G) 0.102(11) 0.027(09) 0.011(05)

, (10)

which provide additional confirmation of both mutual consistency be-

tween lQCD results and validity of the analysis scheme described in 
Sec. 2.

In Fig. 1, we depict all moments in Table 1, evolved to the hadron 
scale using Eq. (4). Evidently, all considered lQCD studies deliver mo-

ments that are mutually consistent and satisfy the physical bounds, Eq. 
(3).

Whilst immaterial for the comparisons discussed, it is nevertheless 
interesting to identify a typical value of the hadron scale which may 
be associated with each lQCD simulation. This can be achieved by us-

ing the PI charge [23, Eq. (13)] to find that value of 𝜁 for which Eq. 
(4) yields M 1

𝑗
(𝜁 ) = 1∕2 from the first moment associated with simu-

lations 𝑗 = A, J, S, G at their respective resolving scales, 𝜁𝑗 . Ignoring 
3

uncertainties, this procedure yields
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Fig. 1. Moments from Table 1, referred to 𝜁 via Eq. (4): black down-triangles 
[35, A]; blue up-triangles [36, J]; green diamonds [37, S]; orange circles [38, G]

– even moments; and red squares [38, G] – odd moments, obtained as described 
around Eq. (8). Results consistent with the bounds in Eq. (5) fall within the open 
band. The excluded regions are shaded lightly in grey. Long-dashed dark-blue 
curve: moments of CSM DF [23], Eq. (12). Dotted magenta curve: moments of 
the scale-free distribution: q sf (𝑥) = 30𝑥2(1 − 𝑥)2.

Fig. 2. Referred to the one-parameter function in Eq. (12), pion DF obtained 
by requiring a best 𝜒2 fit to the 𝑛 ≥ 2 moments in Refs. [35–37] – dashed 
dark-green curve; 𝑛 = 2, … , 6 moments associated with Ref. [38] – long-dashed 
dark-red curve; all 𝑛 ≥ 2 moments in Table 1 – solid black curve. The CSM 
prediction is drawn as the dot-dashed dark-blue curve.

lQCD study [35, A] [36, J] [37, S] [38, G]

𝜁∕GeV 0.379 0.351 0.287 0.381
. (11)

These values are well clustered, with a mean 0.350(44) GeV that is con-

sistent with the CSM prediction [23, Eq. (15)]: 𝜁 = 0.331(2) GeV.

The moments of the CSM prediction:

u𝜋(𝑥; 𝜁 ) = n𝜋 ln[1 + 𝑥2(1 − 𝑥)2∕𝜌2] , (12)

with 𝜌 = 0.0660 and n𝜋 a constant that ensures unit normalisation, are 
also shown in Fig. 1 – long-dashed blue curve: within uncertainties, all 
lQCD results are consonant with this curve. Notably, the function in Eq. 
(12) is flexible enough to simultaneously express both the dilation that 
the phenomenon of emergent hadron mass is known to generate in the 
valence quark DF [29] and endpoint (𝑥 ≃ 0, 1) behaviour matching QCD 
expectations – see, e.g., Ref. [47, Sec. V] and Sec. 5 below.

At this point, one may ask for a 𝜒2 best-fit to all lQCD moments 
expressed through a value of 𝜌 in Eq. (12). Using only the 𝑛 ≥ 2
moments from Refs. [35–37], the usual 𝜒2 function is minimised by 
[47] 𝜌 = 0.048, with 𝜒2∕ degree-of-freedom = 0.27. (N.B. Eq. (12) is a 
symmetric distribution and M 1(𝜁 ) = 1∕2 for all studies; hence, only 
𝑛 ≥ 2 moments are relevant in the minimisation.) Focusing instead 
solely on the 𝑛 = 2, … , 6 moments associated with Ref. [38], one finds 
𝜌 = 0.088 with 𝜒2∕ degree-of-freedom = 2.2∕4 = 0.55. Combining all 
𝑛 ≥ 2 moments listed in Table 1, 𝜌 = 0.061 with 𝜒2∕ degree-of-freedom 
4.8∕13 = 0.37. The hadron scale DFs obtained with these values of 𝜌
are drawn in Fig. 2: the mean L1 difference between all curves drawn 
is 4.1(2.3)%; namely, they are practically indistinguishable. The L1 dif-

ference between the combined lQCD result and the CSM prediction is 
1.0%. (Since all valence DFs bound unit area, this measure is simply the 

integral of the absolute value of the difference between the curves.)
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Fig. 3. Upper panel – A. Randomly distributed ensemble of lQCD-based – see 
Table 1 – valence-quark DFs (orange curves) constructed using the procedure 
described in connection with Eq. (14). Lower panel – B. 𝜁 → 𝜁5 evolution of 
each curve in Panel A. Black circles, data recorded in Ref. [57, E615]; and 
teal boxes, reevaluation of that data as presented in Ref. [58]. Both panels. 
Dashed purple curve: central 𝜌 = 𝜌0 result in Eq. (12). Solid blue curve: CSM 
prediction from Ref. [23]. Dotted black curve: scale-free distribution. (All at 
scale appropriate to the panel.)

4. Pion DFs from lattice-QCD moments

We have seen that each of the simulations represented in Table 1

is in accord with the valence quark DF features explained in Sec. 2, 
viz. P1, P2, and their corollaries; and that these lQCD studies are all 
mutually consistent. Hence, one may combine the moments in Table 1

to obtain an optimal description of the entire collection.

This can be accomplished by first considering the hadron-scale DF 
in Eq. (12). Then, denoting the moments of this function by M 𝑛

𝜋
(𝜌), one 

minimises the following uncertainty-weighted 𝜒2 measure:

𝜒2(𝜌) =
∑

𝑗=A,J,S,G

6∑
𝑛=2

𝑎𝑛
𝑗

[M 𝑛
𝜋
(𝜌) − R 𝑛

𝑗
(𝜁𝑗 )]2

[𝜎𝑛
𝑗
]2

, (13)

where 𝑎𝑛
𝑗
= 1 in all cases with an entry in Table 1 and is otherwise zero; 

and 𝑀 s
𝑛
(𝜁), 𝜎s

𝑛
are the related moment and uncertainty. As reported 

above, this yields 𝜌0 = 0.061, 𝜒2(𝜌0) = 4.8∕13 = 0.37. (The uncertainties 
in Eq. (13) are subsequently rescaled such that 𝜒2

0 ∶= 𝜒2(𝜌0) = 𝑑 − 2, 
where 𝑑 = 13.)

Exploiting this result, we generate a set of curves that express the 
uncertainty in the lQCD moments as follows. (a) From a distribution 
centred on 𝜌0, choose a new value of 𝜌. (b) Evaluate 𝜒2(𝜌) in Eq. (13). 
The new value of 𝜌 is accepted with probability

P =
𝑃 (𝜒2;𝑑)
𝑃 (𝜒2

0 ;𝑑)
, 𝑃 (𝑦;𝑑) =

(1∕2)𝑑∕2

Γ(𝑑∕2)
𝑦𝑑∕2−1e−𝑦∕2 . (14)

(c) Repeat (a) and (b) until one has a 𝐾 ≳ 100-member set of hadron-

scale DFs. (One can use more, but the impact is immaterial.) This 
procedure yields the ensemble of DFs drawn in Fig. 3A. Plainly, they 
properly bracket the central curve, which, itself, is a close match to the 
CSM prediction [23].

Capitalising on P1, each curve in Fig. 3A can be evolved to 𝜁5 once 
2M 1

u𝜋 (𝜁5) is known – see Eq. (4). Using an uncertainty weighted average 
of the results in Table 1, viz. 2M 1

u𝜋 (𝜁5) = 0.438(5), obtained after the 
4

𝑗 = J, G 𝜁2 values were evolved to 𝜁5 via analogues of Eq. (9a), and 
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Fig. 4. Glue and sea DFs at 𝜁5 = 5.2 GeV. The band associated with each curve 
expresses consequences of the uncertainty in the valence momentum fraction: 
2M 1

u𝜋
(𝜁5) ∶= 0.438(5); leading to M 1

g𝜋
(𝜁5) ∶= 0.436(1); M 1

S𝜋
(𝜁5) ∶= 0.125(1). For 

comparison, CSM predictions from Refs. [23,27] are also drawn: in this case, 
2M 1

u𝜋
(𝜁5) ∶= 0.40(2); M 1

g𝜋
(𝜁5) ∶= 0.45(1); M 1

S𝜋
(𝜁5) ∶= 0.14(1).

no further information, one obtains the orange curves in Fig. 3B. The 
central curve and associated 1𝜎-band are reproduced by

u𝜋(𝑥; 𝜁5) = n𝜁5
0 𝑥𝛼(1 − 𝑥)𝛽 (1 + 𝛾𝑥2) , (15)

𝛼 = −0.134(62), 𝛽 = 2.55(36), 𝛾 = 1.62(77), with n𝜁5
0 ensuring unit nor-

malisation. Evidently, the lQCD results are consistent with the reanal-

ysis of E615 data described in Ref. [58], which follows the so-called 
Mellin-Fourier approach to resummation of next-to-leading-logarithms 
that was also employed with similar effect in Ref. [22].

Exploiting P1, then the results in Fig. 3A also enable prediction of 
pion glue and sea DFs [48]. Employing the central curve in Fig. 3A, 
generated with 𝜌 = 𝜌0 = 0.061 in Eq. (12), one obtains the DFs in Fig. 4. 
On the entire kinematic domain, there is fair agreement between the 
lQCD-based results calculated herein and the CSM predictions [23,27]. 
It is worth stressing that the CSM result for the glue DF [27] agrees 
with an independent lattice determination [41]; hence, the lQCD-based 
result calculated herein is also in accord with that study.

5. Pion DFs at large-𝐱

Analyses of the pion valence-quark DF, which incorporate the be-

haviour of the pion wave function prescribed by QCD, predict [24]:

u𝜋(𝑥; 𝜁) 𝑥≃1∼ (1 − 𝑥)𝛽 =2+𝛾(𝜁) , (16)

where 𝛾(𝜁 ) = 0 and 𝛾(𝜁 > 𝜁 ) ≥ 0 grows logarithmically with 𝜁 , ex-

pressing the physics of gluon radiation from the struck quark. The 
powers on glue and sea DFs are, respectively, one and two units greater 
[24,29,43,47,59,60]. Nevertheless, long after the first experiment rele-

vant to u𝜋(𝑥 ≃ 1) [61], data-based conclusions relating to these predic-

tions remain confused because, amongst the many methods used to fit 
existing data, e.g., Refs. [20–26,58], some produce a u𝜋 form that vio-

lates Eq. (16) and its corollaries. The results in Fig. 3 bear directly upon 
this issue.

As noted in connection with Eq. (15), combined and analysed as 
described above, the recent lQCD studies collected in Table 1 produce a 
large-𝑥 exponent 𝛽(𝜁5) = 2.55(36). However, this is the exponent on 𝑥 ≃
1, a domain whereupon data cannot readily be obtained. For empirical 
purposes, it is more useful to report an effective exponent, i.e., a slope 
parameter averaged over the domain 𝑥 ∈ [0.85, 1.0] [43]. Working with 
the results in Fig. 3B, one finds

𝛽eff
valence(𝜁5)

𝑥∈[0.85,1]
= 2.36(31) . (17)

Restricting the domain to 𝑥 ∈ [0.9, 1.0], this value rises 2%, becoming 
2.41(31). Analogous results for glue and sea are:

𝛽eff
glue(𝜁5)

𝑥∈[0.85,1]
= 3.56(23) , (18a)

𝑥∈[0.85,1]

𝛽eff
sea (𝜁5) = 4.62(26) . (18b)
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Modern lQCD results are thus seen to be consistent with Eq. (16) and 
its corollaries.

6. Summary and outlook

Contemporary simulations of lattice-regularised QCD (lQCD) pro-

duce Mellin moments associated with the pion valence quark distri-

bution function (DF) that are consistent with an array of expectations 
based on the all-orders evolution scheme [Sec. 2]. Seen from this per-

spective, they are also mutually compatible [Sec. 3]. Consequently, 
they may be combined to deliver parameter-free lQCD-based predic-

tions for the pointwise behaviour (light-front momentum fraction, 𝑥, 
dependence) of pion valence, glue, and sea DFs, with quantitatively 
reliable uncertainties [Sec. 4]. Consistent with modern continuum pre-

dictions at the resolving scale usually associated with E615 data [57], 
the large-𝑥 behaviour of the lQCD DFs may be represented via [Sec. 5]

(1 − 𝑥)𝛽
eff
p , (19)

with 𝛽eff
u ≈ 2.4, 𝛽eff

g ≈ 3.6, 𝛽eff
S ≈ 4.6. These predictions can both serve 

as benchmarks for existing data fitting methods and, once those meth-

ods are shown to be reliable, be tested using data from forthcoming 
experiments. Moreover, using crossing symmetry [62–64], they can be 
used to develop lQCD-based predictions for pion fragmentation func-

tions [55].
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