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By taking advantage of the braneworld sum rules, we explore the feasibility of constructing a flat 3-brane scenario 
consisting solely of positive tension branes in a 5D extension of the Lorentz-violating massive gravity. It is found 
that the theory supports three distinct brane configurations, one of which is exactly what we expected, consisting 
solely of two positive tension branes. The cosmological problem of Randall-Sundrum-1 model and the gauge 
hierarchy problem can be solved in this model simultaneously. Furthermore, the analysis of linear perturbations 
reveals that the tensor, vector and scalar modes are all massive and share the same mass spectrum, except that 
the ground state of vector mode is absent. Moreover, the tensor and vector modes are robust, but the scalar mode 
is ghost-like. Interestingly, even though the Kaluza-Klein gravitons have an extremely small mass splitting scale, 
an estimation of the effective gravitational potential and production of these gravitons on the brane indicates 
that the phenomenology of the present model is equivalent to that of the 6D ADD model.
1. Introduction

The possibility that our spacetime may have more dimensions other 
than four has always been concerned by theoretical physicists since the 
proposal of Klein-Kaluza (KK) theory in 1920s [1,2]. Inspired by the 
string theory, the braneworld scenario is an available mechanism for 
hiding the undiscovered extra dimensions, where our visible universe 
is a 3-brane embedded in a higher-dimensional bulk and all Standard 
Model particles are confined on the brane. In 1999, Randall and Sun-

drum proposed a well-known braneworld model, which provides a nat-

ural mechanism to solve the long-standing gauge hierarchy problem of 
particle physics [3]. In the Randall-Sundrum-1 (RS1) model, there is 
a 3-brane located at each boundary of the orbifold extra dimension, 
where the one with negative tension is the infrared (IR) brane (or visi-

ble brane) our universe confined on, and the other with positive tension 
is the ultraviolet (UV) brane (or hidden brane).

It is well known that the overall sign of the source terms in the in-

duced Friedmann-like equation on the brane depends on the sign of 
the brane tension [4–6]. Since we live on a negative tension brane in 
RS1 model, it would lead to a “wrong-signed” Friedmann-like equa-

tion and hence our observed expanding universe cannot be recovered 
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on the brane. Moreover, it was found that the Standard Model fields 
can be localized on some positive tension branes, such as D-branes and 
NS-branes [7]. Hence, it is more reasonable to place our universe on a 
positive tension brane. One example of such a scenario is the Randall-

Sundrum-2 (RS2) model, which features a single positive tension brane 
that we live on, but the gauge hierarchy problem is left [8]. In order 
to solve the gauge hierarchy problem and cosmological problem simul-

taneously, the authors considered some generations of RS1 model in 
modified gravitational theories [9–11], where the massless 4D graviton 
is localized on the negative tension brane, so our world should move 
onto the positive tension brane in order to solve the gauge hierarchy 
problem.

However, the negative tension brane is a potentially unstable object 
[12], so it would be a better way to construct the braneworld scenario 
with only positive tension branes. In Ref. [7], the authors added a probe 
brane with a small positive tension into the RS2 model to build a hier-

archy resolved configuration. For the exact brane solution, it is easy to 
show that the constraints require the presence of negative tension brane 
in a 5D compactification scheme in general relativity by resorting to the 
technique of braneworld sum rules [13]. However, it can be evaded for 
a higher-dimensional model such as the 6D anti-de Sitter soliton [14]. It 
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is also found that the constraints can be relaxed in some modified grav-

itational theories even in 5D spacetime, such as in scalar-tensor gravity 
[15,16] and 𝑓 (𝑅) gravity [17,18]. It gives us a hint that an extended 
RS1-like model with only positive tension branes could be realized in 
some modified gravitational theories.

In this work, we are interested in building braneworld model with 
only positive tension branes in a massive gravity, which is a general-

ization of general relativity by endowing the graviton with a nonzero 
mass. See Refs. [19–21] and the references therein for an introduction 
on massive gravity theories. Specifically, under the help of braneworld 
sum rules, we focus on generating the RS1-like scenario in a 5D exten-

sion of the Lorentz-violating massive gravity [22]. In order to obtain a 
flat 3-brane configuration, 4D Poincaré invariance has to be preserved 
in this theory. Therefore, we assume that the background spacetime is 
invariant under 4D Poincaré transformation in the 5D extension of the 
Lorentz-violating massive gravity. The 5D diffeomorphisms are sponta-

neously broken due to the condensation of four background scalars. 
Then, the condensation generates four Goldstone excitations associ-

ated with the broken symmetries. Consequently, the 5D massless spin-2 
graviton with five degrees of freedom gets weight and possesses nine 
degrees of freedom on the spectrum by “eating” the four Goldstone 
excitations in the unitary gauge. Other works related to braneworld 
scenario in massive gravities can be found in Refs. [23–30].

The layout of the paper is as follows: In Sect. 2, the constraint 
from the braneworld sum rules is discussed in the 5D extension of the 
Lorentz-violating massive gravity. In Sect. 3, a hierarchy-resolving toy 
model is built. The corresponding mass spectra of KK particles are dis-

cussed in Sect. 4, and some low-energy phenomenology of the model 
is investigated in Sect. 5. Finally, brief conclusions and discussions 
are presented. Throughout the paper, the small Latin letters (𝑎, 𝑏, ⋯ =
0, 1, 2, 3) are used to label the group indices of the internal metric of 
scalar fields, while the capital Latin letters (𝐴, 𝐵, ⋯ = 0, 1, 2, 3, 5) and 
Greek letters (𝜇, 𝜈, ⋯ = 0, 1, 2, 3) are used to label the 5D and 4D space-

time indices, respectively.

2. Braneworld sum rules

To obtain a flat 3-brane configuration, we start from the most gen-

eral metric ansatz keeping the four-dimensional Poincaré invariance, 
given by

𝑑𝑠2 = 𝑔𝑀𝑁𝑑𝑥𝑀𝑑𝑥𝑁 = 𝑎2(𝑦)𝜂𝜇𝜈(𝑥)𝑑𝑥𝜇𝑑𝑥𝜈 + 𝑑𝑦2, (1)

where 𝑎(𝑦) is the warp factor, and 𝑦 ∈ [−𝑦𝜋, 𝑦𝜋] denotes a compact 
𝑆1∕𝑍2 orbifold extra dimension. Correspondingly, the 5D Ricci tensor 
can be written as

𝑅𝜇𝜈 = −𝑎2𝜂𝜇𝜈
(
𝐻 ′ + 4𝐻2) , 𝑅55 = −4

(
𝐻 ′ +𝐻2) , (2)

where the prime denotes the derivative with respect to 𝑦, and 𝐻 ≡ 𝑎′∕𝑎. 
By tracing the above equations respectively, one obtains

𝑅𝜇
𝜇
= −4

(
𝐻 ′ + 4𝐻2) , 𝑅5

5 = −4
(
𝐻 ′ +𝐻2) . (3)

Further, with the relation(
𝑎𝛼+1𝐻

)′ = 𝑎𝛼+1
[
𝐻 ′ + (𝛼 + 1)𝐻2] , (4)

where 𝛼 is an arbitrary constant, one obtains a useful relation by com-

bining Eqs. (3), i.e.,(
𝑎𝛼+1𝐻

)′ = 𝑎𝛼+1

4

[
(𝛼 − 3)𝑅5

5 − 𝛼𝑅𝜇
𝜇

]
. (5)

Here, we would like to consider a theory with a 5D Einstein-Hilbert 
term plus four canonical scalar fields, whose action is given by

𝑆 =𝑀3
∗ ∫ 𝑑5𝑥

√
−𝑔

[
𝑅

2
− 1

2
𝑚2𝑔𝑀𝑁𝜕𝑀𝜙𝑎𝜕𝑁𝜙𝑎 − 𝑉 (𝜙𝑎𝜙𝑎)

]
4 √ 4 √
2

− ∫ 𝑑 𝑥 −𝑔I𝑉I − ∫ 𝑑 𝑥 −𝑔II𝑉II, (6)
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where 𝑀∗ is the 5D fundamental gravity scale, 𝑚 is a parameter pro-

portional to the mass of 5D graviton, 𝑉 (𝜙𝑎𝜙𝑎) is the self-interaction 
potential, and 𝑉I and 𝑉II represent the brane tensions at 𝑦 = 0 and 𝑦 = 𝑦𝜋
respectively. In oder to achieve a Minkowski flat 3-brane model, the in-

ternal metric of the scalar fields has to be chosen as the Minkowski 
metric 𝜂𝑎𝑏.

The corresponding field equations are obtained by varying the ac-

tion (6) with respect to the metric 𝑔𝑀𝑁 ,

𝑅𝑀𝑁 − 𝑅

2
𝑔𝑀𝑁 =𝑚2

(
𝜕𝑀𝜙𝑎𝜕𝑁𝜙𝑎 − 1

2
𝑔𝑀𝑁𝜕𝐾𝜙𝑎𝜕𝐾𝜙𝑎

)
− 𝑉 𝑔𝑀𝑁

−
𝑉I

𝑀3
∗
𝑔I𝜇𝜈𝛿

𝜇

𝑀
𝛿𝜈
𝑁
𝛿 (𝑦) −

𝑉II

𝑀3
∗
𝑔II𝜇𝜈𝛿

𝜇

𝑀
𝛿𝜈
𝑁
𝛿
(
𝑦− 𝑦𝜋

)
. (7)

Then, 𝑅𝜇
𝜇 and 𝑅5

5 can be expressed explicitly as

𝑅𝜇
𝜇
=𝑚2𝜕𝜇𝜙𝑎𝜕𝜇𝜙

𝑎 + 8𝑉
3

+
4𝑉I

3𝑀3
∗
𝛿 (𝑦) +

4𝑉II

3𝑀3
∗
𝛿
(
𝑦− 𝑦𝜋

)
, (8)

𝑅5
5 =𝑚2(𝜙𝑎′)2 + 2𝑉

3
+

4𝑉I

3𝑀3
∗
𝛿 (𝑦) +

4𝑉II

3𝑀3
∗
𝛿
(
𝑦− 𝑦𝜋

)
. (9)

After inserting above Eqs. (8) and (9) into Eq. (5), one has(
𝑎𝛼+1𝐻

)′ = −𝑎𝛼+1

4

[
𝛼𝑚2𝜕𝜇𝜙𝑎𝜕𝜇𝜙

𝑎 − (𝛼 − 3)𝑚2(𝜙𝑎′)2

+ 2(𝛼 + 1)𝑉 + 4
𝑉I

𝑀3
∗
𝛿(𝑦) + 4

𝑉II

𝑀3
∗
𝛿
(
𝑦− 𝑦𝜋

) ]
. (10)

Since the 𝑆1∕𝑍2 orbifold is periodic and compact, the integral of left 
hand side of the above equation (10) vanishes [13]. Especially, for 𝛼 =
−1, one obtains a useful constraint,

𝑀3
∗ ∮

(
𝑚2𝜕𝜇𝜙𝑎𝜕𝜇𝜙

𝑎 − 4𝑚2(𝜙𝑎′)2
)
𝑑𝑦 = 4

(
𝑉I + 𝑉II

)
. (11)

If the scalar fields further depend only on the extra dimension, which is 
typically the case considered in braneworld models, the constraint (11)

reduces to

−𝑚2𝑀3
∗ ∮ (𝜙𝑎′)2𝑑𝑦 = 𝑉I + 𝑉II. (12)

So in this case, the theory cannot support a model with only positive 
tension branes. Instead, if the scalar fields depend only on the brane 
coordinates, 𝜙𝑎 = 𝜙𝑎(𝑥), the constraint (11) becomes

𝑚2𝑀3
∗ ∮ 𝜕𝜇𝜙𝑎𝜕𝜇𝜙

𝑎𝑑𝑦 = 4(𝑉I + 𝑉II). (13)

It implies that the theory may support a model with only positive ten-

sion branes in this case.

Specifically, here we consider a 5D extension of the Lorentz-

violating massive gravity [22], where the background solution sponta-

neously breaks the 5D Lorentz invariance. The breaking of 5D Lorentz 
invariance stems from the condensation of scalar fields via

⟨𝜙𝑎⟩ = 𝛿𝑎
𝜇
𝑥𝜇, (14)

with 𝑥𝜇 the brane coordinates. Thus, the condensation spontaneously 
generates a preferred 4D frame. Moreover, the scalar potential 𝑉 (𝜙𝑎𝜙𝑎)
takes its vacuum value, i.e., the 5D cosmological constant Λ. In this 
case, the constraint simplifies to

𝑉I + 𝑉II =𝑚2𝑀3
∗ ∮ 𝑎−2𝑑𝑦. (15)

3. Model building and hierarchy resolution

With the ansatzes of the flat braneworld metric (1) and scalar field 
condensation (14), the field equations (7) are written explicitly as

( ′ 2) 𝑚2 𝑉I𝛿 (𝑦) + 𝑉II𝛿
(
𝑦− 𝑦b

)

3 𝐻 + 2𝐻 = −

𝑎2
− Λ−

𝑀3
∗

, (16)
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Fig. 1. Diagrams of two distinct brane configurations.

6𝐻2 = −2𝑚2

𝑎2
− Λ. (17)

From the field equations, we can easily obtain the solution

𝑎(𝑦) = 𝑒−𝑘|𝑦| + 𝜖2𝑒𝑘|𝑦|, (18)

where 𝜖 ≡ 𝑚

2
√
3𝑘

, 𝑘2 ≡ −Λ∕6, and |𝑦| represents the absolute value of 𝑦
in order to be consistent with the 𝑍2 symmetry. There are two branches 
in the solution of the warp factor, one is exponential growth and the 
other is exponential decay. Its minimum appears at 𝑦m = log(1∕𝜖)∕𝑘
with the value 𝑎(𝑦m) = 2𝜖.

By matching the delta functions in (16), we have the fine-tuning 
conditions,

𝑉I = 6𝑘𝑀3
∗

[
1 − 2𝜖2

1 + 𝜖2

]
, 𝑉II = 6𝑘𝑀3

∗

[
1 − 2

1 + 𝜖2𝑒2𝑘𝑦𝜋

]
. (19)

It is straightforward to verify that the sum of brane tensions satisfies 
the constraint (15) from braneworld sum rules.

From the fine-tuning conditions (19), we observe that there are three 
different brane configurations depending on the size of extra dimension. 
Especially, the IR brane tension vanishes in the fine tuning conditions 
(19) for 𝑦𝜋 = 𝑦m, so a single brane configuration is obtained in this 
case. Nevertheless, we are more interested in two brane configurations 
in this work, in which the gauge hierarchy problem may be solved. So 
we prefer to leave a brief discussion on it for the last section. Here we 
focus on the two brane configurations as illustrated in Fig. 1.

As shown in Fig. 1(a), the first configuration corresponds to the case 
of 𝑒−𝑘𝑦𝜋 > 𝜖2𝑒𝑘𝑦𝜋 , i.e., the exponential decay branch of warp factor is 
dominant in the bulk. Then, the fine-tuning conditions (19) yield 𝑉𝐼 > 0
and 𝑉𝐼𝐼 < 0. Especially, in the limit 𝜖𝑒𝑘𝑦𝜋 ≪ 1, the exponential growth 
branch of the warp factor can be neglected compared to the exponen-

tial decay branch. Now the brane configuration reduces to that of RS1 
model, with the fine-turning conditions,

𝑉𝐼 ≈ −𝑉𝐼𝐼 ≈ 6𝑘𝑀3
∗ , Λ= −6𝑘2. (20)

This brane configuration has been investigated in detail in the previous 
work by some of our authors [31].

As shown in Fig. 1(b), the second configuration corresponds to the 
case of 𝑒−𝑘𝑦𝜋 < 𝜖2𝑒𝑘𝑦𝜋 < 1, where the exponential growth branch of 
warp factor is dominant near the IR brane. By observing from the fine-

tuning conditions (19), it is interesting that both the brane tensions 
are positive in this case. This is the brane configuration that we have 
expected from the braneworld sum rules. Now since our universe is 
confined on the positive tension brane at 𝑦𝜋 , a “correct-signed” induced 
Friedmann-like equation can be obtained on the brane.

As a crucial motivation of the braneworld, the gauge hierarchy prob-

lem can be solved in a natural way in this scenario. By confining the 
Higgs field on the IR brane at 𝑦𝜋 , the fundamental Higgs vacuum 
expectation value (VEV) 𝑣0 is redshifted by the warped factor, and 
therefore, the effective Higgs VEV measured by the observers on the 
brane is 𝑣eff = 𝑎(𝑦𝜋)𝑣0, which sets the electroweak scale of the Standard 
Model [3]. If all the fundamental parameters 𝑀∗, 𝑘, 𝑣0 are set to be 
3

the order of Planck scale 𝑀Pl ∼ 1016 TeV, there is no fundamental hi-
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erarchy between them. If the 5D graviton mass which is proportional 
to 𝑚 is light enough, i.e., 𝑚∕𝑘 < 10−16, the minimum of warp factor 
𝑎(𝑦m) = 2𝜖 < 10−16. Then, an effective TeV electroweak scale could be 
generated by just placing the IR brane at the place where 𝑎(𝑦𝜋) ∼ 10−16.

We will see in the next section that the constraint on the 4D gravi-

ton mass implies 𝑚 < 3.3 × 10−23 eV, and as a result, the minimum of 
warp factor 𝑎(𝑦m) = 2𝜖 ≤ 10−51. Thus, the exponential growth branch of 
warp factor is completely dominant at IR brane, i.e., 𝑎(𝑦𝜋) ≈ 𝜖2𝑒𝑘𝑦𝜋 ∼
10−16. Then, the size of the extra dimension is approximated given by 
𝑦𝜋 ≈ log

[
𝑎(𝑦𝜋)∕𝜖2

]
∕𝑘. For instance, 𝜖 ∼ 10−51 yields 𝑦𝜋 ≈ 198∕𝑘 and 

𝜖 ∼ 10−60 yields 𝑦𝜋 ≈ 239∕𝑘. Therefore, the size of extra dimension is 
roughly two orders of magnitude larger than the Planck length. As a 
comparison, the size of extra dimension is 𝑦𝜋 ≈ 37∕𝑘 in RS1 model.

4. Mass spectra of KK states

In order to investigate the mass spectra of KK excitations, we con-

sider the linear perturbations against the background,

𝑑𝑠2 =
(
𝑔𝑀𝑁 + ℎ𝑀𝑁

)
𝑑𝑥𝑀𝑑𝑥𝑁, (21)

where 𝑔𝑀𝑁 is the background metric (1) and ℎ𝑀𝑁 represents the lin-

ear perturbations. Due to the 4D Lorentz invariance of the background 
spacetime, it is convenient to decompose the perturbations ℎ𝑀𝑁 into 
the scalar, transverse vector and transverse-traceless tensor modes, as

ℎ55 = −2𝜉, (22)

ℎ𝜇5 = −𝑎
(
𝑆𝜇 + 𝜕𝜇𝛽

)
, (23)

ℎ𝜇𝜈 = 𝑎2
[
𝐷𝜇𝜈 + 2𝜂𝜇𝜈𝜓 + 1

2
(
𝜕𝜇𝐹𝜈 + 𝜕𝜈𝐹𝜇

)
+ 2𝜕𝜇𝜕𝜈𝐸

]
, (24)

where the transverse-traceless tensor 𝐷𝜇𝜈 satisfies the condition 
𝜂𝜇𝜌𝜕𝜌𝐷𝜇𝜈 = 0 and the transverse vector modes 𝑆𝜇 and 𝐹𝜇 satisfy the 
condition 𝜂𝜇𝜌𝜕𝜌𝑆𝜇 = 𝜂𝜇𝜌𝜕𝜌𝐹𝜇 = 0.

The perturbed scalar fields are 𝜙𝑎 = 𝑥𝑎 + 𝜋𝑎, with 𝜋𝑎 = 𝛿𝑎
𝜇
𝜋𝜇 the 

Goldstone excitation of the condensation. The Goldstone excitation 
transforms like a vector field under the general coordinate transfor-

mation in order to maintain the scalar condensation (14) unchanged, 
i.e., 𝜋𝜇 → 𝜋𝜇 − 𝜖𝜇 . Correspondingly, it can be decomposed as 𝜋𝜇 =
𝜂𝜇𝜈

(
𝜕𝜈𝜑+𝐴𝜈

)
, where 𝜑 is a scalar field and 𝐴𝜇 a transverse vector 

field satisfying 𝜂𝜇𝜌𝜕𝜌𝐴𝜇 = 0.

Note that the quantity 𝑍𝜇 − 𝜋𝜇 is a gauge invariant quantity, where 
𝑍𝜇 ≡ 𝑎2

(
𝐹𝜇∕2 + 𝜕𝜇𝐸

)
does not contain physical degrees of freedom 

in general relativity. In unitary gauge, the Goldstone excitations 𝜋𝜇 of 
scalar fields vanish. Then, it is clear that the four Goldstone excitations 
𝜋𝜇 are “eaten” by 𝑍𝜇 , which survives in the linear perturbation the-

ory and becomes physical degrees of freedom. Consequently, the 5D 
massless spin-2 graviton with five degrees of freedom gets weight and 
possesses nine degrees of freedom on the spectrum after “eating” the 
four Goldstone excitations.

By substituting the full perturbed metric (21) into the action (6)

and expanding the action to the quadratic order of perturbations, the 
transverse-traceless tensor, transverse vector and scalar modes are de-

coupled with each other, so they can be treated separately. Working 
in the unitary gauge 𝐴𝛼 = 𝜑 = 𝜓 = 0, the quadratic actions for tensor, 
vector and scalar modes are finally obtained respectively [31],

𝑆
(2)
T

=−
𝑀3

∗
2 ∫ 𝑑4𝑥𝑑𝑧𝑎3

[
̇̃𝐷𝛼𝛽

̇̃𝐷𝛼𝛽+𝜕𝛼�̃�𝛼𝛽𝜕𝛼�̃�
𝛼𝛽+2𝑚2�̃�𝛼𝛽�̃�

𝛼𝛽
]
, (25)

𝑆
(2)
V
= −

𝑀3
∗
2 ∫ 𝑑4𝑥𝑑𝑧𝑎3

[
̇̃𝐹𝛼

̇̃𝐹 𝛼+𝜕𝛼𝐹𝛼𝜕𝛼𝐹
𝛼+2𝑚2𝐹𝛼𝐹

𝛼
]
, (26)

𝑆
(2)
S

=
𝑀3

∗
2 ∫ 𝑑4𝑥𝑑𝑧𝑎3

[
̇̃𝐸 ̇̃𝐸 + 𝜕𝛼�̃�𝜕𝛼�̃� + 2𝑚2�̃��̃�

]
, (27)

where the indices are raised and lowered by the 4D Minkowski met-
ric 𝜂𝜇𝜈 , 𝑧 is the conformal coordinate obtained through a coordinate 
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transformation 𝑑𝑦 = 𝑎𝑑𝑧, and in order to canonically normalize these 
actions, the modes have been rescaled as �̃�𝛼𝛽 =

𝐷𝛼𝛽

2 , 𝐹𝛼 =
√

𝑘2𝑚2

𝑘2+2𝑚2
𝐹𝛼

2 , 

and �̃� =
√

−3𝑘4𝑚2

3𝑘2+4𝑚2 𝐸, with 𝑘𝛼 the four-momentum of various modes.

The forms of the three actions are similar, except that there is an 
overall wrong-sign in the action (27) of scalar mode. Thus, the scalar 
perturbation �̃� is a ghost field. Further, by varying the actions (25), 
(26), and (27) with respect to various modes respectively, we have the 
equation of motion

𝜕𝛼𝜕𝛼Υ+ Ϋ + 3𝐻Υ̇ = 2𝑚2Υ, (28)

where Υ represents �̃�𝛼𝛽 , 𝐹𝛼 , and �̃�. With the KK decomposition Υ =

𝜐(𝑥)𝑎−
3
2 (𝑧)Ψ(𝑧), the equation of motion (28) reduces to a 4D Klein-

Gordon equations □(4)𝜐(𝑥) =𝑀2𝜐(𝑥) and a Schrödinger-like equation,

−Ψ̈ +
(3
2
�̇� + 9

4
𝐻2

)
Ψ=2Ψ, (29)

where 2 ≡𝑀2 −2𝑚2, and 𝑀 is the effective mass of various KK states 
observed on the brane.

The Hamiltonian can be factorized as 𝐻𝑇 = 𝐴
†
𝑇
𝐴𝑇 =

(
𝜕𝑧 +

3
2𝐻

)
×(

−𝜕𝑧 +
3
2𝐻

)
, which is self-adjoint. With the Neumann boundary con-

dition 𝜕𝑧�̃�𝛼𝛽 |𝑧=0,𝑧𝑏 = 0, it is easy to show that all the eigenvalues 2

are non-negative [32]. Thus, it leads to 𝑀2 ≥ 2𝑚2, namely, all the KK 
particles of various modes are massive.

Further, by setting 2 = 0 or 𝑀 =
√
2𝑚, the ground state of the 

Schrödinger-like equation is obtained as

Ψ0(𝑧) =𝑁0𝑎(𝑧)
3
2 , (30)

where the normalization factor 𝑁0 can be worked out from the normal-

ization condition ∫ 𝑧𝑏
−𝑧𝑏

Ψ2
0𝑑𝑧 = 1, yielding

𝑁−2
0 = 1

𝑘

[
1 − 𝑒−2𝑘𝑦𝜋 + 4𝜖2𝑘𝑦𝜋 − 𝜖4(1 − 𝑒2𝑘𝑦𝜋 )

]
. (31)

Since the exponential growth branch of warp factor is completely dom-

inant at the IR brane, the normalization factor is approximated as 
𝑁0 ≈

√
𝑘.

It is noted that for the ground state of vector mode with the mass 
𝑀 =

√
2𝑚, the rescaling 𝐹𝛼 =

√
𝑘2𝑚2

𝑘2+2𝑚2
𝐹𝛼

2 is ill-defined. Through a 
careful analysis, it is shown that the ground state of the vector mode 
does not exist in the mass spectra [31]. This is curial for recovering the 
mass spectra of RS1 model when the 5D graviton mass is turned off, as 
there is no massless vector mode in RS1 model due to the lack of contin-

uous isometries of the bulk in the presence of 3-branes [3]. Therefore, 
there exist only ground states of tensor and scalar modes in the mass 
spectra.

From the KK decomposition Υ = 𝜐(𝑥)𝑎−
3
2 (𝑧)Ψ(𝑧), the canonical nor-

malized field configuration is given by Υ0 = 𝜐0(𝑥). Therefore, the light-

est tensor and scalar modes propagate only on the brane, corresponding 
to the massive 4D graviton and massive radion respectively. However, 
the mass of 4D graviton is severely constrained by the gravitational 
experiments [21]. For example, the detection of gravitational waves 
constrains the bound of the graviton mass to be 𝑚g ≤ 4.7 × 10−23 eV 
[33]. It leads to 𝑚 ≤ 3.3 × 10−23 eV in our model. Under the con-

straint, the radion is also quasi-massless. However, the radion can gain 
weight through Goldberger-Wise mechanism and decoupled from the 
low-energy mass spectra [34].

By including only the contribution of the quasi-massless graviton in 
the action (6), the 4D effective gravitational mass scale 𝑀eff reads,

𝑀2
eff

=𝑀3
∗

𝑦𝜋

𝑎2𝑑𝑦 =𝑁−2
0 𝑀3

∗ . (32)
4

∫
−𝑦𝜋
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Therefore, the 4D effective gravitational mass scale is given by 𝑀2
eff

≃
𝑀3

∗∕𝑘, which is the order of Planck scale as expected.

For the excited KK states, their wave functions Ψ𝑀 can be worked 
out by solving the Schrödinger-like equation (29). However, due to the 
complicated form of the effective potential, the Schrödinger-like equa-

tion cannot be solved directly in 𝑧 coordinate. By noting that the warp 
factor 𝑎L(𝑦) = 𝑒−𝑘𝑦 is dominated in the region 0 < 𝑘𝑦 < log(1∕𝜖), while 
𝑎R(𝑦) = 𝜖2𝑒𝑘𝑦 is dominated in log(1∕𝜖) < 𝑘𝑦 < 𝑘𝑦𝜋 , the Schrödinger-like 
equation can be solved approximately in these two regions respectively, 
yielding

ΨL
𝑀
(𝑦) = 𝑒

𝑘𝑦

2
[
𝑁𝑛𝐽2

(
𝑀

𝑘
𝑒𝑘𝑦

)
+𝐶1𝑌2

(
𝑀

𝑘
𝑒𝑘𝑦

)]
, (33)

ΨR
𝑀
(𝑦) = 𝑒

− 𝑘𝑦

2

[
𝐶2𝐽2

(
𝑀

𝑘𝜖2
𝑒−𝑘𝑦

)
+𝐶3𝑌2

(
𝑀

𝑘𝜖2
𝑒−𝑘𝑦

)]
, (34)

where 𝑁𝑛 is the normalization factor, and 𝐽2 and 𝑌2 are Bessel functions 
of order 2. After imposing the boundary condition 𝜕𝑦�̃�𝛼𝛽 |𝑦=0,𝑦𝜋 = 0, i.e., 
ΨL

𝑀

′ − 3
2
𝑎L′

𝑎L ΨL
𝑀
|𝑦=0 = 0 and ΨR

𝑀
′ − 3

2
𝑎R′

𝑎R ΨR
𝑀
|𝑦=𝑦𝜋 = 0, one has

𝐶1 = −
𝐽1

(
𝑀

𝑘

)
𝑌1

(
𝑀

𝑘

)𝑁𝑛, 𝐶3 = −
𝐽1

(
𝑀

𝑘𝜖2
𝑒−𝑘𝑦𝜋

)
𝑌1

(
𝑀

𝑘𝜖2
𝑒−𝑘𝑦𝜋

)𝐶2. (35)

Since the terms of 𝐽2 dominate near 𝑘𝑦 ∼ log(1∕𝜖) in both ΨL
𝑀
(𝑦)

and ΨR
𝑀
(𝑦), joining the two functions together at 𝑘𝑦m = log(1∕𝜖) re-

quires that 𝐶2 = 𝑁𝑛∕𝜖 and 𝐽2
(

𝑀

𝑘𝜖

)
= 0. This condition yields a dis-

crete eigenvalue spectrum as 𝑛 = 𝑥𝑛𝑘𝜖 = 𝑥𝑛𝑚

2
√
3
, where 𝑥𝑛 satisfies 

𝐽2
(
𝑥𝑛
)
= 0, e.g. 𝑥1 = 5.136, 𝑥2 = 8.417 and 𝑥3 = 11.620. Thus, the mass 

spectrum of excited KK states is given by

𝑀𝑛 =𝑚

√
2 +

𝑥2
𝑛

12
. (36)

By utilizing the approximate formula of the zero point of 𝐽2, 𝑥𝑛 ≈(
𝑛+ 3

4

)
𝜋, the mass spectrum (36) can be approximated as 𝑀𝑛 ≈

𝑥𝑛𝑚

2
√
3
≈

𝑛𝜋𝑚

2
√
3
, for 𝑛 ≫ 1. Thus, the mass splitting reads Δ𝑀𝑛 ≈

𝜋𝑚

2
√
3
.

On the other hand, the mass splitting scale of excited KK states can 
also be estimated from the fact that it is approximately quantized in 
units of inverse size of conformal extra dimension, i.e., Δ𝑀𝑛 ∼ 1∕𝑧𝜋 . 
From the coordinate transformation 𝑑𝑦 = 𝑎𝑑𝑧, one has

𝑧𝜋 = 1
𝑘𝜖

[
arctan

(
𝜖𝑒𝑘𝑦𝜋

)
− arctan (𝜖)

]
, (37)

where the integral constant has been chosen so that 𝑧(𝑦 = 0) = 0. With 
𝜖 ≤ 10−51 and 𝑘𝑦𝜋 ∼ (200), the formula can be rewritten approxi-

mately as 𝑧𝜋 ≈ 𝜋

2𝜖𝑘 =
√
3𝜋
𝑚

. So the mass splitting scale approximately 
reads Δ𝑀𝑛 ∼

𝑚√
3𝜋

, which is the same magnitude as the previous re-

sult. Since Δ𝑀𝑛 ∼ 𝑚 < 10−23 eV, these massive KK excited states are 
extremely light in this model.

5. Phenomenology on the brane

Since the mass splitting scale of KK gravitons is extremely small, 
an enormous amount of KK gravitons could be easily produced in ac-

celerators, which may cause unacceptable large experimental signals. 
Therefore, it is necessary to check some low-energy phenomenology on 
the IR brane.

First, we consider the correction to the Newtonian gravitational po-

tential on the brane. Due to the extremely small mass splitting scale, 
the mass spectrum of KK gravitons can be approximated as continuous. 
The effective gravitational potential between two point-like sources of 
mass 𝑚1 and 𝑚2 separated by a distance 𝑟 on the brane takes the form 

[35,36]
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𝑈 (𝑟) = −𝐺4
𝑚1𝑚2
𝑟

(
1 + ∫ 𝑑𝑀𝜌(𝑀)𝑒−𝑀𝑟

)
, (38)

where 𝜌(𝑀) is the relative density of states on the IR brane for excited 

KK states, defined by [36], 𝜌(𝑀) ≡ ||Ψ𝑀 (𝑦𝜋 )||2||Ψ0(𝑦𝜋 )||2 .

Since 
√
𝑥𝐽2(𝑥) ≈

√
2
𝜋
cos

(
𝑥− 5

4𝜋
)

for a large 𝑥, the dominant 
terms 𝐽2 in ΨL

𝑀
(𝑦) and ΨR

𝑀
(𝑦) have the plane wave behavior around 

𝑦m = log(1∕𝜖)∕𝑘. So after normalizing these KK states as plane waves 
such that the physical quantities always involve an integration over 𝑀
for which the proper measure is 𝑑𝑀 [7,36], the normalization factor is 
given by 𝑁𝑛 =

√
𝑀∕𝑘. Thus, from Eq. (34), we have

Ψ𝑀 (𝑦𝜋) = ΨR
𝑀
(𝑦𝜋) ≈ −

(
𝑀

𝑘𝜖2𝑒𝑘𝑦𝜋

) 1
2
. (39)

With Ψ(0)(𝑦𝜋) ≈
√
𝑘
(
𝜖2𝑒𝑘𝑦𝜋

)3∕2
, the relative density of states is ob-

tained finally

𝜌(𝑀) ≈ 𝑀

𝑘2
(
𝜖2𝑒𝑘𝑦𝜋

)4 . (40)

As a result, the effective gravitational potential on the IR brane reads

𝑈 (𝑟) = −𝐺4
𝑚1𝑚2
𝑟

(
1 + 1

𝑘2𝑟2
(
𝜖2𝑒𝑘𝑦𝜋

)4
)

= −𝐺4
𝑚1𝑚2
𝑟

[
1 + 1(

10−4 eV
)2

𝑟2

]
. (41)

This deviation is the same as that of ADD model with two extra dimen-

sions [37].

Another widely considered process is the real emission of the KK 
gravitons, which could be observed as missing energy in the accelera-

tors. The total cross section for the production of these on-shell massive 
gravitons in a typical process 𝑒+𝑒− → 𝛾+ KK gravitons can be roughly 
estimated to be [36]

𝜎(𝑒+𝑒− → 𝛾 + ∕𝐸KK) ∼
𝛼

𝑀2
Pl

𝐸𝑐

∫
0

𝑑𝑀𝜌(𝑀), (42)

where 𝐸𝑐 is the center of mass energy for the process and ∕𝐸KK is the 
missing energy carried away by KK gravitons. After some simple alge-

bra, the final result for total cross section is of order

𝜎(𝑒+𝑒− → 𝛾 + ∕𝐸KK) ∼
𝛼𝐸2

𝑐

𝑘4
(
𝜖2𝑒𝑘𝑦𝜋

)4 ∼
𝛼𝐸2

𝑐

TeV4 . (43)

This result is consistent with that of 6D ADD model as well [38].

The reason why the phenomenology generated by only one extra 
dimension in present model are similar to those of 6D ADD model can be 
seen from the couplings of the excited KK gravitons to matter [9,11,39],

𝜁𝑛 ∼
𝑎
− 3

2 (𝑦𝜋)Ψ̃𝑀 (𝑦𝜋)

𝑀
3
2
∗

∼
√
𝑚𝑀𝑛√

𝑘𝑀
3∕2
Pl

(
𝜖2𝑒𝑘𝑦𝜋

)2 ∼
√
𝑛𝑚

TeV2 . (44)

Here, Ψ̃𝑀 (𝑦𝜋) ≡Ψ𝑀 (𝑦𝜋)∕
√
𝑧𝜋 , in which, the factor 1∕

√
𝑧𝜋 is included 

in order to restore an appropriate dimension when returning from 
continuous integration to discrete summation [8]. It is clear that the 
coupling between excited KK gravitons to matter in present model 
𝜁𝑛 ∼ 𝑚

10−4 eV

√
𝑛

𝑀Pl
is much smaller than that of ADD model in which 

𝜁𝑛 ∼ 1∕𝑀Pl. Nevertheless, in present model, the number of species of 
KK gravitons with masses below 𝐸𝑐 is 𝑛 ∼ (𝐸𝑐𝑧𝜋) ∼

𝐸𝑐

Δ𝑀𝑛
∼ 𝐸𝑐

𝑚
, which is 

much more than the number of 6D ADD model 𝑛 ∼ (𝐸𝑐𝑅)2 ∼ ( 𝐸𝑐

10−4 eV
)2. 

Therefore, from 𝜎(𝑒+𝑒− → 𝛾 + ∕𝐸KK) ∼
∑

𝑛 𝛼𝜁
2
𝑛
∼ 𝛼𝑛𝜁2

𝑛
∼ 𝛼𝐸2

𝑐

TeV4 , the total 
5

cross sections of the two model are ultimately the same.
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6. Conclusions and discussions

In RS1 model, the fact that our world resides on the negative ten-

sion brane results in a “wrong-signed” Friedmann-like equation, making 
it unable to describe an expanding universe on the brane. To overcome 
this issue, one possible solution is to construct a braneworld scenario 
using only positive tension branes. By taking advantage of braneworld 
sum rules, it was found that this brane configuration may be supported 
in the 5D extension of the Lorentz-violating massive gravity. There-

fore, we generalized RS1-like model in this gravity and found that the 
theory supports three distinct brane configurations, among which the 
configuration with only two positive tension branes is exactly what we 
expected. By confining our world on the positive tension IR brane, a 
“correct-signed” 4D Friedmann-like equation can be recovered in this 
model and the gauge hierarchy problem can be solved as well.

By considering the full linear perturbations against the background 
metric, it is found that the tensor and vector modes are robust, but the 
scalar mode is ghost-like. By solving the quadratic actions of various 
perturbed modes, it was found that they share the same mass spec-

trum, which start from 
√
2𝑚 and have a mass splitting scale roughly 

Δ𝑀𝑛 ∼ 𝑚, except that the ground state of vector mode is absent in the 
mass spectrum. Since the graviton mass is severely constrained by ex-

perimental observations, the mass splitting of KK gravitons has to be 
extremely small. By further studying the interaction between KK gravi-

tons and matter fields on the brane, it was found that the large amount 
of KK gravitons leads to the same phenomenology as that of the ADD 
model with two extra dimensions.

If we remove the IR brane, i.e., 𝑦𝜋 →∞, the ground state would no 
longer be normalizable. In this case, the effective 4D gravity cannot be 
recovered on the brane. So the RS2-like single brane model with non-

compact extra dimension is not viable in present theory. However, it is 
interesting that a single brane model with compact extra dimension can 
be obtained by setting 𝑦𝜋 = 𝑦m = log(1∕𝜖)∕𝑘 to vanish the IR brane ten-

sion in the fine tuning conditions (19). Now our world should move to 
the only remaining UV brane and hence the gauge hierarchy problem is 
left. The mass splitting scale approximates Δ𝑀𝑛 ∼ 1∕𝑧𝜋 ∼ 2𝑚√

3𝜋
, which 

is the same order as that of above model with positive tensions. How-

ever, due to the wave functions of KK particles are heavily suppressed 
by the potential barrier of order of 𝑀Pl at 𝑦 = 0, the total cross section 
of the process 𝑒+𝑒− → 𝛾+ KK gravitons is estimated as 𝜎 ∼𝐸2

𝑐
∕𝑀4

Pl
, and 

the gravitational potential reads 𝑈 (𝑟) = −𝐺4
𝑚1𝑚2

𝑟

(
1 + 1

𝑘2𝑟2

)
, which is 

in fact identical to those in the RS2 model.

In order to obtain a Minkowski flat brane model, the internal metric 
has been chosen as the Minkowski metric in the action (6). However, 
due to the unbroken 4D Lorentz invariance and the non-Fierz-Pauli form 
of the mass term, the ghost scalar mode appears at the linear perturba-

tion theory. The ghost mode could be removed by breaking further the 
4D Lorentz invariance on the brane, such as leaving a residual SO(3) 
symmetry. However, since the 4D Lorentz invariance is necessary to 
build the flat 3-brane configuration, there would be no flat brane so-

lution anymore in a 4D Lorentz symmetry breaking theory. Therefore, 
one can only expect (anti)-de Sitter 3-brane solutions in such a theory 
with residual SO(3) symmetry. These models are left for our further 
investigation.
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