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Introduction

Heavy-quark methods have established themselves as indispensable tools in heavy flavor

physics. For inclusive decays, the Heavy Quark Expansion (HQE) has been developed to the

extend that one can obtain precision predictions. The HQE relies on a systematic expansion in

powers of Aqcp/me, where mg is the mass of the heavy quark and Aqcp is the scale induced

by the running QCD coupling constant. One of the prime examples is the determination

of the CKM parameter V from inclusive b — cfv transitions, which has reached a relative

precision of about one to two percent [1-3].



The HQE for inclusive semileptonic b — ¢ transitions is set up as an operator product
expansion (OPE) using the full QCD heavy quark states. The HQE parameters, forward
matrix elements of local operators, are the non-perturbative inputs of the order Aqcp raised
to the appropriate power according to the dimension of the HQE parameter. The coefficients
of the HQE parameters can be calculated in perturbation theory, such that the HQE is a
combined expansion in «y and Aqcp/mg.

For the inclusive B — X ¢ decay, the leading term is known to a2 for the total rate [4]
and up to a2 for the kinematic moments.! At A(QQCD / m%, two HQE parameters p2 and ,uQG
enter, which are known up to order a; [6-8]. At A3QCD / m%, the HQE parameters p?, and
p} ¢ have known coefficients calculated to order o, [9].

Starting at order AéCD / mé the number of HQE parameters starts to proliferate, and
the coefficients are known only at tree level. In general, there are nine independent HQE
parameters at order AéCD / mé, and at order A5QCD /m5Q there are 18 independent HQE
parameters [10]. This proliferation is reduced in reparametrization invariant (RPI) observables,
like the total rate, which depend on a reduced set of HQE parameters [11, 12].

In this respect, the recently measured dilepton invariant mass ¢ moments of the inclusive
B — X lv spectrum by the Belle [13] and Belle II [14] collaborations have provided new
insights. These moments are RPI, unlike other observables like lepton energy and hadronic
invariant mass moments. The reduction of HQE parameters through RPI could open the way
for a full extraction of these HQE elements up to 1/ mg purely from data. A first analysis
of ¢> moments was done [2], leading to small values for the 1/mj elements consistent with
zero within uncertainties.

For B — X, decays, this expansion is usually set up by fixing the ratio p = m?/ m% of
the charm quark mass and the bottom quark mass, where the sensitivity to the infrared
pole of the charm mass enters at 1/mj as logp and at 1/m) x 1/p = 1/(mim?2). These
“intrinsic charm (IC)” effects were discussed in [15, 16] and also more recently for inclusive D
meson decays [17]. Numerically, we have approximately m? = mpAqcep, which suggests to
count A5QCD /(mgm?2) ~ AéCD /m¢. Based on this power-counting argument, a full analysis
of 1/my would require the inclusion of these terms.

In this paper, we derive these intrinsic charm contributions and simultaneously derive all
the 1/mj (i.e. the dimension-8) contributions to the HQE for inclusive semileptonic b — ¢
transitions. We derive a “trace formula” which allows to compute any decay distribution
(or moment) up to 1/mj. In addition, we derive the reduced set of RPI operators up to
1/ mi’ expanding on [11]. We explicitly study the effect of these higher-order terms on the
¢®> moments of the spectrum. Our paper is outlined as follows. In section 2, we start by
setting up the HQE and identify the HQE parameters as forward matrix elements of local
operators up to 1/ m‘bl. In section 3, we determine all the RPI operators up to 1/ mg. The
trace formula is derived in section 4, which allows us to determine the IC contributions.
In section 5 we make a quantitative estimate for the effects of these higher-order terms on
q®> moments. To do so, we make use of the “lowest-lying state saturation ansatz” (LLSA)
as discussed in [18]. Based on this we give an estimate for the impact of the dimension-8

'The a? corrections to the ¢> moments are currently known without a kinematic cut [5]. Recently, also the
Boa? were calculated [3].



contributions, for the intrinsic charm contributions as well as for the full dimension-8 terms.
We conclude in section 6. Finally, we collect useful information in the appendices; conversions
to switch between different bases of HQE parameters and details on the derivation of the
RPI elements. Furthermore, we provide two Mathematica notebooks in the Supplementary
material with the expressions for the trace formula and the ¢?> moments.

2 HQE and reparametrization invariance

We consider the inclusive B — X v decay:

B(pp) = Xc(px) L(pe) v(py) » (2.1)

where ¢ = py + p,. For semileptonic b — ¢ decays, the HQE is set up by applying the optical
theorem to the correlation function of two b — ¢ weak currents

) = [ e T BT (@) OTHO)]B) (2.2)

where |B(v)) is the B meson state of full QCD moving with the velocity v = pg/mp and
'y = 7.(1 —75). The b quark field is then redefined according to

b(z) = e WDy, () (2.3)

which is equivalent to a decomposition of the b-quark momentum into p, = myv + k, where k
is a residual momentum with k& ~ Aqcp. Expanding then in powers of k/my, generates the
OPE of the time-ordered product in (2.2), yielding the HQE for R,,. Technically, this means
that the dynamical degrees of freedom of the bottom quark are integrated out at some scale
w ~ my, leaving us with a static b quarks. In our approach, we integrate out the bottom and
charm quarks at the same scale u ~ m. ~ my, e.g. at p = \/mym,, while keeping p = m?/ mg
as a number of order unity. Only the light quarks (treated as massless) remain dynamical.
Symbolically, this leads to

R (S) = / Atz em eSO Ph, ()T 4e(2)E(0)T, by (0)] (2.4)
Z ) o (8) @by (iDM) L (iD"™ )b,

where S = v — q/my, ® denotes the contraction of the Dirac indices, and the coefficients
C™ carry mass dimensions 1/ my n+3_ Taking the forward matrix element of (2.4) yields the
desired 1/m; expansion for the total rate as well as for kinematic moments. The matrix
elements of the operators appearing in (2.4),

(B(v)|by(iD") ... (iD*")by,| B(v))

are decomposed into scalar quantities, which can be expresses in terms of forward matrix
elements of scalar operators, and which define the HQE parameters.

It has been discussed at length that starting at order 1/ mé, the number of independent
parameters in the HQE proliferates, making an extraction of all these parameters from data



impossible. However, as worked out in [11], and discussed before in [19-22], both the OPE
as well as the HQE obey reparametrization invariance (RPI). Since the vector v has been
introduced artificially in (2.3), the expression (B(v)|R(S)|B(v)) cannot depend on v, so a
reparametrization transformation drp : v, — v, +dv, and simultaneously drpiD, = —mgdv,
with v - v = 0 should leave (B(v)|R(S)|B(v)) invariant. Consequently, dgp links different
orders in 1/mg through [11]

SrpC) L, (8) = mg v (COutt), (S) + CUth, () + ...+ COH) (9)) ., (25)
which leads to a reduction of the number of independent parameters for RPI quantities.

Although we have derived all relations to order 1/ mg for the general case, we will restrict

our discussion to the case of RPI observables. For the case at hand, this means the total rate

and the moments of the leptonic invariant mass ¢°. Up to 1/my, we define [11, 12],
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2mprd = (Bu[(iD,), (iD[(IDM), (D)]b)

2mprl = (b[(ivD), (iD,)][(iwD), (iD")]b,)

2mpsty = (B.[(iD), (D)D", (iDg)](~ic)b)

2mpsh = (Bul(iD), (iDa)][(iwD), (iDg)](~io™)b)
2mpsty = (Bul(iDy). [((D), [(iDa), (iDa) ) (~i0™)b) (2.6)

where we have introduced the notation (b, ... b,) = (B(v)|b, ... by|B(v)), and where 4" =
g + (—io"). We also note here that compared to its standard definition, p3, is redefined to
include higher-order terms in the 1/m; expansion. The non-RPI matrix elements, required
to describe for example the lepton energy spectrum are listed in appendix A, as well as
a conversion to the iD basis used in [10, 23]. In [11] these parameters were written in
terms of chromoelectric (E) and chromomagnetic (B) fields, giving some physical intuition
on the meaning of these expressions.

We end the review of the dimension-seven operators by making a remark concerning
the operators involving symmetrized products of color octets, such as r4G and 7“4E. At tree
level, this involves

1
{1, T} = géab + dobeTe. (2.7)

However, beyond tree level the color singlet and the color octet contributions become
independent operators [24] and thus will lead to additional HQE parameters. Nevertheless,
defining the matrix elements as in (2.6) will be correct up to corrections of order a (myp).

3 HQE parameters up to 1/m}

The HQE parameters at 1/ mg have been listed in [10] for the general case at tree level. For
completeness we also give these operators in appendix A.



In order to determine the number of RPI parameters, we follow the construction outlined
n [11]. Starting from (2.5), this requires writing down all possible tensor decomposition
of the C coefficients. We discuss this derivation in detail in appendix B. We obtain in
total 10 RPI parameters:

ivD), [(ivD), (iDy )]} [(ivD), (iD*)] bv>
(D), GD)][D*), (iD)]b,)
iDy,), [(iwD), (iD,)][(iD"), (iD")] |, )
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2mpX§ = (b |(iwD), [(iDy), (iDa)]|[(iD"), (iD))(~i0™ )by
2mp X7 = (bu[(iD,), [(40D), (iDa)]|[(iD*), (iDg))(~ir )b )
2mp X5 = (o[ (iDy), [(ivD), (iDa)][GD"), (iDg)]| (~io )by
2mpX§ = (bo[(iD,), [(90D), (iD)]] (iDa), (iDg)) (=i )b )
2mp Xy = (b |(iDy), (D), ((D")][(iDa), (iDp)]| (=i ™ )by ) (3:2)

These RPI parameters are specific linear combinations of the general list given in [10]. In
appendix A, we list the relation between the RPI XZ-5 operators and the full basis. We note
that these operators can be expressed in terms of gluon fields and their derivatives as done
for the 1/mj operators in [11]. Here, we do not give these relations since the differences
between QED and QCD become more involved at higher orders. We also point out again
that we deal here with tree level only, meaning that the remark made in section 2 applies
also at dimension eight.
Finally, we stress that the equation of motion

: Loy = 1 (.
((sz) + 5 (iD) )bv — (TG b. (3.3)
with
o-G = (—ioy)iD"iD" . (3.4)

as well as o - G itself is RPI. This already lead to the “RPI completed” expression for p?]’3 — ﬁ3D
shown in (2.6), and likewise we will have the “RPI completed” expressions for 7°4E and s%,
which now also contain 1/mj (and higher) terms:

2mpiy = <5U K(z‘vD) + 2;%(1'1))2) : (z‘DM)} K(z’vD) + 21(@)2), (iD“)} bv> , (3.5)

myp

Impt = <bv [((iw) + 27}2}(@)?), (z’Da)] [((Zw) + 21(iD)2> , (ipﬁ)] (—waﬂ)bv> .

my

Combined, this gives the full list of RPI operators up to 1/mj.



4 B — X Av at 1/m}

In this section, we outline the calculation to obtain the total rate and kinematic moments
for the inclusive decay B — X fv. We start from R(S) in (2.4), which is related to the
hadronic tensor of the B — X ¢U transition via

W(v,q) = —%1m<B(U)IR(S)IB(0)> : (4.1)

Our goal is to formulate a “trace formula” [10, 25, 26] to compute the observables for
B — X v including all terms up to dimension-8 operators at tree level. This is achieved by
observing that the time-ordered product in (2.2) can be written in terms of the “external

field propagator” of the charm quark as
/ d*a e ™SI T (b, ()T ue(2)E(0)T by (0)] = by (0)T, (W) T,by(0)
O, (=5 )i{(iw)%—lmcﬂkn’%(o)
TP S
() (g ) ) bt
)

@ —me
+ { (@ e 1 (@ mc) P2 ( ! ) fu}aﬂ Bv,a(iDpl)(iDm)bv,ﬁ

+. (4.2)

where QQ = mpv — ¢. Taking the forward matrix element of this expression yields

Bl (g25) 3 [0 (G250 Tmoise)
= (g ) o)
e [{0 (g ) (g ey )
| 1\ - .
e {0 (g (g ) 7 (g ) o M6

1

+ ... (4.3)
where the hadronic matrix elements are given by the Dirac matrices
{M(3)},Boz = <Bv,abv >
{MPYsa = (bo.aliDp)bug)
{M1(>51)pz }/306 = <bv,a(le1)( )bv ,8>

(4.4)

In order to compute to the desired order, we start at the highest order corresponding to
n = k 4+ 3. Since we neglect all higher-order terms, we can compute this matrix element



in the static limit, which means

(boa(iDy,) .. (iDy )by,g) = {MFT3) Y5, with M}jﬂk =14y, . + 2B,

1M ? (45)

where P, = (1 + %)/2 is the projector on the “large” components of a Dirac spinor and
sx = Pyy\y5 Py corresponds to the three Pauli matrices in the rest frame v = (1, 6)

Matrix elements of lower dimension are then obtained with an iterative process taking
into account all possible Dirac structures:

(boa(iDpy) . (D )bug) = {ME3) Yo with MUTH =3N"T74L . (4.6)
(2

where the sum now runs over the complete set of Dirac matrices I'; = {1, 75, Y, V5 Vs Opuw }-
The tensors A’ are finally expressed in terms of the HQE parameters.

The resulting trace formulae including terms up to 1/ mg in the full basis are given in a
Mathematica notebook in the Supplementary material (see appendix C for more details). We
note that these formulae were already derived in [10], but there were not publicly available.?

Inserting the expression found with the trace formulae from (4.3) and taking the imaginary
part of the hadronic correlator according to (4.1), allows us to find the functions W;(¢?,v - q)
of the Lorentz decomposition of W:

W,uu = _gl“/Wl + UMUVWQ — Z'eu,/pg’l)panS + QMQVWAL + (Q,uUV + QVU/L)WF) . (47)

From this, the triple differential rate can be obtained and finally also moments of the
kinematic distributions.
These moments are normalized integrated quantities defined by

(0w = [ (0) 5 do / / 0. (4.8)

where O are observables like O = Ey, M? X ¢?,.... The subscript “cut” generically denotes
some restriction in the lower integration limit. In the following, we discuss only the ¢?
moments in detail, as these can be expressed in terms of the 10 X? RPI operators. We
consider centralized moments defined through

2 _ 2 2\\n
0 (2) = (P gsqe., an(g2) = ((a* = () > for n>2 .

(1-v/p)? dF R
dq? / / 5 g (4.9)

For completeness, we give the total rate in terms of the RPI parameters in appendix D. We

We furthermore also define

(1-
ma=[,

qcut

note that this expression differs from the one given in [23], where the 1/ mg’S parameters
were extracted from moments of the lepton energy and Mx spectrum. Using the conversion
between the different bases in appendix A, we find that the rate presented in [23] is not RPI.
We also give in appendix E for the first time the ¢> moments up to 1/ m;:’ . The expressions
for the first four moments including a ¢>-cut are also given in the Supplementary material
(see appendix C for more details).

?We thank the authors for providing us with a Mathematica notebook containing their formulae. We
reproduce their results up to 1/mj. At 1/mj, we found a few mistakes in their derivation which we correct in
our trace formula.
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Figure 1. Feynman Diagrams for the “intrinsic charm” contributions.

4.1 Intrinsic charm contributions

As discussed in the introduction, the dimension-8 contributions contain terms involving
negative powers of m2. In fact starting at 1/ mg’ the HQE, where the bottom and the charm
quark are integrated out simultaneously, exhibits an infrared sensitivity to the charm-quark
mass, and the effects related to this are usually called “intrinsic charm” (IC) [15, 16]. This IR
sensitivity to the charm mass comes in through the phase space integration over v - Q). The
integrands are singular staring at dimension six, i.e. 1/mj, which finally results in log p terms
in the total rate and the moments of B — X.. However, at higher dimensions n, we even
pick up power-like singularities for m. — 0 resulting in a contribution to the total rate of

r 1 1 (n—6)/2 A

~ -~ .10
o) (410
where n = 8,10,12,.... Including a;, corrections will also introduce odd powers of 1/m.,

but here we consider only tree-level contributions.

Following [15], we can extract the relevant expressions by considering the charm propa-
gator in an external field according to the Feynman Diagrams shown in figure 1. Expanding
this expressions to 1/m?, one finds

1

<Ea’)’y’)’5C,B>A = PrRs) (2 { [DK, GHA} , Gﬂ)\} + {[DH, GM)\} , GHA})BQ + ... (4.11)

2 1 m?
(Camep)a = = ln<b>[D”,G ]
o Jvep 31671'2 mg K| Ba

1 (13 [D“, [GAV, GMH 18 [D“, [Dk, Dy, G,.W]H (4.12)

24072m?2

. A K
—~4i |[D*, [D", [Dy, G| )Ba + .

where the subscript A denotes that the propagator is to be take in an external gluon field A,
a and (8 are color indices, and we have inserted my as the proper UV cut-off in the first term
of (4.12), which generates the well-known log(m?/m?) term in the coefficient of p%.

Inserting this into (4.2), we end up with dimension-eight operators proportional to
1/(m3m?). Note that the IC contribution is RPI, so it can be expressed in terms of our basis
of RPI operators X7, ..., X7, defined in (3.1), (3.2):

Xio = —24X35 + 78X — 12X3 + 10X2 — 20X + 5X3 + 5X1g , (4.13)



Alternatively, having the full trace formula available, we can also easily identify this combina-
tion from the total rate, given in appendix D, by identifying the HQE parameters proportional

to 1/p. We explicitly checked that the same combination X7 of dimension-eight HQE pa-

2

rameters Xj, also describes the intrinsic charm contributions proportional to 1/(m3m?2) in

the centralized moments ¢g;_4 as required by RPI.

5 Phenomenological implications

In the remainder of the paper, we will discuss the phenomenology of the dimension-8
contributions to the HQE. Since the number of HQE parameters - even for the reduced set
using RPI - is too large to extract them from the data, we shall employ “lowest-lying state
saturation ansatz” (LLSA) to obtain an idea of the size of the 1/(mjm?2) and 1/mj terms of
the HQE. Overall it turns out that both the IC contributions of order 1/(mjm?) and the
“genuine” 1/ mg pieces are sizable and of similar magnitude, although the IC contribution
should be parametrically larger. However, the two contributions enter with different sign,
which leads overall to a small contribution of the dimension-8 operators. We shall discuss
this issue in subsection 5.3.

5.1 Estimation of the matrix elements

Before we proceed to discuss phenomenological implications of the decay B — X v, we
will try to estimate the size of the HQE parameters at dimension-8. To do so, we use the
“lowest-lying state saturation ansatz” (LLSA) which has been elaborated upon in [18]. The
starting point is to introduce a fictitious heavy quark @ with mg > m; for which we can
derive the sum rule

i 71'3 3 (L _ _
B0 ), ) - G IQul) (IGED) - DL ol Blp)
— (Bla)BlDR) - (DR (e ) ((DE) - (DR BGr) . ()

where the superscript | denotes the “spatial” components of a vector,

a;J[ = ay — vu(av) = (gu — vpvv)a” = gi‘ya” ’

@, is the static field of the heavy quark, while b, is still the field of full QCD with the definition
b(z) = e M, (),

to remove the large part of the quark momentum myv.

This sum rule can now be expanded in powers of 1/w to generate the matrix elements
defining the HQE parameters. The LLSA is to truncate the sum over all intermediate states
on the left-hand side after the first non-vanishing terms.

Following [18], we anchor the LLSA by using (5.1) with £ = 1 and [ = 1. This requires
to consider the matrix elements

(B(pp)[bo(iD;)Quln)



for the tower of states |n). The lowest lying states are the two spin-symmetry doublets

Jlight=1/2 and (1+’ 2+)jlight
where jijghy denotes the total angular momentum of the light degrees of freedom. The two

of orbitally excited ¢ = 1 states, consisting of (0%, 11) —3/2 states,
states within the doublet are degenerate (in the m¢g — oo limit), and the two doublets have
excitation energies €15 and €35 relative to the ground state.

For the lowest term in the 1/w expansion of (5.1) with £ =1 and [ = 1 the left hand
side becomes (u2)* or (u2,)+ (see below), depending on which matrix I is inserted, while
the sum on the left-hand side is truncated after the contributions of the two spin-symmetry
doublets discussed above. This allows us to fix the values of the two matrix elements

(B(pB)|bu(iD;;)Qul = 1, jiigns = 1/2) and  (B(pp)|by(iDy)Qull = 1, jiight = 3/2)

in terms of (u2)+ or (uZ)+. Inserting more L-derivatives, i.e. k> 1 and [ > 1 and expanding
to higher orders in 1/w one then can relate p3, (k =1, 1 =1 and expanding to 1/w) and all
higher-order HQE elements to the 1/m? HQE elements (u:)? and (u5)? and the excitation
energies €/ and €35 of the orbitally excited states with jigne = 1/2 and jigne = 3/2,
respectively. In appendix F, we list the LLSA approximations for all the RPI HQE elements
up to 1/mj. Similar expressions can be found in [18] for the full basis of 1/m} elements.

To obtain numerical estimates for the HQE parameters, we take the excitation energies
from the decay spectrum [18]

€1/2 = 0.390 GGV, €3/2 = 0.476 GeV . (52)

In addition, the HQE parameters are known from a global analysis of the B — X v
spectrum [1]3

(12)t =0477GeV?,  (ud)t =0.306 GeV?, (5.3)

which are defined as

2mB(M721)L = _<Z_’v (iDy) (iDy) bv)QﬁL_V )
2mp(ug)t = (by (iDa) (iDg) (—io,w) bo) g g’ . (5.4)

Using these values and the LLSA expressions in appendix F, we find the approximations
for the HQE parameters presented in table 1. We do not show any uncertainty range, since
we currently do not have a way to estimate the quality of the LLSA. Instead, we only use
these numerical values to get an estimate for the size and sign of the contributions as was
done also in [23]. We note that, we can also take the n'* root of the absolute values of
the HQE parameters, which yields values of order Aqcp as expected. An exception to

this is /[sypl ~ 1GeV.

For the intrinsic charm contribution X7, defined in (4.13), we find
2 2
5 _ Y 2L\~ 210, 2 L 2\L
Xio =5 [4e1/2((<uc> ) =T )+ 6(()h))

+63/2(17((M%;)l)2 +67(p2)t (u2)* + 66((u3r)l)2) ~ 14.71 GeV? (5.5)

3Taking the extracted HQE parameters from the recent fit from [3] does not change our conclusions, but
only changes the values for the HQE parameters in table 1 by approximately 0—10%.

,10,



LLSA approximation

LLSA approximation X7 | 0.049 GeV?®
Input values 3| 0.996 X3 | 0.00GeV?
myin 4.573GeV  [1] pZ, | 0.290 GeV? X3 ] 0.094 GeV®
me(2 GeV) | 1.092GeV  [1] 73 | 0.205 GeV3 X7 | —0.41GeV®
€1/2 0.390 GeV  [18] 75 | 0.098 GeV* X2 | —0.039 GeV®
€3/2 0.476 GeV  [18] ré& | 0.16 Gev? X | 0.00GeV?®
(u2)*+ 0.477 GeV?  [1] 55 | —0.074 GeV* X2 ] 0.091GeV®
(n)* 0.306 GeV?  [1] sp | —0.14 GeV*? X3 | —0.0030 GeV®
sqp | —1.00 GeV* X§ ] 0.27GeV?
X3 | 0.025GeV®

Table 1. The input values used for the numerical analysis are presented in the left table. The other
two tables show the values for the RPI HQE parameters based on the LLSA approximation.

where we obtained the numerical estimate by using the above defined inputs. Taking the
appropriate root gives \‘E/Xif’c ~ 1.7GeV.

Finally, it is interesting to compare the estimate of the LLSA with the HQE parameters
extracted from the B — X v spectra. Including only terms up to 1 /mg, these fits yield
p3, = (0.185 £ 0.031) GeV? [1]. Using (5.1), we may write®

()" = 5o (b, (D) D)DE) i)

= %61/2(063)L — (u&)) + %63/2 2(u2)*" + (ug)") =0.22GeV? . (5.6)

This estimate is in good agreement with the value extracted from data. This strengthens
our belief in the LLSA as a first estimate of the HQE parameters. In [23], HQE elements
up to 1/m} in the full basis were extracted from moments of the lepton energy and My
spectra using the LLSA estimate to constrain their sizes. Allowing the fit to vary the HQE
quantities, they found that most of the HQE elements changed very little with respect to
their LLSA values and concluded that there was low sensitivity to the higher-power elements.
In addition, in [2], r} and s}, were extracted from the ¢? moments, finding results consistent
with zero. Within uncertainties they also agree with the values found in table 1.

5.2 The total rate and the ¢g> moments

Using the LLSA estimates for the HQE elements, we can now consider the effects of the
various contributions to observables. For simplicity, we focus here on RPI observables such
as the total rate and the ¢?> moments, including a cut on low values of ¢*:

2 q2 %
qcutE c112 . (57)

In figure 2, we show the various contributions fo the first four centralized ¢? moments g1 2.3 4
as a function of 2. The black-dotted line is the leading term proportional to u3, while the

4This expression holds up to 1/mj terms. Introducing a commutator between the covariant derivatives
(see (2.6)) also absorbs higher order terms into p% and thus would alter the LLSA expression.
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Figure 2. The dependence of the first four centralized ¢ moments on the different orders in the
1/my, expansion, as a function of the cut-off ¢2,,. The black dashed, blue solid, red solid, and green
solid lines represent the contributions from us, Nva P, and 1 /mg HQE parameters, respectively. The
dashed orange, dashed purple, and solid orange lines represent the “genuine” 1/ m;:’ contributions, IC
contributions, and their summed contribution respectively. The black solid lines are the predictions
for the centralized moments including contributions up to 1/mj. The total and us results for ¢; have
been divided by a factor of 10 to show the contributions at other orders more clearly.

black-solid line denotes the total contribution of all terms of the HQE up to dimension-8
operators. The colored lines show the individual contributions at each order in the HQE,
where we have displayed the contributions of IC and the “genuine” 1/ m;? pieces separately.
As commented before, we do not show any uncertainties as we currently do not have a way to
estimate the uncertainty associated to the LLSA. We find that, within the LLSA estimates,
the IC and “genuine” 1/ mg terms are roughly equal in size, but contribute oppositely to
the different ¢> moments. Most importantly, as discussed before, based on power-counting
arguments the IC-parts would contribute at the same level as the 1/ mﬁ. We indeed observe
that the IC contribution is large (in fact, larger than the 1/mj terms in this estimate), but we
also note that the other 1/ ml‘:’ give large and opposite contributions. From this we conclude
that, at least within the LLSA, only taking the IC-parts as part of a 1/ m?; analysis could
severely overestimate its effects, and we thus recommend to consider these terms only in a
combined determination up to 1/mj. We will return to this issue in subsection 5.3.

In figure 3, we show the ratio R* defined in (4.9). We observe that here the IC parts
are larger than the 1/ mg terms and are not compensated by the genuine 1/ mg terms. So
far, this ratio has only been measured with a lower cut on the lepton energy, which spoils its

— 12 —
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Figure 3. Similar as figure 2, but now for the ratio R* and a zoom-in.

RPI behavior and introduces a dependence on the full set of HQE parameters. In trying to
extract also the higher-order moments from data, it would be useful to have measurements of
this observable given its different sensitivity compared to the ¢?> moments. Finally, for the
|Vap| extraction, the effect of the 1/mj terms on the total rate is important. We list the full
expression in appendix D. Numerically, employing the inputs of the previous section, we have®

I'(B — XAv)
- - 0.65], — 0.22|MQG - 0.016|ﬁ% - 0.00026|1/m§
+0.0086],, — 0.0018], , s + O(1/m), (5.8)
b

where we indicate the effect of the different orders. We observe that the IC contribution and
“genuine” 1/ mg’ contribute to the total rate with opposite sign. Note that this is different
than for R*(G2,), as seen in figure 3 which also contains a term proportional to uZ g%,/ (pusmy)
which the total rate does not.

5.3 “Genuine” 1/mj versus the IC contributions

Finally we discuss the observation that the “genuine” 1/mj contribution almost cancels the
IC pieces in the ¢> moments. We note that the Wilson coefficients C' of the operators at
dimension-8 have for the total rate the generic form

1
C’:a4p4+a3p3+a2p2+a1p—|—a0+b1;+colnp : (5.9)

The fact that the total rate has to vanish at p = 1 due to the vanishing phase space implies
the relation

O=a4+az3+ao+ai+ag+by or blz—(a4+a3+a2—|—a1+a0) . (5.10)

All the contributions proportional to the a; are attributed to the “genuine” 1/ mg while the
logarithmic term and in particular the one with negative powers will be attributed to IC.
The relation (5.10) links the two contributions, explaining at least part of the cancellation.

SFor j%, we use here the estimate obtained in [12], using the determination in [23]: 5% = 0.127 GeV?®.
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However, the details depend on the values of the HQE parameters, and for a detailed
quantitative analysis we have to rely on the values obtained in LLSA shown in table 1, in
particular on the relative signs of the X? contributions predicted by LLSA. To obtain a
general idea, we investigate this effect by taking a generic absolute value for the different
matrix elements but vary their signs. In order to do this, we write

2n

1

Gn 2 ”;’; m5< mb“GpD + § X3 + S aICX5> (5.11)
b jeJ

where J = {2,3,5,7,8,9,10}, i.e. dimension-8 operators which contribute to the IC part
(see (4.13)). To obtain the expression for R*, one sets n = 0. To compare the genuine
contributions to the IC contributions, we make the following assumptions. We assume that
X5~ H%—i% ~ A5QCD. In addition, we assume that each X? contribution scales as A%GD,

but we let the signs of these terms free.

We can then write

m2n
o b AT AICY AR 5.12
dn = 113 mb( + ) QCD » ( )

where
m? m? 10 m? 5
Ap® =a,f + Zam-b - sgn (XZ) , (5.13)
i=1

AlC = Z alS- - sgn (X]‘:’) , (5.14)

Jje€J

where these A% are functions of §2.

In figure 4, we show the A€, the A™; and the sum of the two for all 210 possible
combinations of signs of the X? operators. From this, we see that the IC and genuine 1/ mg
terms cancel each other to a large extent for most sign combinations, especially for the
higher ¢> moments. Here, we show the results for §2,, = 0, but we have explicitly checked
that a similar behaviour applies to other ¢* cuts. For R*, we used ¢2,; = 0.1. Specifically,
we find that if sgn(X3) = +1, then the cancellation almost always occurs. This can be
understood, because X3 presents the dominant contribution of Xf’c due to its large prefactor.
In light of our findings it seems advisable to also include all the 1/ mg’ terms and not only
the IC contributions.

6 Conclusion

We presented the complete tree-level contributions of the dimension-8 operators for the HQE
of the differential rate for B — X fv. We used the standard form of the HQE where the
bottom- and the charm-quark are integrated out at the same scale p? ~ mym.. Consequently
the Wilson coefficients of the HQE depend on the mass ration p = m?2/ mg.

Starting at dimension six (corresponding to order 1/ m,? in the HQE) an infrared sensitivity
to the charm-quark mass arises as a log p, while at higher orders also negative powers of p
appear. At tree level this happens first at order 1/ mb, turning this into 1/ (mbm ). Adopting

— 14 —
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Figure 4. Relative contributions of the IC and the “genuine” 1/m; terms, and their sum to the
centralized ¢? moments ¢, for n = 1,2, 3,4 and for the ratio R* (n = 0). The x-axis enumerates the
219 possible sign combinations of the HQE parameters X?.

a power counting of the form m?2 ~ Aqcpmy suggests, that such terms involving “intrinsic
charm” should be counted as 1/my, and hence could be parametrically larger than the
“genuine” 1/mj terms.

We have derived “trace formulae” allowing us to compute any observable for B — X {v
up to dimension-8 terms, i.e. up to 1/ mg of the HQE. As known, the number of independent
HQE parameters proliferates significantly. A minimum of ten HQE parameters enters at 1/ mg,
even if we take advantage of the reduced set of operators that enters in reparametrization
invariant observables. For a phenomenological study of the effects of these higher orders,
we thus have to estimate the values of the HQE parameters in some way, which we do by
using the lowest-lying state saturation ansatz (LLSA).
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Using these values for the HQE parameters as a first estimate, we can make quantitative
statements about the relative size of the previously unknown contributions of dimension-eight
operators. However, it is currently challenging to assign an uncertainty to this estimate.
We leave more detailed study of the higher-order corrections and the uncertainties of the
LLSA to future work.

We observe two interesting points.

1. The size of the intrinsic-charm contributions is numerically of the expected (i.e. para-
metric) size, however, the genuine 1/mj terms contribute with the same magnitude.

2. The intrinsic charm contributions have the opposite sign as the ones from the genuine
1/ m;:’ terms, which leads in total to an unexpectedly small overall contribution of the

dimension-eight operators.

These statements at least holds in the LLSA, however, we have played with different scenarios,
most of which exhibit a similar cancellation. Overall, there are indications that at least the
1/ m;:’ contributions in the HQE are smaller than expected, which will allow us to reduce the
theoretical uncertainty for the inclusive determination of V., even further.
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A Conversion between different conventions continued

A.1 1/m} definitions

The r; are the full set of 1/ mg’ operators, including non-RPI operators, as defined in [10].
For completeness, we list them here [10]:

2mpr1 = (b, (iD,,) (ivD)? (iD") by) ,

2mpry = (b, (iD,) (ivD) (iD") (iD)*b,)

2mprs = (b, (iD,) (ivD) (iD,) (iD*) (iD") b,)

2mpry = (b, (iD,) (ivD) (iD)* (iD*) b,),

2mprs = (by (iD)* (iwD) (iD)*by),

2mpre = (b, (iD,,) (iD,) (ivD) (iD") (iD") b,) ,

2mpr7 = (by (iD,) (iD,) (ivD) (iD") (iD") by) ,

2mprs = <l_)v (iDy) (ivD)3 (tDg) (—wag) by)

2mpry = (b, (iDy) (ivD) (iDg) (iD)* (—ic®®) b,)
2mprio = (by (iD,,) (ivD) (iD*) (iDy) (iDg) (—ic®?) b,)
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2mpri1 = (b, (iD,) (ivD) (iDy) (iD*) (iDg) (—ia®?) b,) ,

2mpria = (b, (iDy) (ivD) (iD,,) (iDg) (iD*) (—ic®?) b,)

2mpri3 = (b, (iD,) (ivD) (iDy) (iDg) (iD*) (—ic®?) b,) ,

2mpris = (by (iDy) (ivD) (iD)? (iDg) (—ioc®?) by)

2mpris = (b, (iDy) (iDg) (ivD) (iD)? (—ia®?) b,)

2mprie = (by (iD,) (Do) (ivD) (iDg) (iD*) (=ic®?) by) ,

2mprir = (b, (iDy) (iD,,) (ivD) (iD*) (iDg) (—ia®?) b,) ,

2mpris = (b, (iD,) (iDy) (ivD) (iD") (iDg) (—ia®?) by) . (A1)

The RPI operators X we derived in this work and defined in (3.1), (3.2) can then be written as

X{=r,

X§:2r6—2r7,
Xg’:—r2+2r3—r4—|—r6—r7,
X;i’:2r2+4r3+2r4—2r5—2r6—2r7,
X2 =rs,

X¢ =116+ 117 — 2718,

X%r’ =Ty —7Ti2—Ti3+ 74+ 716 — 718,
X3 =711 4712 — 13+ 716 — T18 — T,
Xg = 47’10 — 27“15 s

X3 = 2r10 + 2713 — 2715 (A.2)

A.2 Differences at 1/mj

In the following, we expand the discussion on the conversion between different HQE parameter
definitions in [12]. The covariant derivative can be split into a spatial and a time derivative via

iD, = vy ivD +iDy . (A.3)
The HQE parameters can be defined with either the full covariant derivatives or with iD" as

in [10, 23], which we will refer to as the “perp”-basis.
Beside the RPI parameters in (2.6), we list the non-RPI parameters up to 1/mj [12]:

2mpbly = (b, {(iD)%, (iDa) (iD3)} (=ic™) by) . (A4)
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For completeness, it is interesting to consider the differences between these two bases up
to 1/mp. We find

1 r
()™ = 2mi (1= i) + gy + 5 | =7 = 5 + 061+ 0
b
1
+rmg[—7“9—7“10+7“11+?“12—2T13+T15+T16—T18},
b
(M2)L=M2+i[ﬁg 4P = 1 5
G G o, PP PLs] — 5 a0PD
N 1
(P%)L:P%—Tmbfsﬂ%a
1 1 r r r
3 \L_ 3 4, 4 5,6 7
(PLs) —PLS*QT%[TE+5E}+W *7“2+7’3*7“4+5+5*5*T9*7‘10
r r17
+7‘11+T12_T13_T14+T15+§+%_7"18 . (A.5)

Note that interestingly, (u%})J— does not get additional r; contributions when writing p%s in
the full derivative basis. We also note that in (3.5), we defined F4E and §‘}3 operators, where

1
4 4 = _
Fp=rg+ - [ro — 4],
- g 1
§p=sp+—[ro—ru4] . (A.6)
my
The relations between the dimension-7 parameters m; (first introduced in [10]) and the

RPI parameters have been presented in [12]. Here, we extend these relations by adding

the dimension-8 corrections r; via®

1 ri 1
my = - |5+ € +20p] + 3651 | + =—[2r2 + 15 + 2110 +715)
3 2 3my

4
mo = _TE7

4 4
ms3 = _QTE +TG7

2
m4:2r4E—27"4G—26p}1)+ﬁb[—7“2+7”5—7“10+7“15],

4

m5:—$E,
1

4 4

m6=—SB+5E—H[—T2+2T3—T4+7‘6—7“7—7‘10+7°11+7“12—7“14+7"17—7“18},
b

4 4 533 2

m7:25pLS+2SE+7—E[Tl—27’4+T7+7‘8—T9+7’12—7’13—2T14+7’18],
b

4
mg:45?’;2—1—%[—7"14-?”24-7“4—7“5—1—7"6—7“7—T8+7“9—|—7“14+’I”16—|—7"17—27“18},

4 i, %1
mgz—283+28E+7—%[Tl—3T2+2T3—3T4+T5+T6+T7+7‘8—T‘9—2T10

+2r19 — 3r14 — 16 + 7117 + 27’18] . (A7)

5This equation corrects a typo in [12] for the m1 coefficient.
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The expressions in (4.11), (4.12) for the calculation of the IC contribution result in five
operators f; describing the intrinsic charm, as defined in [15]. The conversions between the
fi from [15] and r; and our RPI operators at 1/mj are given by

fi=—2ry —drs — 2ry + 2r5 + dr7 = -X3 - X7,
fo=—2ry —drs — 2ry + 275 + 2rg + 2r7 = — X7,
f3 = —2ry +drs — 2ry + 216 — 2r7 = 2X3 ,

fi=—2rg —drig 4+ 4r1a — 2r14 + 2r15 = —2X2 + 2X3 — X7,
f5 =2ri9 + 2r11 — 2r19 — 4r13 + rig4 + 2r16 — 2118 = QX? + Xg) — Xir)o . (AS)

The operator describing the 1/(m$m?) intrinsic charm contribution can be written in
terms of f; and our dimension-8 RPI operators as

Xio = —24X3 + 78X3 — 12X} + 10X7 — 20X3 + 5X§ + 5X{,
= 24f1 —12f> +39f3 —10f, — 5fs . (A.9)

The combination of operators f; in (A.9) agrees with the IC contribution for T'(B — X /D)
presented in [15].

B Determination of 1/ m5Q RPI operators

Starting from (2.5), we require the tensor decomposition of Cﬁé)ﬁy and C(Egﬁ s~ The tensor

o
decomposition of ngﬁy (dropping single « matrices and 9, considering only hermitian and

parity-even operators’) is given by [11]
4 4 4 4
CA(LCM)BV(U) = y§ )guugaﬁ + yé )gua.gu,é’ + y:(g )guﬁgua

4 4 4 4
+ Zg )Uavﬁgul/ + Zé )'U,uvugaﬁ + Z:(), )['U,uvagﬁu + ’Uz/U,Bg,ua] "‘24(1 )['U,uvﬁgay + Uzlvagﬁu}

+ w(4)vuvavgvl,

4 . 4 . 4 . .
+ O‘% )(*Zo',uu)gaﬂ + O‘é )(*Zo'ocﬂ)g/u/ + O‘é )[(*Zo'uo)gﬁz/ + (*'Laﬁu)gua}

+ a{" [(=i08)gow + (=10 gus]
@, . @, . @ i
+ By ( WW)UaUB + B3 ( Zaaﬁ)UMUV + B3 [( wua)vﬂvv +( WBV)UM%]
+ Bf)[(—wuﬁ)vuva + (—ioav)vuvgs] - (B.1)

For simplicity, we consider the spin-independent and spin-dependent (those with o terms)
separately.

"We refer to [11] for the argumentation why single v matrices and ¢ can be dropped.
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B.1 Spin-independent operators

The tensor decomposition of the spin-independent (SI) terms of c®

paBov

matrices and ¢, considering only hermitian and parity-even operators) is

, ST
C;(tiﬁay) (v) = y§5)

5
[guagBSUV + guégﬁavu] + yé )[g;wcgﬁyvé + gyégﬁ;ﬂ)a]

5 5
+ yé )g;mgtsuvﬁ + yz(1 )[guﬁgaévu + 913950V

+ g

5
[g,uﬂgoaﬂ}& + guﬂg(ﬁﬂ)a] + y((j )[g/.L(SgaﬂUl/ + guagzwvu]

5 5 5
+ y$ )guégauvﬂ + yé )[guugaﬁvé + gl/,ugciﬂva] + yg() )guugadvb’

5 5
+ Z% )[gyavﬁvdvu + géuvﬂvavu] + Zé )[guﬁvavévl/ + guﬁvévavu]

5 5
+ z§, )[guavavﬁvu + Gualsvauy,) + zfl )ngavﬁva

5 5
+ zé )[ga/gv#v(;v,, + 9580,V VL] + z(g )gagvuvgv,,

+ w(5)vuvavgv5v,, .

Then, (2.5) gives the following equations of motion:

:mQ( (5)+2?Js
( = mq(2y; +y§)+y6
( = mqo(2” + v + " +
( = mq(2y” + i + 4 +
w® = (2 +z§)+z§5)

(5)
(5)

)
&)
>>
&)
P =

)

)

(5)

=mo(us” + 2087 +35” + (),
) =mao(2uy” + S + 2987,
mq(s” + 27 + 22 + 2) .

From [11], we take the equations of motion

4
7 = 2mq(”

=2mg(z

+ 21(14)) = mQ(2z§4) + 2{4) + zﬁ‘”) .

The two contributions to the spin-independent part of R(®) are

Rf” sT) _

6
R§5’ s1) _ )3 ZZ(5) PO

with the basis operators

=1

= Qv{ ((ZD)z)Z ) (’“}D)}Qv 5
= Q, {(iD)?, (iD,) (iwD)(iD*) } Qo

— Q. (iD)(wD)(iD
= Qv {(lD

)? Qu s
M)(iDV)(iD#)(iDV)v (“)D)} QU )
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(B.4)



D

o§f’> Qv iD,)(iD,), (iD*)(ivD)(iD")} Qy ,

WD) (iD"), (ivD) } Qu,

@

1

Q
o~
E’l
@
IS4

XD s
—~

D)*
o$5> = Qu (iD,))(iD,)(ivD)(iD*)(iD") Qo
0§ = Qu ((iDW)(iD)*(wD)(iD*) + (D) (ivD) iD)*(iD")) Qo
O = Qu (iD,)(iD,)(iwD)(iD*) (iD") Qy ,
P = Q, {(iD)*, (ivD)*} Qu.
P = Qu {(iD,)(iwD)(iD"), (ivD)*} Q.
¥ = Qu{(iD)(wD)*(iD*), (iwD) } Qu,
P = Qu (iD,)(ivD)*(iD") Qy
P = Q, {(iwD)(iD)X(iwD), (ivD) } Qu,
P = @, (ivD)(iD,)(ivD)(iD")(ivD) Q, . (B.7)
Solving (B.3), (B.4) for the coefficients 3 gives
R SD _ ané [O§5)+O§5)} +2Z4ﬂ(22 [—20&5)+O§5) —O§5)+Off’)]
AV 1160 o6 o6 o) . o
2%[201 —0y) -0y — 0y + 20} }

+f [0 + o<5>}
1 1
+ ) —Zog it 0<5> + 50 -0 + ogﬂ

+ ) [0 + 0§5> +0 + 0 — 200"

1 1 1
+y” | =701 + 508 + SO - 0 + 055)} : (B.8)

From (B.8), we can see that:

(3)

» The operators proportional to x5~ and z( ) are part of “RPI completions” of lower

3)

order operators. As an example, the operators proportional to x5’ are part of the RPI
completion of the Q, (ivD)? @, term at third order:

(z‘D)Q)gQU

RPI compl.
_—

— 1
Qy (ivD +
2mg
1

4mé
- 4mlg2@v (D) (iwD)(iD)*+ ((z’D)Q)z(z'vm

Qv (Z"UD)3 Qv

D)

08 4+ 0]

+ (D) ((iD)?) ") Qo (B.9)
(5)

o The operators proportional to ;' consists of operators with an ivD acting on a quark
field and therefore will only contribute at higher order.
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We are therefore left with three independent RPI operators, i.e. the operators proportional

to y%’g (dropping higher order operators):

e B = %ogf’) ~ 0 + 0% = 2mp (;m —2r3 + 7“7) ,

IC%S’ RPL) _ O§5) - 20&5) + 05(35) =2mp(2ro — 4rg + 2r4) ,

1 1
K§5’ RPI) _ §O§5) _ Oé5) + 05(35) — 2mp (—27"3 4 37 + 7“6) , (B.10)

where we have also included the conversion to the r; parameters for @) = b, given in (A.1).
(5)

Solving (B.3) for the coefficients z;” gives

(4) 1 1 1 1
5, SI w 5 5 5 5 5 5 5 5 5 5
RS ):—2 Q[Pl()+Pé )]+Z§)|:P2()_2P1()_2PES )} +Z§){1:§)—211()—2P55 )]
1 1
+ 28 [Pf) - 2P1(5)} + 28 {Pa(‘:’) - 2P5(5)} (B.11)

From (B.11), we can see that:

« The operators proportional to w® are part of the RPI completion of the Q, (ivD)*Q,
term at fourth order.

e The operators proportional to zgﬁ have an ivD acting on a quark field and therefore
only contribute at higher orders.
We thus have one independent RPI operator (dropping higher order operators):
ICZ(E)’ RPI) = Pf) =2mpry . (B.12)
All in all, we find 4 spin-independent RPI operators at dimension-8.

B.2 Spin-dependent operators

The tensor decomposition of the spin-dependent (o) terms of Cl(j;)ﬁél’ (considering only

hermitian and parity-even operators) is given by

Cﬁiiafsl(v) = P [(~i0ua) 95500 + (—i05,) Gapvu] + a5 [(~i055)Guave + (—i0ap) g5 4]
(

+ 0" [(=iua)govs + (=i05,)gusval + 017 [(=i05,) Guavs + (=i0u5)g5uval
+ 0 [(=i0a) 9505 + (=i05,)gayuvs] + 8 [(=i0,8)gasvs + (—i05,)gasv,]
+ af” [(=i008)gusvs + (—i0as) 9] + 0 [(=i0,8)gawvs + (—i05,)gpsva]
+ 0 [(=i0a0)9usvs + (=i0,5) gguval + a1 [(~i05)gagvs + (—ioan)gssvy]
+ {7 [(~i0ap)gusvs + (=085 Garvu] + 033 [(—i0,5) o5 + (—i0a0,) ga,103]
+ a3 [(—i0u) gapvs + (—io)gspval + a8 [(—i0as)guvs + (—i03s)guptal
+ {2 (—i0y) gasvs + 043 (—i0as)guwvs
+ ﬂ?)[(—iow)vngy + (—i0s,)vgVav,) + ,6’55)[(—1'0“5)7)&1)51)” + (—i08y) V504 V,]
+ ﬁ?(f))[(—iaﬂg)vavgvy + (—i0aw)vsvguy] + ﬁis)(—iauy)vavgvg
[
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Then (2.5) gives the following equations of motion
aé5) —a$5) —ag) =0,
of? +af’ + oy =0,
o +afd + ol 0,
5 5 5
O‘é : _0452) _O‘§6) =0,

ol + ¥ &, 6 _ B
+oqy + 2035 + oy = .

(4)

G, G, G, () _ P

2052 +Oé7 +0611 +Oél4 —mi
(4)
()+2aé)+aé)+agi)—fni

&, 6, 3 B
207" + a3’ +ag’ +ag) =
mQ

a® 4 a® 4 @ 4240 = o

B + 9 + 8 =0,
B — P — P =0.

From [11], we also take the equation of motion

1) _ —/3’4(14)

The two contributions to the spin-dependent part of R(®) are

6
R ) — Zﬁ@U@

i=1
16
5. 0) _ Z%(S)Sz@ ’
i=1
with operators

U = Qu{(e-G),@wD)*} Qu,
U5 = Qu {(iD")(iwD)(iD"), (ivD)? } (=i0) Qu
05" = Q, {GD")(wD)*(iD"), (iwD) } (~iop) Qu.,
US* = Qu (iD")(ivD)*(iD")(~ioy) Qu
U<5> Qu{(ivD)(c - G)(ivD), (ivD)} Qy,
U® = Qu (ivD)(iD")(ivD) (iD*) (ivD)(~ioy) Qu |
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9

9

9

Y

(B.14)

(B.15)

(B.16)

(B.17)



81 = Qu (- G)(iD)*(iwD) + (iwD)(iD)*( - G) ) Qu,
8 = Qu ((iD)*(o - G)(iwD) + (iwD) (0 - G)(iD)*) Qu,
S5 = Qu{(o - G), (iD,)(iwD)(iD")} Qu,
S = Qu{(iD)?, (iD*)(ivD)(iD?) } (~ivas) Qu
S = Qu ((o- G)(iwD)(ED)? + (iD)X(iwD) (0 - G)) Qu,
S5 = Qu ((iD*)(iD,,) (iD°)(iD")(ivD) + (ivD)(iD,,) (iD*)(iD") (iD") ) (~ioas) Qu,
S = Qu ((iD,)(iD*)(iD*)(iD?)(ivD) + (iwD)(iD*)(iD,)(iD?) (iD") ) (~ioap) Qu,
S = Qu ((iD*)(iD,)(iD?)(ivD)(iD*) + (iD,,) (ivD)(iD*)(iD")(iD”) ) (~icag) Qu,
S5 = Qu ((iD,)(iD*)(iD")(iwD)(iDP) + (iD*)(ivD)(iD,)(iD?) (iD") ) (~ioap) Qu,
$15 = Qu ((iD*)(iD)*(iDP)(iD) + (iwD)(iD*)(iD)*(iD")) (~ias) Qu.,
$17 = Qu ((iD,)( - G)(iD*)(ivD) + (iwD)(iDy)(o - G)(iDM)) Qu,
$13 = Qu ((iD™)(iD,) (D) (iD?)(iD*) + (iD,)(iD*)(iwD)(iD*)(iD")) (=icas) Qu
815 = Qu iD*) {(iD)?, (iwD) } (iD”) (=ivap) Qu,
$17 = Qu (@D {( - G), (D)} (iD") Qu,
$12 = Qu (iD*)(iD,,) (iwD) (iD") (iD%) (=i0as) Qu
818 = Qu (iD,))(iD*)(iwD) (iD?) (iD") (=i0as) Qu (B.18)
Solving the equations of motions in (B.14), (B.15) for 0%(5) gives
(4) (4) (4)
(5,0) _ B ) _ o) _ o], P )], B ®) | o)
RE ) = %;L—Q[Slg - 5P - 5]+ T EX +2§1—Q[Sf + 58]
+af |5 - 259 - ;sgﬂ
+af|s0 - 250 - 25 - 5 + 57|
G)gB) L) Lo 1ot 1o o) o03)
+ag _58 - 555 - 5510 + 5513 - 554 S1s +516:|
rafd |58 — s — 25 — s + s - sﬂ
tald |5 - 25 - ZsP
+aof7 [S17 - St§ — 517
HEHEEE SRR (B.19)

The operators proportional

to 62(4) are parts of RPI completions. Dropping operators which

have an ivD acting on a quark field (since they only contribute at higher orders), we arrive
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at five independent RPI operators:

1
’Cg& RPI) __ S(5) _ §Sé5) = 2mB(2T10 - 7"15) 5

1 1
,Cé5’ RPI) = 555) — 55%2) — 55(5) = 2mB(27“12 — 714 — 7“9) s

1
/C;E)’ RPT) = SS) _ §Sé5) = 2mB(2T13 - 7“15) ,

5 RPI) _ o5) 1a6), 1a6) 146 5
K M = 57— D80 4 08t - 5887 - s+ st

=2mp(2ri1 —ri5 + 7114 — 79 — T17 + T16) ,

K:g5, RPI) = S( ) 5(5) SEZ) — QmB(QTIS — 77 — 7"16) , (BQO)

Solving the relations in (B.14), (B.15) for ﬂz@ gives

1
Ly _ (5)] + B

R0

+ 68 {UQS + U2(5) Uéﬂ, (B.21)

From (B.21), we can see that only the operator Uf) does not have an tvD term acting
directly on a quark field. The other terms thus only contribute at higher orders. Therefore,
the only relevant RPI operator left is (dropping higher order operators)

IC% RPI) = Uis) = 2mprs . (B.22)

B.3 RPI operators at dimension-8

We find in total 10 independent RPI operators at dimension-8, of which 4 spin-independent
and 6 spin-dependent. We defined the X7 in (3.1), (3.2) in section 3 with commutators of
covariant derivatives in order to allow for an interpretation in terms of gluon fields and gluon

)

momenta. A basis transformation gives the RPI operators X? in terms of ICEE)’ RPD,

Xif, _ ’C4(157 RPI) :
Xg’ _ 2IC§5’ RPI) 2K§5’ RPI) ’

5, RPI 5, RPI) 1 (5, RPI
X5 = kg Y - ke R - e B

X5 — Kg5, RPI) 2/C§5’ RPI) 2/C§5’ RPI) 7

I

X5 = KB D

5, RPI
X§ = kg

6 )
1 6, rey) 1 5, mren) 1 .5, RP1) 1, .5 RPI
XF = ok MY SR g o Y - e Y
1 o, re) 1. .5, rPn) , 1 .5, RPI) 1, (5 RPI
X = kg MY - SR g i Y - e Y
X95 _ 2]Cé5’ RPI) :
X3, = IC?’ RPT) IC§5’ RPI) (B.23)
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C Expressions for the trace formula and g2 moments

The Mathematica notebook Trace_Formula.nb included in the Supplementary material
contains expressions for trace formula /\/ll(ﬁ),,,unfg, defined in (4.4), for dimensions n = k +

3 =3,...,8 which can be used to calculate forward matrix elements through
(BIBy (iDy) ... (iDy,) T by [ B) = Tr [MEH) Toins] (C.1)

where Ty #4=% is composed of Dirac matrices v#, metrics g"”, and four-momenta v*. The
definitions of the matrix elements used in MEﬁ?,.Md are included in the notebook itself, and
contain all (non-RPI) operators at each dimension. The expressions can therefore also be
implemented to calculate non-RPI quantities, like lepton-energy moments.

We also include in the Supplementary material a file Q2_moments_with_g2cut.nb with

expressions for

) 1 a=ve? o, dD
Qn(Geu) = 1“0/42 44° ()" g+ (C.2)

cut

forn=20,1,2,3,4 up to 1/mg. These can be used to determine the total rate, the ratio R*,
and the ¢ moments by re-expanding the following relations in 1/my:

%ﬁlt) <(q2)n> _on Qn(Cjcut) (03)

[ =T0Q0(0),  R*(¢Zy) = ’ - ’
OQO() (q t) QO(O) e QO(QCut)

The definitions of the HQE parameters are included in the notebook itself.

D Total rate up to 1/m}

For completeness, we also present the total decay rate in terms of our matrix elements
and p = m2/m?. The intrinsic charm contribution can be easily identified as the terms
proportional to 1/p.

2

1 2
—I'(B = X v) = ,ug(l —8p+8p3 — pt —12p? logp) — Lg(l —dp+6p* —4p® + p4>
T my

i

3Im 3
4

4y 254
+ g—i (16 —21p+9p% — Tp® + 3p* + 1210g p) il (25 36p + 20p° —9p* + 121og p)
my 9Imy,

84
(17—16p—12p +16p° — 5p° +12logp)—9—(2+9p ~ 20 +9p" + 6log p)

4

25 3 SqB 2 3 4

i 4((p— 1*(5p+1)) - 2 §<25—48p—|—36p — 169" + 3p* + 12log )
AXD P
= Tomd L ((p— 1) (720" +29p + 7))
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5 144
+ 905 (279,0 — 400p3 + 180p* — 4201og p + 85 — )
P

X3 26

~E3 5< 9p* + 3003 — 20p% — 20p — 2010gp+45—p)
my

7 4 3 2 72
+90 5(—63,0 + 200p° — 180p —6010g,0+115—)

my, p

| 4X,
18p* + 34p% — 9p% — 18p + 6log p + 11)

3
5 p® +6p% — 36p + 241og p + 26 + )
p
LA
9

4X§ 2 2

+m5 ((p 1) (1—p—2p))

(-

?

5

mb(

2 3
8 — — —_—

m§< 9p* +26p° — 24p*> +9p —6logp + 1 p)
o
m

3
27p* — 61> +30p* + 12logp + 7 — p)

X3 3 1
—10 9p* — 23p% + 24p% — 36p + 24log p + 23 + >+(’)<6>. (D.1)
m P my

E Centralised g2 moments

In this appendix, we present numerical values for the centralized ¢ moments. The full expres-
sions including a ¢2,; can be obtained from the Mathematica notebook in the Supplementary
material (see appendix C for more details). We employ the following values [1]:

q2 =0 GeV?, mp = 4.573 GeV me(2 GeV) = 1.092 GeV . (E.1)
We then find®

2 M ( )2 7"4 4
q = (022u —057—0—14 _ 557D +16 —5.7-4 17—
H3 b mj i3 my mb m, m,
sh X7 X3 X? X3
+0.097°E — 0.064°92 —24”0’)17—19 SLp18T2 — 158 1237
mb mb mb/‘S my mb my mb
X2 X3 X3 X3 X3 X5 X
F 652+ 0910 = T.0—L +8.0-5 45,25 — 442 +0.047 IC),
my mb my my mb mb mbmc
4 2 2\2 3 4 4 =4
g = b (0.022;@, - 0.12“—02 o e 60D D778 9176 _066°L
"3 my My, 143 b mb mb mb
4 X7 X3 X? X3
+020——0082LB—12“G”D —2073 41572 - 2270 43271
mb mb mbM3 my mb my mb
X? X2 X2 X2 X2 X7 X3
+42-2 = 0320 49—+ 762 + 1.8 — 232 +0.030 IC),
b mb my my mb my mym?

8This corrects for a typo in the coefficient of 833 in g3 in [12]. The other rounding differences arise due to
the higher precision used here for the quark masses.
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6 2 2\2 ~3 ~4 4 4
gs = (0-0012u3 001846 _024WG o 34PD 9 9"E 567G 195
us my my (43 my my my my
4 s 2 ~3 X5 X5 X5 X5
+0.093°8 —0.035-92 —585GPD _ 9L | 9372 _ 728 | 9574
X2 X3 X3 X3 X3 X3 X7
+2.0-2 —042=8 —28-L +51-2 +0.10— — 1.0=22 +0.016 3102> :
my myg my my my myg mymg
8 2 2\2 ~3 ~4 4 4
= b (0-0010u3 001216 0.10W6)" 997D 1 67E 3376 (115
us my my 43 my my my my
4 34 2 =3 XS X5 X5 XS
+0.04728 _0.018798 _ 962G D _ 78l 7672 725 49574
X? X3 X3 X3 X3 X3 X7
+1.222 —0.26=% — 251 +4.7-% —0.40—2 — 1.0—2 +0.015 3102> . (E2)
my my my my my my mymeg

We stress that even though XI5C has a small prefactor, it consists of a linear combination
of the X? HQE parameters, and thus the value of XIE’C itself may be much larger compared
to the individual X? and therefore the IC contribution to the ¢> moments may become
significant despite the small prefactor. This depends on the signs of the X?, but in the LLSA
we find that XI5C ~ 14.71 GeV®. Finally, one can write the expression for the ¢> moments
using only X7 ;, through the following replacement:

2
X, <4573> i( — 24X5 + 78X] — 12X] + 10X} — 20X{ + 5X§ +5X]y) - (E.3)
m2 1.092) m}

F LLSA expressions

Using the LLSA for the “perp”-basis matrix elements from [18], we can find LLSA expressions
for our RPI-basis matrix elements. These expressions are functions of €/, €3/, and the
“perp”-matrix elements [18]

QmBM# = —(by (iDu) (iDy) bv>9lj_y>
2mppg = (b, (iDa) (iDg) (~iow) bo)g1 """, (F.1)

where glfy = guv — v, v, and where we have dropped the usual power of 2 in the definitions of

(,ufr(G))L to simplify the expressions in this appendix. The LLSA expressions up to 1/ mg’
we find for the RPI operators and IC operator are given by

_ 1 1 1 €1/217 1 1 1 1y/ L 1 2
3 =1+ ng[“a —uw] + Q—mg,[ug —uﬁ] + %[(uc — Ko ) (B —ua+361/2)}
€1/2
ooz (uE = u)ur = s + 463 )]
b
L, G271 1 1 1 IRy 1
pE = pg + E[MG _/‘1’71':| + ng{(ﬂc — i ) (pize _NG+€%/2)]

€120, 1L Ay, L L 2
o3 [(uc — k) — n + 261/2)} :
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B 1
phH=- 3 [61/2(,“5 — ) — 63/2(#%: + 2##)}

1

+ Tome (26351 — 1) — B o + ) + (1E)? = 6piGpir + 2(ux)?]
1 1 1 1 1 2
+ W [ —e1o(pg — pr)(Apr — pg + 351/2)] )

1
P == 5|t — rr) — ol + 240y)

1
+ Tame [261/2(4(1E)? = Sudir + (15)?) — €32 (5(1E)* + Spigur — 4ur)?)]

2
== 5|0 + s — ux) — & + 207)]

2
* 3 (& = 1) (€121 — 1) = espois + 203))]

_ 1
§p=— 3 [26%/2(1% — i)+ ﬁg/g(ﬂé + 2;1#)}

1 1452 1 1 152
+ Tor [462(400)° = Bugir + (z)°)
+ ea/o(5(ud)? + S — uk)?) — 186} (s — k)|,

1

- 97,1% (& = 15)(2€1 22 + 1) — deg (s + 20) + 963 5)]
SqB =~ %ué(ué +10p7)
- 93% [(Mé‘ - M#)(gﬁi’p - 61/2(/~Lé' — 10p7) + 463/2(#5 + 2;1#))] ,
Xi= - %[Gi’/z(ué — 1iy) = o + 217)]
X5=0,
X3 = %s[ e1/2(8(1E)? = s + 2(7)?) + e/a(3(ud)? + 10ug ik + 8(1r)?)]
s 1

X3 = 5[ 20/2((u8) + Budr — 61r)) + eaya((16)” = 10uGpey — 24()?)]

1
X3 == 5|26 (0 — ) + (s + 207)]

4
X =~ Spferjalint — 1) — eajalunts + 2]

1
X8 = 5| 4e1/2((08)” = b +2055)*) + eaya(5(u) + 6upiy —8(r)?)]

1
X§ = = g1 |12 — o) = a2y + 2007) |
1
XP=-— 9 [61/2(6(Hé))2 — 2ugpy — Apg)?) — 63/2(3(Mé)2 +Apgiy — 4(##)2)} ;

10
Xio = 75 [Ae1o((ud)” = Tugmz +6(65)?) + a2 (17 (uE)” + 6Tpggp +66(u7)°)] -
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