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The presence of strong electromagnetic fields adds huge complexity to QED Feynman diagrams, such
that new methods are required to calculate higher-loop and higher-multiplicity scattering amplitudes. Here
we use the worldline formalism to present “master formulas” for all tree level amplitudes of two massive
particles and an arbitrary number of photons, in a plane wave background, in both scalar and spinor QED.
The plane wave is treated without approximation throughout, meaning in particular that our formulas are
valid in the strong-field regime of current theoretical and experimental interest. We check our results
against literature expressions obtainable at low multiplicity via direct Feynman diagram calculations.
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I. INTRODUCTION

Strong fields can generate nonlinear and nonperturbative
effects in particle interactions. Strong electromagnetic
fields may be generated terrestrially by several means,
including by ultraintense lasers [1,2]. QED processes in the
presence of these fields acquire an intensity dependence
characterized by a coupling which typically exceeds unity,
and which must therefore be treated without recourse to
perturbation theory. Several upcoming experiments aim to
observe nonlinear effects in the scattering of electrons [3–5]
and photons [6,7] on intense lasers.
The standard theory approach to “strong field QED” is

based on the Furry expansion, or background field pertur-
bation theory. The strong (e.g., laser) field is described as a
fixed background, the coupling of which to matter is treated
exactly. Interactions between particles scattering on this
background are then treated in perturbation theory as usual,
see [8] for a recent review. There are, however, several
topics in strong field QED which require the development
of new theoretical methods.
First, the majority of progress to date has been made for

the special, highly symmetric laser model of a plane wave

background, for which the Furry expansion can be practi-
cally realized. It is a long-standing challenge to account
analytically for realistic pulse geometry, and the new
phenomenology this brings [8]. Second, while plane wave
results can be extended to realistic fields via local approx-
imations (e.g., [9–11]), and so implemented in numerical
codes, those codes must still be benchmarked against
theory. This has been performed for first-order (i.e. low
multiplicity) processes, but benchmarking higher-order
processes is made challenging by, in part, a lack of analytic
results; the state of the art in the plane wave model is, at tree
level, only four-point scattering. Third, if we consider
higher-loop corrections, it has been conjectured [12–14]
that at very high background field strengths the loop
expansion must be resummed in order to provide reliable
physical predictions (at least in the low frequency, “con-
stant crossed field” limit). Doing so is a formidable
challenge [15–17].
To attack these problems one can use approximations

that do not rely on weak coupling [18], develop exactly
solvable models which capture some physics of interest
[19], or use alternative methods to simplify Furry-picture
quantities. One potential method is the worldline formal-
ism, which casts quantum field theory (QFT) in terms of
path integrals over relativistic point particle trajectories. Its
roots can be traced back to Feynman [20,21], though its use
as a serious alternative to the standard QFT formalism was
first advocated by Strassler [22], following [23,24]. One of
the main advantages of the worldline approach is that it
automatically sums over all Feynman diagrams which
contribute at fixed multiplicity and loop order, thus greatly
simplifying the combinatorics which comes with higher
numbers of scatterers and/or loops.
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Theworldline formalism was initially developed for one-
loop (and then higher loop) processes in vacuum and in
background fields, and a common output of the approach is
“master formulas”; these are all-multiplicity formulas for
correlation functions of a chosen set of fields, at fixed loop
order. Such master formulas, which would be extremely
challenging to reproduce using Feynman diagrams, have
been obtained for processes in vacuum [22,25,26], in
constant electromagnetic backgrounds [27–32], and in
plane wave backgrounds [33,34]. The worldline approach
has also been applied to the calculation of effective actions
in background fields via numerical implementations [35],
the Casimir effect [36], vacuum birefringence [37], tadpole
corrections [38–40], and nonlinear Breit-Wheeler pair
production [41]. A long-standing focus of the approach
has been the investigation of nonperturbative effects via
worldline instantons [42–48]. For reviews see [49,50].
Only recently has much attention been paid to worldline

master formulas for processes with external matter lines, or
processes at tree level [51–56]. Furthermore, while external
photon lines typically appear in the worldline formalism
already Lehmann-Symanzik-Zimmermann (LSZ) ampu-
tated, matter lines do not, and it has not yet been fully
established how one should perform the required LSZ
amputationwhich turns correlation functions into amplitudes.
We fill in some missing pieces of this puzzle in this

paper, which is organized as follows. In Sec. II we construct
worldline master formulas for all tree level (N þ 2)-point
correlation functions describing the emission of N photons
from a massive particle in a background plane wave, in both
scalar and spinor QED. In Sec. III we turn to the LSZ
amputation of the master formula, converting it into an all-
multiplicity formula for the corresponding N-photon emis-
sion/absorption amplitudes from a massive particle in a
plane wave background. Example calculations in which we
compare with known literature results at low multiplicity
are presented in Sec. IV. We conclude in Sec. V. The
Appendix contains additional checks on our results.
Conventions. We set ℏ ¼ c ¼ 1. We work throughout

in Minkowski space with light front coordinates, so that
ds2 ¼ dxþdx− − dx⊥dx⊥ where x⊥ ¼ ðx1; x2Þ are the
“transverse” directions. We introduce a null vector nμ
which projects onto the “light front time” direction, that
is n · x ¼ xþ. The covariant derivative is Dμ ¼ ∂μ þ ieAμ.

II. MASTER FORMULAS FOR (2 +N)-POINT TREE
LEVEL CORRELATORS IN PLANE WAVE

BACKGROUNDS

The goal of this section is to write down and evaluate the
worldline path integral master formulas for tree level
correlation functions ofN photons and two charged particles
in the presence of a plane wave background, valid for
arbitrary N. We will do this in both scalar and spinor QED.
Our plane wave background may be described by the

potential eAμðxÞ ¼ aμðxþÞ ¼ δ⊥μ a⊥ðxþÞ, a transverse func-
tion of light front time xþ. We may always choose
a⊥ð−∞Þ ¼ 0, but then a⊥ð∞Þ≕ a∞⊥ is in general nonzero
(and carries an electromagnetic memory effect [57–59]).
The corresponding field strength is fμνðxþÞ ¼ nμa0νðxþÞ −
nνa0μðxþÞ, where a prime denotes an xþ derivative.

A. Scalar QED

In the master formulas we derive in this section, the N
external photons will be LSZ-amputated, but the matter
lines not, and thus our correlation functions carry spacetime
indices x and x0, as well as a dependence on the N-photon
momenta fkig and polarizations fεig. We hide the latter
dependencies, denoting the partially reduced correlators, or
dressed propagators as they are called in the worldline
literature, by Dx0x

N ; see Fig. 1. We take all photons to be
outgoing; other configurations are trivially obtained by
sending k → −k.
The worldline representation of such correlation func-

tions is given in terms of a path integral over relativistic
point particle trajectories, denoted xμðτÞ with τ the proper
time of the trajectory. The trajectories obey Dirichlet
boundary conditions xμðTÞ ¼ x0μ, xμð0Þ ¼ xμ, correspond-
ing to the spacetime dependence of the dressed propagator.
The trajectories have length T, which is ultimately also
integrated out, respecting reparametrization invariance of
the path integral [60,61]. To write down this path integral,
we start from the worldline action that minimally couples a
relativistic point particle to an arbitrary gauge field Aμ,
namely

SWL½xðτÞ; A� ¼ −
Z

T

0

dτ

�
ẋ2

4
þ eAðxðτÞÞ · ẋðτÞ

�
; ð1Þ

FIG. 1. We consider tree level scattering amplitudes of two massive charges andN photons, as illustrated on the right (for scalar QED).
The double line represents the presence of a plane wave background, the coupling to which is treated exactly. Amplitudes are obtained
by LSZ reduction of the corresponding correlation functions. In the worldline approach, a natural starting pointing is the partially
amputated correlator, or “dressed propagator,” in which the photons are already reduced out, but the matter fields are not. This is
illustrated on the left. Thus LSZ reduction is still required for the external matter lines.
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where overdots denote proper-time derivatives, and where
the unusual normalization of the kinetic term has become
standard in the worldline literature, so we preserve it here.
SWL enters the path integral for the scalar field propagator,
call it Dx0x, via

Dx0x ¼
Z

∞

0

dT e−im
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞ eiSWL½xðτÞ;A�: ð2Þ

Note that Aμ is not integrated over, rather it appears as a
given field—it is well known (see, for example [62]) that
correlation functions with N external photons in vacuum
can be extracted from (2) by fixing Aμ to be a sum over
asymptotic photon wave functions with momenta ki and
polarizations εi:

AμðxÞ → Aγ
μðxÞ ¼

XN
i¼1

εμieiki·x; ð3Þ

and then expanding the dressed propagator (2) to multi-
linear order in the polarization vectors. The additional
complication here is the presence of the background gauge
potential in (6). This is, however, easily included; we
simply split the gauge field into a semiclassical part
representing the plane wave background and a “quantized”
part representing scattering photons:

eAμðxÞ → aμðxÞ þ eAγ
μðxÞ: ð4Þ

Inserting this into (2) and expanding to multilinear order,
the path integral to be performed is

Dx0x
N ¼ ð−ieÞN

Z
∞

0

dT e−im
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞ eiSB½xðτÞ;a�

×
YN
i¼1

Vx0x½εi; ki�; ð5Þ

in which the weight is now given by the reduced action

SB½xðτÞ; a� ¼ −
Z

T

0

dτ

�
ẋ2

4
þ aðxðτÞÞ · ẋðτÞ

�
; ð6Þ

while the N external photons appear (following the
expansion to multilinear order) through the vertex functions

Vx0x½ε; k� ≔
Z

T

0

dτ ε · ẋðτÞ eik·xðτÞ: ð7Þ

[We leave implicit a causal and IR convergence factor
expð−ϵTÞ under the dT integral in (5).]
Our task is to evaluate the integrals in (5). Let us first

consider the xμ integrals, and in particular the Dirichlet
boundary conditions (BCs). To deal with these we follow
the standard procedure used for the evaluation of such

integrals in vacuum, and expand xμðτÞ into a straight line
trajectory and a fluctuation qðτÞ according to

xμðτÞ ¼ xμ þ zμ
τ

T
þ qμðτÞ; zμ ≔ x0μ − xμ: ð8Þ

The fluctuation must satisfy the homogeneous Dirichlet BCs
qð0Þ ¼ qðTÞ ¼ 0 [with measure DxðτÞ → DqðτÞ]. For the
analog problem in vacuum ðaðxþÞ → 0Þ the path integral is
Gaussian in qμ and can thus be computed analytically.1 Here,
however, the fluctuation appears inside the background field
aðxþðτÞÞ ¼ aðxþ þ zþτ=T þ qþÞ, and this has an arbitrary
functional form. At first glance this seems to destroy the
Gaussianity of the path integral, and prohibit its evaluation.
However, it has been shown for one-loop photon-scattering
processes (meaning no external matter lines, and a path
integral with periodic rather than Dirichlet BCs) that the
properties of the plane wave background mean the integral
is still effectively Gaussian [33,37]. It is thus crucial to
demonstrate that the hidden Gaussianity of the path integral
is also present here.
To do so we follow the approach of [34], introducing a

Lagrange multiplier χðτÞ and auxiliary field ξðτÞ into the
path integral through the equality

e−i
R

dτ aðxþðτÞÞ·q̇ ¼ e−i
R

dτ aðxþþzþ τ
TþqþÞ·q̇

¼
Z

DξDχei
R

dτ½χðξ−qþÞ−aðxþþzþ τ
TþξÞ·q̇�: ð9Þ

These auxiliary integrals render that over qðτÞ to be
Gaussian. The crucial point, as we show below, is that
after evaluating the q integral, the remaining integrals
over ξ and χ can still be evaluated, for a plane wave
background.
We now compute the fluctuation integral. As is usual in

this “string-inspired” approach, it is convenient to manipu-
late the vertex operators as follows. We exponentiate the
polarization-dependent factor, so that it appears linearly in
an exponent in the operator, with the understanding that the
result should later be expanded to linear order in (each of)
the εi, so we write

Vx0x½ε; k� →
Z

T

0

dτ eik·xþε·ẋ

����
lin:ε

: ð10Þ

The result of this is that all dependence on the particle
trajectory xðτÞ, or rather the fluctuation qðτÞ to be inte-
grated out, now appears linearly under the path integral.
The integrals to be evaluated are now

1This is also the case for a constant background in Fock-
Schwinger gauge [54].
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Dx0x
N ¼ ð−ieÞN

Z
∞

0

dT e−im
2T−iz2

4T

×
YN
i¼1

Z
T

0

dτi e
P

N
j¼1

ikj·ðxþz
τj
T Þþεj·

z
T

Z
DξDχ

×
Z

qðTÞ¼0

qð0Þ¼0

DqðτÞ ei
R

dτ½−q̇2

4
−J ·q�

����
lin:ε1…εN

;

in which J μðτÞ is an effective (operator valued) source

J μðτÞ ≔ aμðxþ þ zþτ=T þ ξÞ d
dτ

þ χðτÞnμ

þ i
XN
i¼1

�
ikμi − εμi

d
dτ

�
δðτ − τiÞ: ð11Þ

Since the fluctuation integral is now Gaussian, it is easily
computed in terms of the worldline Green function
Δðτi; τjÞ, that is the inverse of 2d2=dτ2 with Dirichlet
BCs, which is found to be

Δij ≔ Δðτi; τjÞ ¼
1

2
jτi − τjj −

1

2
ðτi þ τjÞ þ

τiτj
T

: ð12Þ

It is easily checked that Dirichlet BCs hold: Δð0; τiÞ ¼
ΔðT; τiÞ ¼ Δðτj; 0Þ ¼ Δðτj; TÞ ¼ 0. With this, the fluc-
tuation integral becomes

Z
qðTÞ¼0

qð0Þ¼0

DqðτÞ ei
R

T

0
dτ½−q̇2

4
−J ·q� ¼ −ið4πTÞ−2

× exp

�
−i

Z
T

0

dτidτjJ μðτiÞΔijJ μðτjÞ
�
: ð13Þ

This defines the fundamental contraction for the fluctuation
variable,

hqμðτÞqνðτ0Þi ¼ 2iημνΔðτ; τ0Þ; ð14Þ

and the free path integral normalization is recovered by
setting J ¼ 0. To proceed, we wish to write out the
exponent in (13) explicitly. Note, though, that Δij is not
proper time-translation invariant due to the boundary
conditions [51], hence left and right proper-time derivatives
must be distinguished. We denote these as follows:

•Δij ≔
d
dτi

Δij; Δ•
ij ≔

d
dτj

Δij;

••Δij ≔
d2

dτ2i
Δij; etc: ð15Þ

With this, we write out the exponent of (13), using that the
background is transverse and on-shell (n · a ¼ 0 andn2 ¼ 0)
to simplify. We find, writing ai ≡ aðxþ þ zþτi=τ þ ξðτiÞÞ,

Z
J · Δ · J ¼

Z
dτidτjai · aj•Δ•

ij þ 2i
XN
j¼1

Z
dτið•Δ•

ijai · εj þ i•Δijai · kjÞ

þ 2i
XN
j¼1

Z
dτiχi½Δ•

ijε
þ
j þ iΔijk

þ
j � −

XN
i;j¼1

½•Δ•
ijεi · εj þ 2i•Δijεi · kj − Δijki · kj�: ð16Þ

The trivial dependence on χ means that this field can now be integrated out, yielding a δ-functional:Z
DξDχei

R
dτχ½ξ−2i

P
N
j¼1

ðΔ•
ττj

εþj þiΔττj
kþj Þ� ¼

Z
Dξδ

�
ξðτÞ − 2

XN
j¼1

ðiΔ•
ττjε

þ
j − Δττjk

þ
j Þ
�
: ð17Þ

This δ-functional has the effect of shifting the argument of the background field, such that from here on we have

aμi ≡ aμðτiÞ≡ aμ
�
xþ þ zþ

τi
T
þ 2

XN
j¼1

½−Δijk
þ
j þ iΔ•

ijε
þ
j �
�
: ð18Þ

The dynamical fluctuation is thus replaced by a coupling of
the plane wave to the N scattering photons [33,37]. This
is particular to plane wave backgrounds because (a) for
n2 ≠ 0 Eq. (16) picks up a contribution quadratic in χ,
while (b) for n · a ≠ 0 there is an additional term linear in χ
that depends on the background; instead of (18) one would
have obtained via (17) only an implicit equation for aμ.
All remaining background-dependent terms in (17)

may be expressed in terms of just two worldline

structures, namely the worldline average and the periodic
integral

⟪f⟫≔ T−1
Z

T

0

dτfðτÞ; IμðτÞ≔
Z

τ

0

dτ0½aμðτ0Þ−⟪aμ⟫�;

ð19Þ
respectively. These would have to be computed for a given
background once the functional form of aμ has been fixed.
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At this stage the path integral has (at least formally) been
computed. Gathering everything together we obtain our
master formulas for the N-photon dressed propagator

Dx0x
N ¼ ið−eÞN

Z
∞

0

dTð4iπTÞ−2e−iz24T
YN
i¼1

Z
T

0

dτi

×e−iM
2ðaÞTP̄x0xðε1;…εNÞ

×e−iz·⟪a⟫þi
P

N
j¼1

ðxþz
Tτj−2IðτjÞÞ·kj−i

P
N
i;j¼1

Δijki·kj

����
lin:ε1…εN

;

ð20Þ

in which M2ðaÞ ≔ m2 − ⟪a2⟫þ ⟪a⟫2 is analogous to the
Kibble “mass” [63] which typically appears in pulsed plane
waves [64], while P̄x0x is defined by

P̄x0xðε1;…εNÞ
≔ iNe

P
N
i¼1

εi·
z
Tþ2

P
N
i¼1

ð⟪a⟫−aiÞ·εiþi
P

N
i;j¼1

½2i•Δijεi·kjþεi·εk•Δ•
ij�:

ð21Þ

We emphasize that this master formula holds for any
multiplicity N ≥ 0; it would be extremely challenging to
obtain this starting from the Feynman rules. Evaluating in
specific cases we can check against the literature; forN ¼ 0,
for example, we recover a one-parameter (proper-time)
representation of the scalar Volkov propagator:

Dx0x
0 ¼ ie−iz·⟪a⟫

Z
∞

0

dTð4iπTÞ−2e−iM2ðaÞTe−i
z2
4T: ð22Þ

Observe that in this case aμðτÞ≡ aμðxþ þ zþ τ
TÞ so that,

changing variables to u ¼ τ
T, the worldline average becomes

T-independent and can be taken outside theT integral. Itmay
be written as a spacetime average (see [37]),

⟪aμ⟫ ¼
Z

1

0

du aμðxþ þ zþuÞ

¼ 1

x0þ − xþ

Z
x0þ

xþ
dy aμðyÞ≡ haμi; ð23Þ

and as such M2ðaÞ ¼ m2 − ha2i þ hai2 now corresponds
exactly to the Kibble mass.
Equation (22) is equivalent to the standard momentum-

integral representation of the Volkov propagator, and offers
a concise version of the position-space propagator in
[65,66]. For N ¼ 1 we recover the (two-scalar one-photon)
three-point function, and so on. Since the correlators
themselves are not of immediate interest, we will present
these checks later, implicitly, as part of our checks on the
corresponding formula for scattering amplitudes.
The actual computation of the dressed propagator (and,

later, the amplitudes) is greatly simplified by observing that
we can choose the gauge n · ε ¼ εþ ¼ 0. This removes the
polarization vectors from the argument of aμ, and thus
extraction of the multilinear piece of (24) reduces to the
expansion of P̄ðε1;…εNÞ alone. We adopt this gauge from
here on in order to present the simplest possible expressions
and also match to the strong-field QED literature, where
this gauge is common. Doing so, then, we can write the
master formula in this gauge as

Dx0x
N ¼ ið−eÞN

Z
∞

0

dTð4iπTÞ−2e−iz24T
YN
i¼1

Z
T

0

dτie−iM
2ðaÞTP̄x0x

N e−iz·⟪a⟫þi
P

N
i¼1

ðxþz
Tτi−2IðτiÞÞ·ki−i

P
N
i;j¼1

Δijki·kj ; ð24Þ

where the polynomial P̄x0x
N is defined by the expansion of the polarization-dependent terms to multilinear order:

P̄x0x
N ≔ iNe

P
N
i¼1

εi·
z
Tþ2

P
N
i¼1

ð⟪a⟫−aiÞ·εiþi
P

N
i;j¼1

½2i•Δijεi·kjþ•Δ•
ijεi·εj�

���
lin:ε1…εN

: ð25Þ

These polynomials generalize those defined for closed worldlines in vacuum (PN) in [49], for open lines in vacuum (P̄N) in
[31], and for the closed loop in a background field (PN) in [33] (in position space for the time being). For convenience let us
write out the first few terms:

P̄x0x
0 ¼ 1; ð26Þ

P̄x0x
1 ¼ i

�
z
T
þ 2ð⟪a⟫ − a1Þ − 2•Δ11k1

�
· ε1; ð27Þ

P̄x0x
2 ¼ −

�
z
T
þ 2ð⟪a⟫ − a1Þ − 2•Δ11k1 − 2•Δ12k2

�
· ε1

×

�
z
T
þ 2ð⟪a⟫ − a2Þ − 2•Δ21k1 − 2•Δ22k2

�
· ε2 − 2i•Δ12

•ε1 · ε2: ð28Þ
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B. Spinor QED

We now turn to the computation of the analogous N-photon dressed propagators in spinor QED, denoting these by Sx0x
N .

Due to the spin degrees of freedom this is a Dirac matrix-valued function, but we suppress the corresponding indices for
brevity. Referring the reader to [51,67] for details, we begin by writing down the analog of the “propagator” (2) in an
arbitrary background, but now accounting for the spin of the fermion:

Sx0x ¼ ð−i=Dx0 −mÞKx0xðaÞ; ð29Þ

Kx0xðaÞ ¼
Z

∞

0

dTe−im
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞeiSWL½xðτÞ;A�2−D

2 symb−1
I
A=P

DψðτÞeiS̃WL½ψðτÞ;xðτÞ;A�; ð30Þ

S̃WL½ψðτÞ; xðτÞ; A� ¼
Z

T

0

dτ
�
i
2
ψ · ψ̇ þ ieðψðτÞ þ ηÞ · FðxðτÞÞ · ðψðτÞ þ ηÞ

�
: ð31Þ

The kernel Kx0x contains an integral over relativistic particle trajectories, as for the scalar case, and also a path integral over
Grassmann-valued fields ψðτÞ, obeying antiperiodic (A/P) BCs ψð0Þ ¼ −ψðTÞ. These represent the spin degrees of
freedom of the fermion and are minimally coupled to A through its field strength FðxðτÞÞ appearing in the action S̃WL.
An additional Grassmann variable η also appears; the Dirac-matrix structure of the propagator is produced by acting on this
variable by the (inverse of the) symbolic map, defined by

symbfγ½μ1γμ2…γμn�g ¼ ð−i
ffiffiffi
2

p
Þnημ1ημ2…ημn : ð32Þ

This map converts between antisymmetric combinations of Dirac matrices (a combinatorial factor of 1=n! factor is
assumed) and products of Grassmann variables η. Use of the symbol map avoids lengthy Dirac-matrix algebra as it
automatically produces the kernel in the (even subalgebra of the) Clifford basis of the Dirac algebra. Note that all
η-dependence in (30) and (31) or any of our expressions vanishes after evaluation of the inverse map; it is therefore
pragmatic to state once and for all the results relevant to us in (3þ 1) dimensions as

symb−1f1g ¼ I4; symb−1fημηνg ¼ −
1

2
γ½μγν� ¼ −

1

4
½γμ; γν�;

symb−1fημηνηαηβg ¼ 1

4!
½fγ½μγν�; γ½αγβ�g − fγ½μγα�; γ½νγβ�g þ fγ½μγβ�; γ½νγα�g� ¼ iγ5ϵμναβ: ð33Þ

Now, taking A as in (3) to introduce both our background plane wave and the N external photons, we expand (29) to
multilinear order in the photon polarizations to obtain the N-photon dressed propagator

Sx0x
N ¼ ð−i∂x0 þ aðx0þÞ −mÞKx0x

N ðaÞ þ e=Aγðx0ÞKx0x
N−1ðaÞ;

Kx0x
N ðaÞ ¼ ð−ieÞN

Z
∞

0

dTe−im
2T

Z
xðTÞ¼x0

xð0Þ¼x
DxðτÞeiSB½xðτÞ;a�2−D

2 symb−1
I
A=P

DψðτÞeiS̃B½ψðτÞ;xðτÞ;a�
YN
i¼1

Vx0x
η ½εi; ki�; ð34Þ

where S̃B½ψðτÞ; xðτÞ; a� is given by replacing eFðxðτÞÞ in
S̃WL½ψðτÞ; xðτÞ; A� with fðxðτÞÞ. In the “N-photon kernel”
Kx0x

N ðaÞ, the proper time and bosonic integrals are the same
as in the scalar case—these represent the orbital degrees of
freedom which remain unchanged. In the so-called sub-
leading term involving Kx0x

N−1, for each term in the sum in
=Aγðx0Þ we remove the corresponding photon from the
kernel to maintain the projection onto the multilinear
sector. Finally, writing f̃iμν ¼ kiμεiν − kiνεiμ for the linear-
ized field strength associated with the ith photon, the vertex
operator is now given by

Vx0x
η ½εi; ki�≔

Z
T

0

dτ½εi · ẋðτiÞ

þ ðψðτiÞ þ ηÞ · f̃i · ðψðτiÞ þ ηÞ�eiki·xðτiÞ; ð35Þ

in which the second term represents the spin coupling of the
external photons to the particle trajectories.
Despite the obvious added complexity from the spin

coupling to the photon fields, we stress that the same
hidden Gaussianity is present here as in the scalar case.
Consider again the path integral over xμ; we treat it as we
did above, introducing auxiliary fields to yield a Gaussian
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path integral in the fluctuation qμ. While there is now an
additional dependence on the background fμν introduced
by the spin factor, this behaves in the same way as above
when integrating out the auxiliary fields, i.e. f in the spin
factor is ultimately evaluated at a shifted argument,

fμνi ≡ fμνðτiÞ≡ fμν
�
xþ þ zþ

τi
T
− 2

XN
j¼1

Δijk
þ
j

�
; ð36Þ

just for aμ earlier (recall we have gauged εþi ¼ 0 for
convenience). In short, and as is natural, the only real
difference compared to the scalar case lies in the evaluation
of the Grassmann path integral, which is the focus of the
remainder of this section.
Observe that the vertex operators (35) introduce factors

of ψηðτÞ≡ ðψðτÞ þ ηÞ under the Grassmann integral. This
motivates us to introduce the following functions,

Wηðf̃i1 ;…; f̃iSÞ ≔ hψηðτi1Þ · f̃i1 · ψηðτi1Þ…ψηðτiSÞ
· f̃iS · ψηðτiSÞi ð37Þ

¼ 2−
D
2

I
A=P

DψðτÞψηðτi1Þ · f̃i1 · ψηðτi1Þ…ψηðτiSÞ

· f̃iS · ψηðτiSÞei
R

T

0
dτ½i

2
ψ ·ψ̇þiψηðτÞ·fðτÞ·ψηðτÞ�; ð38Þ

which generalize the expectation values of the spin part of
the vertex operator introduced in vacuum [Wðf̃i1 ;…; f̃iSÞ
on the loop in [49] and Wηðf̃i1 ;…; f̃iSÞ for open lines in
[51] ] and for one-loop amplitudes in the plane wave
background [Wðf̃i1 ;…; f̃iSÞ in [33] ]. We generate the
insertions under the path integral by derivatives with
respect to a fictitious Grassmann source θ (anticommuting
with ψ and η), from which follows

Wηðf̃i1 ;…; f̃iSÞ¼
δ

δθi1
· f̃i1 ·

δ

δθi1
�� � δ

δθiS
· f̃iS ·

δ

δθiS
2−

D
2

×
I
A=P

DψðτÞei
R

T

0
dτ½i

2
ψ ·ψ̇þiψη·f·ψηþiθ·ψη�

����
θ¼0

;

ð39Þ
and the corresponding spin factor is produced through

Spinðf̃i1 ;…; f̃iSÞ ≔ symb−1Wηðf̃i1 ;…; f̃iSÞ: ð40Þ

To compute the integral in (39) we require the (spinor)
worldline propagator in the field,Gμνðτ; τ0Þ. This will define
the fundamental contraction between the Grassmann fields,

hψμðτÞψνðτ0Þi ¼ 1

2
Gμνðτ; τ0Þ: ð41Þ

From the quadratic part of the operator appearing in the path
integral action, G must obey

�
1

2
ημσ

d
dτ

þ fμσðτÞ
�
Gσνðτ; τ0Þ ¼ ημ

νδðτ − τ0Þ; ð42Þ

as well as antiperiodic boundary conditions Gð0; τ0Þ ¼
−GðT; τ0Þ and Gðτ; 0Þ ¼ −Gðτ; TÞ. Observe that G has
the antisymmetric property Gμνðτ; τ0Þ ¼ −Gνμðτ0; τÞ. The
general homogeneous solution of (42) for arbitrary fðτÞ
is written conveniently in terms of an auxiliary func-
tion Oðτ; τ0Þ, which takes care of the ordering of τ and τ0,
defined by

Oðτ; τ0Þ ¼ P⋆e−2
R

τ

τ0 dσfðσÞ; ð43Þ

where Θ is the Heaviside step function, P⋆ ≡ P⋆ðτ; τ0Þ ¼
Θðτ − τ0ÞP þ Θðτ0 − τÞP̄ with P (P̄) denoting (anti)path
ordering in proper time and we have made use of a matrix
form for the Lorentz indices (with respect to which O is
orthogonal). With the homogeneous solution, we can then
find the general solution to (42)with appropriate antiperiodic
boundary conditions as

Gðτ; τ0Þ ¼ sgnðτ − τ0ÞOðτ; τ0Þ

þOðτ; 0Þ 1 −OðT; 0Þ
1þOðT; 0ÞOð0; τ0Þ: ð44Þ

However, there are notable simplifications in our particular
case thatf is a planewave because, as iswell known, the field
strength is then nilpotent of order 3. Further, f evaluated at
different τ commute. The Green function thus reduces to2

Gðτ; τ0Þ ¼ e−2
R

τ

τ0 dσfðσÞ
�
sgnðτ − τ0Þ þ tanh

�Z
T

0

dσfðσÞ
��
ð45Þ

¼ sgnðτ − τ0Þ
�
1 − 2

Z
τ

τ0
dσfðσÞ þ 2

�Z
τ

τ0
dσfðσÞ

�
2
�

þ T⟪f⟫

�
1 − 2

Z
τ

τ0
dσfðσÞ

�
: ð46Þ

Equipped with the Green function, we compute the integral
in (39) by completing the square, using the shift ψ̃ðτÞ ¼
ψðτÞ þ R

dτ0Gðτ; τ0Þ · ðfðτ0Þ · ηþ 1
2
θðτ0ÞÞ The integral over

ψ̃ then generates the determinant Detð1
2
d
dτ þ fÞ (for antiperi-

odic boundary conditions) which because of the nilpotency
of f simply gives a factor of 2

D
2 , being the number of degrees

of freedom of the fermion inD (even) spacetime dimensions
(this should be contrasted with the constant field case, where
the normalization picks up a nontrivial field depend-
ence [27,29]).

2This is an alternative way of writing the Green function given
in Eq. (45) of [33], with the advantage of being manifestly gauge
invariant. There Gμν was written in terms of periodic integrals of
the derivative of aðτÞ which made its antiperiodicity easier to see.
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Gathering all of the above together, the Grassmann integral as defined in (39) becomes

Wηðf̃i1 ;…; f̃iSÞ ¼
δ

δθi1
· f̃i1 ·

δ

δθi1
� � � δ

δθiS
· f̃iS ·

δ

δθiS
e−

R
T

0
dτ½η·fðτÞ·ηþθðτÞ·η�−

R
T

0
dτdτ0½η·fðτÞ·Gðτ;τ0Þ·θðτ0Þþ1

4
θðτÞ·Gðτ;τ0Þ·θðτ0Þ�

����
θ¼0

: ð47Þ

The Grassmann path integral is therefore formally computed. In particular,

Wηð0Þ ¼ e−
R

T

0
dτη·fðτÞ·η; ð48Þ

Wηðf̃i1Þ ¼
�
−
1

2
tr½f̃ðτi1Þ ·Gðτi1 ; τi1Þ� þ η ·GT ðτi1Þ · f̃ðτi1Þ ·Gðτi1Þ · η

	
e−

R
T

0
dτ η·fðτÞ·η; ð49Þ

Wηðf̃i1 ; f̃i2Þ ¼
��

−
1

2
tr½f̃ðτi2Þ ·Gðτi2 ; τi2Þ� þ η ·GT ðτi2Þ · f̃ðτi2Þ ·Gðτi2Þ · η

�
× ½τi2 → τi1 �

−
1

2
tr½f̃ðτi1Þ ·Gðτi1 ; τi2Þ · f̃ðτi2Þ ·Gðτi2 ; τi1Þ�

þ 2η ·GT ðτi2Þ · f̃ðτi2Þ ·Gðτi2 ; τi1Þ · f̃ðτi1Þ ·Gðτi1Þ · η
	
e−

R
T

0
dτη·fðτÞ·η; ð50Þ

where GμνðτiÞ ≔ ημν −
R
T
0 dτ½Gðτi; τÞ · fðτÞ�μν and T denotes the transpose in Lorentz indices—in particular we

have GT
μνðτiÞ ¼ ημν −

R
T
0 dτ½fðτÞ ·Gðτ; τiÞ�μν.

Putting all of this together, the N-photon dressed propagator can be written in a “spin-orbit decomposition” by summing
over assignation of the N external photons to either the spin or bosonic part of the vertex [33], as follows:

Sx0x
N ¼ ð−i∂x0 þ aðx0þÞ −mÞKx0x

N ðaÞ þ e=Aγðx0ÞKx0x
N−1ðaÞ; ð51Þ

Kx0x
N ðaÞ ¼

XN
S¼0

X
fi1∶ iSg

Kfi1∶iSgx0x
NS ðaÞ; ð52Þ

Kfi1∶iSgx0x
NS ðaÞ ¼ ið−eÞN

Z
∞

0

dTð4πiTÞ−2e−iM2ðaÞT−iz2
4T−iz·⟪a⟫

×
YN
i¼1

Z
T

0

dτiSpinðf̃i1 ;…; f̃iSÞP̄fi1∶iSgx0x
NS ei

P
N
i¼1

½xþz
Tτi−2IðτiÞ�·ki−i

P
N
i;j¼1

Δijki·kj : ð53Þ

The sum on the second line runs over the allocation of S, out of the N, photons to the spin part of the vertex operator, Vx0x
η ,

which subsequently appear in Spinðf̃i1 ;…; f̃iSÞ. Then the remaining N − S photons appear in the polynomial P̄fi1∶ iSgx0x
NS ,

defined by

P̄fi1∶iSgx0x
NS ≔ iN−Se

P
N
i¼1

εi·
z
Tþ2

P
N
i¼1

½ð⟪a⟫−aiÞ·εi�þi
P

N
i;j¼1

½εi·εk•Δ•
ijþ2i•Δijεi·kj�

���εi1…εiS¼0

εiSþ1
…εiN

; ð54Þ

where the notation on the far right means that the
polarization vectors εi1 to εiS should be put to zero before
the remaining expression is expanded to multilinear order
in the εiSþ1

to εiN . These polynomials generalize those

introduced in vacuum (P̄fi1;iSg
NS ) in [51] and satisfy

P̄fgx0x
N0 ¼ P̄x0x

N ; P̄f1∶Ngx0x
NN ¼ 1: ð55Þ

Again, these are position-space expressions, but below we
shall transform to momentum space for the purpose of

evaluating scattering amplitudes. Although this master
formula appears lengthy, it is important to emphasize that
it represents a formal evaluation of the path integral for an
arbitrary number of photons inserted along the background-
dressed propagator, conveniently split into contributions
from the vertex function representing orbital interactions

(in P̄fi1∶ iSgx0x
NS ) and spin interactions [in Spinðf̃i1 ;…; f̃iSÞ].

All of these insertions are integrated along the particle
trajectories, so that the master formula represents a sum
over all Feynman diagrams contributing to the dressed
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propagator that differ by permutation of the external
photons. Obtaining such a formula from the standard
formalism (Furry picture, say) of strong-field QED would
be a significantly more complicated task.
For completeness, we note that the N ¼ 0 case provides

a worldline representation of the well-known Volkov
propagator as a one-parameter integral

Sx0x ¼ ið−ið∂x0 þ iaðx0þÞÞ −mÞe−iz·hai

×
Z

∞

0

dTð4πiTÞ−2e−iM2ðaÞT−iz2
4Tþ T

zþ½naðx0þÞþaðxþÞn �;

ð56Þ

where we used Spinð0Þ ¼ 1þ T
2
γ · hfi · γ ¼ 1þ Tnha0i,

computed the integral in the average explicitly, and
reexponentiated using n2 ¼ 0. This is again equivalent to
other representations of the Volkov propagator [8,65,66].

III. LSZ FOR SCATTERING AMPLITUDES

The objective of this section is to take the master
formulas for the dressed propagators Dx0x

N and Sx
0x
N above

and produce from them equivalent master formulas for
(2-scalar) N-photon scattering amplitudes (for N ≥ 1). To
do so we must perform LSZ reduction on the two massive,
external legs of the dressed propagators.
In previous worldline literature, amputation was often

done “by hand,” by obtaining the N-point correlation
functions in momentum space and then—once the
proper-time integral had been computed—removing exter-
nal legs with the appropriate inverse matter propagators
[51,52]. Only then could the external particles be taken on-
shell—the proper-time integral produces the pole structure
of the correlation functions with respect to external matter
legs and so is divergent in the on-shell limit. This is a
notable example where the Feynman diagram prescription
to omit external propagators had appeared less trivial from
a worldline perspective. Recently, however, [68,69] showed
how amputation can be achieved under the proper-time
integral for scalar matter legs, with the inverse propagators
simply modifying the bounds on the proper-time and
parameter integrals. This exposes the on-shell residue of
the correlation functions without the need to carry out
amputation by hand. We will here generalize this approach
to spinor theories, and also show it is unspoiled by the plane
wave background.
To perform LSZ we draw the external legs out to

asymptotic times and Fourier transform. Alternatively,
we can Fourier transform to momentum space and find
the residues of the dressed propagator as the momenta are
taken onto the mass-shell. Starting with scalar QED, the
amplitude takes the form

Ap0p
N ¼ − lim

p02;p2→m2

Z
d4x0d4xeiðp0þa∞Þ·x0−ip·x½ð∂x0

þ ia∞Þ2 þm2�½∂2x þm2�Dx0x
N ð57Þ

¼ lim
p02;p2→m2

− ðp02 −m2Þðp2 −m2ÞDp̃0p
N ; ð58Þ

where in the second line we defined p̃0 ¼ pþ a∞

and introduced the momentum-space propagator Dp0p
N ,

defined by

Dp0p
N ≔

Z
d4x0d4xeip0·x0−ip·xDx0x

N : ð59Þ

The expression (57) is (almost) textbook-standard LSZ in
position space but to compensate for the fact that our
potential becomes pure gauge in the far future, the on-shell,
outgoing momentum p0 in the Fourier kernel is shifted to
p̃0 ¼ p0 þ a∞ [57,63]. The expression (58) makes it clear
that the amplitude Ap0p

N is the residue of Dp̃0p
N at on-shell

momenta. In our conventions Ap0p
N describes N-photon

emission from a particle traversing the plane wave.
Absorption and pair-production/annihilation amplitudes
are of course obtained by crossing.
Similarly for the spinor case, starting from the master

formula for the dressed propagator (51), we can extract the
spin-polarized amplitude Mp0p

Ns0s as

Mp0p
Ns0s ¼ i lim

p02;p2→m2

Z
d4x0d4xeip̃0·x0−ip·xūs0 ðp0Þ

× ði∂x0 − a∞ −mÞSx0x
N ð−i⃖∂x −mÞusðpÞ; ð60Þ

in which ūs0 ðp0Þ and usðpÞ are free Dirac spinors. We now
proceed to perform the LSZ reduction explicitly, starting
with scalar QED.

A. Scalar QED

We begin by evaluating the momentum-space propagator
via direct Fourier transform of the master formula (24):

Dp̃0p
N ¼

Z
d4x0d4xeip̃0·x0−ip·xDx0x

N : ð61Þ

The integrals over x0⊥;− and x⊥;− generate,3 as in the vacuum
case, four δ-functions, explicitly δ3⊥;−ðp̃0 þ K − pÞ×
δðxþ − x0þ þ 2gþ þ 2p0þTÞ, where we write K ¼P

N
i¼1 ki to compactify notation. The first three δ-functions

describe the (expected) conservation of light front three-
momentum in the plane wave background. The final

3To evaluate similar integrals in the existing literature it was
found to be convenient to change variables to end-point center of
mass and relative separation (z). However, for our later LSZ
amputation of the external legs it is more useful to integrate
separately with respect to the end-point coordinates.
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δ-function allowsus to trivially perform, e.g., thex0þ integral,
so that we can replace x0þ → xþ þ 2gþ þ 2p0þT in what
remains; in particular, the classical trajectory on which the
gauge field depends throughout Dx0x

N , as in (18), is modified
to, where g≡ gðfτigÞ ≔

P
N
i¼1ðkiτi − iεiÞ,

xþclðτÞ ¼ xþ þ gþ þ ðp0 þ pÞþτ −
XN
i¼1

kþi jτ − τij: ð62Þ

Thus we can do all but one of the Fourier integrals, which
eventually yield

Dp̃0p
N ¼ ð−ieÞNð2πÞ3δ3⊥;−ðp̃0 þ K − pÞ

Z
∞

0

dTeiðp02−m2þi0þÞT
Z

∞

−∞
dxþeiðp0

þþKþ−pþÞxþ

×
YN
i¼1

Z
T

0

dτie
−2ig·⟪a⟫−2iTp0·⟪δa⟫þiT⟪δa2⟫−2i

P
N
i¼1

½ki·IðτiÞ−iεi·I0ðτiÞ�

× e
ig·ð2p̃0þKÞ−i

P
N
i;j¼1



jτi−τj j

2
ki·kj−isignðτi−τjÞεi·kjþδðτi−τjÞεi·εj

�����
lin:ε1…εN

; ð63Þ

in which we have defined δaðxþÞ ≔ aðxþÞ − a∞ and
aðτÞ≡ aðxþclðτÞÞ. Note that in the vacuum limit aμ → 0

we can carry out the x̂þ integral to complete the con-
servation of 4-momentum and so recover one version of the
master formula given in [27,51].
To convert (63) into a master formula for the amplitudes,

we have to perform LSZ on each massive scalar leg (these
are produced by the parameter and proper-time integrals).
To do so we observe that (58) has, using (63), the following
form, writing down only the relevant structures:

−iðp02 −m2 þ i0þÞ
Z

∞

0

dTeiðp02−m2þi0þÞTFðTÞ: ð64Þ

The on-shell limit p2 → m2 − i0þ therefore returns the
residue of the mass-shell pole of the function defined by the
integral. To isolate this pole we proceed as in [68–70]
where LSZ was considered for, e.g., theN-graviton-dressed
propagator in vacuum.4 We integrate by parts (off-shell) in
order to expose the residue, as so:

− iðp02 −m2 þ i0þÞ
Z

∞

0

dTeiðp02−m2þi0þÞTFðTÞ

¼ Fð0Þ þ
Z

∞

0

dTeiðp02−m2þi0þÞT d
dT

FðTÞ: ð65Þ

We can now take p02 → m2 and 0þ → 0 (in either order),
upon which the integral becomes exact, and we have

lim
p02→m2

− iðp02 −m2 þ i0þÞ
Z

∞

0

dTeiðp02−m2þi0þÞTFðTÞ

¼ Fð∞Þ: ð66Þ

Ultimately, then, performing the first amputation on (63) is
equivalent to dropping the integral over proper time T and
its accompanying mass-shell exponent, and taking the limit
T → ∞ of what remains (this is the same argument as in
vacuum, which we comment on further after performing the
second amputation, below). We thus find

lim
p02→m2

− iðp02 −m2 þ i0þÞDp0p
N ¼ ð−ieÞNð2πÞ3δ3⊥;−ðp̃0 þ K − pÞ

Z
∞

−∞
dxþeiðp0

þþKþ−pþÞxþ
YN
i¼1

Z
∞

0

dτi

× e
−i
R

∞
0
½2p0·δaðτÞ−δa2ðτÞ�dτ−2i

P
N
i¼1

½
R

τi
0

ki·aðτÞdτ−iεi·aðτiÞ�þig·ð2p̃0þKÞ−i
P

N
i;j¼1



jτi−τj j

2
ki·kj−isgnðτi−τjÞεi·kjþδðτi−τjÞεi·εj

�����
lin:εi…εN

: ð67Þ

We note that all terms with worldline averages have
ultimately been replaced with (convergent) integrals over
Rþ. This was the advantage of having computed the
Fourier integrals with respect to the individual end points

as discussed above. Equation (67) is the one-side ampu-
tated propagator.
Turning to the amputation with respect to p, at this stage

it is advantageous to introduce the mean and deviation
proper-time variables as follows:

τ0 ≔
1

N

XN
i¼1

τi; τ̄i ≔ τi − τ0: ð68Þ
4We note in passing that the same “trick” is useful in exposing

the connection between gauge invariance and infrared behavior of
amplitudes in background plane waves [71].
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The reason for this change of variable is that it allows us to
reexpress (67) in a form which renders the second LSZ
amputation immediate. To achieve this, we first rewrite the
proper-time integrals appearing in (67) in terms of the new
variables as [note the factor of 1

N in the δ-function is missing
in (3.18) of [69] ]

YN
i¼1

Z
∞

0

dτi ¼
Z

∞

0

dτ0
YN
i¼1

Z
∞

−∞
dτ̄iδ

�XN
j¼1

τ̄j
N

�
: ð69Þ

We also make a change of variable for the xþ-integration,
x̄þ ≔ xþ þ ðp0 þ pþ KÞþτ0 þ gþðfτ̄igÞ, and it is conven-
ient to change variables in all dτ integrals from τ to
τ̄ ≔ τ − τ0, such that the background gauge field now
appears as

aðτ̄Þ≡ a

�
x̄þ þ ðp0 þ pÞþτ̄ −

XN
i¼1

kþi jτ̄ − τ̄ij
�
: ð70Þ

In terms of the shifted variables fx̄þ; τ0; τ̄ig, the once-
amputated propagator (67) takes the form

ð−ieÞNð2πÞ3δ⊥;−ðp̃0 þ K − pÞ
Z

∞

−∞
dx̄þeiðKþp0−pÞþx̄þ

×
Z

∞

0

dτ0eiðp
2−m2Þτ0

Z
∞

−∞

YN
i¼1

dτ̄iδ

�XN
i¼1

τ̄i
N

�
Gðτ0Þ; ð71Þ

in which the function appearing in the factor is

Gðτ0Þ ¼ e
−ið2p0þa∞Þ·a∞τ0−i

R
∞
−τ0

dτ̄½2p0·δaðτ̄Þ−δa2ðτ̄Þ�−2i
P

N
i¼1

½
R

τ̄i
−τ0

dτ̄ki·aðτ̄Þ−iεi·aðτ̄iÞ�

× e
iðp̃0þpÞ·g−i

P
N
i;j¼1



jτ̄i−τ̄j j

2
ki·kj−isgnðτ̄i−τ̄jÞεi·kjþδðτ̄i−τ̄jÞεi·εj

�
:

����
lin:ε1;…εN

ð72Þ

Note that the factor −ið2p0 þ a∞Þ · a∞τ0 in the exponential diverges in the τ0 → ∞ limit, but can be absorbed into
the Volkov-like term, also divergent in the same limit, to yield the convergent factor −i

R
0
−τ0 ½2p̃0 · aðτ̄Þ−

a2ðτ̄Þ�dτ̄ − i
R∞
0 ½2p0 · δaðτ̄Þ − δa2ðτ̄Þ�dτ̄. After this rearrangement, one finds that the dependence on fp2 −m2; τ0g in

(71) and (72) exactly mirrors the dependence on fp02 −m2; Tg in the original expression, before the first amputation. Thus
we can simply repeat the previous LSZ argument but applied to fp2 −m2; τ0g in order to extract the pole at the incoming
mass-shell; effectively this removes the integral over τ0 and takes τ0 → ∞ in the remainder, yielding our final master
formula for the 2-scalar N-photon scattering amplitudes:

Ap0p
N ¼ ð−ieÞNð2πÞ3δ⊥;−ðp̃0 þ K − pÞ

Z
∞

−∞
dxþeiðKþp0−pÞþxþ

Z
∞

−∞

YN
i¼1

dτiδ

�XN
j¼1

τj
N

�

× e
−i
R

0

−∞
½2p̃0·aðτÞ−a2ðτÞ�dτ−i

R
∞
0
½2p0·δaðτÞ−δa2ðτÞ�dτ−2i

P
N
i¼1

hR
τi
−∞

ki·aðτÞdτ−iεi·aðτiÞ
i

× eiðp̃
0þpÞ·g−i

P
N
i;j¼1

ðjτi−τj j
2

ki·kj−isgnðτi−τjÞεi·kjþδðτi−τjÞεi·εjÞ
����
lin:ε

; ð73Þ

where aðτÞ is as in (70), and we have simply relabeled
x̄þ → xþ, and τ̄; τ̄i → τ; τi.
There are several features of this all-orders formula

worth discussing. First, as a consistency check, it is
straightforward to check that in the vacuum limit
(a → 0) the xþ integral can again be performed and one
recovers the known results in [54,69,72]. Second, similarly
to [69], a short set of rules summarizes the LSZ reduction.
The first three are shared with the vacuum case [69]:
(i) drop the T integral, (ii) insert δðPN

j¼1 τj=NÞ, and
(iii) take the dτi and dτ integrals over R. Here, beyond
the vacuum case, there are additional rules: (iv) drop all
worldline averages and (v) “introduce” the divergent factorR
0
−∞ −2ip̃0 · a∞dτ into the exponential, which ensures that

the proper-time integral is convergent in the asymptotic
past—we stress that this by hand addition only occurs at the
level of these rules, it emerges naturally as part of LSZ
reduction, as described above.
Third, the change in integration range for the dτi

integrals can be understood as manifesting the fact that
Ap0p

N is an asymptotic quantity, while the purpose of
δðPN

j¼1 τj=NÞ is to “gauge” the proper-time translational
symmetry of the system. Clearly neither of these features
should be particular to any choice of background that tends
to at most a constant asymptotically, and indeed they are the
same in our plane wave background as in vacuum.
Finally, we observe that xþclðτÞ in (70) solves the classical

worldline equation of motion with the boundary conditions
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1
4
ẋþð−∞Þ ¼ p− and 1

4
ẋþð∞Þ ¼ p0

−. It is natural for this
solution to appear in the amplitudes because, although it
may not be obvious, the stated boundary conditions are
(particular components of) those in play for the momen-
tum-space propagator, from which the amplitude is con-
structed. We will show this in the following subsection, in
which we briefly digress from the master formula in order
to investigate how the Volkov wave functions arise from
worldline path integrals.

B. Mixed boundary conditions
and the Volkov wave function

Before moving on to the spinor case, we remark that one
can, in fact, compute the momentum-space propagator
without going explicitly via the position-space representa-
tion. Returning to the original expression (5) for Dx0x

N , we
immediately perform the Fourier transform (59). Now, the
exponent p0 · x0 − p · x in the Fourier kernel is, under
the path integral, the same as p0 · xðTÞ − p · xð0Þ, and
the spacetime integrals d4x0d4x can be interpreted as
d4xðTÞd4xð0Þ. Hence, taking the Fourier transform of (5)
is equivalent to performing a path integral with a free
boundary, i.e. no apparent restriction on the end points of
the worldline. There is though an alternative, but equiv-
alent, perspective; consider the change of the total action,
δS, under the variations of the end points of the worldline,
xð0Þ → xð0Þ þ δx0 and xðTÞ → xðTÞ þ δxT :

δS≡ δSB þ δðp0:xðTÞ − p:xð0ÞÞ

¼
�
1

2
ẋð0Þ þ aðxð0ÞÞ − p

�
· δx0

−
�
1

2
ẋðTÞ þ aðxðTÞÞ − p0

�
· δxT: ð74Þ

Integrating over δxT and δx0 therefore returns delta
functions which impose the vanishing of the terms in
square brackets of (74); these are Robin boundary con-
ditions which relate the worldline end-point momenta ẋ to
the end-point positions x and the external asymptotic
momenta. It follows that the momentum-space propagator
can be computed alternatively from the path integral
expression

Dp0p
N ¼ ð−ieÞN

Z
∞

0

dTe−im
2T

×
Z

ẋðTÞþ2aðxðTÞÞ¼2p0

ẋð0Þþ2aðxð0ÞÞ¼2p
DxðτÞeiSB½xðτÞ�

YN
i¼1

V½εiki�: ð75Þ

In the previous section we carried out the Fourier transform

of Dx0x
N literally, to obtain Dp0p

N . Expression (75) shows a
more “direct” approach to deriving the master formula in
(63), through a modification of the boundary conditions on

the path integral. This fits in more naturally with the
“worldline philosophy” of incorporating all information
into the worldline path integral. Note that evaluation of (74)
requires a worldline propagator with different boundary
conditions. Indeed, this helps explain a puzzle arising
in [26] (Section 3, footnote 3), where a version of the
momentum space master formula was given that involves a
Green function with mixed boundary conditions: by
expanding about a suitable reference trajectory, (75) can
be cast into a path integral for the fluctuation variable
that must satisfy the mixed boundary conditions
q̇ð0Þ ¼ 0 ¼ qðTÞ.
This discussion prompts us to study the propagator Dxp

N
with mixed boundary conditions which, examining (75), is
given by the integral

Dxp
N ¼ ð−ieÞN

Z
∞

0

dTe−im
2T

Z
xðTÞ¼x

ẋð0Þþ2aðxð0ÞÞ¼2p
DxðτÞeiSB½xðτÞ�

×
YN
i¼1

V½εiki�: ð76Þ

To see the significance of the mixed propagator, consider
the case N ¼ 0, that is the tree level two-point function for
the scalar field, with mixed boundary conditions. In
Feynman diagram language, this is just an external leg,
Fourier transformed at one end. Taking the momentum at
this end onto the mass-shell, i.e. performing LSZ reduction,
we must recover the scalar Volkov wave functions. These
are solutions of the Klein-Gordon equation in a plane wave
background which reduce to e�ip:x in the asymptotic past/
future and thus represent incoming and outgoing particles
in scattering amplitudes.
To confirm this, we first compute the path integral in (76)

for N ¼ 0 (we drop the product of vertex operators). We
do not dwell on this step; the entire integral turns out,
unsurprisingly given the nature of the Volkov solutions and
hidden Gaussianity of the worldline path integral, to be
equal to its semiclassical value exp½iSclðTÞ�, i.e. the
exponential of the classical action evaluated on the classical
path obeying the mixed boundary conditions, which is

SclðTÞ ¼ ðp2 −m2 þ i0þÞT − p · x

−
Z

xþ

xþ−4p−T
ds

2p · aðsÞ − a2ðsÞ
4p−

: ð77Þ

The final step is to take p2 → m2 and identify the on-shell
residue via

lim
p2→m2

− iðp2 −m2 þ i0þÞ
Z

∞

0

dTe−im
2TeiSclðTÞ: ð78Þ

Of course it is clear from the preceding calculations how to
proceed; we perform the same manipulations as for the
master formula, in particular taking the T → ∞ limit,
immediately finding
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lim
p2→m2

− iðp2 −m2ÞDxp

¼ exp

�
−ip · x − i

Z
xþ

−∞
ds

2p · aðsÞ − aðsÞ2
4p−

�
≡φin

p ðxÞ:

ð79Þ

The right-hand side is precisely the incoming scalar Volkov
wave function φin

p ðxÞ which reduces to e−ip·x in the
asymptotic past. A similar amputation of the propagator
Dpx

0 (where the boundary conditions are swapped) yields
the outgoing Volkov wave functions, i.e. those which
reduce to eþip̃0·x in the asymptotic future. Of course the
same procedure can be applied to the spinor propagator,
wherein the path integral with mixed boundary conditions
produces the spinor Volkov wave functions. Worldline path
integrals analogous to (76), with mixed boundary con-
ditions, have also been used before, in a similar context, to
recover the exact solutions of the Klein-Gordon equation in
a constant external electromagnetic field [73]. For numeri-
cal studies of open line instantons see [41].

C. Spinor QED

Turning to LSZ reduction in spinor QED, we proceed
from (60), writing Sx0x

N in terms of the kernels appearing in
(51) and evaluating the ∂x0 , ∂x derivatives (using integration
by parts) in (60) to find

Mp0p
Ns0s ¼ i lim

p02;p2→m2

Z
d4x0d4xeip̃0·x0−ip·xūs0 ðp0Þð=p0 −mÞ

×

�
ð−=p0þδaðx0þÞ−mÞKx0x

N þ e
XN
i¼1

εieiki·x
0
Kx0x

N−1

	

× ð=p−mÞusðpÞ: ð80Þ

Next, following [52] we use the on-shell relation
ūs0 ðp0Þð=p0 þmÞ−1 ¼ ūs0 ðp0Þð2mÞ−1, (which is allowed
since it does not remove the associated pole, or affect the
final expression), and likewise for ð=pþmÞ−1usðpÞ to find

Mp0p
Ns0s¼ i lim

p02;p2→m2

1

2m

Z
d4x0d4xeip̃0·x0−ip·xūs0 ðp0Þðp02−m2Þ

×

��
−1þ 1

2m
δaðx0þÞÞ

�
Kx0x

N

þ e
2m

XN
i¼1

εieiki·x
0
Kx0x

N−1

	
ðp2−m2ÞusðpÞ: ð81Þ

Due to the worldline approach being based on the
second-order formalism of QED, the exponent under the

proper-time integral of the spinor amplitude contains
the same terms as for the scalar amplitude—in particular
the parameter and proper-time integrals produce (free) scalar
propagators. Hence it suffices to revise the scalar case for
this argument. The difference lies in the spin factor of the
kernel, the subleading contibutions (those proportional to
KN−1), and the δaðxþ0Þ factor from the covariant derivative.
However the differences do not impede processing theT, and
later τ0, proper time integrals as for scalars. The result is that
the LSZ amputation is realized in precisely the sameway, by
taking T; τ0 → ∞ as in Eqs. (64)–(69). Moreover, after
taking the Fourier transform, the conservation of momenta
enforced by δðxþ − x0þ þ 2gþ þ 2p0þTÞ sends

aðx0þÞ → að2Tp0þ þ xþ þ 2gþÞ: ð82Þ

The LSZ truncation projects onto asymptotic late time,
taking aðx0þÞ → a∞ when T → ∞, canceling the field-
dependent term in square brackets of (81). One may then
express (81) in terms of the momentum-space kernel

Mp0p
Ns0s ¼ i lim

p02;p2→m2

1

2m
ūs0 ðp0Þðp02 −m2Þ

×

�
−Kp̃0p

N þ e
2m

XN
i¼1

εiK
ðp̃0þkiÞp
N−1

	

× ðp2 −m2ÞusðpÞ: ð83Þ

Now we address the subleading terms. These are seen to
have poles not in the required mass-shell p02 −m2, but
rather in ððp0 þ kiÞ2 −m2Þ. Contributions involving these
shifted poles hence vanish after taking the on-shell limit of
ðp02 −m2Þ=ððp0 þ kiÞ2 −m2Þ. This is a remarkable gener-
alization of the vacuum case [52]. We can be more precise
with how this cancellation comes about. In the kernel of the

subleading terms,Kðp̃0þkiÞp
N−1 , one must first remove an εi and

ki, and then replace a∞ with a∞ þ ki in (73). This operation
leaves p̃0 þ K invariant, but it does affect the termR
∞
0 dτp0 · δaðτÞ, which was convergent as τ → ∞, but
now produces a rapidly oscillating phase; noting that the
proper-time integral calculates the Laplace transform of the
function FðTÞ in (64), the Abelian final value theorem can
be invoked to confirm that the subleading contributions
must vanish.
Since the manipulations are similar to the scalar case, let

us simply record the spinor amplitude in its final form as

Mp0p
Ns0s ¼

XN
S¼1

X
fi1∶ iSg

Mfi1∶iSgp0p
NSs0s ; ð84Þ

MASTER FORMULAS FOR N-PHOTON TREE LEVEL … PHYS. REV. D 109, 065003 (2024)

065003-13



Mfi1∶iSgp0p
NSs0s ¼ ð−ieÞNð2πÞ3δ⊥;−ðp̃0 þ K − pÞ

Z
∞

−∞
dxþeiðKþp0−pÞþxþ

Z
∞

−∞

YN
i¼1

dτiδ

�XN
j¼1

τj
N

�

× e−i
R

0

−∞
½2p̃0·aðτÞ−a2ðτÞ�dτ−i

R
∞
0
½2p0·δaðτÞ−δa2ðτÞ�dτ−2i

P
N
i¼1

½
R

τi
−∞

ki·aðτÞdτ−iεi·aðτiÞ�

× eiðp̃
0þpÞ·g−i

P
N
i;j¼1

ðjτi−τj j
2

ki·kj−isgnðτi−τjÞεi·kjþδðτi−τjÞεi·εjÞ
����εi1…εiS¼0

εiSþ1
…εiN

×
1

2m
ūs0 ðp0ÞSpinðf̃i1∶iSÞusðpÞ: ð85Þ

After LSZ reduction, the argument of the exponential in the spin factor, (47), takes the following form

−
Z

∞

−∞
dτ½η · f · ηþ θ · η� −

Z
∞

−∞
dτ

Z
∞

−∞
dτ0

�
η · fðτÞ ·Gðτ; τ0Þ · θðτ0Þ þ 1

4
θðτÞ ·Gðτ; τ0Þ · θðτ0Þ

�
; ð86Þ

the worldline average in the fermion Green function is also
now understood to be T⟪f⟫ ¼ R∞

−∞ dτfðτÞ. Also, the
background gauge potential, a, and field strength, f, are
understood to be functions of the classical solution xþclðτÞ as
shown in (70). Finally, the sums in the first line of (84)
are—as usual—over the assignation of S photons out of N
to the spin part of the vertex operator.

IV. EXAMPLES

In this section we provide checks on our amplitude
master formulas (73) and (84), showing by comparison
with the existing literature that they are consistent with
results expected from Furry-picture perturbation theory.

A. N = 1, nonlinear Compton scattering in scalar QED

The case N ¼ 1 describes single photon emission from a
(scalar) electron in a plane wave background, which is the
well-studied process of “nonlinear Compton scattering.” In
this case, several parts of the master formulas (73) simplify
immediately. First, the delta function fixes τ1 ¼ 0. Next, the
gauge field is evaluated as

aðτÞ ¼
�
aðxþ þ 2pþτÞ; τ < 0;

aðxþ þ 2p0þτÞ; τ > 0:
ð87Þ

This form facilitates an easy conversion of integrals over
proper time τ to integrals over light front time xþ, which are
expected in the standard formalism (see also [37]).
Specifically, we can conveniently treat the positive and
negative τ regions separately. The field-dependent terms in
the exponent of the master formula then reduce to

− i
Z

0

−∞
dτ½2p̃0 · aðτÞ − a2ðτÞ�

− i
Z

∞

0

dτ½2p0 · δaðτÞ − δa2ðτÞ� − 2i
Z

0

−∞
dτk1 · aðτÞ;

ð88Þ

¼ −i
Z

xþ

−∞
dsþ

2p · aðsþÞ − a2ðsþÞ
2pþ

− i
Z

∞

xþ
dsþ

2p0 · δaðsþÞ − δa2ðsþÞ
2p0þ ; ð89Þ

in which we simply inserted (87) and used momentum
conservation in the transverse directions to eliminate k1 in
favor of p0 and p. With this, expanding (73) for N ¼ 1 to
linear order in ε1, and using the Fourier representation of
the momentum conserving δ-functions shows that the
amplitude is equivalent to

Ap0p
1 ¼ −ie

Z
d4xfp̃0

μ þ pμ − 2aμðxþÞg

× εμ1e
ik1:xφout

p0 ðxÞφin
p ðxÞ; ð90Þ

where φin
p is the incoming scalar Volkov wave function

of (79) while φout
p0 is the outgoing wave function,

φout
p0 ðxÞ ¼ eip̃

0·x exp

�
−i

Z
∞

xþ
dsþ

2p0 · δaðsþÞ − δa2ðsþÞ
2p0þ

�
:

ð91Þ

Expression (90) is precisely the expected result for non-
linear Compton scattering in scalar QED, providing a
positive check on our master formula.
We stress that the method we employed above to process

the worldline integrals was meant only to allow direct
comparison with existing results. It is not the approach we
wish to take in future work; instead, we will use the
worldline representation to deal directly with the τ inte-
grals. Since the major advantages of the worldline approach
include that (a) one does not have to split amplitudes into
sectors according to permutations of external legs, and
(b) internal momentum integrals are recast in terms of the
proper-time integral, we expect this to provide some
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advantage over the standard formalism, at least in various
physical limits of interest. This will be discussed elsewhere.

B. N = 1, nonlinear Compton scattering in spinor QED

Let us now confirm the N ¼ 1 case for spinor QED,
which requires expanding the master formula (84) to linear
order in ε1. Since the field dependence of the exponent in
for spinor QED contains that of scalar QED one may write
the resulting amplitude using the scalar Volkov wave
functions, (91), as

Mp0p
1s0s ¼ −ie

1

2m

Z
d4xeik1·xφout

p0 ðxÞφin
p ðxÞūs0 ðp0Þ

× ½ðp̃0 þ p − 2aðxþÞÞ · ε1Spinð0Þ
þ Spinð ef1Þ�usðpÞ; ð92Þ

requiring only the evaluation of the spin factor (we have
again used the Fourier representation of the δ-functions).
Before embarking upon the comparison to the standard
formalism, we should emphasize that the approach outlined
here, namely writing in terms of spacetime averages with
steps to follow, is necessary to make the connection to the
perturbative Furry picture with Volkov wave functions.

However, this would be inefficient for practical worldline
calculations.
The spin factors are determined using (48) and (49)

under the LSZ reduction (86) and the inverse symbol
map, (33). Because of the nilpotency of f one has,
under the inverse symbol map, expð− R

∞
−∞ dτη · f · ηÞ ¼

1 −
R
∞
−∞ dτη · f · η, and therefore the factor without photon

insertion is readily determined to be

Spinð0Þ ¼
�
1 −

1

2p0þ nδaðxþÞ
��

1þ 1

2pþ naðxþÞ
�
; ð93Þ

where we have already transformed the parameter integral
to a spacetime average and computed its value. This is
simply the Dirac-matrix structure necessary to construct the
spinor Volkov wave functions.
Let us next treat the single photon spin factor, Spinðf̃1Þ.

Beginning with the Grassmann integral with one photon
insertion, provided in (49) we apply the inverse symbolic
map in (33) and realize the LSZ reduction according
to (86). The various worldline averages are then trans-
formed into their corresponding spacetime averages as was
done in the N ¼ 1 scalar case, to find

Spinðf̃1Þ ¼ −
1

2
½k1; ε1� þ kþ1 ε1 ·

�
−
δaðxþÞ
2p0þ þ aðxþÞ

2pþ

�
þ ε1 ·

�
δaðxþÞ
2p0þ þ aðxþÞ

2pþ

�
1

2
½k1; n�

þ kþ1
1

2

�
ε1;

δaðxþÞ
2p0þ þ aðxþÞ

2pþ

�
þ
�
k1 ·

�
δaðxþÞ
2p0þ þ aðxþÞ

2pþ

�
þ 2kþ1

�
δaðxþÞ
2p0þ ·

aðxþÞ
2pþ

��
nε1

þ 2kþ1
2p0þ2pþ ε1 · ½aðxþÞδaðxþÞ þ δaðxþÞaðxþÞ�nþ ðk1 þ a∞Þμε1νnα

�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�
β

iγ5ϵμναβ: ð94Þ

Next, we express the photon momentum, k1, in terms of the electron momenta and asymptotic value of the background
field. For theþ;⊥ components we can use momentum conservation, kþ;⊥

1 ¼ ðp − p̃0Þþ;⊥. The k−1 component requires us to
carry out an integration by parts with respect to xþ. We illustrate this step, to be applied to the various k1 terms in (94), with
the following manipulation:

Z
d4xeik1·xkμ1φ

out
p0 ðxÞφin

p ðxÞ ¼
Z

d4xeik1·x
��

2p · aðxþÞ − aðxþÞ2
2pþ −

2p0 · δaðxþÞ − δaðxþÞ2
2p0þ

�
nμ þ pμ − p̃0μ

�
φout
p0 ðxÞφin

p ðxÞ;

ð95Þ

In fact, if additional factors of aðxþÞ appear under the
above integral, in turns out that the additional derivatives
produced by integrating by parts always contract away.
Therefore (95) can be used throughout (94). Moreover,
applying the above procedure to k1 in the γ5 term of (94),
one can see that in effect kμ1 → pμ − p̃0μ, since the two nμ

contract to zero against the Levi-Civita tensor. In fact the
only term in which the nμ part of (95) survives after these
replacements is the first term on the RHS of (94).

Last, since we are taking the on-shell limit we may
use the Dirac equation for the sandwiching spinors so as
to send their corresponding =p and =p0 to m, anticommu-
tating where necessary. Again, illustrating this step with
the γ5 term in (94) we rewrite γ5 in terms of products of
four matrices using (33). After acting on the spinor
solutions at most three matrices will remain. After this
process, the γ5 term, as it appears in the amplitude (92),
becomes
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ðk1 þ a∞Þμε1νnα
�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�
β

iγ5ϵμναβ ¼ ðpþ þ p0þÞ 1
2

�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ ; ε1

�
þ ðpþ p0Þ · ε1n

�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�

þ ðpþ p0Þ ·
�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�
ε1n −m

�
ε1; n

�
δaðxþÞ
2p0þ −

aðxþÞ
2pþ

�	
:

ð96Þ

Using the above steps to replace kμ1 in the remaining terms of (94), after some algebra one may gather terms to
find that

us0 ðp0Þfðp̃0 þ p − 2aðxþÞÞ · ε1Spinð0Þ þ Spinð ef1ÞgusðpÞ ¼ 2mus0 ðp0Þ
�
ε1 −

1

2p0þ nδaðxþÞε1 þ
1

2pþ ε1naðxþÞ
	
usðpÞ;

ð97Þ

and hence

Mp0p
1s0s ¼ −ie

Z
d4xeik·xΨout

p0;s0 ðxÞε1Ψin
p;sðxÞ; ð98Þ

where we have used the spinor Volkov wave functions,
which read

Ψin
p;sðxÞ ¼

�
1þ 1

2pþ naðxþÞ
�
usðpÞφin

p ðxÞ; ð99Þ

Ψout
p0;s0 ðxÞ ¼ ūs0 ðp0Þ

�
1 −

1

2p0þ nδaðxþÞ
�
φout
p0 ðxÞ: ð100Þ

This successfully verifies that the worldline approach
reproduces the known amplitude for the N ¼ 1 process.

C. N = 2, double nonlinear Compton scattering
in scalar QED

To complete our discussion of the relevant structures in
scalar QED we must also consider the case N ¼ 2, where
the so-called seagull vertex (the four-point scalar-photon-
photon-scalar vertex) first appears. We will describe the
way this works briefly here, as the calculations proceed
largely as for N ¼ 1, leaving the details for the Appendix.
Expanding (73), there are now two τ integrals, with one,
say τ2, fixed by the worldline delta function in (73), and the
other, say τ1, remaining. The mapping onto Feynman
diagrams is most natural: the contributions from τ1 > 0
and τ1 < 0 recover one each of the expected contributions
from the two diagrams with two three-point vertices, with
τ1 being mapped to the light front time of one vertex. The
seagull contribution is picked up from the term in (73)
which goes like ε1 · ε2; this comes with a delta function
with support at exactly τ1 ¼ 0, hence leaving only a single
unevaluated integral, as expected. The full calculation is
presented in the Appendix.

V. CONCLUSIONS

We have presented worldline master formulas for all-
multiplicity tree level scattering amplitudes of two massive
charged particles and N photons, in a plane wave back-
ground, in both scalar and spinor QED. The background
field may have arbitrary strength and functional profile,
and is treated without approximation throughout. This is
particularly relevant as the target application of our results
is to laser-matter interactions in the high intensity regime
where the field is characterized by a dimensionless strength
(the coupling to matter) larger than unity, and hence must
be treated without recourse to perturbation theory.
Our master formulas have been derived using the world-

line approach to quantum field theory. While several
previous publications have derived wordline master for-
mulas for various correlation functions in vacuum, or even
at higher loop level in background fields, our focus here has
been on scattering amplitudes involving external matter. As
such it was necessary to identify the worldline description
of LSZ reduction in a plane wave background. We found
this to be a fairly direct generalization of the known
worldline prescription for LSZ amplitudes in vacuum
[68,69]. A second notable generalization from known
results in vacuum holds for the spinor case: namely that
in the second-order formalism, which implies a split into
“leading” and “subleading” terms, only the former survives
the on-shell limit once the LSZ prescription is imposed.
Furthermore, the background-field-dependent part of this
leading term also drops out in the asymptotic limit. This
allows for a large number of terms to be discarded (and in
the vacuum case allowed for the gauge invariance of the
amplitudes to be manifest).
We have checked our results against the existing liter-

ature, which contains only low-multiplicity amplitudes
derived using Feynman rules. Explicitly, these are the
cases N ¼ 1 and N ¼ 2, or single and double nonlinear
Compton scattering. Moving beyond scattering amplitudes,
we have also seen how to recover off-shell quantities,
in particular the scalar and spinor correlation functions
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dressed by the background and the Volkov wave functions,
from worldline path integrals. The latter is a particularly
interesting case as it exposes the relevance of mixed
boundary conditions; the relevant path integrals carry
Dirichlet conditions at one limit, representing the local
spacetime argument of the wave function, and Robin
boundary conditions at the other limit, encoding the
asymptotic momentum characterizing the Volkov solution.
It is fair to say that the master formulas for amplitudes we

have derived here still require, for a chosen number of
photons N, some processing in order to extract all their
physical content. In future work we will pursue methods of
evaluating the remaining proper-time integrals in an effi-
cient manner, or in an approximate manner relevant to
interesting physical regimes. Here, benefit should be gained
by not breaking the parameter integrals into ordered sectors
corresponding to photon permutations, which will max-
imally exploit the calculational efficiency. Constructing
observables from our amplitudes at N > 2 (which are
lacking in the literature) will help to benchmark numerical
codes which approximate multiphoton processes using
sequential single photon emissions. It would be revealing
to compare our expressions with the compact all-multi-
plicity results of [74,75]. We also plan to generalize our
results to higher-loop orders, in order to pursue the Ritus-
Narozhny conjecture on the behavior of loop corrections at
very high intensity, see [8,14] for reviews.
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APPENDIX: MASTER FORMULA CHECK
FOR N = 2

In this appendix we confirm that the master formula (73)
correctly reproduces, at N ¼ 2, the amplitude for “double
nonlinear Compton scattering” [76,77] in scalar QED, that
is the emission of two photons from a particle in a plane
wave background. (By crossing symmetry this is directly
related to the amplitude for the Compton effect in the
background.) Recall that in scalar QED, the standard
approach would require evaluation of three separate
Feynman diagrams—conveniently combined into one cal-
culation on the worldline—one of which contains the four-
point seagull vertex.
Starting from (73) with N ¼ 2, the LSZ factor δðτ1=2þ

τ2=2Þ means that we have only one nontrivial proper-time

integral, over, say, τ1. It is convenient to split this integral
into three pieces and analyze each separately; we split the
integration range into −∞ < τ1 < 0−, 0− < τ1 < 0þ and
0þ < τ1 < ∞, and refer henceforth to the corresponding

contribution to the amplitudes as Ap0p
2− , Ap0p

2δ and Ap0p
2þ ,

respectively.

1. τ1 ∈ ð0;∞Þ
When τ1 > 0, the field-independent terms in the expo-

nential of (73) reduce to

iðp̃0 þ pÞ · ðk1 − k2Þτ1 þ ε1 · ðp̃0 þ p − k2Þ
þ ε2 · ðp̃0 þ pþ k1Þ − 2iτ1k1 · k2

þ iðKþ þ p0þ − pþÞxþ: ðA1Þ

The gauge field at the interaction points�τ1 (indicating the
insertion point of photon with momentum k1) takes the
values

aðτ1Þ ¼ aðxþ þ τ1ð2p0þ þ kþ1 − kþ2 Þ; ðA2Þ

að−τ1Þ ¼ aðxþ − τ1ð2pþ þ kþ1 − kþ2 Þ: ðA3Þ

This motivates us to make the change of variable
xþ → xþ − τ1ð2pþ þ kþ1 − kþ2 Þ, such that the field-
independent terms (A1) transform to

T 0 ≡ ið4ðpþ þ k1þÞqþ − 2q2⊥ − 2m2 þ i0þÞτ1
þ ε1 · ð2p̃0 þ k1Þ þ ε2 · ðp̃0 þ pþ k1Þ
þ iðKþ þ p0þ − pþÞxþ − ið2p0 þ a∞Þa∞τ1; ðA4Þ

where we have defined q ¼ p − k2 and used the fact the
momenta are on-shell to simplify. We shall shortly need the
last term −ið2p0 þ a∞Þa∞τ1 to simplify some of the field-
dependent terms. Before going into that, we return to the
exponent of (73) and note that the following field-depen-
dent term is already sufficiently simplified:

T 1 ≡ −2
XN
i¼1

εi · aðτiÞ → −2ε1 · aðxþÞ

− 2ε2 · aðxþ þ 4qþτ1Þ: ðA5Þ

The rest of the field-dependent terms combine with
−ið2p0 þ a∞Þa∞τ1 from (A4) to yield

MASTER FORMULAS FOR N-PHOTON TREE LEVEL … PHYS. REV. D 109, 065003 (2024)

065003-17



T 2 − ið2p0 þ a∞Þa∞τ1 ≡ −2i
XN
i¼1

Z
τi

−∞
dτki · aðτÞ − i

Z
0

−∞
dτ½2p̃0 · aðτÞ − a2ðτÞ�

− i
Z

∞

0

dτ½2p0 · δaðτÞ − δa2ðτÞ� − ið2p0 þ a∞Þ · a∞τ1

¼ −2i
XN
i¼1

Z
τi

−∞
dτki · aðτÞ − i

Z
τ1

−∞
dτ½2p̃0 · aðτÞ − a2ðτÞ� − i

Z
∞

τ1

dτ½2p0 · δaðτÞ − δa2ðτÞ�: ðA6Þ

We now use the dependence of aμðxclðτÞ on the classical solution to transform the proper-time integrals into spacetime
integrals and simplify the above terms as

−2i
XN
i¼1

Z
τi

−∞
dτki · aðτÞ − i

Z
τ1

−∞
dτ½2p̃0 · aðτÞ − a2ðτÞ� − i

Z
∞

τ1

dτ½2p0 · δaðτÞ − δa2ðτÞ� ðA7Þ

¼ −i
Z

xþ

−∞

2p:aðsÞ − a2ðsÞ
2pþ ds − i

Z
xþþ4qþτ1

xþ
ds

2q · aðsÞ − a2ðsÞ
2qþ

− i
Z

∞

xþþ4qþτ1
ds

2p0 · δaðsÞ − δa2ðsÞ
2p0þ ; ðA8Þ

where we have used momentum conservation to replace p̃⊥ þ K⊥ with p⊥, and p̃⊥ þ k1⊥ with q⊥. The contributionAp0p
2þ to

the amplitude from τ1 > 0 can then be written as

Ap0p
2þ ¼ 2ð−ieÞ2ð2πÞ3δ⊥;−ðp̃0 þ K − pÞ

Z
∞

−∞
dxþ

Z
∞

0

dτ1eT 0þT 1þT 2

����
lin:ε

: ðA9Þ

We are now going to show that the right-hand side of the above expression is equivalent to one of the three Feynman
diagram contributions to double nonlinear Compton, namely that containing two three-point vertices in which photon k1 is
emitted on the outgoing leg. The Feynman rules give this contribution as

ð−ieÞ2
Z

d4x0d4xeik1·x0 ½φout
p0 ðx0Þðε1 ·Dx0

↔ ÞGðx0; xÞðε2 ·Dx

↔ Þφin
p ðxÞ�eik2·x; ðA10Þ

whereD denotes the background-covariant derivative andGðx0; xÞ ¼ Dx0x
0 is the scalar particle propagator in the plane wave

background (the double arrow indicates the right-left alternating derivative). We then observe that this is equivalent toZ
d4x0d4xφout

p0 ðx0 − iε1Þeik1·x0−2ε1·aðx0ÞGðx0 þ iε1; x − iε2Þeik2·x−2ε2·aðxÞφin
p ðxþ iε2Þ

����
lin:ε1…εN

: ðA11Þ

Taking this expression, we start by using the Fourier representation of Gðx0; xÞ to rewrite it asZ
d4x0d4xφout

p0 ðx0 − iε1Þeik1·x0−2ε1·aðx0ÞGðx0 þ iε1; x − iε2Þeik2·x−2ε2·aðxÞφin
p ðxþ iε2Þ

¼
Z

d4r
ð2πÞ4 d

4x0d4xφout
p0 ðx0 − iε1Þeik1·x0−2ε1·aðx0Þ

ie−ir·ðx
0−xþiε1þiε2Þ−i

R
x0þ
xþ

2r·aðsÞ−a2ðsÞ
4r−

ds

r2 −m2 þ i0þ
eik2·x−2ε2·aðxÞφin

p ðxþ iε2Þ: ðA12Þ

We can easily evaluate the x0−;⊥; x−;⊥, and r−;⊥ integrals and rewrite the propagator denominator using a standard
Schwinger proper-time integral to obtain

ð2πÞ3δ⊥;−ðp̃0 þ K − pÞep·ϵ1þq:ε2

Z
∞

−∞
dx0þeiðpþþk1þ−rþÞx0þ−2ε1·aðx0þÞe−i

R
∞
x0þ

2p0 ·δaðsÞ−δa2ðsÞ
2pþ ds

× 2

Z
∞

−∞
dxþe−2ε2·aðxþÞe−ixþqþ

Z
∞

0

dτ1

Z
drþ
2π

eirþðxþ−x0þþ4qþτ1Þe−2iτ1½q2⊥þm2−i0þ�e−i
R

x0þ
xþ ds2q·aðsÞ−a

2ðsÞ
2qþ −i

R
xþ
−∞

ds2p·aðsÞ−a
2ðsÞ

2pþ : ðA13Þ

COPINGER, EDWARDS, ILDERTON, and RAJEEV PHYS. REV. D 109, 065003 (2024)

065003-18



The rþ integral can now be evaluated to give 2πδðxþ−
x0þ þ 8q−τ1Þ. The remaining x0þ integral is therefore
trivialized and effects the replacement x0þ → xþ þ 8q−τ1.
Taking the multilinear limit, one recovers precisely the
right-hand side of (A9) as promised.

2. τ1 ∈ ð−∞; 0− Þ
For τ1 < 0, one recovers the Feynman diagram contri-

bution in which photon k2 is emitted from the outgoing leg.
The proof of this follows exactly the same steps as forAp0p

2þ
above. Hence we simply state that

Ap0p
2− ¼ ð−ieÞ2

Z
d4x0d4xeik2·x½φout

p0 ðx0Þðε2 ·Dx0
↔ ÞGðx0; xÞðε1 ·Dx

↔ Þφin
p ðxÞ�eik1·x: ðA14Þ

3. τ1 ∈ ð0− ; 0+ Þ
In this range, the field-independent term in the exponent of (73) going like δðτ1Þϵ1 · ϵ2 cannot be neglected. Noting that

this term is already linear in both ϵ1 and ϵ2, the corresponding contribution to the amplitude is immediately seen to be
proportional to the τ1 → 0 and ϵ1;2 → 0 limit of the integrand of the proper-time integral:

Ap0p
2δ ¼ −2ð−ieÞ2ð2πÞ3δ⊥;−ðp̃0 þ K − pÞ

×
Z

∞

−∞
dxþðiε1 · ε2ÞeþiðKþp0−pÞþxþ−i

R
0

−∞
½2p̃0·aðτÞ−a2ðτÞ�dτ−i

R
∞
0
½2p0·δaðτÞ−δa2ðτÞ�dτ−2i

R
0

−∞
K·aðτÞdτ: ðA15Þ

By inspection, this is equivalent to

Ap0p
2δ ¼ −2ið−ieÞ2ε1 · ε2

Z
d4xeiðk1þk2Þ·xφout

p0 ðxÞφin
p ðxÞ; ðA16Þ

which is indeed the seagull vertex contribution to double nonlinear Compton scattering. Summing (A9), (A14), and (A16)
recovers the full amplitude.
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