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Abstract In this article, the Segre classification approach
is used to obtain some new solutions for spherically sym-
metric static spacetime metric corresponding to Segre types
[(1, 111)], [1, (111)], [(1, 1)(11)], or [1, 1(11)]. The eigen-
value degeneracy in these situations correlates to timelike
and spacelike eigenvectors and their primary null direction,
which identify the kind of matter distribution in space and aid
in the consideration of novel solutions for the corresponding
energy momentum tensor. The isotropic Segre type [(1, 111)]
in modified theory provides the Schwarzschild de-Sitter/anti-
de-Sitter solutions, whereas in types [1, (111)] and [1, 1(11)]
depending upon matter distribution new obtained solutions
adhere all the physical conditions and present the viable
trends of energy and causality conditions. Moreover, the pro-
files of the adiabatic index, surface, and gravitational redshift
are observed along with the hydrostatic equilibrium using
the Tolman–Oppenheimer–Volkoff equation. Additionally,
for these types the solution is compared with observational
data, and numerical values are calculated for central and sur-
face densities and central pressure of compact star candi-
dates K S1731 − 260 and PSRJ1614 − 2230. Segre type
[(1, 1)(11)] relates to a non-null electromagnetic field that
corresponds to models with anisotropy in dark energy, which
is demonstrated by graphical analysis. Dark energy does not
behave as an ordinary matter resulting in the violation of
strong energy condition and the causality condition.

1 Introduction

General relativity (GR) is a fundamental physics theory that
accurately predicts and explains universe processes. GR has
been applied to understand galaxy origin, compact universe
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structures, black holes, gravitational wave spread, and uni-
verse expansion. The 1920s emergence of quantum mechan-
ics and quantum field theory revealed flaws in GR, leading
to the expansion of GR to reveal dark energy and dark mat-
ter, and the singularity theorem establishing a shared char-
acteristic among all cosmological theories. Due to numerous
shortcomings, scientists started studying alternative theories
considering higher-order effects, to investigate dark energy
and dark matter within the current cosmological paradigm.

Reference [1] solution, which predicts the existence of
a black hole and explains the interior geometry of a fluid
sphere with homogeneous energy density, was the first accu-
rate vacuum solution in GR. Since then numerous studies
have been conducted to find solutions for spherically sym-
metric and static spacetimes with and without charge, first
in GR and currently in other theories of gravity. Researchers
like [2–9] and many others have found solutions by consid-
ering the equations of state and different ansatz in GR. This
particular research area is vastly explored in f (R) theory of
gravity by many researchers, [10] studied spherically sym-
metric vacuum and perfect fluid solutions. In f (R) theory
using the metric approach [11] found static plane-symmetric
vacuum solutions and indicated their correspondence with
well-known GR solutions. References [12,13] in modified
theory of gravity explained the mass radius relation and the
causal maximum mass limit for the massive neutron star
GW190814. The stability and dynamics of anisotropic com-
pact stars using Krori and Barua metric potential is discov-
ered by [14]. References [15,16] in f (R) theory discussed
the collapsing behavior of compact objects. A new rotating
black hole solution in modified theory is obtained by [17] that
exhibits stable thermodynamic features with two horizons, a
significant singularity in comparison to Einstein’s GR, and
asymptotic behavior towards AdS/dS spacetime. The physi-
cal features of the Schwarzschild black hole solution, includ-
ing its declining gravity dominance in higher orders of f(R),
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are revealed through an exploration of its geodesics, sta-
bility requirements, and thermodynamic properties by [18].
Reference [19] obtained exact solutions for both the Ricci
scalar dependent on the radial coordinate and the Ricci cur-
vature scalar that is constant. Reference [20] also investigated
spherically symmetric solutions using the Noether symmetry
approach.

This paper aims to reduce arbitrariness in finding static
spherically symmetric solutions of field equations in the mod-
ified theory of gravity. For this purpose, the Segre classifi-
cation scheme is used, this scheme provides a systematic
method for obtaining new solutions, limiting the need for
ansatz in most cases. The only possible Segre types for spher-
ically symmetric static spacetime are [(1,111)], [1,(111)],
[(1,1)(11)] and [1,1(11)] as discussed earlier by [21]. The
article is formatted as follows: In Sect. 2, field equations in the
modified theory of gravity are explained briefly. Section 3 ini-
tially introduces the Segre classification scheme and solution
of the Segre type [(1, 111)]. Further, in Sects. 3.1–3.3 solu-
tions to [1, (111)], [(1, 1)(11)]and[1, 1(11)] are explored in
detail depending on their respective energy momentum ten-
sor. Lastly, followed by the discussion in Sect. 4.

2 Field equation in the modified gravity

A key idea in general relativity that serves as the foundation
for constructing the Einstein field equations is the Einstein–
Hilbert action. The f (R) theory of gravity is essentially a
generalization of general relativity. It is produced by replac-
ing the Ricci scalar R in the Einstein–Hilbert action with an
arbitrary function denoted by f (R). The action is given as

S = 1

16π

∫ √−g ( f (R) + LM ) d4x, (1)

here g is the metrics determinant and LM stands for
Lagrangian density for the matter Lagrangian. By varying
the action with respect to gab, the relevant field equations are
obtained as

fR Rab − f (R)

2
gab + (gab� − ∇a∇b) fR = Tab, (2)

where fR = ∂ f
∂R , ∇a represents the covariant derivative

and � is the d’Alembertian operator defined as � =
1√−g

∂a
(√−g∂a

)
.

Here Tab is the energy momentum tensor for vacuum case
we have Tab = 0 and the field equations are given as

fR Rab − f (R)

2
gab + (gab� − ∇a∇b) fR = 0. (3)

Let us consider the interior line element for static spherically
symmetric spacetime given as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dθ2 + r2sin2θdφ2, (4)

here the unknown metric potentials are denoted by λ(r) and
ν(r). The f (R) field equations corresponding to the space-
time metric (4) are given as

fR(e−λ)

(
ν′′

2
+ (

ν′ − λ′) ν′

4
+ ν′

r

)
+ 1

2
f (R)

+ e−λ

(
f ′
R

(
λ′

2
− 2

r

)
− f ′′

R

)
= 0, (5)

fR(e−λ)

(−ν′′

2
− ν′

4

(
ν′ − λ′) + λ′

r

)
− 1

2
f (R)

+ e−λ

(
f ′
R

(
ν′

2
+ 2

r

))
= 0, (6)

fR
r2

(
1 + e−λ

2

(
rλ′ − rν′ − 2

)) − 1

2
f (R)

+ e−λ

[
f ′
R

(
ν′

2
− λ′

2
+ 1

r

)
+ f ′′

R

]
= 0. (7)

The simplest type of function will be considered in this arti-
cle; the quadratic gravity or inflationary model proposed by
[22], expressed as

f (R) = R + αR2, (8)

where α is a positive constant and fRR ≥ 0. Further, [14]
indicated that in stellar objects values of α vary from 0 to
6. It is significant to note that when α = 0, general rel-
ativity results are retrievable. The vacuum field equations
corresponding to Eq. (8) are

(1 + 2αR)

(
1

r2 − 1

r2 (re−λ)′
)

− αR2

2

+ 2αe−λ

[
R′

(
λ′

2
− 2

r

)
− R′′

]
= 0, (9)

(1 + 2αR)

(
e−λ

(
ν′

r
+ 1

r2

)
− 1

r2

)
+ αR2

2

+ 2αR′e−λ

(
ν′

2
+ 2

r

)
= 0, (10)

e−λ (1 + 2αR)

(
ν′′

2
+ ν′ (ν′ − λ′)

4
+

(
ν′ − λ′)

2r

)
+ αR2

2

+ 2αe−λ

[
R ′

(
ν′

2
− λ′

2
+ 1

r

)
+ R ′′

]
= 0. (11)

Here R′ and R′′ are the first and second order derivative of
R, for the spacetime metric R is given as

R = e−λ

(
−ν′′ − ν′ (ν′ − λ′)

2
− 2ν′

r
+ 2λ′

r
− 2

r2 + 2eλ

r2

)
.

(12)
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3 Exact solution using segre classification

The Segre classification scheme is one of the most signifi-
cant way for obtaining exact solutions. It helps to develop a
systematic approach to obtain solutions, reducing the arbi-
trariness produced by a greater number of unknowns. This
method was used by [21] to restrict ansatz for spherically
symmetric static solutions of Einstein–Maxwell field equa-
tions (EMFEs). In the trace-free Ricci tensor context, the
Segre types entail various combinations of eigenvalues and
eigenvectors that lead to distinct algebraic patterns, aiding
in understanding algebraic characteristics and symmetries of
gravitational fields in specific spacetime areas and elucidat-
ing geometric and physical characteristics.

The trace-free Ricci tensor Sαβ must first be defined in
order to determine the classification of spacetime. It is given
as [23]

Sαβ = Rαβ − 1

4
Rgαβ, (13)

The Segre classification of Sαβ is determined by splitting
the matrix Sαβ into Jordan canonical blocks, each of which
stands for an eigenvalue. The number of eigenvalues in square
brackets and the number of eigenvalues that recur in paren-
theses correlate to the size of Jordan blocks. The non-zero
components of the symmetric matrix φαβ are used to compute
the Segre type of matrix. Here, φαβ are the Ricci Newmann
Penrose scalars that help in determining the nature of eigen-
values in different Segre types, defined as

φ00 = 1

2
Sαβk

αkβ, φ01 = 1

2
Sαβk

αmβ,

φ02 = 1

2
Sαβm

αmβ,

φ11 = 1

2
Sαβ

(
kαlβ + mαmβ

)
, φ12 = 1

2
Sαβ l

αmβ,

φ22 = 1

2
Sαβl

αlβ. (14)

Here, lα, kα,mα,mα are the null tetrads components that
must satisfy the following condition

kαkα = −1 mαmα = 1. (15)

For the metric (4), the only non-zero components of Ricci
Newman Penrose scalars are

φ00 =
(

ν′ + λ′

r

)
e−λ

4
= φ22, (16)

φ11 =
(

ν′′ + ν′ (ν′ − λ′)
2

− 2

r2 + 2eλ

r2

)
e−λ

8
. (17)

The relation between non zero scalars and different Segre
types as given by [24] is

Table 1 A standard frame for Segre types of trace-free Ricci tensor

Segre characteristic Non-zero φαβ

[1, 111] φ00 = φ22, φ11, φ02 = φ20

[(1, 1)11] φ11, φ02 = φ20

[1, 1(11)] φ00 = φ22, φ11

[(1, 1)(11)] φ11

[(1, 11)1] φ02 = −2φ11 = φ20

[1, (111)] φ00 = 2φ11 = φ22

[(1, 111)]
[Z Z11] φ00 = −φ22, φ11, φ02 = φ20

[Z Z(11)] φ00 = −φ22, φ11

[2, 11] φ02 = φ20, φ11, φ22 = 1,

[2, (11)] φ11, φ22 = 1

[(2, 1)1] φ02 = −2φ11 = φ20, φ22 = 1

[(2, 11)] φ22 = 1

[3, 1] φ02 = −2φ11 = φ20, φ21 = φ12 = 1

[(3, 1)] φ21 = φ12 = 1

All non-zero scalars belong to distinct Segre types, and
each type is physically interpreted and corresponds to a cer-
tain kind of energy momentum tensor. This interpretation
is based on the algebraic features of the energy–momentum
tensor and the solutions of general relativity field equations.
In our case, we have three non-zero scalars and from Table 1,
we write their relationship with various Segre types as:

• when φ00 = φ22 = 0 and φ11 = 0 this refers to Segre
Type [(1, 111)];

• when φ00 = φ22 = 2φ11 �= 0 this refers to Segre Type
[1, (111)];

• when φ00 = φ22 = 0 and φ11 �= 0 this refers to Segre
Type [(1, 1)(11)];

• when φ00 = φ22 �= 0 and φ11 �= 0 this refers to Segre
Type [1, 1(11)].

Based on the mathematical characteristics of the Ricci
tensor, these classifications assist physicists in characteriz-
ing the source of gravity and other physical properties in
a particular spacetime, whether generated by electromag-
netic fields or a perfect fluid (isotropic/anisotropic). The first
integer surrounded in square brackets represents the timelike
eigenvalue, whereas the others are spacelike. The Segre type
[(1, 111)] is entirely isotropic and gives the cosmological
solution, since all the eigenvectors have similar eigenvalues.
For Segre Type [(1, 111)] we obtained a comparable solution
in f (R) theory of gravity to that established earlier by Iram
et al in GR i.e.

ds2 = −
(

1 − c0

r
− c1r2

3

)
dt2 +

(
1 − c0

r
− c1r2

3

)
dr2
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+r2dθ2 + r2sin2θdφ2. (18)

For positive and negative values of c1, respectively, it is an
established Schwarzschild de-sitter/anti de-sitter solution. In
the subsequent sections, we will go through the other novel
solutions found by the remaining three Segre types in the
f (R) theory of gravity.

3.1 Segre type [1, (111)]

In this case, the eigenvalue degeneracy refers to the three
spacelike eigenvectors with equal eigenvalues, and the time-
like eigenvector has a different eigenvalue. The fluids behav-
ior is isotropic, with a unique timelike direction, but it is uni-
form in all spatial directions. Thus the energy–momentum
tensor of Segre type [1, (111)] is considered to be perfect
fluid given as

T (p f )
ab = (ρ + p)uaub + pgab, (19)

here, ρ is the energy density, p is the pressure, ua is the
four velocity. Corresponding to the metric the components
of energy momentum tensor become

T (p f )
ab = (−ρ, p, p, p). (20)

Now as φ00 = φ22 = 2φ11 �= 0, this implies

φ00 − 2φ11 =
(

−ν′′ + ν′

r
+ λ′

r
+ 2

r2

−2eλ

r2 + ν′λ′

2
− ν′2

2

)
= 0, (21)

along with two constraints given as

ν′′ + ν′ (ν′ − λ′)
2

− 2

r2 + 2eλ

r2 �= 0, (22)

ν′ + λ′

r
�= 0. (23)

There is a system of two independent governing equations
along with energy momentum tensor that specifies the exis-
tence of four unknowns (eλ, eν, ρ, p). Segre classification
yields a further Eq. (21) that decreases the arbitrariness by
one degree. To ascertain the solution of the system in the
Segre type [1, (111)] an assumption for one of the metric
potentials is made. In our case we assume ν, given as

ν = ln

(
1 + r2

4

)
, (24)

using this ν, differential equation (21) implies

λ = ln

(
− 2r2 + 1

(a2r2 − 1)(r2 + 1)

)
. (25)

Fig. 1 Graph of metric potential for α = 0.05 and a2 = 0.2567

Fig. 2 Graph of density, pressure and ratio of pressure-density for α =
0.05 and a2 = 0.2567

• By equation we get two metric potentials eλ and eν which
are singularity free the most essential condition for a
physically acceptable solution. The metric potential eλ

is 1 at the center (r = 0) while eν at center is equiv-
alent to some positive constant, both having increasing
nature. The graph of the metric potential are plotted in
Fig. 1 which satisfy the requisite conditions.
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Fig. 3 Graph of density and pressure gradient for α = 0.05 and a2 =
0.2567

• The energy density and pressure expression in this case
become

ρ = (1 + 2αR)

(
1

r2 − 1

r2 (re−λ)′
)

− αR2

2

+ 2αe−λ

[
R′

(
λ′

2
− 2

r

)
− R′′

]
,

p = αR2

2
+

(
e−λ(1 + 2αR)

2

) (
ν′′

2
+ ν′ (ν′ − λ′)

4

+3ν′ − λ′

2r
+ 1 − eλ

r2

)

+ αe−λ

(
R′

(
ν′ + 3

r
− λ′

2

)
+ R ′′

)
. (26)

Energy density and pressure must be free from central
singularity. They should be decreasing with the variation
in radial coordinate and pressure must vanish at bound-
ary of the stellar object as illustrated in Fig. 2. Moreover,
the pressure density ratio must be decreasing, continuous
and less than one as in our case satisfying the requisite

condition i.e.
(
p
ρ

)
|r=0 ≤ 1. Figure 3 depicts the decreas-

ing nature of density gradient dρ
dr and pressure gradient

dpr
dr .

• Matching the interior solution at boundary (r = R) to
the Schwarzschild metric as

eλ =
(

1 − 2M

R

)−1

, (27)

here, the total mass is given by M . The total mass at
boundary in our case by using Eqs. (25) and (27) becomes

2M

R
= R2

2R2 + 1
. (28)

The greatest allowable mass-to-radius ratio (M/R) for
fluid spheres is 2M/R ≤ 8/9, as stated by [25]. This is
evident from Fig. 4, which illustrates the effective mass–
radius relation for a static spherically symmetric perfect
fluid star.

• The gravitational redshift occurs when leaving the gravi-
tational well the photons or electromagnetic waves expe-
rience the energy loss, it is defined as

z = e
−ν
2 − 1. (29)

Whereas surface redshift refers to the entire mass and
radius of the astronomical object. It is the most impor-
tant component since no light will ever escape the event
horizon, it is defined as

zs = e
λ
2 − 1. (30)

For our model the expressions become

z = 2 − √
2
√
r2 + 1√

2
√
r2 + 1

, (31)

zs =
√−2r2 − 1√

(a2r2 − 1)(r2 + 1)
− 1. (32)

The gravitational redshift is denser towards the center
compared to the surface, as seen in Fig. 5. The surface
redshift, however, is minimum at center and maximum
at boundary.

• Energy conditions correspond to the following linear
relationships between energy density and pressure, along
with certain constraints.

1. Weak Energy Condition (WEC):ρ(r) ≥ 0,
2. Null Energy Condition (NEC):ρ(r) + p ≥ 0,
3. Strong Energy Condition (SEC):ρ(r) + 3p ≥ 0,
4. Dominant Energy Condition (DEC): ρ(r) ≥ |p|.

For this model Figs. 2 and 6 show that the energy criteria
are fulfilled in the interior structure of the star.

• For stability of the compact object the causality condition
inside the interior must be satisfied i.e. 0 < v2 < 1. It is
defined as

v2 = dp

dρ
, (33)

123



267 Page 6 of 16 Eur. Phys. J. C (2024) 84 :267

Figure 7 illustrates the required condition that is the speed
of sound must be less than the speed of light “c = 1” is
satisfied making the system stable

• The adiabatic index is a thermodynamic parameter that in
certain spacetime models discerns the effect of the mat-
ter and energy distribution with respect to specific heat
capacity. In certain circumstances, it is a weak function of
density while in some cases it has more intricate density
dependence. For the stable configuration, the adiabatic
index for pressure is given as the ratio of the specific
heats, as explained by [26,27]

� =
(

ρ + p

p

)
dp

dρ
. (34)

If � is greater than 4/3, as predicted by [28] then it is
physically significant, as shown in Fig. 8.

• The TOV equations given by [29,30] are the fundamental
equation in astrophysics describing the equilibrium struc-
ture for static spherically symmetric spacetime modeling
the gravitational balance and internal structure. Hydro-
static and gravitational forces are the two forces that are
involved in this case, given as

Fh = −dp

dr
, Fg = −(ρ + p)ν′.

In the event of no net force acting, the stellar system
remains in an equilibrium condition, implying that the
following equation is satisfied

Fh + Fg = 0, (35)

dp

dr
+ (ρ + p)ν′ = 0. (36)

Thus the sum of all forces, as shown in Fig. 9, is zero,
with gravitational force acting as a counterbalance to the
positive hydrostatic force.

3.2 Segre type [(1,1)(11)]

In this caes, the eigenvalue degeneracy corresponds to two
eigenvectors with symmetry in the yz plane. The timelike
eigenvector and the third eigenvector of spatial direction has
a comparable eigenvalue to the timelike eigenvector. Accord-
ing to [23,31], this type involves a non-null electromagnetic
field. The fluid behavior of this Segre type will be anisotropic
as a result of these principal null directions correlating to dif-
ferent eigenvalues. Therefore, non-null electromagnetic field
with the anisotropic fluid distribution must be represented by
a Segre-type energy–momentum tensor [(1,1)(11)] given as

Tab = T (ap f )
ab + T (emt)

ab , (37)

Fig. 4 Graph of mass with radial coordinate for α = 0.05

Fig. 5 Graph of surface and gravitational redshifts for α = 0.05 and
a2 = 0.2567

where T (ap f )
ab and T (emt)

ab are given as

T (ap f )
ab = (ρ + pt )uaub + pt gab + (pt − pr )vavb, (38)

and

T (emt)
ab = 1

4π

(
F d
a Fbd − 1

4
gabFcd F

cd
)

. (39)
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Fig. 6 Graph of energy conditions for α = 0.05 and a2 = 0.2567

Fig. 7 Graph of speed of sound for α = 0.05 and a2 = 0.2567

Here, E the electric field intensity, pr and pt are radial and
tangential pressure, respectively, whereas va denotes a unit
space-like vector. Corresponding to the metric the component
of energy momentum tensor become

Tab = diag(−ρ − E2, pr − E2, pt + E2, pt + E2). (40)

Reference [32] identified that anisotropy in dark energy is
suggested by models like [(1, 1)(11)], with particular degen-
eracy complicating the behavior and having peculiar proper-

Fig. 8 Graph of adiabatic index for α = 0.05 and a2 = 0.2567

Fig. 9 Graph of forces for α = 0.05 and a2 = 0.2567

ties. In this type, we have φ00 = φ22 = 0 and φ11 �= 0 that
results in one constraint given by Eq. (22) and one additional
equation, given as

ν′ + λ′ = 0. (41)

Due to the presence of anisotropy, electromagnetic field,
and existence of system of three governing equations (9)–
(11), there are a total of six unknowns (eλ, eν, E2, ρ, pr , pt )
in this situation. So in order to find solution one needs to

123
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take three ansatz, but the presence of Segre type gives an
additional equation (41) which reduces the arbitrariness to a
choice of two. Thus assuming E2 and λ, given as

E2 = x

2(1 + x2)
, (42)

λ = ln

(
1 + b1r2

(1 + b2r2)2

)
, (43)

where Eq. (41) implies

ν = −ln

(
1 + b1r2

(1 + b2r2)2

)
+ a3. (44)

• The metric potentials eλ and eν must be singularity free
so our choice of eλ satisfies this condition and has an
increasing nature. In this case, eν at center is equivalent
to some positive constant and is decreasing when moving
towards the boundary of compact object. The behavior of
metric potential are shown in Fig. 10.

• The electric field intensity given by Eq. (42) satisfies
the requisite condition of being zero at the center and
then having an increasing nature when moving toward
the boundary as depicted in Fig. 12.

• The energy density, radial and tangential pressure expres-
sion in this case become

ρ = (1 + 2αR)

(
1

r2 − 1

r2 (re−λ)′
)

− αR2

2

+ 2αe−λ

[
R′

(
λ′

2
− 2

r

)
− R′′

]
− x

2(1 + x2)
,

pr = x

2(1 + x2)
+ (1 + 2αR)

(
e−λ

(
ν′

r
+ 1

r2

)
− 1

r2

)

+ αR2

2
+ 2αR′e−λ

(
ν′

2
+ 2

r

)
,

pt = e−λ (1 + 2αR)

(
ν′′

2
+ ν′ (ν′ − λ′)

4
+

(
ν′ − λ′)

2r

)
+ αR2

2

+ 2αe−λ

[
R ′

(
ν′

2
− λ′

2
+ 1

r

)
+ R ′′

]
− x

2(1 + x2)
.

(45)

Energy density and pressure must be free from central
singularity. Here energy density at center (ρc) is equiva-
lent to positive constant and is decreasing while moving
towards the boundary of star. Both the tangential and
radial pressure become negative that proves the presence
of dark energy in models of Segre type [(1, 1)(11)]. pr
is equivalent to pt at center and are increasing as mov-
ing further, whereas pr vanishes at boundary of star, as
illustrated in Fig. 11.

• The difference between tangential and radial pressure i.e.
(�= pt − pr ) is defined as anisotropy where pr (0) =
pt (0) implies �r=0 is zero. It is essential for the compact
object to have � > 0, which denotes that the anisotropic

force is repellent in nature. This is feasible when (pt >

pr ). Otherwise, if radial pressure is greater than tangen-
tial pressure (pr > pt ), then this indicates the existence
of a new, attractive force. For this model the anisotropy
is depicted in Fig. 12.

• Matching the interior solution at boundary to the Reissner
Nordstrom metric as

eλ =
(

1 − 2M

R
+ Q2

R2

)−1

, (46)

here, the total mass is given by M and charge by Q. The
total mass at boundary in our case by using Eqs. (43) and
(46) becomes

2M

R
= (1 + aR2)(1 + E2R2) − (1 + bR2)2

1 + aR2 . (47)

The effective mass radius ratio as specified by [25]
i.e. 2M/R ≤ 8/9 is satisfied in this case as depicted
in Fig. 13.

• The gravitational and surface redshift given by Eqs. (29)
and (30) in this case become

z = (e
−a3

2 )
√

1 + b1r2 − 1 − b2r2

1 + b2r2 , (48)

zs =
√

1 + b1r2 − 1 − b2r2

1 + b2r2 . (49)

Graphically depicted in Fig. 14 where both profiles have
increasing nature in the stellar interior.

• Energy conditions for anisotropic matter distribution cor-
respond to the following linear relationships between
energy density, radial and tangential pressure, along with
certain constraints.

1. WEC: ρ(r) ≥ 0,
2. NEC: ρ(r) + pr ≥ 0, ρ(r) + pt ≥ 0,
3. SEC: ρ(r) + pr + 2pt ≥ 0,
4. DEC: ρ(r) ≥ |pi |.

Figures 11 and 15 show that the weak, dominant and null
energy criteria are satisfied in this model. Regarding dark
energy models, it is necessary to breach the strong energy
condition, as shown in the profile, which is less than zero.
Moreover, in these theories, the criteria for ordinary mat-
ter do not comply since dark energy is not an ordinary
kind of matter or energy. The causality requirement is
violated in addition to the violation of the strong energy
condition. Since it affects the rate of expansion and the
large-scale structure of cosmic objects, dark energy is
essential to understanding the dynamics and development
of the universe as a whole.
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Fig. 10 Graph of metric potential with α = 0.1, b1 = 6 anda3 = −0.1

Fig. 11 Graph of density, radial and tangential pressure with α = 0.1,
b1 = 6 and a3 = −0.1

3.3 Segre type [1,1(11)]

In this case, the eigenvalue degeneracy refers to three space-
like eigenvectors, where there is a symmetry in the yz plane,
while the other spacelike eigenvector indicates a different
spatial direction from this symmetry plane. The one before
the comma indicates the timelike eigenvector with a unique
direction. As a result, the fluid behavior in this Segre type

Fig. 12 Graph of anisotropy with α = 0.1, b1 = 6 and a3 = −0.1

Fig. 13 Graph of mass with radial coordinate for with α = 0.1, b1 = 6
and a3 = −0.1 along with its upper bound

will be anisotropic, and the energy–momentum tensor for
this Segre type [1, 1(11)] is considered to be an anisotropic
perfect fluid, given by Eq. (38). Corresponding to the metric
the component of energy momentum tensor become

T (ap f )
ab = (−ρ, pr , pt , pt ). (50)

Now in this type, we have φ00 = φ22 �= 0 and φ11 �= 0
which implies two constraints, one given by Eq. (22) and
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Fig. 14 Graph of surface and gravitational redshifts with α = 0.1,
b1 = 6 and a3 = −0.1

Fig. 15 Graph of energy conditions with α = 0.1, b1 = 6 and a3 =
−0.1

other given as
(

−ν′′ + ν′

r
+ λ′

r
+ 2

r2 − 2eλ

r2 + ν′λ′

2
− ν′2

2

)
�= 0, (51)

In this case, again for system of three governing Eqs. (9)–
(11) and in presence of anisotropy there are five unknowns
(eλ, eν, E2, ρ, pr , pt ) along with the two constraints. This
Segre type does not give any additional equation to reduce

the arbitrariness, so we have to take two ansatz for finding
the solution. So the Karmarkar criterion for class one space-
time is used to minimize the arbitrariness to take one ansatz.
A 4-D curved space-time can be embedded within a 5-D
pseudo-Euclidean space as discussed by [33]. The metric (4)
can represent a class-I spacetime if satisfies the Karmarkar
condition given as

R0101R2323 = R0303R1212 + R1220 + R1330. (52)

The Riemann curvature tensor’s non-zero components for the
metric (4) are given as

R0101 = eν

(
ν′′

2
+ ν′2

4
− λ′ν′

4

)
,

R0202 = R0303sin
2θ = rν′

2
,

R2323 = r2sin2θ(1 − e−λ),

R1212 = R1313sin
2θ = rλ′

2
,

(53)

where R2323 �= 0. Thus the Karmarkar condition can be
written as

ν′′

ν′ = 1

2

[
λ′eλ

eλ − 1
− ν′

]
, (54)

by integrating Eq. (54), ν in terms of λ is obtained as

eν =
(
C2

∫ √
eλ − 1 dr + C1

)2

, (55)

where C1 and C2 are constants of integration. Consider the
metric potential for the interior of anisotropic configuration
as

eλ = 1 + a4r
2. (56)

By using Eq. (56) in Eq. (55) we get

eν =
(
C1 + C2

√
a4r2

2

)2

. (57)

• The metric potential eλ and eν obtained in Eqs. (56) and
(57) satisfy the necessary condition of being free from
singularity, as shown in Fig. 16.

• The energy density, radial, and tangential pressure
expression for this case are given as

ρ = (1 + 2αR)

(
1

r2 − 1

r2 (re−λ)′
)

− αR2

2

+ 2αe−λ

[
R′

(
λ′

2
− 2

r

)
− R′′

]
,

pr = (1 + 2αR)

(
e−λ

(
ν′

r
+ 1

r2

)
− 1

r2

)

+ αR2

2
+ 2αR′e−λ

(
ν′

2
+ 2

r

)
,
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Fig. 16 Graph of metric potential for α = 0.1, C1 = 0.56, C2 = 0.62
and a4 = 1.694

Fig. 17 Graph of density for α = 0.1, C1 = 0.56, C2 = 0.62 and
a4 = 1.694

pt = e−λ (1 + 2αR)

(
ν′′

2
+ ν′ (ν′ − λ′)

4
+

(
ν′ − λ′)

2r

)

+ αR2

2
+ 2αe−λ

[
R ′

(
ν′

2
− λ′

2
+ 1

r

)
+ R ′′

]
.

(58)

The profiles given in Fig. 17 clearly exhibit the singular-
ity free nature. Further, both the pressure are equivalent
at the center, while radial pressure vanishes at the bound-
ary. Due to pt > pr , Fig. 18 shows the positive anisotropy
depicting the repellent nature of anisotropic force. This
positive pressure satisfies the gradient condition i.e. dpr

dr

and dpt
dr as displayed in Fig. 19. Moreover, In stellar inte-

rior Fig. 20 depicts the pressure density ratio is decreas-

ing, continuous and less than one i.e
(
pr
ρ

)
|r=0 ≤ 1 and(

pt
ρ

)
|r=0 ≤ 1.

• Now matching the interior solution at boundary to the
Schwarzschild metric as done in Eq. (27), we get max-
imum mass at boundary. In this case, using the metric
potential (56), we get

2M

R
= a4R2

1 + a4R2 . (59)

Figure 21 demonstrates that the maximum mass at the
boundary is smaller than the upper bound 8/9 and that
the effective mass-radius ratio is satisfied.

• In this case the expression for gravitational and surface
redshift from Eqs. (29) and (30) take the form as

z = 2 − 2C1 − C2
√
a4r2

2C1 + C2
√
a4r2 , (60)

zs =
√

(1 + a4r2) − 1. (61)

The profiles are shown in Fig. 22, with the surface red-
shift increasing and the gravitational redshift decreasing
within the compact object.

• The speed of sound in radial and transverse direction for
anisotropic fluid distribution are obtained as

v2
r = dpr

dρ
=

(
dpr/dr

dρ/dr

)
, (62)

v2
t = dpt

dρ
=

(
dpt/dr

dρ/dr

)
. (63)

For physical acceptance of solution both radially and
transversely, the speed of sound must be less than the
speed of light “c = 1′′ inside the stellar interior, as shown
in Fig. 23. Reference [34] introduced the notion of ‘crack-
ing’ for anisotropic matter dispersion. Later, [35] showed
using the “cracking” notion that the region is possibly
stable where −1 < v2

t − v2
r < 0 and potentially unsta-

ble where 0 < v2
t − v2

r < 1 inside the anisotropic fluid
sphere, implying 0 < |v2

t − v2
r | < 1. From the graphical

behavior shown in Fig. 24, it can be observed that this
model satisfy causality conditions and the region inside
the star is potentially stable.
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• For this case, the energy conditions previously listed in
Sect. 3.2 must be satisfied. From Figs. 17 and 18 one
clearly observes that the dominant and weak energy cri-
teria are fulfilled. Moreover, Fig. 25 shows profiles of the
null, and strong energy conditions that abide by the nec-
essary requirements.

• For stable configuration the adiabatic index for radial and
tangential pressure is presented as the two specific heats
ratio given as.

�r =
(

ρ + pr
pr

)
dpr
dρ

,

�t =
(

ρ + pt
pt

)
dpt
dρ

.

(64)

The model is physically relevant in this case as well when
the value of �r and �t is greater than 4/3, as shown in
Fig. 26.

• When anisotropy is taken into account, then hydrostatic,
gravitational, and anisotropic forces are acting on the stel-
lar configuration, given as

Fh = −dp

dr
, Fg = −(ρ + p)ν′, Fa = 2

r
(pt − pr ),

The configuration remains in an equilibrium state if the
net force acting is zero i.e.

Fh + Fg + Fa = 0, (65)

dp

dr
+ (ρ + p)ν′ − 2

r
(pt − pr ) = 0. (66)

The sum of all forces, as shown in Fig. 27 tends to zero,
with gravitational force acting as a counterbalance to the
positive hydrostatic and anisotropic force.

4 Discussion

In literature, many attempts have been made to develop
solutions for spherically symmetric and static spacetimes
with and without charge, first in GR and currently in the-
ories of gravity. In this article, some new solutions in the
f(R) modified theory of gravity are presented using a sys-
tematic approach of Segre classification. By this systematic
approach, the number of assumptions required to solve the
complex system is reduced. Solution can only be of the Segre
types [(1, 111)], [1, (111)], [(1, 1)(11)], or [1, 1(11)] corre-
sponding to the spacetime metric. The eigenvalue degeneracy
in these situations correlates to timelike and spacelike eigen-
vectors and their primary null direction depending on which

Fig. 18 Graph of radial and tangential pressure for α = 0.1, C1 =
0.56, C2 = 0.62 and a4 = 1.694

Fig. 19 Graph of anisotropy for α = 0.1, C1 = 0.56, C2 = 0.62 and
a4 = 1.694

energy–momentum tensor for the respective Segre type ten-
sor is considered. The entirely isotropic Segre type [(1, 111)]
gives the cosmological solution as in our case we recover the
Schwarzschild de-Sitter/anti-de-Sitter solutions in the modi-
fied theory of gravity. The type [1, (111)] can represent per-
fect fluid, with pressure isotropic in space, by considering
this novel solution is obtained. In this case, the new solution
satisfies all the physical and stability criteria. Each of the
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Fig. 20 Graph of pressure density gradients forα = 0.1, C1 = 0.56,
C2 = 0.62 and a4 = 1.694

Fig. 21 Graph of pressure density ratio for α = 0.1, C1 = 0.56,
C2 = 0.62 and a4 = 1.694

energy criteria is fulfilled along with the causality condition
in which we have the speed of sound less than the speed of
light. Moreover, the equilibrium condition is checked where
the sum of all forces becomes zero making the model more
stable and compact.

The type [(1, 1)(11)] represents a non-null electromag-
netic field, for such type, the particular behavior is com-
plex resulting in conventional dark energy models having

Fig. 22 Graph of mass with radial coordinate for α = 0.1, C1 = 0.56,
C2 = 0.62 and a4 = 1.694

Fig. 23 Graph of surface and gravitational redshifts for α = 0.1,C1 =
0.56, C2 = 0.62 and a4 = 1.694

anisotropy. Arbitrariness is decreased by one degree owing to
the extra equation provided by the non-zero Ricci-Newmann
Penrose scalars. The graphical analysis for this particular
model is presented in Fig. 10, 11, 12, 13, 14 and 15. The
resulting pressure is negative in this scenario which is asso-
ciated with dark energy. Dark energy is not an ordinary form
of matter, its repulsive nature counteracts the attractive gravi-
tational forces caused by matter. The strong energy condition
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Fig. 24 Graph of speed of sound and stability factor for α = 0.1,
C1 = 0.56, C2 = 0.62 and a4 = 1.694

Fig. 25 Graph of energy conditions for α = 0.1, C1 = 0.56, C2 =
0.62 and a4 = 1.694

provides gravitational attraction due to positive curvature, but
in this scenario repulsive nature of dark energy results in the
violation of SEC as depicted in Figure. The causality criterion
additionally fails in this instance since exotic substances do
not always fit the prerequisites for ordinary matter. For such
solutions, one can verify the existence of wormholes in the
modified f(R) theory of gravity, as carried out by [36].

Fig. 26 Graph of adiabatic index for α = 0.1, C1 = 0.56, C2 = 0.62
and a4 = 1.694

Fig. 27 Graph of forces for α = 0.1, C1 = 0.56, C2 = 0.62 and
a4 = 1.694

The Segre type [1, 1(11)] refers to the anisotropic distribu-
tion of matter and energy. Here, we have two constraints, five
unknowns, and a system of three governing equations. The
Karmarkar condition with metric potential eλ = 1 + a4r2

is used to further minimize the arbitrariness. The physi-
cal parameters eλ, eν , anisotropy, and mass increase when
moving toward the boundary of the stellar interior, which is
essential for a physically acceptable configuration. Further-
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more, the viable trends of energy and causality conditions
are presented. The profiles of the adiabatic index, pressure
density ratio, surface and gravitational redshift are observed
to satisfy the requisite criterion. The solution reflects a static
and equilibrium configuration since the forces acting on the
distribution of matter balance each other out. Now for dif-
ferent Segre types, we match the solution with the obser-
vational data of different compact objects. We specifically
investigate two pulsars for type [1, (111)] and [1, 1(11)]:
K S1731 − 260, associated with thermonuclear bursts, and
PSRJ1614 − 2230, identified as a millisecond pulsar. The
numerical values for constant are determined to performed a
comparative analysis, ensuring that the results were consis-
tent with observational limitations. Comprehensive numeri-
cal results are shown in Tables 2 and 3, which provide a thor-
ough comparison of matter densities and central pressure
under a modified gravity framework where α �= 0. These
findings emphasize discrepancies from general relativity’s
predictions. The tables also contain the outcomes of the spe-
cial case where we return to GR i.e. α = 0. Such a compari-
son is earlier done by [37] by assuming a nuclear density of
the order 1015g/cm3 for various pulsars. Our investigation
further shows that the f(R) theory of gravity appears to be a
suitable framework to explain the viability of a new classi-
fication. Furthermore, this study might be extended to other
modified theories, enabling the identification of solutions via
Segre classification that can be systematically compared with
other astrophysical observations.
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Table 2 Comparison of matter densities and central pressure for the stated compact object when α = 0 in the GR case and its deviation for α �= 0

Segre type Compact object Mass M� Radius (km) 2M/R
[1, (111)] K S1731 − 260 [37] 1.61+0.35

−0.35 10+2.2
−2.2 0.4949

a2 ρc(1015g/cm3) ρs(1015g/cm3) pc(dyne/cm2)

α = 0.05 0.00791 3.2394 0.01878 1.1137

α = 0 0.0053 3.0092 0.01605 0.9923

Table 3 Comparison of matter densities and central pressure for fixed values of C1 = 1 and a4 = 7.35 × 10−3 when α = 0 in the GR case and its
deviation for α �= 0

Segre type Compact object Mass M� Radius (km) 2M/R
[1, 1(11)] PSRJ1614 − 2230 [38] 1.97+0.04

−0.04 9.69+0.2
−0.2 0.4086

C2 ρc(1015g/cm3) ρs(1015g/cm3) (pr = pt )|r=0

α = 0.01 0.029 0.01746 0.00782 0.00256

α = 0 0.0516 0.02201 0.00945 0.00145
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