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1 Introduction

On certain backgrounds, string theory admits a consistent truncation to a subset of modes
in its Kaluza-Klein (KK) spectrum whose complete non-linear dynamics is captured by a
gauged supergravity in lower dimensions. Notable examples include the reduction of eleven-
dimensional supergravity on AdS; x S7 [1-4] and on AdS; x S* [5-7], and the reduction
of type IIB supergravity on AdSs x S° [8-10].

Such consistent truncations are in general difficult to construct, but when they exist they
constitute a fundamental tool for obtaining solutions in ten and eleven dimensions, as the
consistency of the truncation guarantees that every solution of the lower-dimensional gauged
supergravity can be embedded into a configuration that solves the equations of motion of the
parent theory. This approach has been particularly fruitful in holographic set-ups, where the
gauged supergravity techniques have made possible the construction of hundreds of different
AdS solutions — see [11-15] for recent surveys — that are dual to different conformal field
theories (CFTs) and can be used, among other things, as a playground to check Swampland



conjectures, such as the AdS conjecture [16] or the CFT distance conjecture [17]. Furthermore,
the relative simplicity of the lower-dimensional theories has allowed the analysis of other
holographically relevant phenomena, such as black holes [18, 19] describing finite temperature
states in the CFT, or domain walls realising CFT interfaces [20, 21] and RG-flows between
different CFTs [22, 23]. Additionally, the existence of these consistent truncations also
facilitates even some intrinsically higher-dimensional computations such as the spectrum
of masses of the KK modes [24].

Recently, reformulations of string theory based on its duality symmetries [25, 26] have
played a pivotal role in our understanding of consistent truncations [27, 28]. In fact, at
present there are theorems [29] that guarantee the existence of these reductions for wide
classes of theories and backgrounds in terms of suitable factorisations of duality-covariant
fields. However, explicit KK Ansétze for the standard higher-dimensional metric and fluxes
keeping the entire dependence on the lower-dimensional fields and their derivatives are often
not known due to the intricate nature of the dictionary relating the original supergravities
to the duality-covariant counterparts. A convenient way to describe the embedding of these
non-trivial profiles makes use of the tensor hierarchy, which is a supplement to the p-forms in
the ungauged supergravity that are introduced so as to guarantee that the gauged theory is
formally covariant under the original global symmetry group [30-33]. The redundancies so
introduced can be eliminated at the level of the field strengths, and an explicit KK Ansatz in
terms of the original fields and their derivatives can thus be obtained [34-36]. These extra
forms allow us to trade some complicated dualisations with respect to the internal metric for
much simpler dualisations with respect to the four-dimensional metric.

It has been observed [15, 37] that there exists a non-trivial network of gauged super-
gravitites in four dimensions that are connected by singular limits of their moduli. When
the original gauged supergravity admits an uplift to string theory, one can follow this limit
also in higher dimensions [38, 39], and thereby connect one consistent truncation to another.
This technique can also be employed to construct new solutions from known ones [40]. In
this paper, we employ these relations to describe the truncation of type IIB supergravity
on AdS; x S® x S'. There are in fact several inequivalent truncations on this geometry,
and in this work we focus on the ones in which the resulting gaugings are SO(6) x R'? [41]
and [SO(6) x SO(2)] x R'? [42, 43]. The latter can be understood as a modification of the
former where an extra vector is dyonically coupled to the matter fields. Even though the
consistency of these truncations is well known [44], complete KK Ansétze are unavailable.
For simplicity, we focus here on the truncation of these four-dimensional theories down to
the STU sector so that only six scalars and four vectors can have a non-trivial profile. The
STU model obtained from the SO(6) x R'? theory can be obtained as a singular limit of
the STU model corresponding to the SO(8) gauging of [19], and we show that the S° x S*
background in type IIB can be obtained as a singular limit of eleven-dimensional supergravity
on the S7 followed by a circle reduction and T-duality. The explicit Ansatz embedding both
theories in type IIB is presented in equations (4.32)—(4.37).

The rest of the paper is structured as follows. In the next section we introduce the
4d models which we are going to analyse, and discuss some of their properties and their
reformulation in terms of the tensor hierarchy. Section 3 briefly reviews E7(7)-Exceptional



Field Theory (ExFT) [45] and the description of consistent truncations down to maximal
gauged supergravities in the language of generalised Scherk-Schwarz reductions [28], which
will be subsequently used to describe the uplift of the STU models into M-theory on S7
and type IIB supergravity on S® x S', and the consistency of these embedding is explicitly
checked in a simpler sub-truncation. New solutions in these gaugings are then constructed in
section 5 and we conclude by discussing some possible future directions and include further
technical details in two appendices.

2 Gauged STU supergravity

We consider D = 4 theories that arise as a truncation of N' = 8 gauged supergravity [46, 47] by
requiring invariance under the maximal torus of the relevant gauge group — see appendix A
for the expression of the generators of these Cartan subalgebras in terms of the generators
of E7(7y. The bosonic field content of these theories consists of the metric, four vectors and
six (pseudo)scalars corresponding to the scalar manifold

(SL(2,R))3 < By (2.1)

SO(2) SU(S)

parametrised by u; = x; — ie” %, with ¢ = 1,2,3. The bosonic sector of the Lagrangians
of these STU supergravities can then be written as

L= (R — V) voly + Lnrsm + Lvec - (2.2)
The scalar kinetic terms read

LnisM = 5 Y, [doi Asdp; + €2%idx; A xdy] (2.3)

and the vector kinetic terms are given by
Lyec = 3T F* AN FP + LR, F& A FP (2.4)

with a = 1,2, 3,4. These non-minimal couplings can be extracted from the symmetric coset
representative of the maximal theory in (A.9) via the block decomposition in (A.12) after the
identifications in (A.11). The result can be given as the period matrix N, = Rap + iZap

2v2v2 2 2 2
—YrYsYs @Yy a3 Y3 Y5
; 2 21212 2 2
Ny = | oYt —YiYsYy o) q3 Y3 (2.6)
ab — Y, Y, 21V 2 ¥ ) :
w g3 Y7 @Yy Y 5f22 v « VP
Y5 g3 Y7 aY?  SYPYRYY
!This period matrix recovers the kinetic and Chern-Simons terms in [48] under x:"™ = —x?™® and the
following redefinition of the vector fields:
Flhere _ Fé{here , F2here _ F?(’;here , Félere — _Flthere , Finere _ Fchere ) (25)

In section 4.1, this same relabelling applies to the coordinates u®, ¢*, and similarly to W, and Z,.



in terms of the shorthands [48]

V2=e % 4 efiy?, VP = e, bi = €®ixi, (2.7)

and
W =P —iP, g =1ib;+bjb, with i#j#Fk, (2.8)

with
Py=1+b2+b3+b3, and  Py=2bibobs. (2.9)

For the potential, we consider the parent N = 8 supergravity to have one of the following
gauge groups: SO(8) [49], its CSO contraction SO(6) x R'? [41, 50] or the dyonic CSO
[SO(6) x SO(2)] x R'? [42, 43] gaugings, which all admit a higher-dimensional interpretation.
These gaugings can be described by embedding tensors with non-vanishing components in
the 36’ @ 36 of SL(8,R) as in (A.1), with the components 645 and ¢4 given by

0 = gdiag(1,1,1,1,1,1, 2, 2),

(2.10)
6 = mdlag(oa Oa Oa Oa 0,0, ja :i‘) ’

where g (resp. m) is the electric (resp. magnetic) coupling constant. By construction,
these are valid gaugings satisfying the linear and quadratic constraints for the embedding
tensor [44, 46] whenever & = 0. The three inequivalent choices are

9(8) ngiag(l,l,l,l,l,l,l,l), 5(8) =0,
9(‘3) :gdiag(171717171717070)7 6(6) 207 (211)
O = gdiag(1,1,1,1,1,1,0,0), &6y = mdiag(0,0,0,0,0,0,1,1),

with the labels respectively denoting the three different gauge groups above, with ¢ =m/g # 0
in the latter case.

In the STU truncation, these embedding tensors induce Fayet-Iliopoulos gaugings, whose
potentials read

Vi = —4g° Y (V2 +Y7), (2.12a)
i

Vigy = Vg = —4g° (Y2 + Y5 +Y7) . (2.12b)

The potential (2.12a) only admits one critical point. It sits at the scalar origin and corresponds
to the SO(8) maximally supersymmetric solution. In turn, the potentials (2.12b) do not
possess any extremum in this sector.

Even though the V4., potential is blind to the value of the magnetic coupling m, the
fermion couplings in this theory do depend on it. A similar situation has been previously
encountered [51] in the STU truncation of the dyonically-gauged SO(8) supergravity. In fact,
the truncated theory is not supersymmetric for non-vanishing m. On the other hand, the
electric cases are gauged N = 2 supegravities coupled to three vector multiplets. To see
this, observe that theories with A/ = 2 supersymmetries can necessarily be recovered in the
canonical perspective of [52, 53] in terms of special Kéhler and quaternionic structures. For
the scalar manifold (2.1), the special holomorphic section can be taken as

QM (2) = {1,u1, ug, us, —u1ugus, ugus, Uuz, urus} , (2.13)



in terms of the special holomorphic coordinates in (2.1). This section describes the geometry
of the scalar manifold and encodes its Kéhler potential as

K= —log [Z QMCMNQN] = —log[ — i(zl — 51)(2’2 — 22)(23 — 23)] N (2.14)

with Cpsny the symplectic form on Sp(8,R). Purely Fayet-Iliopoulos gaugings have a po-
tential [52]

V= —4g> (gﬁaiVM(?;f/N - 3VMVN)19M19N, (2.15)

with VM = ¢ X/2QM (2) a section of the special U(1)-bundle, g; = 9;3:K the hermitean
metric associated to the Kéhler potential, and 9J,; the embedding tensor describing how the
U(1) gauge group sits into the SU(2) R-symmetry group. The potential obtained from the
truncation of the SO(8) gauging is given in this language by

93 =g(—1,0,0,0,0,1,1,1), (2.16)
whereas the embedding tensor corresponding to Vg is given by
9y =g(-1,0,0,0,0,0,1,1). (2.17)

For the electric theories, the AN/ = 2 supersymmetry variations and fermionic mass-like terms
in the Lagrangian associated to these embedding tensors agree with the truncation of the
N = 8 fermion shifts associated to (2.11). However, for the dyonic gauging in (2.11), the
fermion shifts carry dependences on m which can not be recovered in the N’ = 2 language.

The potentials in (2.12b) can be obtained from V(g by means of a singular scaling. For
that, the scalars must be redefined as

o1 1 —k, P23+ P23+ k,

) _k (2.18)
X1+ €e"X1, X23 > € "X23,
the gauge coupling as g — e %/2g, and the gauge fields must also be scaled as
A172’3 — €k/2A172,3 , Ay — e_3k/2A4 , (2.19)

whilst the metric remains invariant. The singular limit & — oo on (2.2) after these redefinitions
maps the Lagrangian L) into L, also including the fermion couplings.

2.1 Tensor and duality hierarchies

The equations of motion of gauged D = 4, N’ = 8 supergravity can be written in a formally
covariant E;(7)-covariant formulation [30, 31, 54] if one introduces a set of redundant fields
in the so-called tensor hierarchy. For generic gaugings of D = 4, N’ = 8 supergravity, one
requires [30, 31] one-forms in the 56 representation of Ey(7), two-forms in the 133 and
three-forms in the 912, together with a set of four-forms that will not play a réle in the
following. These redundancies can be eliminated at the level of the field strengths through
a chain of dualities that relate them to the original fields and their derivatives [32, 33], so
that combinations of the equations of motion for the original fields are recovered from the



Bianchi identities for the forms in the tensor hierarchy. In the following, we show how these
reformulations apply to the STU supergravities of interest.
The equations of motion stemming from (2.2) for the one-forms and scalars are
d[Zap, * F* + RapF°] =0,
d* dp; — €2Pidy; A xdx; — %(%,iIabFa AxFP — %awiRabFa AFP+ 0y, Vvoly =0, (2.20)
d(e*# x dx;) — 20y, Ty F* N+ F° — 30, Rap F* N FP 4 0y, Vvoly = 0,
which can be interpreted as Bianchi identities for two- and three-form field strengths, respec-
tively. For gaugings inside SL(8,R), as the ones considered in this work, the p-forms in the
E7(7) tensor hierarchy are conveniently decomposed into one-forms AAB A4, two-forms
BaB, Bapcp, and three-forms CAB, Cup, C4BCP. CApcp in the 28 @ 28’, 63 & 70 and
36 @ 36" © 420 ¢ 420’ of SL(8,R). Their associated field strengths are given by
Hé)B _ dAAB + HC'DAC[A A AB]D - g[A\CACD A AD|B] + 2€C[ABCB} ’
Hyap = dAap — P Acpa A Apip + 040 AP N Apjp) — 2B14“0pic
H(g)AB = DBAB + %AAC’ AdACE 4+ %ABC A d[lCA
_ 1 .
+ %ODEAAC A ACD A AFB + EHACACD NApg A AEB
. _ 1 - .
— L¢P Auc N App N AFP — ngBAAC ANAP A App
~ 1
+2 GACCCB -2 CAchB — géAB(Trace) R
Hyapcp = DBapep + iA[AB A dACD} - %EABCDEFGHAEF A dAGH
+ é(Q[AmAEF - A[A\E‘SEF> NApp A Acp
+ maeapeperau AT A (fGlAU - AGI91J) AATH

+ 3054C" pop) — T3€acpprané™ CPFY (2.21)

and similarly for the four-forms H(‘E)B, ﬁ(4)AB, H(4)ABCD, I:I(‘j)BCD. Here the covariant
derivatives are given by the SL(8,R) decomposition of

D=d+ @MQAM A (ta)(R) , (2.22)
with (ta)(R) the E7(7) generators in the appropriate representation. For instance,

DBAB = dBu® + 04c AP A BpP + 00pABC A B4P
+69PAca A BpP +¢PP Acp A BAC, (2.23)

DBapcp = dBapcp +4Bjapcje N <§EFAF\D] - AEFHF\D]) :
These field strengths obey the Bianchi identities

DH,P = 2¢“VH o™, DHyap = —2H 514 0p1c

DH3a"” = Heyac A H(%B + 29ACH<%B — 2H 4y ac€P — £645 (Trace),



173 7 1 EF GH
DHapep = ZH(Q)[AB N H(Q)CD] - %ﬁABCDEFGHH(z) N H(z)

+ %QE[AFI(%BCD} — Seascprran? Hy#re, (2.24)
which, together with the E;(7) duality relations [32, 33]

Hoyap = %RAB cD H(Q)CD + %ZAB cD * H(z)CD 3
Heo = —15(ta) s’ Myp * DM (2.25)

Hepa™ = =31 [(ta) P Xng® MMN (MPOMps + 7560 )| vola,

recover the equations of motion for the vectors and scalars. Further details on the Eq(7
generators (t) m, structure constants Xan? and scalar representative M,y can be found
in appendix A.

Demanding invariance under the H algebra in (A.4) allows us to consistently truncate
this field content to

4+4 one-forms : A*, A,,
3+4+6 two-forms : By, Bl, Bap, (2.26)
444412412 three-forms : Cy, Ca, Cab, Cab

with a = 1,2,3,4, and p = 1,2,3. The forms By, Cap, Cap are off-diagonal, and By, are
also symmetric under exchange of indices. See (A.11)—(A.15) for the relation between the
preserved p-forms in (2.26) and the SL(8,R) objects. For convenience, we also introduce
an extra two-form By, constrained as

Bi1+By+Bs+ By =0, (227)

and extend the index as a = (p,4). If we restrict our attention to the class of gaugings
in (2.10), we can further truncate consistently the field content to

444 one-forms : A?*, A,,
346 two-forms : B,, Bap,
4444346 three-forms : Ca, éa, Cp4, ép4, 6’12 = 043, 623 = 641 s 031 = 642,
(2.28)
with Cp, = Cyp. The field strengths for these gauge potentials can be obtained by im-
plementing these truncations at the level of the SL(8,R) field strengths in (2.21). The
resulting expressions read
H) = dA*, Heyo = dA,
Hga = dBy + 20, Co — 26, Co — 3A* NdA, — A, NdA?
—% [QHbe—2fbéb—%Ab/\dzzlb—%/ib/\dAb} ,
b
Hzab = dBab + 15 A A dAp) + §(0aCab + 05Cha)

+ 2*14 Z Sabcd[ —A°A dAd + 4€CCcd] )
cd

(2.29)

H(4)a = dCa, FI(4)a = déa )



and similarly for H 4,1, and H (wab- In (2.29) there are no sums unless explicitly indicated,
and the embedding tensor components 6, and &, are related to fap and ¢4P in (2.11)
following the same pattern as the three-forms in (A.14). We have also introduced the totally
symmetric tensor

Sabed = S(abed) » Si23a = 1. (2.30)

From their definition in terms of potentials, it is easy to check that the field strengths
satisfy the Bianchi identities

dH, = dH oy = dHya = dH e = dHyan = dHgya, =0,
AH sya = 20aHwa = 2 €0 H i — Hiy) A Heaa — (sum),
dH o = 15 Ha A Hy + (00 H wyan + 05 Haba) (2.31)
+ o > Sabed[ = HEAHY + 46 H yed] -
od

Implementing the restrictions in (A.11)—(A.15) on (2.25), we can express the dual field
strengths in terms of the original STU fields and their derivatives. The magnetic two-form
field strengths are then given by

s 1 ¢ - B N B ) ;
Heyp = W _Cl(PO — Po*)H<12> +Y2(ay * —al)H<22> + y32(a3 * —CL3)H<32) + Y2 (ay * —ag)Hé)A )
i 1 1o, R - s oo N 5 —
H o = W _Y1 (a1 % —a1)H ) + ca(Po — Pox)HG,, + Yy (ag x —az) Hp) + Y3 (ag * —as)H(Q)_ ,
¥ L ro0 ~ 1 ¥ ~ 2 > 3 -2 ~ 4]
Hs = W Y3 (a3 x —az)Hy, + Yy (ag x —a2) Hiy) + c3(Po — Pox) Hig) + Y7 (a1 * —a1) H, |,
~ 1 ) - 1 2 ~ 2 2 ~ 3 D 4 ]
Hy = WE RE (az % —ag)H ) + Y3 (a3 * —a3)HE,) + Yi* (a1 * —a1) Hpy) + ca(Po — PO*)H(Q)_ ,
(2.32)
with W in (2.8) and
2 By
i =b:br| Py — 20b; a; = b; Py + —- ith ¢ | £k
a; ]k[ 0 z]v a; i 0+2bi’ W1 275]75 ) (233)
o =YYV, 0 =YYV, a=YYRVY, e =YPYPY.
Similarly, the three-form field strengths are
1
Hegp = 5 * (—dr — dipa + ds + € x1dx + €272 xadxa — €273 x3dx3) ,
1
Hpo = 5* (—dp1 + dps — dps + e*? x1dx1 — e*P2xadx2 + €*#3x3dx3)
2.34)
1 (
Hgz = 3* (dp1 + dpa + dps — €2# x1dx1 — e*P2xadx2 — €*#3x3dx3)
1
Hy = 3 * (der — dipa — dips — €*P xadx1 + €272 xadx2 — €273 x3dx3) -



for the ones in the 63 of SL(8,R), and

1 1 1
Hy12 = D * 2P dx Hia = o 2225 , Hipos = 5 x €23y
1 _
H(3>34 = D) * [2X1d901 + (1 —¢€ 2@1X%)dxl] )
N (2.35)
H 303 = D) * [2X2d‘102 + (1 — 6_2§02X%)dx2] )
1 _
H13 = 1 * [2X3d803 +(1—e 2@3X§)dx3] )

for the ones in the 70. The expressions for the four-form field strengths in terms of the
scalars depend on the choice of embedding tensor. Employing (2.25) for the class of gaugings
in (2.10), we obtain

H(4)]_ = 2g [}712 +x ?22 + }/32]‘7014 y ﬁ(4)]_ =2mzx Y22 V014 s
H(4)2 = 29 [)712 + Y22 +x 5}32]‘7014 y ﬁ(4)2 =2mzx }/?32 V014 , (2 36)
Hys =2gz Y2 +Y?+ Y32]vol4 , fI<4)3 =2mz Y{ voly, .
Hyy =2g [Y12 + YQZ + }732} voly , PI(4)4 =0,
and
H(4)34 = me)ae(prOLl, H(4)14 = 2m.fX26902V014 N H<4)24 = 2mi’X3€<’03VOI4 s
Huya = —2gx1€°'voly H3 = —2gx2e*voly Huyz = —2gx3e?*voly,,
Hy34 = —2gxx1€7 voly H 14 = —2gax2e?>voly Huy2a = —2gxx3e?*voly .
(2.37)
The forms in (2.36) can be used to reproduce the potentials in (2.12) as
Z [QaH(4)a + gaﬂ(4)a] = —VV014 . (238)

a

As noted before, inserting the duality relations (2.32) into the Bianchi identities (2.31), we
obtain the scalar-Maxwell equations in (2.20) stemming from the Lagrangian (2.2). Similarly,
the Bianchi identities for the three-form field strengths are identically verified if the equations
of motion for the scalars are satisfied. The derivatives of the scalars that appear in equations
of motion for the dilatons are retrieved from

H(3)1 + H(3)2 = -2 Gm} ku[hl] * dOY , H(3)1 + H(3)4 = -2 Gm, k‘u[hg] * OV , (2 39)
H(3)2 + H(3)4 = -2 Guv ku[hg] * d@v y
with ®“ a collective name for the six scalars (¢;, x;) and Gy, the non-linear sigma-model
metric in (2.3). The Killing vectors k[h;] are defined in (A.10). Similarly, the three-forms
in (2.35) are related to k[e;] and k[f;] in (A.10) and encode the derivatives of the axions in
their equations of motion. The derivatives of the scalar potential in (2.20) are accounted



for by the four-form field strengths as
'91H(4)1 + 92H(4)2 - flﬁm)l - §2ﬁ<4>2 - %Z (eaH(4)a - faﬁ@)a) = %ku[hl]auv V014 )
a
01H 1 + 024H s — E0Ht — EaHipa — 3 (0aHwa — EaH wa) = 1k [h2]0,V voly
a
92H(4)2 + 94H(4)4 - §2£’(4)2 - 54}}(4) - %Z (aaH(4)a - faﬂ(zl)a) = %ku[hS]auVVOLL ’
a

gﬁ<4)12 = %k“[eﬂ@quoLL, ngI(4)23 = %k“[eg]aquoLl, glff(4>31 = %k‘u[eg]au‘/voh,
(2.40)

and, finally, the non-minimal couplings to the vector fields follow from
a a
a a

Hp,y N Hep + Hiy Ny — 5 Hiy) N Hipa = %k“[hs]au(ZH& A ff@)a) :
a a

in the equation for the dilations, and

Hap A Bz — HY) A HA = Skl (3 Hey A B |
a

a

ﬁ(g)Q VAN _FI(Q)4 - H(lz) VAN H(32) = %ku[eg]au(ZHg) AN -FI(Q)a) y
a

in the one for the axions.

Turning now our attention to the singular limit relating the different gaugings, under the
scaling (2.18) the three-form field strengths in (2.34) stay invariant, the magnetic two-form
field strengths have opposite scaling to the electric forms in (2.19),

ﬁ<2)1,2,3 = e_k/Qﬁ@)l,Q,?n Ij[(z)zl = €3k/2f{(2)4» (2.43)
and the electric four-form field strengths reduce to
H(4)a — ekH(4)a, (244)

with H ), the four-forms given by (2.36) with z = 0 and # = 0. The scaling of the other
four-forms, which will not be relevant in the following, can be computed in the same way
from (2.36) and (2.37).

In the sequel, we will embed the previous D = 4 gauged supergravities into type IIB and
D = 11 supergravity using a duality-covariant reformulation of the latter higher-dimensional
theories known as Exceptional Field Theory, and encoding part of the dependence on the
4d fields in terms of a subset of the forms in the tensor hierarchy.

,10,



3 E7(r) exceptional field theory

The bosonic field content of ExFT [45] is given by
{e,ua7 My, A,uM ) B,Lwa > B;J,I/M} ) (31)

with all fields depending on both “external”, z#, u = 0,...,3, and extended “internal”
coordinates, Y™, M =1,...,56. This dependence and the fields themselves are restricted
by the section constraints [45]

)" QueQn=0, Q"VQyueQN=0, (3.2)

with Qar € {On, Buwm} and the derivatives acting on any combination of fields or gauge
parameters in the theory. Here, (t,)n are the algebra generators and indices are raised
and lowered with the invariant symplectic form Q;ny as

1
QMN — <_328 38> . VM =MNyy o Vi = VO (3.3)

These constraints are needed for the generalised Lie derivative to close into a local Er 7
gauge algebra. Variations under the latter are given by [45]

SAVM = L, VM = AN VM —12PM K o AL VN 1 N(V) OnAN VM (3.4)

where PM K = (t,) 8™ (%)% is the projector onto the adjoint representation and A(V) is
the weight associated to the generalised vector V™. To solve the constraints (3.2), E7(7) can
be reduced down to GL(7,R) (M-theory section) or GL(6,R) x SL(2,R) (Type IIB section).
After this reduction, the variation d, encodes the behaviour of the different fields under both
“internal” diffeomorphisms and gauge transformations.

3.1 M-theory section

For D = 11 supergravity, we use conventions in which our fields are subject to the action

S= /dnﬂfv 911 [}?11 - %|F<4>|2} - %/A(:ﬂ A EFy A F, (3.5)
with F(,, = dA, and contraction of indices with weight one denoted by | - |?, i.e.
Ei|* = 3iE .y EP 7 (3.6)

Under the structure group relevant for a seven-dimensional internal space, the extended

ExFT coordinates decompose as?

Ezy D SL(8,R) D GL(7,R)
56 — 28028 o T3021,, 021 07, (3.7)
{YMy — (Y4B vup} — W' vigs ¥9, vk,

2The coordinate index in 3" should not be confused with the index labelling the different factors in (2.1).
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with y' = Y, etc. The section constraint (3.2) can be solved by imposing
09 =0,;=0"=0, and By," =B,,;=B,"=0, (3.8)

keeping only the B, ; components of B, ;. Similarly, the objects in the adjoint repre-
sentation of E;(7) break according to

E7(7) D SL(S, R) D GL(7, R)
133 — 63 @70 — 7,635,030 (4831) B35 ,®T_y4, (3.9)
{ta} — {ta® tapep} — {ti, t9%  to, tJ, tin, t'}.

To make contact with M-theory, one needs to split the D = 11 structure group
GL(11,R) D GL(4,R) x GL(7,R). Then, the metric and three-form of D = 11 supergravity
give rise to the following fields:

{9, Au's @ij5 Cijis Cijps Civpy Cijktmn} (3.10)

where all of the fields depend on both z* and 3. The forms Cijk s Cijp, Ciyp are related to
the components of the eleven dimensional A through the usual Kaluza-Klein decomposition
with flattening and unflattening of indices. The Cjjximn components are dual to the external
legs C,,, through

F(7) == *lldCégit)

1 (3.11)
— dC(g) - 50(3) /\ dC(g) 3
with
C? = &Cuwpdat Ada¥ A da”, Cis) = % Cijidy’ Ady’ A dy" (3.12)
as required by the infinitesimal transformations
1

These fields are then related to the ExFT fields branched according to (3.7) and (3.9).
For the tensor-like degrees of freedom, the dictionary reads

e =o' e, A=A, Auij=Cuj, (3.14)
and Cy,; are related to B, o and By, y;. For the D = 4 scalars,

MY — @—1/2¢1] ’ szk _ 3¢_1/2¢llcljk‘a M gk _— _ 2

~1/2 4ilj _k|l1lalslals]
20¢ Pgilighhblslalslecy 000

(3.15)
for the components of the M™¥ coset representative of E7(7/SU(8). Here and throughout,
¢ = det ¢;;. Conversely, the internal components of the three- and six-form can be given as

1 20 ;s
Cijk = §¢1/2¢l[iMljk] ) Clylyislalsle = _§¢1/2¢ijMzJk5khl2l3l4l5l6 : (3.16)

In the following, we will show that in the context of consistent truncations, one can
circumvent the dualisation in (3.11) by working in terms of the p-forms of the four-dimensional
tensor hierarchy, which also cleanly account for the information corresponding to the 4d
vectors Az and Cy;j, and two-forms C;.
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3.2 Type 1IB section

Similarly to the D = 11 case, the extended ExFT coordinates decompose under GL(6,R) x
SL(2,R) following

Expy D GL(6,R) x SL(2,R)
56 — (6,1)12®(6,2)41®(20,1)0® (6,2)-1 5 (6',1)-2 , (3.17)
{YM} — {yzv Yia » y”ka yzav yz} )
now with ¢ = 1,...,6 and a = 1,2. The section constraint (3.2) can be solved by requiring

that all fields and parameters only depend on 7* and that the only non-zero component of
the constrained two-form is B,,;. In turn, the objects in the adjoint representation adhere to

Ez;y D GL(6,R) x SL(2,R)
133 —  (1,2)3®(15,1)2 @ (15,2); ® (35 +1,1)

S3) (1a 3)0 @ (15,3 2)71 2] (15’ 1)72 ©® (1a 2)*3 ;
{ta} — {ta, tij, 99t to, tab, tija, t9, L} .

(3.18)

Contact with type IIB supergravity is achieved after splitting the ten-dimensional
structure group GL(10,R) into GL(4,R) x GL(6,RR) so that the bosonic fields read

{g,ul/: ¢ija (I)a C(), C,ul/aa C,uiav Cijaa C,ul/pffv C#VP’U CI“’U’ Cﬂiﬂm Cijkl}’ (3'19>

again with all of them depending both on z* and ¥’ and taking into account the flattening
and unflattening of indices with the Kaluza-Klein vector. Here, we use conventions in which
the type IIB pseudoaction is given by

S = /dl%\/@[élo — 3(09)? = 3| By P — fe P | Ha | — §e® | Fo)|* — i|p<s>\2} Jr/ﬁtop :

(3.20)
with |F,)|? and |H|? defined in (3.6), and a topological term Liop = Ciy A Hesy A Ey,
and the field strengths given by

Hy =dBu, Fuy=dCo, Fg=dCo —CoHy, Fa=dCu+ %ﬁab Ce, A dCe,
(3.21)
with C’g) = (B, Cy). In addition to the equations of motion obtained from (3.20), the
self-duality of F{5; needs also to be imposed. The relation to the ExFT fields branched
according to (3.17) and (3.18) then is

M — ¢*1/2¢ij 7 Mija _ ¢71/2¢ik€abckjb,
Mijkl _ ¢71/2¢im (24ijkl + Seabcm[jackl]b) : (322>
Miqjp = 66261 (Map — €acepaCrCrY)

for the D = 4 scalars, with the IIB axiodilation encoded in the SL(2,R) matrix as

—20 o
m=e® <e _;000 f°> . (3.23)
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Similarly, we have e,* = P/ 4eua and A," = A," for the tensor-like components of the metric,
and the other p-form contributions we will phrase in terms of objects in the tensor hierarchy
when we turn to consistent truncations in the sequel.

To make contact with the S® x S! configurations, we need to further decompose under
GL(5,R) x GL(1,R) x SL(2,R) via i = (i,6) with i = 1,...,5. This subgroup is common
to both SL(8,R) and GL(6,R) x SL(2,R), and therefore its representations can be given
in terms of SL(8,R) pairs. In our conventions,

Vis (VS Vi), VRS (@OVL VS, V= (Ve V),

. } _ (3.24)
Vie = (Via, V™), Ve = (V" Vea),

and for the coordinates we further introduce y' = ' and y® = 4.

3.3 Generalised Scherk-Schwarz Ansatze

The ExFT fields (3.1) can be parametrised in terms of D = 4 N/ = 8 supergravity fields
via a Scherck-Schwarz Ansatz [28]3

G (2,Y) = p72(Y) g (),
My (2,Y) = UM (V)UNN (V) My 5 ()
AM (@, Y) = p (UM (V) A (@), (3.25)
Buo(r,Y) = p 2(Y)Us*(Y)Buva(z),
(z,Y) (

This Ansatz provides a consistent truncation of the ExFT equations of motion down to
D = 4 maximal supergravity provided that the twist matrix and scaling factor define a
generalised frame Uy M = p~H(U~1)M ; such that

Ly Uy = Xyn" Up (3.26)

with £ given in (3.4) and X ; NP a set of constants to be identified with the embedding tensor
of the lower-dimensional supergravity, specified in our cases by (2.11) through X ; NP =
@Ma‘(t@)ﬁp, with © ;% given in (A.1) in terms of the components in (2.10).

For the gaugings under consideration, the twist matrix can be written as

Uni™ (y) = (UABAB(?J) ,,,,,,,, 0 . ( y)) , (3.27)

with

U (y) = 20" ()Up " (v) (3.28)
The S” reduction [3] can be described via (3.25) [28] in terms of the scaling function

p=(1-g*yH)"". (3.29)

3In the following, we add bars to the E7(7y and SL(8,R) indices in the previous section to distinguish flat
and curved counterparts.
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The components of the SL(8,R) matrix Us4(y) in (3.28) under the splitting (3.7) for local
and global indices are

U7 = (1= g*lyl>) V30 + ¢*y' v Ka(y))

Uié _ 3/8 z
5 g(1—g’ly? )3/8 j (3.30)
Us’ = g(1—g*ly>)*® v Ki(y),
Us® = (1 - g*|y?)7/%,
with
Ki(y) = = (1,3,5,1— g*y*) | (3:31)

and |y|? = 6;;9°9’. In terms of these coordinates, the round metric obtained through (3.15)
by setting the scalars to zero reads

9° 05y’ dy’)?
1—g?ly/?
The uplift of the dyonic CSO gaugings of [42] can also be described via (3.25) with

block diagonal twist matrix (3.27) with (3.28) [44]. For the [SO(6) x SO(2)] x R2 gauging,
the scaling function reads

p=p)pH) = (1—g?g1*)"* (1 — mPy?)H*, (3.33)

and the components of the SL(8, R) matrix UAA(y) under the splitting (3.24) for local and

global indices are

(Sround) = 51]dy2 dyj + (332)

Uij — ﬁ*1/2 ~1/2(5J + 29 g Ks(9)), U’ 7 —p —1/2 1/2
U =90 U = —m p 1/2 U
Us' = gp"p"? JKz(m, Us” =mp /252,
Us® = p7/?p'/2 UgS = p /2512
with |9|> = &;9' ¢’ and
K>(9) = =21 (1,2,3,1 - *9) - (3.35)

The generalised frames (3.29)—(3.31) and (3.33)—(3.35) can be checked to satisfy (3.26)
with the embedding tensors corresponding to (2.11) via (A.1).

4 Supergravity embeddings
4.1 SO(8) gauging on S”
In the following, it is convenient to introduce coordinates (u?®, ¢*), with a = 1,2,3,4, as*

y' =g lucos ¢1, Y =g luscos d2, Yy’ =g 'uscos s, Yy =g 'uacos ¢4,

y2 = g_l,ul sin ¢, y4 = g_lu2 sin ¢z, 6 — g_lug sin ¢3,
(4.1)

“These coordinates are related to the ones in [48] through the redefinitions in footnote 1.
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constrained by

dopr=1. (4.2)
In terms of these coordinates, the metric with (3.25) and (3.30) becomes [48]
dsll = Ei/3d8421 +y9 72’_‘ 2/ [ Z Z diu‘a + iu’aDd)a)
= 2bobs (53 Dd3Dda + i3 Dé1 Do)
— 2b1by (433 D2 Dy + 11313 D1 Dsa) (43)
— 2b1ba (33 D1 D3 + papi Do Deby)
+ 03 (padp + padpg)? + b5 (padps + padps)® + b3 (du + Msdu?))ﬂ ;

O m SRRV PRIV YOIV U VRN
+ (VY5 + YY) (YR + Yo i) )
+(YPYE + Y3YS) (Y2u§u§ + Y5 piug) '
+ (YPY? + Y3V3) (Y3 i s + Y3 paps)
and
Ly = ,UZ + Wa, (4.5)
with
Wi = Y5 Vs + YPY5 3 + YV g Wy = Y3 Yui + YPYE 3 + YPY5 g, (4.6)

Ws = YPVP s + YPYEus + Vil Wa=YPYEus + YPY3us + VP Y53
For this gauging, the covariant derivatives on the angles denote the fibering with the four
vectors

D¢, = doa — gAa . (47)

with A* given in terms of SL(8,R) objects in (A.11). The three-form potential can be
written in terms of the 4d potentials in (2.28) suitably coupled to the S” coordinates, and
an internal contribution as dictated by (3.15). The link between the tensor hierarchy fields
and the sphere coordinates is in fact fixed by their respective SL(8,R) structure, and gauge
invariance demands that the different terms combine into the field strengths in (2.29) when
acted upon by the exterior derivative. Notably, only a subset of the forms in (2.28), dubbed
“restricted tensor hierarchy” in [33, 34], enters the KK Ansatz. For the STU truncation, the
eleven-dimensional three-form can be decomposed as simply

4
N 1 ~ -
Aw =3 [—ca it 5 |Bat 34N Aa| A dG) = 5z Aa A (i) A DG +Cisy, - (48)
a=1
with the overall scaling fixed by the equations of motion. This result agrees with the
truncation of [34] through (A.11)—(A.15). The expression for the internal three-form can
also be obtained from (3.15) with (3.25) and (3.30), and reads

Ca) = Z Capedu® A DE® A Dg® (4.9)

abc
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with components Cape = Cy 1) glven by

Curadi® = 5[ Wad() = i3 Wy () + i (V7 V7 dos = Y7V dena)
Cagadp® = 2;3b151 N% Wad(pd) — pif Ws d(u3) — 3 (Y3 Y3 daos + Y3Y3 dOé13): )
Cl o3 dpi® = 2;321 13 W d(p3) — i3 Wad(3) + i3 (YEVF dars — YV davs)] o
Caja dp® = 2;)251 B Wad() = i Wi d(d) — pdd (VYR dass + YV dass)] |
Ca13dp® = 2;;)351 :Mf Wad(p3) — pu3 Wh d(p3) + pips (Y5 Vs dags — Y7V dal2): ;
Caoadp® = 293b351 B3 Wad(pd) — i Wod(3) — ppid (VEVE das + Y3V3 dass)]
and shorthands
aig =i+ 3, oz =ph 4y, asa=p3+pi, o ete (4.11)

This result matches (4.19) of [48] upon making the identifications in footnote 1. The
eleven-dimensional four-form is then produced by the exterior derivative of (4.8), which
by using (2.29) can be given as

4
Fuy = Z {_H(zl)a Mg + 217gH(3)a A d(uz) + ﬁH@)a A d(ﬂg) A D¢a}
a=1

1
+9_ Caped® ADO" NHG, + 5 37 0aCapedu® Adp* A DO A D" (4.12)

abc abed
1
+3 > 0, Capeda’ A dp* A Dg® A D¢,
abc

and thus making use of only the original fields appearing in the A’ = 8 action and their
derivatives through the duality relations (2.32)—(2.36), with the last equation particularised
for this gauging to

Hy = 29(Y7 + Y5 + Y3)voly Huyo = 29(Y? + Y3 + Y{)voly,

Hos = 29(Y2 + Y2 + Y2)vol Hoyu = 29(Y2 + Y2 + Y2)vol (4.13)
w3 = 29(Y7" + Y5 + Y3 )voly, w4 = 29(Y7" + Y5 + Y5 )voly.

Singular limit. Scaling the fields and couplings as in (2.18) and (2.19), the configuration
remains finite up to a trombone scaling if we also transform the internal coordinates as

py e Ty (4.14)
with the coordinates (ua, ¢a, ¢4) invariant. Doing so, the warping (4.4) factorises into
Ei—Z=e"HE,, (4.15)

with
H =Y3ui +Yius + Y3, Ep = Wi, (4.16)
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Accordingly, the metric becomes
dshy > dsty =M { (HE2)Pdsi + 972 (H22) 7P [Ea(di + 1)
+ H (Y3 (dpt + piDéF) + Y3 (dp3 + p3 D63) + Y (dud + p3 D3))
— (bop; Do + baps Db + 61M§D¢3)2} } ; (4.17)

and the three-form components (4.10) transform as

Capedp® — ekpé'a,bcd,u“ , (4.18)
with
_ b _ b 5
a12 dp® = 195 ;/:2 (Y padpy — Yi padus) Ca,23 dp™ = 25 253 (Y usdpo — Y podus)
_ b .
Ca13dp® = 35;/;3 (Y pusduy — Y pndus)
(4.19)
and
Coar dpi® = —2 42 d(s2) Coto dpi® =~ 2 d(42)
a,41 Qb 2g3HM1 Kyg) s a,42 Gt 2g3HM2 Ha)
4.20
O andy® — bi 9.9 (4.20)
Therefore, the four-form (4.12) becomes
A ~ 3 — ~ =
Fy = Fuy = 6k/2{ Z [_H(4>é Mg + %H('a)é A d(ﬂz%) + ﬁﬂ@)é A d(ﬂg) A Dd)a]
a=1
1 _ _ - _
5 d[ca,gédm A DgP A Dﬂ (4.21)

abc
+ g Ha Nd(pf) Nt = d[(74754D¢ﬂ Adut A d¢4} :

with the Hy in (2.44) reading
Hy = 2g(Y? + Y{)voly, Hy = 2g(Y2 + Y#)voly, Hz = 29(Ys + Y{)voly . (4.22)

ITA reduction and dualisation to IIB. The metric and four-form in (4.17) and (4.21)
formally describe a warped compactification on S° x R?, with the R? factor parameterised
by (u4, ¢4) and the sphere by (ua, ¢a) satisfying

3
St (4.23)
a=1

which follows from (4.2) after taking the k& — oo limit on (4.14). Introducing coordinates z; 2 as

21 =g pacos du, 23 =g 'pasingy, (4.24)

we can promote the R? factor into a two-torus by imposing 212 ~ 212 + 2mR12. The
eleven-dimensional configuration, (4.17) and (4.21), can then be interpreted as a type IIA
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supergravity solution upon reducing on one of the circles, say zo. The resulting IIA geometry
has an S! factor that allows one to perform a T-duality transformation and in this way
obtain a solution of type IIB supergravity.

To ease our notation, we introduce the following shorthands

— Huya iz + 95 Hea A d(13) + 552 Hepa A d(i3) A D@

3
Xy =,

| ES—

1 _ _ _ _
+3 Eb: d|Cy pedis™ A D" A D]
apc

~ 1
Xy = Hou+d gj(bQ pi D1 + bz p3 Do + by M§D¢3)] : (4.25)

such that the eleven-dimensional four-form can be written as
ﬁ(4) =X + Xy ANdzy Ndzg . (4.26)

Both X, and X 4 are exact, and a representative potential for X ,, can be read off from (4.25)
to be

~ 1
A=A+ i [bz 3Dy + bg 3 Do + by M§D¢3} : (4.27)

Following the conventions stated in appendix B, the type IIA configuration resulting
from reduction of (4.17) and (4.26) on zy is

—1/4

=2
efua = ﬁ ) H(3)IIA = X(2) Ndz, F(z)IIA =0, F(4)IIA = X(4) )

dstiy = H'/AZ) ds? + g2 B34,/ [92 Eydz} — (bapi Dy + b3z Do + byp3 Deps)?

+ H(Y3(dpd + i3 DG3) + Y (dyid + i3 Do3) + V(i3 + 13 D63)) | (4.28)
and the type IIB solution obtained by T-dualising along the z; direction employing the
relations (B.8)—(B.9) reads

¢ =x=0,
—1/2 —2——% 5
dsti = 25/ ds} + 972, % [Y2(dpd + piDe?) + Yi(dp3 + p3De3) + V2 (dp + p3De3)
— H M (bopi D¢y + b3p3 Dy + b1z D3 ) + g>H (dz + A)?],
Haynp = Fisus =0,
F(5)IIB = (1 + *10) [X(4) VAN (dz1 + .A)] . (429)
4.2 [SO(6) x SO(2)] x R'? gauging on S° x St

The type IIB configurations that uplift from D = 4 gauged supergravity with gauging
specified by (0., &@ey) in (2.11) can also be obtained from (3.25), by employing the twist
in (3.33)—(3.35) and the ExFT dictionary. For the STU sector, this configuration is related
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to the singular limit of the S7 configurations in M-theory in the last section. To accomplish
this, we use the coordinates (us, ¢s) above related to y* as

9' =g lmcos g1, 9P =g 'pacos g2,  §° =g 'pzcos 3, .30
CE a1 (4.30)
yo=9 msingr, G =g ppsin s,
and constrained by (4.23). A coordinate z can also be introduced such that
§=m 'sinmz, (4.31)

which reduces to § = z in the vanishing m limit. The metric obtained from (3.22) reads

dsly =25 dst + 9722,V [V (dpd + i3 Do) + Y3 (dpd + 13 D) + VE(dpd + p3 De?)
— H Y (bop2 Dy + b33 Db + b i3 Dep3)’

+ H(g dz + gAy + H™ ' (bapi Dy + baps Doy + blM3D¢3)> } ;
(4.32)
where Z9 and H are given in (4.16) and, for this gauging, the covariant derivatives on the
angles denote the fibering with the four vectors

D¢s = dgs — gA* (4.33)

with A% = {A'2] A3 A%} in terms of SL(6,R) indices. Note that for these flat indices,
SL(6,R) C SL(8,R). In this sector, the axiodilaton vanishes

¢ =0, Co=0, (4.34)
as well as the two-form potentials
C(g)a - 0 . (435)

Finally, the four-form gauge potential can also be derived from the ExFT dictionary. The
purely internal contribution can be obtained from (3.22) to be

¢3

13
— g iz | Ko (padpn — mdpn) + ' V2 (Y5 padpn — Y3 mdpsz)| A ddy A des A ds
+ 5555 [b1 (YZu3d(u3) — Y3 uid(u3)) A dgi A dgs
+ 0o (Y p3d(i) — Y2 pid(p3)) A dgn A deps
+b3 (Y32M§d(ﬂz) i MQd(N:s)) A dpa N d¢3} Ndz.

Cly = —g papa(1 + Ko) g 2dpy A dpz A dby A dy

(4.36)
We recognise that, stripped of dz, the contributions in the last three lines in (4.36) precisely
match the coefficients C‘é’gé in (4.19), and the derivatives of the first two lines are dual to the
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contributions in (4.19) given by the forms in the tensor hierarchy. Therefore, the associated
self-dual five-form field strength is given by

3
> ( — Hua p; + ggHwa Ad(13) + g2 Hepa A d(p3) A D¢a)

a=1

+ = Z d(Cy pedp™ A D" A DqSC)] (4.37)

abc

F(5) = 1+>(<10 {

1
[dz + A4 —|— — (bg NlD(bl + b3 M%D¢2 +b M3D¢3)] }

with Cé ic given in (4.19), and the field strengths in the tensor hierarchy given by (2.32), (2.34)
and (2. 36) with # = 0 and # = 1, which coincide with the ones in (4.22). The uplift
formulae (4.32)—(4.37) precisely match the type IIB configuration obtained in (4.29) if one

identifies the angles on S!.

Even though the gauge coupling m does not enter into the Kaluza-Klein Ansétze for the
type IIB bosonic fields, it mediates the relation between ten- and four-dimensional spinors,
as expected from the different fermion couplings observed in four dimensions.

To perform a thorough check of the Ansatz in (4.32)—(4.37), we will restrict our attention
to a simpler truncation that identifies the fields as

1,2,3
P1=—P2 = —P3 = %@7 X1,2,3 = %X; A(l) = \}314(1) s (438)

and leaves A?l) unfixed. For the SO(6) x R'? gauging, this theory can be obtained as a circle
reduction of the N' =4 SU(2) x U(1) gauged theory in D =5 [55, 56] truncated so that the
five-dimensional scalar vanishes and the gauge group is reduced as U(1) C U(1) x U(1) C
SU(2) x U(1). After the circle reduction, one can identify A}, with the dual of the KK
vector. In the following, we only consider configurations with x = 0, which per (2.31) cannot
be dyonically charged so as to guarantee Hf, A H& = 0. The Lagrangian (2.2) for the

SO(6) x R'? and [SO(6) x SO(2)] x R'2 gaugings then becomes
e 'L =R—1(0p)? — 1e®H? - Lem?/o(H*)? 1 12¢%e 7% (4.39)

with Hyy, = dA(;y. To make contact with the STU models in (2.2), the dilaton coupling
needs to be set as a = 1/ V3, but we find it convenient to keep it unspecified at the
four-dimensional level.

For a = 1/v/3, we can embed any solution of the 4d theory in ten dimensions. From (4.32),
the metric reads
. = _ 22 (2
32, =eVids? + g2 [d;[f o dpd + dpd + p2D¢? + p2D¢2 + M%Dgﬁ%} +evi(dz+ Ay)°
(4.40)
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and the tensor hierarchy fields in (4.42) allow us to write the five-form as

F@):(l—i—*lo){[ dge fvol4—2fzef *H(Q)/\Z (12) /\D(ba)] /\(dz—l—/h)}

a=1

< 4ge fvol4—2f2e e *H(Q)/\Z (12) /\qua))/\(dz+/~l4)
a=1

— 497" ppodpy A dps A Dt A D§* A D¢?

1
+ N Hy A {Mlm(ﬂlduz — padpy) A Dg' A Dg?

+ popis(padus — psdpz) A DG* A D + py ps(padps — psdpa) A Dot A D? |

(4.41)
using the duality relations (2.32)—(2.36), that reduce to
~ @ -
H<2)1,2,3=—%€“§ *Huy, Hoa=—eV3 * H,
1 V3
H =— *xdy , Hsy=—xdyp, (4.42)
(3) 172’3 2\/§ SO (3)4 2 SD

_® 'z
Hiy123=4ge V3 voly, Hyq = 6geV3 voly,

upon using the truncation (4.38) with x = 0. From (3.20), the Bianchi identity for the five-
form and Einstein equations are the only equations to be checked in ten dimensions. Since
the axiodilation and two-forms in (4.34) and (4.35) are zero, the equation of motion for the
type IIB five-form amounts to demanding that F5 be closed. In (4.41), it is straightforward
to see that this is in turn an immediate consequence of the four-dimensional Bianchi identities
and equations of motion from (4.39).

For vanishing axiodilaton and two-forms, Einstein equations in 10d in turn reduce to

AAAAAA

N N 1 N A A A 1 ~ PO
G=T= _@ [FN9102P3P4F proapart — 10gWFﬁlﬁ2ﬁ3/34/35Fp1p2p3p4p5] v“v”, (4.43>

with G = G wvﬂvﬁ the Einstein tensor for gio. We find it convenient to expand our tensors

in the one-form basis
v = {da#, v"} = {da*, da, dB, D¢', D¢?, D¢*, Dz}, (4.44)

where dz* is a coordinate basis for the four-dimensional spacetime and the angles on the
sphere are given by

1 = sinacos 3, w2 = sinasin 3, 3 = COS v (4.45)

In this basis, the Einstein tensor reads

A

Gy = Gy — ée\f(HupH }ng,HpUH”"> _;eﬁ%ﬁwmyuiguymmﬁf)

_ ¥
— 1(0u0up — 390 0,00"0) — 10g%e Vig,,, (4.46a)
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LN ~
Gumv™ = f%gvv (e¥3 H,,) (12 Dy + p3Dy + pDes) — V¥ (eV3¥ Hy,,) Dz, (4.46b)
Grnv™0" = %e% [g’“’GW + %S%HMVH‘LW + ie\/g“"fﬂw,ﬁfy — %Dgp
+ 30uptp — 12926_%] (do® + sin*adB® + pi D§i + p5D ¢35 + p3Dé3)
P ~ ~
+ 36V G, e HY o+ §eV50 Y — V3O

1 " 2.~ 5 2
+ 50u,p0" o —20g7e 3}Dz

20 2
+ 1oze Vi Hy H' (13 Dy + p3Dds + p3Des)

12g2
- i (2 2 2
+ ﬁeﬂHWI-Q (uiDp1 + p5Dpa + psDp3) Dz, (4.46¢)

and the stress-energy tensor has components

2
Ty = —Le V5 [1292%,, eV (HWHVP - }lgWHPUH”U)} : (4.47a)

A

Tymv™ =0, (4.47b)
Tnv™ 0" = 4g°(da® + sin*adB® + piD; + p3 D5 + p3De3)
1 22 2, 22 AT
— Levs (48¢% + €5 Hy H' ) Dz
29 2
+ magze Vs Hu H" (1 D¢y + 3D s + p3Deps)
+ & eY3 Hy, («H)Y™ (43Dy + p3D s + 3 Dess) Dz (4.47c¢)
It is immediate to verify that the external components of (4.43) are satisfied on the four-
dimensional Einstein equations, the mixed components amount to the Maxwell equation for

H and Bianchi identity for H*, and the internal components of (4.43) are a combination of
the trace of the Einstein equations and the equations of motion for the scalars.

5 Black hole and domain wall solutions

In the previous section, we have described how to embed any solution of the four-dimensional
gauged STU models presented in section 2 into M-theory or type IIB supergravity. We
now switch gears to present new black-hole solutions in these theories, first by considering
singular limits of previously known solutions and later by directly solving the equations
of motion for a suitable Ansatz.

5.1 AdS-BH limits

Setting the axions to zero, the potential (2.12a) for the STU truncation of the SO(8) gaug-
ing reads

V = —8¢?(cosh ¢y + cosh gy + cosh p3) . (5.1)
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This theory admits four-charge AdS-black hole solutions [19],
dS?1 = —(H1H2H3H4)71/2f dt? + (H1H2H3H4)1/2 (fildT2 + T2dQ%7H) ,
\/a,{ + K sinhQ(, /Uﬁﬁi)dt

Ai _ H'—1
! sinh(/0405;) ’ (5.2)
201 _ HyH, o202 _ HyHj 205 _ H\H,
HsH,’ HyHy' HyH3'
with
2
f=Kk— K + 4¢%r? HiHyHsH, and H, =1+ K 1 sinh (v/oi8i) | - (5.3)
T T \ 0k

Here, dQ%H denotes the line element for the unit radius metric on the sphere, torus and
hyperboloid for k = 1,0, —1, respectively given by
do? + sin?0 d¢?, k= +1,
Q3 . = dO? + d¢?, k=0, (5.4)
do* +sinh?0 d¢?, k= —1,

and we also define

(5.5)

0., = lim sign(k +¢€) =
" e—0t g( )

{+1, k=410,
These black holes have charges®
%W,u,sinh 26;, k=41,

K sinh(v/0.0;) \/U,.i + £ sinh?(\/o.3;) = { Tusinh f; k=0, (5.6)

NG

™

qi =

%T(/},SiHQﬁi, k=-—1.

Domain-wall limits of these solutions can be constructed by considering rescalings of
the metric and vectors and shifts of the dilatons so that the equations of motion remain
invariant up to a change in the scalar potential resulting from the loss of some of the terms
in (5.1) after taking a singular limit [40]. Taking

pi = Qi+ A, with A =log(g/g) , (5.7)
the potential (5.1) becomes
V = —45% (e 4+ e 4 e93) — 4¢P (e P fe P2 e P8, (5.8)

and the equations of motion are solved by (5.2) with now

H, = (2)2 [1 + ﬁ(\/% sinh(ﬁﬁl))? ;

(5.9)

2
pf 1 .
Hizyy =14 - sinh(\/045;
i#1 , %0',-; ( 1151751) )
®Our f3; parameters are always taken to be real. These configurations agree with those in [19] if one
identifies APe™® = ¢ "™ in the hyperbolic case.
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and

f=r— g + 4% Hy HyH3 H, . (5.10)

In this case, it is possible to take the g — 0 limit of the potential (5.8) while keeping
non-trivial solutions provided that gsinh(,/o,3;) can be kept constant by sending f; to
infinity. Note that this cannot be achieved for the hyperbolic horizon (k = —1) case above,
and therefore only domain walls with spherical and toroidal horizons can be constructed
with this method.

We note that the potential (5.8) after the g — 0 limit corresponds to the STU sector of a
maximal supergravity with SO(6)x R'? gauging which is related by duality to the one discussed
above. In particular, instead of by the embedding tensor O, in (2.11), it is described by

GAB:()? gABZO’ CABCD:07

G123 = G124 F134 _ _F 234 (6TS _ (TS (5.11)

=9,
with only non-trivial components in the 420 representation. Using the same scalings as the

ones studied in section 4.1, this gauged supergravity can be proved to uplift consistently
into an S° x T? configuration of D = 11 supergravity.

The potential (2.12b) can be similarly obtained by taking
priepi—A, a3 a3+ A, with A =log(3/9), (5.12)
so that (5.1) becomes
V = —43% (e + €2 4 e#3) — 4gP (et 4+ e 2 4 e ¥8). (5.13)

However, in this case the rescaled solution is (5.2) with

Hy = <Z>_1 {1 + tf(\/%smh(\/aﬁg)ﬂ and

M= (2)[1+4( J%smm@mz))z] ,

(5.14)

so that the ¢ — 0 limit is ill-defined.

5.2 DW-Ansatze

The fact that domain-wall solutions for the SO(6) x R'? and [SO(6) x SO(2)] x R2 theories
cannot be constructed through singular limits of the AdS-black holes in [19] does not mean
that such solutions do not exist. To find them, we consider the simpler truncation in (4.38)
and the Ansatz

ds? = —e®Udt® + e 2dr? 4 L2e*4d03 Ay =vdt, Al =wdt, (5.15)

2,k 1 —
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with ¢, u,v,w and A being functions on r only, and L a constant radius. The equations
of motion stemming from (4.39) reduce to

(PN + 2(ul +A/)90/ + %aea¢f2u(v/)2 _ %67@/(1721/,(20/)2 N 12ag e—aP—2u _ 0,
( 2A+ag@v )/ _ 0’
(247 ) =0,
AT+ A+ 3(¢) =0,
A// + 2A’(u/ —+ A/) + ieaw—2u(v/)2 + le—¢/a—2u(w/)2 _ 12g2e—aap—2u _ % €—2A 2u — 0’
u’ 4+ 2u (U 4 A') — Le® T (v)? — %6*50/%211( N2 _12g2e %2 =
(5.16)

with primes denoting derivatives with respect to 7. For any a in the range —v/3 < a < /3,
this system of equations admits a solution in the x = 0 case, which reads

>2/(1+a )

ds? = —fdt* + f~1dr? +L2< o3,

7o

A
A =~ dt, A =0, (5.17)

2a/(14a?)
(2
To ’

2g2r3(1 4 a?) [\ O 32 O] (e ()
0

with

1+ a?
4

f=

3 —a? 5 70

for rg a length parameter and A and p constants encoding the charge and mass of the solution.
This class of solutions recovers (A.6) of [40] for a = 1, while for a = 1/4/3 it reduces to

A2 r 22 -1 N\ 3/2
2_ /T K 2, /o 2 _H 2 2 T
dsy = o l4g ror + 52 dt " [49 ror + 52 r} dre+ L (7’0) dQQO,

A
A(l) == ; dt, Azll)
T \/5/2
e¥ = () , (5.19)
7o

which describes a charged black hole with domain-wall asymptotics. At r = 0, this solution
has a curvature singularity for all possible values of the charge and mass. When

w3 > 3g°Arg, (5.20)

the singularity is covered by two horizons sitting at

1
ry = 39/;7“0 cos [3 arccos ( g\? i?) % + g] (5.21)

that coalesce when the bound (5.20) is saturated. When u3 < 3g2A*rg, the solution displays
a naked singularity.
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For this choice of dilaton coupling, we can embed the solution in ten dimensions us-
ing (4.40)—(4.41) with the tensor hierarchy fields in (4.42), which become

A2

Hi103 = ——=—=df A d, Hiaa=0,

V3rg

1 L2 2 )\2
Hisy123=—5Haa= <r> 4g%ror + — — K dt NdO Ndop,

o 3 4r \ro 3r2 7
) (5.22)

Huy23 = 4917 (:0) dt Ndr NdONdp,  Huya = 6gL7 (:{)) dt Adr A dO A dg,
Hy123 = 2mL> (;) dtAdrNdONdp,  Huya=0.

Other solutions to the equations (5.16) can be found for specific values of the dilaton
coupling a. If we commit to the choice a = 1/v/3 corresponding to the STU model, a class
of solutions with spherical horizon is given by

)

r 3/2 7 r2 M
dsi=—fdt* + ftdr* + \? <> d0%,, with f=,/— |4¢®ror+ -2 - L
0 ) 70 A2y

V3/2
4 T T
An =0, A(l) DY dt, e’ = (ﬁ)) .

(5.23)
Note that this solution only exists for non-vanishing electric charge, and for g > 0 it has

70 169224
=0 | 1y 2R
TH Bg2N2 l + TS’

For this solution, the type IIB uplift is given by (4.40)—(4.41) with tensor hierarchy fields

a single horizon at radius

(5.24)

Hpr05 =0, Hizpa = Asin0d A do,

Hgy23 = —éH<3)4 = 2720(7;)2 [4927“07“ + ;\(2; - g sin Odt A df A do,

Huros = 4gA2 (:()) sin@dt Adr AdO A dp,  Hupy = 6922 (:()) " in ot Adr A dO A do,
Horas = 2m\? (;) sin0dt Adr Ad9 Adp,  Hey = 0.

(5.25)

6 Discussion

In this paper, we have shown that singular limits of gauged supergravities can offer insights
not only into how to construct new solutions in the resulting gauged supergravity, but also
on its consistent uplift to higher dimensions if the resulting gauged supergravity can itself be
obtained as a consistent truncation. We have exemplified this idea relating the STU sector of
the electrically gauged SO(8) supergravity to the STU sector of the CSO theory with the
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SO(6) x R'?2 gauging, and we have used the known consistent uplift of the former theory
into M-theory on S” to construct an embedding of the latter into type IIB supergravity on
S5 x S'. It would be interesting to investigate if singular limits such as the ones we studied
can be used to relate gauged supergravities with larger field contents.

To describe the uplifts of these gauged supergravities, we have employed techniques that
exploit the formal duality-covariance of the embedding tensor formulation of the gauging.
In particular, apart from making use of the generalised Scherk-Schwarz factorisation of
the higher-dimensional fields expressed in the language of Exceptional Field Theory, we
have recast all the contributions of p-form fields in D = 4 in terms of the four-dimensional
tensor hierarchy (suitably restricted to the STU sector). This has provided a simple way
of circumventing some complicated dualisations in ExFT involving the internal metric. To
illustrate the power of this technique, we have explicitly checked that the higher-dimensional
equations of motion follow from the four-dimensional ones, and constructed new families of
charged black hole solutions in 4d. These black holes involve non-trivial scalar profiles, and
their asymptotics do not approach an AdS solution, but a domain wall.

A close cousin of the dyonic CSO theory we have considered comes equipped with an
[SO(6) x SO(1,1)] x R gauge group. This theory has been shown to uplift into type I1B
supergravity on S° x S! with a non-geometric patching of the circle [44]. This theory possesses
a very rich structure of AdS vacua [57], both supersymmetric and non-supersymmetric,
including continuous families realising a holographic conformal manifold [58-63]. It will
be interesting to extend our results to describe more explicitly the uplift of this gauging,
and to construct in this way ten-dimensional solutions arising from non-trivial profiles of
the fields in the consistent truncation. These new solutions may play an important réle in
understanding the holography of the T[U(NN)] theories and the J-folds of N'=4 SYM that
are conjectured to be dual to this solution [64].
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A STU truncation
In its SL(8,RR) basis, the generators of E;(;y can be split as t, = {tAB, tiapcp)}, with
the index A = 1,...,8 labelling the fundamental of SL(8,R) and t44 = 0. The gaugings

considered are described by an embedding tensor © ;% with non-trivial components

©45°D = 204“05)p 4P = 25plA¢PI (A1)
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where 045 and £4B respectively belong to the 36’ and 36 of SL(8,R). This embedding
tensor determines the covariant derivatives as

D =d+ AMO,,,

- A2
=d+ A 0pcts + Aap Pt (4-2)

and appears in the potential and mass matrices through the generators Xy, =0 Mm(ta) Nt
For these gaugings, the gauge group G is embedded in Eq(7) as
G C SL(& R) C E7(7) . (AS)

The H = SO(2)* Cartan subalgebra of the gaugings discussed in the main text can be
taken to be®

Tio =t? —to!, Tay = t3* —t4°, Tse = t5° — t6°, Trs = t7° —tg" (A.4)
and its commutant within E7) is
Commy, Err) = SL(2,R); x SL(2,R)y x SL(2, R)3 . (A.5)

Each factor is generated by {h;,e;, fi}, which are given in terms of E7(7) generators as

hy =3t + 2+ttt — 5" — 6" — 177 — 15°),
e1 = 1211234, f1=121567s,
ho = (i + 122 — 33 — ta" — 5" — 6" + 177 +15°), (A6)
ez = 123973, Ja = 12t3456,
hy=2(—ti' —to® +t3° +ta? —t5° — " + 77 +15%),
e3 = 1213478, f3=12%1256,
with non-vanishing brackets
[his ej] = eidij [his f3] = —fidij, leis f5] = 2hi dij . (A7)
The representative of the scalar manifold (2.1) is taken to be
Y = eXiertxaeatxses —p1hi—gaha—pshs (A.8)

which leads to (2.2) through the symmetric matrix My;ny = (VY1) 1w and its inverse as
Laism = — g dMyn A xdMMY (A.9)
The symmetry group (A.5) is then realised through the Killing vectors
k[hi] = 20,5, — 2xi0y; , kles] = Oy, , kLfi] = 2xi0p; + (€727 —x7)y;»  (A.10)

which close into (A.7) under the Lie bracket.

SFor the SO(6) x R'? gauging, Tvs strictly speaking corresponds to a global symmetry commuting with the
gauge group, following the m — 0 limit.
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There are four electric vectors A? and four magnetic counterparts A, in the H-invariant
truncation of the maximal theory. In terms of the original 28 @ 28’ of the N' = 8 theory,
they are given by

A1:A12, A2:A34, A3:A56, A4:A78,

- - - - - - - ~ Al
Ay = Agz, Ag = Az, Az = Ase Ay = Ars. (A-11)
These identifications allow one to extract the non-minimal gauge couplings from M through

the block decomposition

N -1 -1
M:( I-RI'RRI ) (A12)

TR —7-1

and the index restriction AM = (A[AB},A[AB]) — (A%, A,) in (A.11).
Similarly, the preserved two-forms in (2.26) are related to the SL(8,R) objects through

By = Bi' = By?, By = B3* = B4, By =B =B®, By=DB;" =Bg®,
Bi=B>=-By", By=B3'=-B,*, By=B;=-Bs", Bj=B:"=-Bs",
Bis = Biaa, B3 = Bi2se B4 = Biars ,

Ba3 = Bsyse B2y = Bars, B3y = Bsers (A.13)

and the three-forms as

Cl:CllzCQQ, 02203320447 0320552066, 0420772088’

Ci=Cn=Cm,  Co=Cy=Cu, Cy—Cr—Cu,  CimCr—Ca, 00
for those in the 36 & 36’ of SL(8,R), and those in the 420 ¢ 420 as
Oy = O34 = (134 Oy = Oy 256 — _ (145 Oy = Oy = _ 0,178 |
Oy = C5*12 = _0312 Oy = O™ = _ (356 Oy = C54T8 = _ 0,578 |
Cia=Clo3s = —C%134, Ci3=Cl956=-C%45, Cuu=Clys=-C%15, (A15)
Cor = CPu1p = —C'12, Cog=C%s6=—Cl356, Coa=C15=—Clys,
etc.

B A D =9 detour

B.1 Reduction from D =11 to D =9
The relation between the eleven-dimensional and type IIA fields in Einstein frame reads

432, = e~ 691 ds%, + 394 (dzg + A')? B.1)
Fy = Fuyiia + Heya A (dzo + A'). .

Further reducing type IIA on another circle, we get maximal supergravity in D = 9. The
reduction Ansatz is

ds¥, = efﬁwdsg + ¢ 5oa (dz1 + AKK)2 ,
Heua = Hig + Hi) A (dzg + AKK)
Floynia = Fipy + Fib A (dzy + AKK),
Funa = F + Fa A (dzy + AXK)

(B.2)
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with F(,y;a = dA’" and the D = 9 field strengths given by

5 (?> - dA?o?v

Fioy = dARY — dAGT A AR, H,y = dAYS,

Hiy = dAG) — dARS AAGY Fiy = dAGY + ARS A dAT — ARG ARS,

Fo = dARY + AR A dART — (dARY — ARV dARS — AN A dATT) A ARK. (B.3)

Comparing with (4.17) and (4.21), we find

=1/ _2V7

oA =2 VT ou H NS _
e e e 3 = — A=A
vH ' V=) ’ ) ’
A<Ro$ = AR = Aﬁ? = Ag? = Af;fi =0, dAg? =X (B.4)

with A in (4.27), and

ds3 = H-572, "7 [HE, ds3 — (130:D1 + 33 Dbs — 131 Dbs)? )
T H(Y (A3 + piD63) + YP(dy + i3D63) + V(A3 +i3De3)| .
B.2 Type IIB reduction to 9 dimensions
The same nine-dimensional theory can be obtained starting from type IIB supergravity. In
this case, the Kaluza-Klein Ansatz reads
dstp = e_Txlﬁ(desg + eg‘pB(dzl + BXK)Z

Fonp = (1+ *10)[F£’) Adzi],

(B.6)
Fans = Fg) + Fg) A (dz + BKK) ,
Hgus = Hi) + Hi) A (dz1 + BY)
and the field strengths can be given as [65]
Hg) = dBy . Fg = dBG = Bi§ Adx,
S, = a8 4B R ..
F2 =dBER + BYS Ady — (dBRF — BYS Ady) ABRE, '
FS =dBi} + BRI AdBS — BN AdBREY — BIY A Bl Ady.

In this context, T-duality between the two type II theories stems from the uniqueness of
maximal D = 9 supergravity. The relation between ITA and IIB fields can thus be obtained
by relating the nine-dimensional scalars, metric and potentials in (B.3) and (B.7). Using
the rules in [65] (disregarding the doubled fields there) on (B.4), we find that the 9d metrics
are equal, the dilatons are given by

B =1

o8 = gAVT= VT (B.8)

Y
and the only non-vanishing p-forms are

Bif=A,  Bit=AR" (B.9)

The total type IIB configuration is given in (4.29) in the main text.
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