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Abstract We investigate the cosmological implications of
f (Q) gravity, which is a modified theory of gravity based on
non-metricity, in non-flat geometry. We perform a detailed
dynamical-system analysis keeping the f (Q) function com-
pletely arbitrary. As we show, the cosmological scenario
admits a dark-matter dominated point, as well as a dark-
energy dominated de Sitter solution which can attract the
Universe at late times. However, the main result of the present
work is that there are additional critical points which exist
solely due to curvature. In particular, we find that there are
curvature-dominated accelerating points which are unstable
and thus can describe the inflationary epoch. Additionally,
there is a point in which the dark-matter and dark-energy den-
sity parameters are both between zero and one, and thus it can
alleviate the coincidence problem. Finally, there is a saddle
point which is completely dominated by curvature. In order
to provide a specific example, we apply our general analysis
to the power-law case, showing that we can obtain the ther-
mal history of the Universe, in which the curvature density
parameter may exhibit a peak at intermediate times. These
features, alongside possible indications that non-zero curva-
ture could alleviate the cosmological tensions, may serve as
advantages for f (Q) gravity in non-flat geometry.

1 Introduction

Modified gravity [1,2] is one of the two main directions that
one can follow in order to obtain an improved description of
the Universe evolution, both concerning the early (inflation)
and late (dark-energy) accelerated phases, as well as concern-

a e-mail: msaridak@phys.uoa.gr (corresponding author)

ing the possible observational tensions [3]. In such theories
one constructs modifications and extensions of General Rel-
ativity which present extra degrees of freedom capable of
inducing corrections at the cosmological behavior, both at
the background and perturbation level.

There are many ways to construct gravitational modifi-
cations. In the simplest ones one starts from the Einstein-
Hilbert Lagrangian and adds new terms, resulting to f (R)

gravity [4], to f (G) gravity [5], to f (P) gravity [6], to Love-
lock gravity [7], to Horndeski/Galileon scalar–tensor theories
[8,9] etc. Alternatively, one may start from the torsion-based
formulation of gravity and modify it accordingly, resulting to
f (T ) gravity [10,11], f (T, TG) gravity [12], f (T, B) grav-
ity [13], scalar-torsion theories [14] etc.

One different class of gravitational modifications arises
when one starts from the equivalent formulation of gravity
based on non-metricity. Initiated by Nester and Yo [15], based
on an affine connection with vanishing curvature and torsion
but metric-incompatibility, it was recently extended to f (Q)

theory [16]. f (Q) gravity contains general relativity as a
particular limit, and has the advantage of possessing second-
order field equations. Hence, its cosmological application
has attracted the interest of the literature [17–68]. Neverthe-
less, all of these works focus on spatially-flat Friedmann–
Lemaître–Robertson–Walker (FLRW) geometry, in which
case the coincident gauge implies that the affine connection
field equations can be ignored and thus f (Q) cosmology
coincides with f (T ) cosmology at the background level [69].

In this work we are interested in investigating f (Q) cos-
mology in non-flat Universe, in order to reveal possible novel
features, having in mind that non-flat geometry [70], apart
from being potentially interesting [71–81], might be one way
to alleviate cosmological tensions [82]. The manuscript is
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organized as follows: In Sect. 2 we provide the basic mathe-
matical formalism of symmetric teleparallel and f (Q) grav-
ity. Then, in Sect. 3 we perform a detailed dynamical-system
analysis, extracting the general cosmological features, both
for a general f (Q) function as well as for a specific power-
law example. Finally, in Sect. 4 we summarize our results.

2 Symmetric teleparallel and f (Q) gravity

In this section we briefly review symmetric teleparallel for-
mulation of gravity and its f (Q) extension. In such a formal-
ism one introduces a general affine connection �α

βγ , defined

by �λ
μν = �̊λ

μν + Lλ
μν, where �̊λ

μν is the Levi-Civita
connection and the disformation tensor is given by

Lλ
μν = 1

2
(Qλ

μν − Qμ
λ
ν − Qν

λ
μ), (1)

with the non-metricity tensor given as

Qλμν = ∇λgμν. (2)

Additionally, one can define the non-metricity scalar as

Q = Qλμν P
λμν = 1

4
(−QλμνQ

λμν + 2QλμνQ
μλν

+QλQ
λ − 2Qλ Q̃

λ), (3)

with Qλ = Qλμνgμν and Q̃ν = Qλμνgλμ. Hence, using Q
as a Lagrangian gives rise to the same equations with general
relativity.

Based on the symmetric teleparallel framework, one can
proceed in constructing gravitational modifications, such as
f (Q) gravity [16], characterized by the action

S = 1

2κ

∫
f (Q)

√−g d4x +
∫

LM
√−g d4x, (4)

where we have added the matter Lagrangian for complete-
ness, corresponding to an energy-momentum tensor of a per-
fect fluid Tm

μν = (p + ρ)uμuν + pgμν , with p and ρ the
pressure and energy density respectively. Variation of the
action with respect to the metric leads to the field equations

2√−g
∇λ(

√−gFPλ
μν) − 1

2
f gμν

+F(Pνρσ Qμ
ρσ − 2PρσμQ

ρσ
ν) = κTm

μν, (5)

where the superpotential Pλ
μν is given by

Pλ
μν = 1

4

(
−2Lλ

μν + Qλgμν − Q̃λgμν − 1

2
δλ
μQν − 1

2
δλ
ν Qμ

)
,

(6)

and with F(Q) = d f (Q)/dQ. Note that the field equations
(5) can be alternatively written as [83]

FG̊μν + 1

2
gμν(FQ − f ) + 2F ′Pλ

μν∇̊λQ = κTm
μν, (7)

where G̊μν = R̊μν − 1
2gμν R̊, and all the expressions denoted

with a (̊) are calculated with respect to the Levi-Civita con-
nection �̊λ

μν . Hence, we can re-write them as [22]

G̊μν = κ

F
Tm

μν + κT de
μν, (8)

having defined an effective dark-energy sector of geometrical
origin as

κT de
μν = 1

F

[
1

2
gμν( f − QF) − 2F ′∇̊λQPλ

μν

]
, (9)

where a prime denotes differentiations with respect to the
argument. Lastly, varying the action with respect to the affine
connection, and assuming that the matter Lagrangian LM

does not depend on it, we obtain

∇μ∇ν(
√−gFPνμ

λ) = 0 . (10)

Let us apply f (Q) gravity to a cosmological frame-
work. As we mentioned in the Introduction, we consider
a non-flat Friedmann–Lemaître–Robertson–Walker (FLRW)
spacetime of the form

ds2 = −dt2 + a (t)2
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2
)

,

(11)

where k = 0, ±1 denotes the spatial curvature. In this case,
the non-trivial connection coefficients are given by [43,84]

�t
t t = −k + γ̇

γ
, �t

rr = γ

1 − kr2 , �t
θθ = γ r2,

�t
φφ = γ r2 sin2 θ

�r
tr = − k

γ
, �r

rr = kr

1 − kr2 , �r
θθ = −(1 − kr2)r,

�r
φφ = −(1 − kr2)r sin2 θ,

�θ
tθ = − k

γ
, �θ

rθ = 1

r
, �θ

φφ = − cos θ sin θ,

�φ
tφ = − k

γ
, �φ

rφ = 1

r
, �φ

θφ = cot θ, (12)

where γ (t) is a non-zero function of time. The corresponding
non-metricity scalar Q can be calculated from (12) as [43,84–
88]

Q(t) = −3

[
2H2 +

(
3k

γ
− γ

a2

)
H − 2k

a2 − k
γ̇

γ 2 − γ̇

a2

]
.

(13)

Therefore, inserting into the field equations (7) we obtain the
modified Friedmann equations
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− 1

2
f −

(
3H2 + 3

k

a2 − 1

2
Q

)
F

+ 3

2
Q̇

(
k

γ
+ γ

a2

)
F ′ + κρm = 0 (14)

1

2
f +

(
3H2 + 2Ḣ + k

a2 − 1

2
Q

)
F

+ Q̇

(
2H + 3

2

k

γ
− 1

2

γ

a2

)
F ′ + κpm = 0. (15)

3 Cosmological behavior

In this section we investigate in detail the cosmological evo-
lution of a Universe governed by f (Q) gravity in non-flat
geometry. In order to achieve that we perform a dynamical-
system analysis [89,90], which allows one to extract the
global features of a cosmological scenario independently
of the specific initial conditions [91–97]. Note that the
dynamical-system analysis for f (Q) gravity has been per-
formed in the literature [98–102], however it remains in the
flat FLRW case, while as we will see in the following the
inclusion of spatial curvature leads to novel qualitative fea-
tures.

We start by defining dimensionless variables in order to re-
write Eqs. (14)–(15) as an autonomous system. For simplicity
we will focus on dust matter, namely we consider pm = 0,
while concerning the γ (t) form we assume the simple case
γ (t) = εa(t) (analysis of the general case is straightforward,
with the inclusion of an extra variable [102]). In particular,
we have

x1 = − f

6H2F
, x2 = Q

6H2 , x3 = Ḟ

H F
, x4 = 1

2Ha
,

�m = κρm

3H2F
, �k = − k

H2a2 ,

r = −QF

f
= x2

x1
, m = QF ′

F
, (16)

where �m and �k denote the contributions to the dark matter
and the spatial curvature energy densities, and thus according
to (9) the first Friedmann equation (14) is written as 1 =
�m + �k + �de. The two parameters m and r parametrize
the f (Q) form as a function m(r), while the variable x4 has
been introduced in order to break the degeneracy between
positive and negative H (since it is H2 that appears in the
other variables).

Using the above dimensionless variables we result to the
four-dimensional autonomous system

dx1

dN
= − x2x3

m
− x1(x3 + 3A), (17)

dx2

dN
= x2x3

m
− 3x2A, (18)

dx3

dN
= −x3

(
3 + x3 + 3

2
A

)
, (19)

�k

dN
= −�k(2 + 3A), (20)

with A ≡ 2Ḣ
3 H2 = −1 + x1 + x2 + x3

3 (ζ x4 − 2) + �k

3 and

ζ = −3 k
ε
+ε, and where N = ln a. Hence, the total equation-

of-state parameter is just we f f = −1−2Ḣ/3H2 = −1−A.
Finally, we mention here that since r = x2/x1, the condition
dr/dN = r x3

(
1 + 1+r

m

) = 0 implies that the critical points
of the system (17)–(20) must satisfy either r = 0 (or equiva-
lently x2 = 0), or x3 = 0, or m(r) = −(1 + r), while when
the conditions x1 = 0, x2 = 0 and x3 �= 0 simultaneously
hold the relation m(r) = −(1 + r) must be considered.

3.1 General f (Q) form

We start by performing the analysis for a general f (Q) form,
namely for a general m(r) function. As we will see, in this
case the intersections of the curve m(r) with the line m =
−r − 1 can play an important role in the way that the critical
point corresponding to dark-matter dominated era connects
to those exhibiting dark-energy domination.

In the general case the critical points of the system (17)–
(20) are presented in Table 1. As can be seen, for a general
f (Q) function there exist seven critical points, or curves of
critical points, with different physical features. Note that all
m and m′ values must be calculated at probable intersections
of m(r) with m = −r − 1, which happen at the roots ri , i =
1, 2, . . ..

The physical properties of these critical points are the fol-
lowing:

• Point Pm : It corresponds to dark-matter (�m = 1) dom-
inated era with total equation-of-state parameter we f f =
0. Its eigenvalues imply that it is a saddle point and thus
it can be the intermediate state of the Universe.

• Point Pk : It corresponds to a curvature-dominated era
and it is a saddle point.

• Curve of points Pds : It corresponds to a dark-energy
dominated Universe (since �m = �k = 0 we have
�de = 1), with we f f = −1, namely to the de Sitter
solution. Although it has a zero eigenvalue, application
of the center manifold theorem [89,90] shows that this
point is stable and thus it can attract the Universe at late
times.

• Point P1: This point exists only for non-flat geometry.
It corresponds to a curvature-dominated solution if k =
±ε2, and it is unstable for every values of m and m′.

• Point P2: This point is physical (i.e. having 0 ≤ �m ≤ 1)
only for k = 1 and for ε2 ≤ 1. In this case �m and �de are
both between 0 and 1 and thus this point can alleviate the
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Table 1 The critical points in the general f (Q) case, namely with general m(r). We have defined j1 = 6
[
k(m−1)+(m+1)ε2]

m(3k−ε2)
, j2 =

6
[
(m+1)

(
k−ε2)

m′+2km
]

m(3k−ε2)
, l1 = − 3

(
−√

33k2−30kε2+ε4+k+ε2
)

4(k−ε2)
and l2 = 3

(√
33k2−30kε2+ε4+k+ε2

)
4(ε2−k)

Fixed point Coordinates (x1, x2, x3, �
k) Eigenvalues �m �k we f f

Pm (0, 0, 0, 0))
[
3, 3,− 3

2 , 1
]

1 0 0

Pk (0, 0, 0, 1) [−2,−1, 2, 2] 0 1 − 1
3

Pds (x1, 1 − x1, 0, 0) [−3,−2, 0,−3] 0 0 −1

[0.75 ex] P1
(

0, 0,−2,− ε2

k

)
with k �= 0

⎧⎪⎪⎨
⎪⎪⎩

[
1, 2, 2 − 2

m , 2
( 1
m + 1

)
m′ + 4

]
,

k = −ε2,{
2,±∞, 2 − 2

m , 2
( 1
m + 1

)
m′ + 4

}
,

k = +1, |ε| → 1±
0 − ε2

k − 1
3

P2
(

0, 0,−6
[

2k
ε2−3k

+ 1
]
, 0

) [
3
2 ,− 8ε2

ε2−3k
+ 1, j1, j2

]
4ε2

ε2−3k
0 − 8k

ε2−3k
− 3

[0.75 ex] P3
(

2k
k−ε2 , 0,−6, 0

) { [
−8,− 6(m+1)

m , l1, l2
]
,

(l1 = −3, l2 = 3), k = −ε2
8k

ε2−k
+ 4 0 −3

P4

(
k(m−1)+(m+1)ε2

m[k(m+2)+mε2] ,
(m+1)

[
k(m−1)+(m+1)ε2

]
m[k(m+2)+mε2] ,

− 6m
2m+1 , 0

)
{ [

6
2m+1 − 2, 3, 3

2m+1 ,
6(m+1)(m′+1)

2m+1

]
,

k = −ε2

2(m−1)
(
k+ε2)

k(m+2)+mε2 0 2
2m+1 − 1

coincidence problem. Additionally, it has −1 ≤ we f f ≤
−1/3 and thus it corresponds to accelerated solution. The
fact that it is unstable makes this point a good candidate
for the description of inflation with a successful exit.

• Point P3: This point is physical only for k = −1 and
for 1 ≤ ε2 ≤ 5/3, in which case �m and �de are both
between 0 and 1. It corresponds to super-acceleration and
it is unstable.

• Curve of points P4: The properties of this curve cannot
be inferred without specifying m(r), namely the f (Q)

form.

In summary, f (Q) cosmology in non-flat Universe exhibits
the desired features of saddle matter-dominated era and sta-
ble late-time dark-energy era. However, apart from these, we
obtain interesting features that arise solely from non-zero cur-
vature, such as a point which can alleviate the coincidence
problem, or a point that corresponds to a curvature-driven
inflation which is unstable and thus it can easily acquire a
successful inflation exit. Nevertheless, since some features
cannot be extracted for the general f (Q) form, in the fol-
lowing subsection we examine a specific f (Q) case.

3.2 Application for f (Q) = ηQn

Let us apply the above general analysis in the case f (Q) =
ηQn . Such a choice, according to (16) corresponds to m =
n − 1 = const. and r = −n = const., and thus x2 = r x1,
which implies that variable x2 is not needed. We first examine
the flat case and then we continue to k = ±1.

3.2.1 k = 0

In this case �k is absent and we acquire a two-dimensional
system, namely (17) and (19) with zero �k terms. The cor-
responding physical critical points are shown in Table 2. As
we can see, we obtain an unstable dark-matter dominated
point, namely pm , as well as a stable dark-energy dominated
de Sitter solution pde. However, for 1 ≤ m ≤ 2 we obtain
point pb, in which �m and �de are both between 0 and 1 and
thus this point can alleviate the coincidence problem, while
it has −3/5 ≤ we f f ≤ −1/3. Note that this point for 1 ≤ m
is unstable. In Fig. 1 we depict the critical points, using for
convenience the new variables x ≡ X/

√
1 − X2 − Y 2 and

y ≡ Y/
√

1 − X2 − Y 2 in order to compactify them.

3.2.2 k = −1

In the case of k �= 0 the system of dynamical equations con-
tains (17), (19) and (20). The critical points are presented
in Table 3. As can be seen there is the unstable dark-matter
dominated point Qm , and the unstable curvature-dominated
point Qk . Additionally, there exist a stable dark-energy dom-
inated de Sitter solution Qds . Moreover, similarly to points
P4 in Table 1 and pb in Table 2 above, there is a point Q3

in which �m and �de are both between 0 and 1 and thus this
point can alleviate the coincidence problem.

In the presence of spatial curvature the two points Q1 and
Q2 appear, too. Q1 corresponds to P2 of Table 1, and it is is
physical only for k = 1 and for ε2 ≤ 1. It has both �m and
�de between 0 and 1 and thus this point can alleviate the coin-
cidence problem. Additionally, it has −1 ≤ we f f ≤ −1/3
and therefore it corresponds to accelerated solution. The fact
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Table 2 The critical points for the case f (Q) = ηQn , with k = 0

Fixed point Coordinates (x1, x3) Eigenvalues �m we f f

pm (0, 0)
[
3,− 3

2

]
1 0

pds
(− 1

m , 0
)

[−3,−3] 0 −1

pb
(
m+1
m2 ,− 6m

2m+1

) [
− 3

(
−2m2+

√
1−4m2(m+1)(7m+5)+1

)
4m(2m+1)

,
3
(

2m2+
√

1−4m2(m+1)(7m+5)−1
)

4m(2m+1)

]
2 − 2

m
2

2m+1 − 1

Table 3 The critical points for the case f (Q) = ηQn , with k = ±1

Fixed point Coordinates (x1, x3, �
k) Eigenvalues �m �k we f f

Qm (0, 0, 0))
[
3,− 3

2 , 1
]

1 0 0

Qk (0, 0, 1) [−2,−1, 2] 0 1 − 1
3

Qds
(− 1

m , 0, 0
) [−3,−3,−2] 0 0 −1

[0.75 ex] Q1
(

0,−6
[

2k
ε2−3k

+ 1
]
, 0

) [
3
2 ,− 8ε2

ε2−3k
,

6
[
k(m−1)+(m+1)ε2]

m(3k−ε2)

]
4ε2

ε2−3k
0 − 8k

ε2−3k
− 3

[0.75 ex] Q2
(

0,−2,− ε2

k

) [
2 − 2

m , 1, 2
]

0 − ε2

k − 1
3

Q3
(
k(m−1)+(m+1)ε2

m[k(m+2)+mε2] ,− 6m
2m+1 , 0

) { [
6

2m+1 − 2, 3, 3
2m+1

]
,

k = −ε2

2(m−1)
(
k+ε2

)
k(m+2)+mε2 0 2

2m+1 − 1

Fig. 1 The phase-space behavior in the specific case of f (Q) = ηQn

gravity, for k = 0. The Universe passes through the saddle matter-
dominated point pm at intermediate times, before it results to the dark-
energy dominated de Sitter solution pds

that it is unstable makes this point a good candidate for the
description of inflation. Furthermore, point Q2 corresponds
to P1, namely it describes a curvature-dominated solution if
k = ±ε2, and it is unstable.

In order to present the above features in a more transparent
way, we proceed to numerical investigation and in Fig. 2 we
depict the corresponding phase-space behavior in the X1−X3

plane. In the left panel the system starts from the inflationary

point Q1, then it passes close to the matter-dominated point
Qm and finally it results to the dark-energy dominated de
Sitter solution Qds . As we can see, the role of spatial cur-
vature is crucial in obtaining such a thermal history of the
Universe. Moreover, for completeness, in the right panel of
Fig. 2 we present a parameter-case in which the trajectories
starting from Q3 do not approach Qm efficiently.

In the left panel of Fig. 3 we provide the redshift-evolution
of the density parameters, while in the right panel we depict
the evolution of the deceleration and total equation-of-state
parameters (note that ln(1 + z) = − ln a = −N ). Interest-
ingly enough, we observe a transition from the initial accel-
erated expansion stage, to the intermediate matter-dominated
non-accelerating era, and then to the final accelerated expan-
sion phase. Additionally, note that the spatial curvature den-
sity parameter grows when the domination of the matter and
the dark energy phases is reversed.

Finally, in order to illustrate the behavior of the phase-
space trajectories near the curvature-dominated points Qk

and Q2, we focus on the x1 = 0 plane. In upper panel of
Fig. 4 we display Qm , Qk and Q2 in the x1 = 0 plane for
k = −1. Note that in the x1 = 0 plane one cannot indicate the
point Qds for which one acquires x1 = −1/m. As we can see,
for particular initial values the dark-matter dominated phase
falls between two different epochs with considerable values
of �k . In particular, the Universe evolves from an epoch with
curvature domination to the dark-matter dominated era and
then to another curvature-dominated epoch. The lower panels
of Fig. 4 show the time evolution of the density parameters,
and the deceleration and total equation-of-state parameters.

123



285 Page 6 of 9 Eur. Phys. J. C (2024) 84 :285

Fig. 2 The phase-space
behavior in the specific case of
f (Q) = ηQn gravity, for
k = −1. Left panel: for the
choice ε = 0.1 the system starts
from the inflationary point Q1,
then it passes close to the
matter-dominated point Qm and
finally it results to the
dark-energy dominated de Sitter
solution Qds . Right panel: for
the choice ε = 1 the system
starts from the scaling point Q3

and it results to the dark-energy
dominated de Sitter solution
Qds without passing sufficiently
close to the matter-dominated
point Qm

Fig. 3 The redshift evolution
of the density parameters (left
panel) and of the deceleration
and equation-of-state parameters
(right panel) in the specific case
of f (Q) = ηQn gravity, for
k = −1 and ε = 0.1 We have
set the initial conditions
x1i = −1.05 × 10−10,
x3i = −2.00013 and
�k

i = 5 × 10−7

As we can see, the transition Q2-Qm-Qk-Qds is also possible
for a particular set of the initial values.

3.2.3 k = +1

In the case of k = +1 the system of dynamical equations (17),
(19) and (20) exhibits the critical points presented in Table 3.
In particular, one has points Qm and Qds , however in this
case Qk and Q1 are not physical. Point Q2 corresponds to
a closed spatial curvature dominated era. Finally, Q3 exists,
in which �m and �de are between 0 and 1 and thus it can
alleviate the coincidence problem. In Fig. 5 we plot the phase-
space trajectories in both �k = 0 and x1 = 0 planes. As
we can see, we cannot obtain any transition between Qm

and Q2/Q3. Hence, we conclude that under positive spatial
curvature we can only obtain the usual transition from matter
to dark-energy dominated phases.

4 Concluding remarks

In this manuscript we investigated the cosmological impli-
cations of f (Q) gravity, which is a modified theory of
gravity based on non-metricity, in non-flat FLRW geome-
try. After presenting the relevant cosmological equations, we
performed a detailed dynamical-system analysis in order to

reveal the global features of the evolution, independently of
the initial conditions.

Firstly, we performed the analysis keeping the f (Q) func-
tion completely arbitrary. As we showed, the cosmological
scenario admits a dark-matter dominated point, which is sad-
dle and thus it can be the intermediate state of the Universe,
as well as dark-energy dominated de Sitter solution which
is stable and thus it can attract the Universe at late times.
However, the main result of the present work is that there are
additional critical points and curves of critical points which
exist solely due to curvature

In particular, we found that there are points which are
curvature-dominated and correspond to accelerating expan-
sion, and the fact that they are unstable makes them good
candidates for the description of inflation. Additionally, there
is a point in which the dark-matter and dark-energy density
parameters are both between zero and one, and thus it can
alleviate the coincidence problem. Finally, there is a saddle
point which is completely dominated by curvature.

In order to provide a specific example, we applied our
general analysis to the power-law case f (Q) = ηQn . In this
specific model, the Universe exhibits the general features
presented above, namely a saddle matter-dominated point
and a late-time dark-energy dominated attractor. Further-
more, it has points that exist only in the non-flat case, which
can alleviate the coincidence problem, as well as curvature-
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Fig. 4 Upper panel: the
phase-space behavior in the
specific case of f (Q) = ηQn

gravity, in the x1-plane, for
k = −1 and ε = 1. The orange
curve represents the transition
from the curvature-dominated
point Q2 to the
matter-dominated point Qm and
then to the curvature-dominated
solution Qk . Lower panels: the
corresponding redshift evolution
of the density parameters and of
the deceleration and
equation-of-state parameters.
We have set the initial
conditions x1i = −1.5 × 10−7,
x3i = −2.1 and �k

i = 0.9,
related to the black dot near Q2

in the upper panel

Fig. 5 The phase-space
behavior in the specific case of
f (Q) = ηQn gravity, for
k = +1, in the X1 − X3 plane
(left panel) and in the Qk − X3
plane (right panel). The unstable
Q1 point stands in between Qm

and Q2/Q3 and thus it blocks
transitions between them, and
hence we can only obtain the
usual transition from matter to
dark-energy dominated phases

dominated accelerating unstable points that can describe the
early-time inflationary epoch. In this case we performed a
numerical investigation showing that the system in the open
geometry case exhibits a transition from the initial acceler-
ated expansion stage, to the intermediate matter-dominated
non-accelerating era, and then to the final accelerated expan-
sion phase, while the curvature density parameter exhibits a
peak at intermediate times.

In summary, f (Q) cosmology in non-flat Universe exhibits
the desired behavior known from the flat case, however it
additionally exhibits qualitatively novel features that arise

solely from non-zero curvature. This fact, alongside possible
indications that non-zero curvature could alleviate the cos-
mological tensions, makes it both interesting and necessary
to further investigate modified gravity, and in particular f (Q)

gravity, in non-flat geometry.
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