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We present the light-flavor quark masses and low-energy constants using the 2 + 1 flavor full-QCD
ensembles with stout smeared-clover fermion action and Symanzik gauge action. Both the fermion and gauge
actions are tadpole improved self-consistently. The simulations are performed on 11 ensembles at three lattice
spacings a € [0.05, 0.11] fm, four spatial sizes L € [2.5,5.1] fm, seven pion masses m, € [135,350] MeV,
and several values of the strange quark mass. The quark mass is defined through the partially conserved axial
current relation and renormalized to MS(2GeV) through the intermediate regularization independent
momentum subtraction scheme. The systematic uncertainty of using the symmetric momentum subtraction
scheme is also included. Eventually, we predict m, = 2.45(22)(20) MeV, m, = 4.74(11)(09) MeV,
and m; =98.8(2.9)(4.7) MeV with the systematic uncertainties from lattice spacing determination,
continuum extrapolation and renormalization constant included. We also obtain the chiral condensate
£1/3 = 268.6(3.6)(0.7) MeV and the pion decay constant F' = 86.6(7)(1.4) MeV inthe N ; = 2 chiral limit,
and the next-to-leading order low-energy constants ¢3 = 2.43(54)(05) and ¢, = 4.322(75)(96).
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As fundamental parameters of the standard model which
are not directly measurable in experiments, the mass of the
lightest three flavors can only be determined accurately
using lattice quantum chromodynamics (QCD). Lattice
QCD offers a nonperturbative approach to solve QCD,
the underlying theory of the strong interactions, but a set of
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complete and accurate ensembles is essential to ensure
reliable results.

Due to the infamous fermion doubling problem which
prevents a straightforward discretization of the continuum
Dirac fermion action, an accurate determination of the light
quark masses is highly nontrivial. Since the widely used
clover fermions suffer the additional chiral symmetry
breaking which induces power divergence with loop
corrections, most of the light quark mass determinations
are made with either the staggered fermion (or its improved
versions) [1-13] which suffers the mixing between four
equivalent “tastes” of a given flavor, or Ginsburg-Wilson
fermion actions like domain wall [14—18] or overlap [19]
fermions which requires O(10-100) times more cost of
computational resources than the clover fermions.

Thus a natural question is, whether it is possible for the
clover fermion to reach a high accuracy determination of
the light quark masses. In 2007, Ishikawa et al. [20]
proposed an alternative approach to define light quark
masses from the partially conserved axial current (PCAC)
relation and renormalize it with tadpole improved one-loop
matching. By utilizing the Schrodinger functional (SF)
scheme [21], the PCAC quark mass can be renormalized
nonperturbatively, and the calculation of the physical
pion mass with a single lattice spacing a = 0.09 fm and
m,L ~2 gives m, =3.12(24)(08) MeV [22-25] at
MS(2 GeV), which is 10% lower than the present lattice
average value m, ,; = 3.381(40) MeV [26] with large
uncertainty.

A more systematic study using the SF scheme was
conducted by the ALPHA Collaboration with multiple lattice
spacing a € [0.05,0.086] fm but relatively heavy quark
masses m, > 200 MeV, and their determination resulted
in m, 4 = 3.54(12)(9) MeV [27]. So far, the most precise
determination of m, ; = 3.469(47)(48) [27,28] with clover
fermion comes from the BMW Collaboration, which utilized
multiple lattice spacings a €[0.05,0.012] fm with the lightest
pion mass m, = 131(2) MeV and renormalized the quark
mass using the widely used regularization independent
momentum subtraction (RI/MOM) scheme [29].

But the systematic uncertainty of using the RI/MOM
scheme could be underestimated, as the RI/MOM scheme
exhibits poor perturbative convergence for the scalar/
pseudoscalar current, leading to sensitivity in the final result
due to the estimate of the missing higher-order corrections.
Thus, the symmetric momentum subtraction (SMOM)
scheme [30,31] was proposed to suppress this uncertainty
and has been employed in most recent quark mass deter-
minations using chiral fermions. Nevertheless, a recent
study [32] at multiple lattice spacings shows that using
either the RI/MOM or SMOM intermediate scheme can
result in the renormalized scalar current under MS scheme
differing by 30% at a ~ 0.1 fm for the clover fermion.

Additionally, it is worth mentioning that the renormal-
ized quark mass using the RI/MOM scheme with the

twisted-mass fermion [33-35] is m,, 4 = 3.64(7)(6) MeV,
which is approximately 5% higher than the results obtained
with chiral fermions that predominantly use the SMOM
scheme.

In this work, we conduct a detailed comparison of the
renormalization constants (RCs) using the RI/MOM and
SMOM schemes. It turns out that the sensitivity of the
intermediate schemes can be suppressed to ~5% level,
which allows us to provide a relatively precise prediction of
the quark mass. Based on the kaon masses with the QED
effect subtracted, we also obtain the up, down, and strange
quark masses separately, along with other related quan-
tities. We expect that further improvement in the prediction
accuracy can be achieved through calculations on more
lattice spacings.

II. SIMULATION SETUP

The results in this work, are based on the 2 + 1 flavor
ful-QCD  ensembles using the tadpole-improved
tree-level Symanzik (TITLS) gauge action and the tadpole-
improved tree-level clover (TITLC) fermion action.

The TITLS gauge action, denoted as S, is defined in the
following:

S, = NicReZTr[l —ﬁ(P%y(x) +%)] (1)

X U<V

where N. = 3, and

Piu(x) = Uy(x)U, (x + ap) Ul (x + ab) U} (x),
RY,(x) = U,(x)U,(x + ap)U,(x + 2afi)
x Ul(x + apt + ad) U}, (x + ad)Uj (x),

Uu(x) =P {eXp <igo L o dyA, (y))],

and p=(1- SC?)ﬁ =10/(g3u) with ¢ =-1

12
U
¢ = ;—Z, uy = <W)l/ 4 is the tadpole improve-
5 P

ment factor, V = L3 x T is the dimensionless 4D volume
of the lattice, and we use O for the dimensionless value of

any quantity O.
The TITLC fermion action uses 1-step stout smeared link

V with smearing parameter p = 0.125,
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TABLE 1. Lattice size L? x T, gauge coupling ﬁ =10/ (gzug), dimensionless bare quark mass parameters 7

b

ls°

renormalized quark

masses mX_ and the corresponding pseudoscalar mass m, x, and the statistics information.

C24P34  (C24P29 (C32P29 (C32P23 (C48P23  C48P14  F32P30 F48P30 F32P21 F48P21  H48P32
LPxT 243 x 64 243 x 72 323 x64 323 x64 483 x96 483x96 322 x96 483 x96 32° x64 483 x96 48° x 144
i 6.20 6.41 6.72
a (fm) 0.10530(18) 0.07746(18) 0.05187(26)
b -0.2770  —0.2770 -02770 —0.2790 -0.2790  -0.2825  —0.2295 -0.2295 —0.2320 -0.2320 —0.1850
b —-02310 —0.2400 —0.2400 —0.2400 -0.2400 —0.2310  —0.2050 —0.2050 —0.2050 —0.2050 —0.1700
mf (MeV) 22.90(19) 16.94(12) 17.35(11) 10.55(11) 10.27(10)  3.638(83) 18.54(12) 18.511(92) 8.58(16) 8.59(08) 19.42(05)
mR (MeV) 111.41(16) 87.46(10) 88.16(10) 84.48(07) 84.79(04) 103.15(05) 93.23(11) 93.05(08) 89.75(10) 90.43(08) 95.61(04)
m, (MeV) 341.1(1.8) 292.7(1.2) 292.4(1.1) 228.0(1.2) 225.6(0.9) 135.5(1.6) 303.2(1.3) 303.4(0.9) 210.9(2.2) 207.2(1.1) 317.2(0.9)
my (MeV) 582.7(1.6) 509.4(1.1) 509.0(1.1) 484.1(1.0) 484.1(1.3) 510.0(1.0) 524.6(1.8) 523.6(1.4) 492.0(1.7) 493.0(1.4) 536.1(3.0)
Moty 200 476 198 400 62 203 206 99 194 98 176
Mo 32 3 3 3 3 48 3 3 3 12 12
v i v v v v pion mass is nonzero. A more practical solution defines it
Fuu = 3args P = Pra+ Pi = Prys through the PCAC relation [20],

+PYys =P+ P —-Pi).  (3)

The parameters utilized for the simulation, encompass-
ing the lattice size (L? x T), gauge coupling (), and
the lattice spacing (a) determined through the gradient
flow [36] with w, [37] using the Symanzik action, are
outlined in Table I. The dimensionless bare degenerated
light and strange quark mass (7,), renormalized quark
masses (mf,) at MS(2GeV), and the respective pion and
kaon masses (m, ) are also included in the table. The
details of the pseudoscalar meson mass and lattice spacing
extraction can be found in Appendixes A 1 aand A 1 b. The
impact of the mistuning effect of the tadpole improvement
factors u; and v, can also be found there (Appendix A 1 c).

The ensemble set used in this work is designed to control
the variables in the systematic uncertainty estimation. For
example, the spatial size L of the C24P29, F32P30, and
H48P32 ensembles are all within 1-2% of each other,
and the unitary pion masses are also similar with a 10%
difference. Thus, they are very suitable for investigating the
discretization error of the hadron structure with nonzero
given momentum. The pion mass and volume of C32P23
are close to those of FA8P21 within 10%, and remaining
differences can be further suppressed by interpolation with
the other ensembles or by generating a new ensemble
C36P21 using interpolated parameters. The other ensem-
bles with larger dimensionless volume, such as F64P14
and/or H64P22, should also be helpful in achieving better
control over the discretization error, and will be generated
in the future.

For the clover fermion action, defining the renormalized
quark mass mg from the bare quark mass parameter 7’ can

q
be subtle since the critical quark mass 7.y vanishing the

ZAaMAM = 2m§ZPP,

(4)

where A, = wysy,y and P = yysy. The PCAC quark
mass mEC is then defined through the pion-correlation

functions,

pe _ mes Y (Ay(E.)P1(0.0)
T 23 (PE NPI0.0)) limeo

(5)

where mpg 1is the pseudoscalar meson mass. The
renormalized quark mass is subsequently defined as
ml =7,/ ZpmEC.

In Fig. 1, we plot the dimensionless PCAC quark mass
myC = m}Ca as a function of the dimensionless input bare
quark mass parameters ﬁ12 = mga, at three lattice spacings
with m, ~ 300 MeV. The figure also includes linear fits
using the following form:

(6)

where 771.; corresponds to the critical pion mass that makes
the pion mass and /"¢ vanish. The parameter k,, = 1 +
O(a?, a,, aa,) approaches 1/Z, determined by nonpertur-
bative RI/MOM renormalization (due to the relation
Z,Zp=1) in the continuum limit, while it is affected
by the O(a?) discretization error and O(a;) loop effects at
finite lattice spacing.

Unlike the hadron mass, the determination of physical
quark mass on the lattice using discretized actions requires
additional renormalization. The RCs defined under the MS
scheme, can only be obtained through regularization-
independent (RI) schemes such as RI/MOM [29] or

1iyC = Ky (g = M)
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FIG. 1. The dimensionless PCAC quark mass m5¢ = m!Ca vs
the bare quark mass ﬁ12 = m';a at three lattice spacings. The

slope should approach 1 in the continuum limit. The data points
correspond to six valence quark masses around the unitary light
and strange quark masses in those ensembles.

SMOM [30,31]. These RCs should be independent of
intermediate schemes.

For the overlap fermion action, which possesses strict
chiral symmetry, the relations Zy, = Z, and Zp = Zg =
1/Z,, are satisfied strictly. The scheme dependence of
RI/MOM or SMOM can be ignored compared to other
systematic uncertainties [38].

However, in the case of the clover fermion action, the
ratio Z,/Zy can deviate from unity due to the additive
chiral symmetry breaking effect generated by additional
terms in the action, and it is sensitive to the choice of using
RI/MOM or SMOM scheme. Based on the f, at three
lattice spacing with m, = 317 MeV, the scheme sensitivity
is approximately 1% after a linear a”> continuum extrapo-
lation, with the discretization error through RI/MOM being
25% smaller than that of SMOM.

For the chiral symmetry breaking effect between Zg and
Zp, it is valuable to consider the scalar matrix element with
the valence quark contribution only,

gsaMe = (7|S|7)yu/ (7| 7), (7)

_ . MS(2 GeV
Wh_ere S = yw. We show the renormalized gs.ﬂ.<MEe ) =
21;45(2 GeV) gs, obtained from RI/MOM and SMOM

schemes in Fig. 2, for m, = 317 MeV at three different
lattice spacings. It can be observed that the RI/MOM
scheme exhibits a smaller discretization error than that of
the SMOM scheme, and the continuum extrapolated values
differ from each other by approximately 7.6(2.3)%.
Using the Feynman-Hellman theorem, one can also
extract gg, from the quark mass dependence of m,, as

1om,(m,) m,
7":4’” + O(m,, a*), (8)

9szFH — 5
2 0mq q

a.4F ¥  ME, MOM
» &  ME, SMOM

& FH, MOM
4 FH, SMOM

3.0F

0.000 0.002 0004 0006 0008 0010

a? (fm?)

FIG. 2. Renormalized scalar matrix element gg, with m, =

317 MeV at three lattice spacing. gs , mp used Z?SQ GeV)

> 9,z FH
used ZII\D/[S(2 Gev), through either the RI/MOM or SMOM scheme.

The extrapolated values deviate by ~7%.

om,(m,)
om

where the factor % in front of is used to average the

q
contribution from two propagators in the pion correlator.

MS(2 GeV)

Using the renormalized quark mass my extracted

with the RI/MOM or SMOM scheme, gy, " (filled
green dots for MOM and red boxes for SMOM) are in the
range of 3.9 to 4.2 and then slightly smaller than the linear
a” extrapolated value gs , v = 4.35(9) (green band) using
the RI/MOM scheme but consistent with the SMOM value
4.02(6) (red band). Even more, gs , py is consistent with the
9s... Mg using the RI/MOM scheme at each lattice spacing
within two sigma, but have significant difference from the
gsxme using the SMOM scheme. Thus, the deviation
between the g , py and gs , Mg using the RI/MOM scheme
would be only a systematic uncertainty due to the linear a>
extrapolation. Thus the renormalized gg shall have about
7% systematic uncertainty with present data, and more
reliable continuum extrapolation with data at more lattice
spacing is essential to obtain accurate prediction on gg.
The renormalization constants for various quark bilinear
operators are detailed in Appendix A2, along with a
discussion on the discretization error from different
renormalization methods of quark field and mass.

III. RESULTS

Using the lattice spacing shown in Table I, we find
that the unitary pion mass on the ensemble C48P14 at
a =0.1053(2) fm is 135.5(1.6) MeV, which perfectly
agrees with the physical neutral pion mass m, of
134.98 MeV within 1% statistical uncertainty. The charged
pion mass m,+139.57 MeV receives the QED correction
4.53(6) MeV [39] and then the subtracted pure QCD m = is
consistent with that of m_ within the uncertainty.

The corresponding renormalized light quark mass and
pion decay constants can also be determined as

054507-4
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w2 V) (4 = 0.105 fm) = 3.64(8)(11) MeV,

fa(a=0.105 fm) = 121.9(5) MeV, (9)

where the second uncertainty of m, comes from that of the
renormalization constant. Based on the continuum extrapo-
lation with a 317 MeV pion mass, the pion decay constant
can change by approximately 7%, and then agree with the
present PDG value 130.4(0.2) MeV [40] after the con-
tinuum extrapolation.

In order to process this continuum extrapolation sys-
tematically, we calculate the quark propagators with unitary
light quark mass and also two partially quenched quark
masses with the constraint m,L > 3.5, on each of the 11
ensembles. Then we use the next-to-leading order (NLO)
partially quenched yPT form [41] to describe the pion
masses and decay constants with different valence and sea
quark masses, in addition to extra parameters c,, s,/ for
the finite-lattice spacing/volume corrections.

Since the statistics on each ensemble are different, we
perform 4000 bootstrap re-samplings on each ensemble and
conduct the correlated global fit based on these bootstrap
samples. In such a strategy, the correlation between differ-
ent data points in the same ensemble is included automati-
cally, and that between different ensembles vanishes within
the statistical uncertainty of the re-sampling. The lattice
spacing and renormalization constants are sampled for each
bootstrap sample using a Gaussian distribution with their
uncertainties as the width of the distribution.

To illustrate the lattice spacing dependence and the
unitary quark mass dependence, we subtract the partially
quenching effect using bootstrap samples of the fit para-
meters from the original data points, and show the ratio

(m,)?*/ mgﬁ(z GeV)' (upper panel) and also f, (lower panel)
at different quark masses m, in the Fig. 3. The corrected
data points at different lattice spacings use different

symbols: red crosses for a = 0.105 fm, blue triangles for
a = 0.077 fm, and filled green dots for @ = 0.052 fm. The

TABLE II.

bands with similar color represent the fitted band at the
corresponding lattice spacing, and the gray band shows the
final prediction in the continuum and infinite volume limit.
It is observed that the continuum extrapolation pushes f, to
be obviously higher, while the impact on the (m2/m,) ratio
and, consequently, m, is much weaker.

The m, and f, with unitary valence and sea quark
masses have the following parametrization,

2

2yA
7,phys

F, = F[l —2y<ln zzyA)% —f4> +(’)(y2)}, (11)

mn:,phys

Zmy
F2AZ°
constants. Our determination of those constants are also
collected in Table II, consistent with the current Ny =
2+ 1 FLAG average but have smaller uncertainties
except F.

In this work, we use the m g+ and mygo with the constraint

where A, = 4znF, y = %, F, and 754 are low-energy

mhvs 4 mghy S — Zm?hy *, to determine the up, down, and
strange quark masses m, ;.. The QED correction on the
kaon mass is subtracted based on the literature [34]

under the renormalization scheme m%CD +oEp(2 GeV) =

m%CD(Z GeV). On each ensemble, we calculate the

strange quark propagators with a unitary strange quark
mass my = m§, and also two partially quenched quark
masses my ~ 100 MeV. We construct the kaon correlation
functions with three strange quark masses and three light
quark masses used in the pion case. The 3 x 3 partially
quenched kaon masses on all the ensembles are fitted with
the following form proposed in a recent work [35]:

Summary of our determination on quark masses at MS(2 GeV) and the other quantities, through the intermediate

RI/MOM or SMOM schemes, with comparison with FLAG [26] and/or PDG [40]. The difference between two schemes is considered

as systematic uncertainty in the combined determination.

m; (MeV) m, (MeV) my; (MeV) m,; (MeV) =13 (MeV) mg/m; m,/my
RI/MOM 3.60(11) 2.45(22) 4.74(11) 98.8(2.9) 268.6(3.6) 27.47(30) 0.519(51)
SMOM 3.45(05) 2.25(10) 4.65(08) 94.1(1.2) 269.3(1.8) 27.28(22) 0.485(26)
Combined 3.60(11)(15)  2.45(22)(20)  4.74(11)(09)  98.8(2.9)(4.7)  268.6(3.6)(0.7)  27.47(30)(13)  0.519(51)(34)
FLAG/PDG  3.381(40) 2.27(09) 4.67(09) 92.2(1.0) 272(5) 27.42(12) 0.485(19)

F (MeV) F,/F fr MeV) fie MeV) Fr/fx 43 4
RI/MOM 86.6(7) 1.0675(19) 130.7(0.9) 155.6(0.8) 1.1907(76) 2.43(54) 4.322(75)
SMOM 85.1(6) 1.0683(15) 128.6(0.8) 152.9(0.7) 1.1890(74) 2.49(23) 4.226(48)
Combined 86.6(7)(1.4)  1.0675(19)(08)  130.7(0.9)(2.1)  155.6(0.8)(2.7)  1.1907(76)(03)  2.43(54)(05)  4.322(75)(96)
FLAG/PDG  86.8(6) 1.062(7) 130.2(0.8) 155.7(0.7) 1.1917(37) 3.07(64) 4.02(45)
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2 Q Q
m% (my, m3, my, ms, a)

= (bymy + bim§ + b)m) + bim})
x [1+ cKm) + cKa? + cKexp (-m,L)]. (12)

The global fit result is showed in Table XI. Based on the
fit of m%, the total strange quark mass dependence b} +
b5 =2.37(08) is consistent with the leading-order light
quark mass dependence b] 4 b} =2.59(95), and the
coefficient of the nonlinear quark mass dependence
cX =1.2(3.3) x GeV~! can not be determined based on
current statistics.

In Fig. 4, we show the corrected kaon mass m§ and
decay constant /¥ with the light quark mass m; corrected to
its physical value m?™*. The finite volume and partially
quenched effects are also subtracted. We can found that f
also exhibits a strong lattice spacing dependence, similar to
the f, case, while the kaon mass is insensitive to the lattice
spacing.

As illustrated in Figs. 3 and 4, all the global fits of the
pseudoscalar meson mass and decay constant provide
reasonable y?/d.o.f. More information on the global fit
can be found in Appendix A 3.

5.8
[ —— Continuum
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5.6 } a=0.0775fm
L & a=0.0519fm
; 5.4F
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g L
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N E
€ s.0p
a8k
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FIG. 3. The corrected unitary (my")?/m, and the decay
constant fU varies with the quark mass, at three lattice spacing
(colored data points and corresponding bands with dashed line for
0.0519 fm, dash-dotted line for 0.0775 fm, and dotted line for
0.1053 fm) and also continuum (gray band).
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FIG. 4. The corrected kaon mass m% and the decay constant f¢
with the physical light quark mass m?™", varies with the strange
quark mass at three lattice spacing (colored data points and

bands) and also continuum (gray band).

The physical quark masses m,, 4 ; and also corresponding

frx using mP™* and intermediate RI/MOM scheme, are
collected in Table II. In addition, Table II shows the global
fit results using the Z, p through the SMOM scheme for
comparison. As we can see from the continuum extrapo-
lation tests using a 317 MeV pion mass, the SMOM scheme
yields quark masses that are 3-4% lower and decay
constants that are ~2% lower compared to the RI/MOM
scheme. However, the ratio of the quark masses or decay
constants remains unchanged within the uncertainty as the
renormalization constants are canceled.

Therefore, we consider the result using the RI/MOM
scheme as the central value due to its smaller discretization
error, and treat the difference between the results obtained
using the two schemes as systematic uncertainties. Such a
systematic uncertainty can also be considered as an estimate
of the residual discretiation error, as the correct continuum
limit should be independent of the intermediate renormaliza-
tion scheme. All our determinations are consistent with the
present lattice averages [26] and/or PDG [40] within 1 — 26.

IV. SUMMARY

In this work, we determine the up, down, and strange
quark masses, along with several low-energy constants,
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using the 2 4 1 flavor full-QCD ensembles with tadpole-
improved clover and Symanzik actions. The major results
are summarized in Table II.

Similar to one of the most precise works [28] with the
clover fermion, we have skipped the axial current improve-
ment [42] since the improvement coefficient itself strongly
depends on the lattice spacing a and bring the improvement
term to be consistent with an O(a?) correction. As
evidence, both f, and m, show good consistency with a
simple linear a? lattice spacing dependence. Then assigning
¢y ~0.05a/(0.105 fm) in the improved axial vector cur-
rent Ay = A, + c4ad,P [42] can eliminate the discreti-
zation error in f, g, however, this error will be transferred
to the quark mass. Thus, simulations at more lattice
spacings would be a more systematic solution to enhance
the accuracy of our predictions in the continuum than the
axial current improvement.

On the other hand, the additive chiral symmetry breaking
makes the renormalization of the quark mass to be highly
nontrivial. Our study suggests that the Zg and Zp obtained
through the SMOM scheme are closer than those through
the RI/MOM scheme, while the latter one can make the
discretization error of both the mf =Z,/ZpmfC and
¥ = Zsgs to be smaller. Our final prediction of the quark
masses are 5.6(2.8)% higher than the current (2 + 1)-flavor
lattice averages but consistent with the previous (2 + 1)-
and (2 + 1 + 1)-flavor results using the RI/MOM scheme.
At the same time, the RI/MOM scheme can also cause the

Feynman-Hellman theorem gg , ~ 4r:1_nﬂ to be violated by 7
q

(3)% after the linear O(a?) continuum extrapolation.

Using the SMOM scheme can eliminate the violation
and bring the quark mass prediction closer to the current
(2 + 1)-flavor lattice average. However, the SMOM
scheme introduces larger discretization errors for all the
renormalized quantities we investigated and causes the
decay constants f, x to be 2-3% smaller than the physical
values after the linear O(a?) continuum extrapolation.

The above observations indicate that renormalization is a
significant issue that requires careful investigation, and
conducting similar calculations using chiral fermions
would be essential to gain a better understanding of these
violations. At the same time, nonperturbative renormaliza-
tion should remove all the O(«,) effects, but not all the
cross terms like the residual O(aaqy) effect of the clover
action, which can cause the O(a?) continuum extrapolation
to fail. Thus, we consider the difference between the results
obtained by the two schemes as systematic uncertainties in
our final determination of the aforementioned quantities,
which are larger than the statistical uncertainties in various
cases. We anticipate that additional research utilizing
ensembles with a greater number of lattice spacings can
encompass both the O(a?) and O(aa,) terms in the
continuum extrapolation, resulting in a more dependable
and uniform continuum limit.

It is worth mentioning that in Ref. [28], the trace-
subtraction trick § = S — { Tr[S] is applied into renormal-
ization procedure, and the quark mass is renormalized at
RI/MOM 2 GeV, followed by perturbative matching at a
much higher scale. This approach is crucial in suppressing
their truncation error to the sub-percent level. However, in
our case, it appears to be inefficient due to significant
nonperturbative effects observed at 2 GeV. We plan to
conduct a more systematic investigation once the CLQCD
ensembles at more lattice spacings are generated.
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APPENDIX

1. Simulation details

This section is organized as follows. The dimensionless
joint fit on the pseudoscalar meson mass, its decay
constant, and the corresponding PCAC quark mass will
be discussed in Appendix A 1a. Based on the determi-
nation of an uniform lattice spacing at given ﬁ detailed in
Appendix A 1b, the mistuning effect of the tadpole
improvement factors is not always negligible and will be
addressed in Appendix A I c.

a. Dimensionless joint fit

We construct two kinds of the two-point functions for the
meson states:
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Cg,l;‘:'p([; my) = Z(Tr[SZ(f, Yo + 13 Y03 my)ysI”

X

X Sc(X,yo + 1 yo:mg)[ys]) /L3, (A1)
CI0 L (t5my) =Y (Tr[SE(F. yo + 1 y0: mg)ysT

Xz

X Sc(Z.yo + t:yosmy)T'ys]) /L7, (A2)

where C, is independent of the source time slice y after
taking expectation value, the Coulomb gauge fixed-wall
source propagator is defined as

Sc(xy0smg) =Y _S(x: 3, y03mg, Uc),
5

(A3)

S(xsysm,, U) =w(x;m,, Uy (y;my, U) is the quark
propagator of the quark field y with bare quark mass
m, on a given gauge configuration U, and U is the
Coulomb gauge fixed configuration satisfying the gauge
fixing condition Im[} ;_; ,3(Uc(x) = Uc(x — an;))] = 0.

For the clover fermion action, the PCAC quark mass m,,
is then defined through the pion correlation functions [20],

pe _ MesSe(Ay(E. )P (0.0)
T 2YR(PERDPI0.0) e

(A4)

The renormalized quark mass is subsequently defined
as mg = ZA/meSC. _

Through a joint fit (O is the dimensionless value of any
quantity O),

Capi-1)=C0 1) Sinh(ies) e (a5
= = = My,
4C§5p (t) 0<i<T Mpg 7
~PP (7 ~
?2,wp ) = 7m12,5 Fos (A6)
szvjw (’i) 0<i<T 2’715C pr
C7, (Dloarat = o (e 4 en(T-D), (A7)
P 2inps
the PCAC quark mass rhgc, pseudoscalar mass
ChP (i—-1)+ChP (i+1
ﬁ’lPs _ COSh_l 2,wp( ~>PP ~2,wp< ) , (AS)
2C2,wp (t) 0<i<T

and decay constant fps are extracted as fit parameters,
alongside an additional unphysical fit parameter Z,,,, for the
Coulomb gauge-fixed wall source.

In Fig. 5, we shown the joint fit result of the unitary light
quark on the physical point ensemble C48P14. To suppress
the statistical uncertainty, we repeated the calculation on

0.0020 0.0430

0.0018 0.0428

i
0.0016 - B ) 0426 -

0.0014
0.0424

0.0012} ¢
. . . . . 0.0422 . . . .
0.085 & data — fit
0.080 F 102k
0.075
0.070} ©
[}
0.065
0.060 b . . . . 101 . . . )
0 10 20 30 40 0 10 20 30 40

t/a t/a

FIG. 5. The ratios for i, (left top), Fps (right top)N, mpg (left
bottom) defined in Eqs. (A5)—(A8), and the correlator sz:, » (right
bottom) as functions of 7, for the physical light quark mass at the
coarsest lattice spacing. The joint-fit results are shown on the

plots as gray bands.

ng. = 48 of 96 times slides on n., = 203 configurations.
The values of ng, and ng, of the other ensembles can be
found in Table. I. The ratios (red data points) defined in
Eq. (A5) for /i, are consistent with a constant in the region
of 7> 10, as shown in the top left panel. The situation is
similar for fpg (top right panel) and also /pg (bottom left
panel). Since the statistics on C48P14 are limited, we
performed a joint uncorrelated fit in the range 7 € [10, 40]
for Eqs. (AS5)—(A7) and used bootstrap resampling to
estimate the uncertainty, represented by the gray band in
the figure. We can see that the fit agrees very well with the
data points, and the uncertainties of the fitted bands are
comparable to the original data. Thus, it is unlikely that the
uncertainty has been underestimated by the uncorrelated fit.

The strange quark mass case on the ensemble C48P14 is
shown in Fig. 6. Since the statistical uncertainty decreases
with with a heavier quark mass, we only repeated the
calculation on three time slides for each configuration,

0.0484

0.0482

0.0480F

0.0478F

L
0.380[
0.379F
0.378f
0.377f

0.376

L L L L L
0 10 20 30 40
t/a

FIG. 6. Similar to Fig. 5 but for the strange quark mass and
fewer sources (ny, = 3).
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1.008F Fit
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1.002f *
1.000
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a2(fm?2)

FIG.7. The ratio of the PCAC quark mass determined from the
quarkoinum (pion and #;), and also kaon. Two definitions are
consistent upto O(a?) correction.

resulting in more noticeable fluctuations compared to the
light quark case.

Through the above fit, we can extract the light and
strange quark masses through the pion and 7, correlators,
respectively,
0,(lysy,l) =2miClysl,  0,(5ysy,s) =2m 5ysl.  (A9)
Alternatively, the sum of the light and strange quark masses
can also be extracted from the kaon correlator,

0,(57s7ul) = (mj© + m{€)sysl. (A10)
Thus, we should verify two extraction provide consistent
result, at least in the continuum. Figure 7 shows the ratio
of these two determinations of m; 4+ m, at three lattice
spacings, with m, ~300 MeV and m, ~ 700 MeV for
better signals. Two determinations deviate from each other
by approximately 0.6% at the coarsest lattice spacing but
are consistent within the statistical uncertainty of 0.1% after
a linear a® extrapolation to the continuum limit.

At three lattice spacings with m, ~ 300 MeV, we fit the
dimensionless PCAC quark mass mF¢ = mfCa with the
following form:

5PC b 5

m- = km(”h - mcrti)v (All)

where ﬁzg ga is the original input quark mass param-
eters, and 7.y; corresponds to the critical pion mass that
makes the pion mass and mFC vanish. The parameter k,, =
1 + O(a?, a,, aa,) approaches 1/Z, determined by non-
perturbative RI/MOM renormalization (due to the relation
Z,,Zp = 1) in the continuum limit, while it is affected by
the O(a?) discretization error and O(a,) loop effects at
finite lattice spacing.

Based on the numerical results listed in Table III, we
observe that /., remains negative even after a naive

=m

TABLEIIL. The bare coupling a?, critical quark mass 7., and
slope k,, at three lattice spacing a and m, ~ 300 MeV.

a (fm) 0.105 0.077 0.052
ab(a) 0.2397 0.2234 0.2035
Mew —0.28560(4) —0.23545(3) —0.18885(1)
k, 0.881(1) 0.953(1) 1.009(1)

O(a) 4+ O(a?) extrapolation to the continuum, with a value
of —0.0865. Therefore, it is crucial to include the O((a?)?)
b_ % _ _10

S T4z 47!/}143’

tion to ensure that ﬁzcm—go, as predicted by lattice
a—>

term, where a

in the continuum extrapola-

perturbative theory.

On the other hand, the discrepancy between k,, and 1
diminishes as the lattice spacing becomes smaller. We will
discuss this further in the following section on
renormalization.

b. Lattice spacing determination

Figure 8 illustrates the lattice spacing determined by the
gradient flow [36] with w, [37] at three bare couplings ﬁ
and m, ~ 300 MeV, using different gauge action improve-
ment coefficient ¢; in the flow; ¢; = —0.331 (Iwasaki
action), —0.2 and —1/(12u3) for interpolation, —1/12
(Symanzik action), and O (Wilson action). The ¢; depend-
ence becomes weaker at smaller lattice spacings, indicating
that it is a discretization effect. As the tadpole improvement
factor approaches 1 with increasing gradient flow ¢,
implementing tadpole improvement for the action used
by the flow only affects the small flow time region and is
unnecessary. Thus, we consistently use the standard ¢; =
—1/12 in the gradient flow to match the gauge action
employed in HMC and mitigate the discretization error.

to —e— 10/g?=6.20
o -m- 10/9°=6.41
E --¥-- 10/g2=6.72
S0.108
0.106
0.082| g ________
= |  TTTTTee=- -
g """"" balalt T
c0080) T -
0.078
0.058
€ 0.056
£
g
E L ——
............... Ve N,
. L I v

-0.35 -030 -0.25 -0.20 -0.15 -0.10 -0.05 0.00
C1

FIG. 8. The lattice spacings determined by w, with different
gauge action improvement factor c;.

054507-9



ZHI-CHENG HU et al.

PHYS. REV. D 109, 054507 (2024)

TABLE 1V. a,, on different ensembles and the fitted values
through the functional form in Eq. (A12).

fit

ay, ay, Fit parameters

C24P34  0.11198(17) 0.11202(16) a(6.20) 0.10530(18)
C24P29 0.10811(15) 0.10834(09) a(6.41) 0.07746(18)
C32P29 0.10858(11) 0.10836(06) a(6.72) 0.05187(26)
C32P23  0.10637(13) 0.10637(06) g 0.507(18)
C48P23  0.10631(06) 0.10635(05) Cs 0.110(23)
C48P14  0.10583(07) 0.10582(06) cr 0.001(09)
F32P30  0.08044(10) 0.08044(08) Cyy —408(125)
F48P30  0.08017(05) 0.08017(05) Cyp 379(110)
F32P21  0.07758(16) 0.07757(15)

F48P21  0.07810(07)  0.07809(06)

H48P32  0.05430(11) 0.05430(11)

Using the FLAG average value of the gradient flow scale,
wp = 0.1736(9) fm [26], the lattice spacing a,,, for each
ensemble is determined using the Symanzik flow and
summarized in Table IV. It is evident that a,, primarily
depends on the gauge coupling ﬁ, while the quark mass also
exhibits significant effects, as indicated by the precise a,,
results with a statistical uncertainty of approximately 0.1%.
Empirically, a,,, can be described by the following para-
metrization, yielding a y?/d.o.f. of 2.2 (with a correspond-
ing p-value of 0.09, still larger than the standard lower
bound of 0.05):

A

ﬁ iy, 6ug, 57)0)

2
|: ( m”’phys>
—in
( m, phy<> e

+ (g — 1t

\‘:[\)
~

D+ caloo=1h)]. (A12)
where, m ;noo = 134.98 MeV [40] represents the physical
pion mass without QED correction, and m, ;. =
689.63(18) MeV [48] corresponds to the pseudoscalar

meson mass of the strange quark with only connected
insertions. The tadpole improvement factors used in the

actions are denoted as u)) and v}, while u, and v, are

tadpole improvement factors obtained from the generated
configurations. The lattice spacing a(f) with physical
quark masses at each S, along with the other fitting
parameters ¢; ;s , ,, are also provided in Table IV.

We observe that the volume dependence is consistent
with zero, but there is still a nonvanishing mismatch effect
(ul) # ugy and v} # vp) in the tadpole improvement factors,
like what be showed in Table V. It is also interesting to note
that the dependence of a,,, on the strange quark mass is
weaker compared to that of the light quark mass by a factor
of approximately 4, instead of 2 from two light flavors.

¢. Mismatch effect of the tadpole
improvement factors

As shown in Table IV, the mismatch effect of the tadpole
improvement factors can have a nonzero impact on the
determination of a,,, through the gradient flow. Both u,, and
vy represent vacuum expectation values and cannot be
accurately determined before generating gauge configura-
tions using the realistic hybrid Monte Carlo (HMC)
production. Therefore, for each ensemble, we initiate the
HMC with an initial guess for u, and »;, measure their
values on each trajectory until they stabilize, and sub-
sequently restart the HMC production with the updated
values of u, and v,. After several iterations, the input
values u} and v} become consistent with u, and vy, as
measured from the configurations, at a level of approx-
imately 0.002%, resulting in an effect of around 0.6% on
the lattice spacing. The only exception is the test ensemble
C24P34, which exhibits a larger deviation in both u, and
vg; however, their impact on aw, is mainly canceled out
due to the opposite signs of ¢, and ¢, .

After averaging u, and u) to obtain an estimate of the
self-consistent tadpole improvement factor i, we observe
that the volume dependence is at the level of 0.001% based
on the spatial sizes utilized. On the other hand, the quark
mass dependence appears to be more pronounced.

In the upper panel of Fig. 9, the value of i, exhibits a
linear behavior with respect to the combined quark mass
2m;C +0.55(1)mbC o 0.5m% + 0.14/m; . This suggests
that the dependence on the strange quark mass exhibits
a similar suppression as observed in a,,, as shown in

TABLE V. The tadpole improvement factors u%) and v{) used in the gauge and fermion actions, 1, and vy measured from the realistic
configurations generated using u}) and v{), and their averages i, and 2.

C24P34 C24P29 C32P29 C32P23 C48P23

C48P14

F32P30 F48P30 F32P21 F48P21 H48P32

ul) 0.855453  0.855453  0.855453  0.855520  0.855520

0.855548

0.863437  0.863473  0.863488  0.863499  0.873378

uy 0.855255(7) 0.855439(2) 0.855429(2) 0.855528(2) 0.855523(1) 0.855530(2) 0.863460(1) 0.863459(1) 0.863519(2) 0.863515(1) 0.873372(1)
ity 0.855354(4) 0.855446(1) 0.855441(1) 0.855524(1) 0.855522(1) 0.855539(1) 0.863449(1) 0.863466(1) 0.863504(1) 0.863507(1) 0.873375(1)

vy 0.951479  0.951479  0.951479  0.951545  0.951545

0.951570

0.956942  0.956984  0.957017  0.957006  0.963137

vy 0.951275(6) 0.951461(2) 0.951452(2) 0.951550(2) 0.951547(1) 0.951554(2) 0.956968(1) 0.956967(1) 0.957024(1) 0.957019(1) 0.963134(1)
7o 0.951377(3) 0.951470(1) 0.951466(1) 0.951548(1) 0.951546(1) 0.951562(1) 0.956955(1) 0.956976(1) 0.957021(1) 0.957013(1) 0.963136(1)
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FIG. 9. The combined quark mass 2mPC + 0.55(1)mEC

I n
dependence of iy = @ (upper panel) and 7y = % (lower
panel), at 10/g*> = 6.2.

Table IV. In the lower panel, we observe that v, exhibits the
same quark mass dependence within the uncertainty.
However, such a mismatch will not significantly alter the
physical observables. To illustrate this, let us consider the
C24P34 ensemble with the largest mismatch effect. We

calculate the pion two-point function C3% (1], cgy)
using the same mf = —0.2770, but with either cy, =

1/(vh)® or 1/83. The joint-fit parameters defined in
Eqgs. (A5)—(A7) are listed in Table VI. We find that the
matrix elements fps and Zwp remain unchanged within
0.05% uncertainties. However, ripg experiences a 0.6%
change, resulting in a 1.1% shift in the quark mass. This can
be understood by noting that increasing c, leads to an
increase in 7.y, thereby making the multiplicative renor-
malizable quark mass m}C larger for the same #?.
Consequently, the mismatch effect falls within the statis-
tical uncertainty of C24P34 and is an order of magnitude
smaller in other ensembles. Hence, we can safely disregard
this mismatch effect in the subsequent discussions.

2. Renormalization

Unlike the hadron spectrum, the determination of hadron
matrix elements on the lattice using discretized actions
requires additional renormalization. The RCs defined under
the MS scheme, can only be obtained through regularization-
independent (RI) schemes such as RI/MOM [29] or

TABLE VI. The joint-fit results with the same 7’ and either
cow = 1/(v})3 or 1/93, on the test ensemble C24P34 which has
the largest mismatch effect.

~ ~ PC 7
Mpg m; frs pr

1/(v})? = 1.1609 0.1832(12) 0.01191(13) 0.0768(10) 10.50(30)
1/(90)? = 1.1613 0.1822(12) 0.01178(13) 0.0768(11) 10.50(31)

0.0011(01) 0.00013(01) 0.0000(00) 0.00(01)

Difference

TABLE VII. Summary of uncertainties of RCs in percentage on
the C32P29 ensemble through the intermediate RI/MOM
scheme.

S)zy NSz, Z¥S)z,, ZVS/Z,

Source (%) (%) (%) (%)
Statistical error 0.13 0.37 0.92 0.06
Lattice spacing < 0.01 <0.01% < 0.01 < 0.01
Finite volume effect 0.03 0.24 0.62 0.02
Fit range of a’u? 0.11 0.47 1.21 0.31
AMS < 0.01 1.64 1.65 < 0.01
QCD
Truncation in matching  0.24 3.45 3.45 0.24
Perturbative running 0.02 0.07 0.07 0.02
Total 0.32 3.74 4.26 0.31

SMOM [30,31]. These RCs should be independent of
intermediate schemes.

For the overlap fermion action, which possesses explicit
chiral symmetry, the relations Zy, =Z, and Zp = Zy =
1/Z,, are guaranteed. The consistency of using RI/MOM
or SMOM schemes has been verified within systematic
uncertainties [38]. However, in the case of the clover
fermion action, which exhibits additive chiral symmetry
breaking, additional considerations and discussions regard-
ing its impact on renormalization are necessary in this
section.

Following a similar strategy employed by Ref. [38], the
values of Z p 7 incorporate two sources of uncertainty. The
first one encompasses ensemble-independent statistical and
systematic uncertainties, including lattice spacing, finite
volume effects, and a’u? fit range. The second source of
uncertainty arises from perturbative matching, including
uncertainties associated with Agcp, truncation in the
perturbative matching, and perturbative scale running.
These uncertainties are fully correlated across different
ensembles. As shown in Table VII for the C32P29
ensemble, the truncation error is the largest source of
uncertainty for Zg p.

In Ref. [38], the truncation error resulting from the
3-loop perturbative matching between the RI/MOM and
MS schemes is estimated by introducing a fake 4-loop
correction. As an illustration, considering the scalar/pseu-
doscalar case with the largest truncation error, the 3-loop
matching and the fake 4-loop one are expressed as follows:

cgf_j}‘fggdﬂgﬁp = 1+0.4244a, +1.007a2 +2.722a3, (A13)
o R N toop = 1+ 0424401, + 1.00702 + 2.722)
+7.3584. (A14)

The coefficient of fake a? term 2.7222/1.007 = 7.358 is
the same as that provided by the Padé approximation,
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1 —2.279a, — 0.1402a2
1 —2.703a,

= 1 + 0.4244a, + 1.007a? + 2.722a3
+7.3580 + O(ad).

CM_S,RI/MOM _
S.np=3Pade;

(A15)

Based on the precise 4-loop calculation, the precise
4-loop matching is [49],

CYSRUMOM 4 4 ) 40440+ 1.00702 + 2.7224°

S,np=3,4-loop
+8.263a%, (A16)

MS RI/MOM

S.ny=3 fake 4—loop but smaller than

which is larger than Cjg

CMS,RI/MOM
S,nf:3,Pade3 .

correction, we anticipate that the Padé approximation will
provide a more accurate estimate for Cg, =3

Considering that the existence of the 5-loop

Thus, we shall use the 4-loop Padé approximation,

1 -2.611a, —0.2813a2 —
1 —3.036a,

— 1+ 0.4244a, + 1.00762 + 2.72243
+ 8.263a} + 25.084a; + O(af),

CW,RI/MOM _ 0-33490?

S.ny=3Pade;

(A17)

as the central value of the matching coefficient, and taking
the difference between Cg, —3page, and Cs =3 pade, a8

systematic uncertainty of the truncation on the perturbative
matching.

In this section, we will commence with the vector current
normalization and explore different choices of quark field
renormalization in Appendix A 2a. Appendix A2a will
then present the investigation of the chiral symmetry
breaking effect between Z, and Z,. Subsequently, in
Appendix A2d, we will examine the analogous inves-
tigation of Zp and Zg, with additional discussions on Z,, in
Appendix A 2 c. Finally, for completeness, the case of the
tensor current will be discussed in Appendix A 2e.

a. Vector normalization and Z,

Unlike its continuum counterpart, the local vector
current under lattice regularization is subject to both the
O(a?) discretization error and O(a)-loop corrections [50],
and then requires additional normalization. The normali-
zation constant Zy, can be determined from the vector
current conservation condition,

(H|V4|H)

o amy

=1, (A18)

where V, = wy,w and H represents an arbitrary hadronic
state. Thus, extracting Z, from the pion correlator in the
rest frame will be the cheapest choice [50],

L M  a=0.105fm A a=0.077 fm ® a=0.052%m
0.88F
. o
0.86? A
- !
N 0.84F & a8
L AAAAAAAAAA A AAAAAAAAA
[ =
0.82F
- =
0.80f HEE5EEE8s Wﬁﬁﬁﬁﬂ”ﬁ““ﬁ“““”z‘@@@@@ag
ol T

0.0 05 10 15 20 25 30 35
tfm

FIG. 10. Zy from the vector current conservation of pion
correlator at three lattice spacing. The plateau values are
summarized in Table IX as the Z, of the ensembles C24P29,
F32P30, and H48P32.

Zy = Z(Tr[STC()_c’, T/2,0;m,)Sc(X.T/2;0;m,)])/

X

X {ZZ(Tr[STC()?, 7/2;0; m,)S(X, T/2;Z.t; m,)
Xz

< 7SeC, r;yo;m(,)b}b»,»o, (A19)

where the additional propagator in the denominator can be
obtained using the sequential source technique. The ratio at
three lattice spacing and their constant fits in the range
of 0 < t < T/2, are shown in Fig. 10. As demonstrated
in [50], Zy is affected by a, corrections and cannot be
accurately extrapolated to 1 using a simple naive a*"
continuum extrapolation.

The quark field RC ZR' in the RI scheme can be
accessed through either its definition,

' . l _
ZEI (ﬂ) = lim 72TI‘[S l(p)ﬁ}lﬂzpz’

A20
m—0 12p ( )

with S(p) = >_, e=P*(y(x)(0)), or the vertex correction
of the vector current which is equivalent in the continuum,

. Zy 7p
mllon(n-2)]

=u*

Zlq{I’ ver (M)

(A21)
where
A (P1aP2) = S7(p1)Go(p1. P2)S™ (p2).
o(p1,p2) Ze" Pep) (y (x)O0)gr(y)).  (A22)

These two definitions are equivalent in the continuum, but
they are subject to different discretization errors. Figure 11

054507-12



QUARK MASSES AND LOW-ENERGY CONSTANTS IN THE ...

PHYS. REV. D 109, 054507 (2024)
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FIG. 11. Comparison of ZEI/ (data points) and Zl;I”V“ (bands) at
three lattice spacing with different scale u. The discrepancy
observed in the figure is primarily attributed to the discreti-
zation error.

illustrates the comparison between ZX!' and ZRUVr at three

lattice spacings. The two definitions become closer either at
smaller » or smaller a, with ZX'**" exhibiting a signifi-
cantly smaller a”p? error. This situation is reminiscent of
the overlap fermions case [38], where the a’u? errors have
opposite signs.

Given that Zl‘}[/’ver involves an off-diagonal projection
that introduces additional discretization errors, it iS more

convenient to define the quark field renormalization
through the standard RI definition [29],

. Z
Z;)(ﬂz) = rlnlil'(l)ngr[A/‘l/(pl ) p2)yﬂ]p%:pizﬂz.(pl—pz)zzw/ﬂ’
(A23)

The discrepancy between Z7 with different @ and Z‘;Il
should be eliminated through their respective perturbative
matchings, which can be calculated in the continuum. For
the SMOM condition with @ = 1, the convergence of the
perturbative matching is poorer compared to that of Z,

using the g-projection definition [31], but the discretization
error will be smaller.

b. Chiral symmetry breaking between Z, and Zy,

For the clover fermion, the ratio

24 (2 @) = Tr[Aﬁ'MS(Pl»Pz)YSYy]
Tr[Aﬂ.MS(Pl’Pz)J’y} pi=p3=#*.(p1=p2)*=0p’

(A24)

can deviate from unity due to the additive chiral symmetry
breaking present in the action. As depicted in Fig. 12 for the
RI/MOM scheme (data points, @ = 0) and SMOM scheme
(bands, @ = 1) at three different lattice spacings with

1.08p

F a=0.105fm, w=0

1.07F a=0.077 fm, w =0

[ a=0.052 fm, w=0

1.06F — a=0.105fm, w=1

F — a=0.077 fm, w=1

1.05F — a=0.052fm, w=1
> 3
N( 1.04F
N
1.03F
1.02F
1.01F

Lo =" % 10 12 14

a2

FIG. 12. The ratio Z,/Zy through the RI/MOM scheme (data
points) or SMOM scheme (bands) at three lattice spacing as
functions of a®p?.

m, ~ 300 MeV, we observe that the breaking diminishes
as a’y’ increases, indicating that the chiral symmetry
breaking in the mass term becomes less important.
However, the ratio does not approach unity in the con-
tinuum limit without any «; corrections. It is worth noting
that the breaking using the SMOM scheme is much smaller
than that with the RI/MOM scheme, while increases
rapidly at small a?u?.

If we fit the Z,/Zy data with a polynomial form in the
range of 9 GeV? < p? < 15/a’ and extrapolate it to
a® p* = 0, the obtained result will be sensitive to the choice
of w. Therefore, we extrapolate the f, at two coarser lattice
spacings to the unitary pion mass at the finest lattice
spacing, which is m, = 317 MeV. The renormalized f% =
Z,f. is shown in Fig. 13, using both the extrapolated
Z4/Zy obtained through RI/MOM and SMOM. The
results suggest that the scheme sensitivity is approximately
1% after a linear @ continuum extrapolation, with the
discretization error through RI/MOM being 25% smaller.

0.150}
0.145}
f ¢
H
» 0.140f
E ¢ 3
0.135}
$  RI/mom .
0.130k b RII/smom . . . .
0.000 0.002 0.004 0.006 0.008 0.010 0.012
a%(fm?)
FIG. 13. Renormalized pion-decay constant f, with m, =

317 MeV at three lattice spacing, using Z, = ZV%‘ through

either RI/MOM or SMOM scheme. The extrapolated values
deviate by 1.3(8)%.
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c. Pesudoscalar current renormalization Zp
and induced quark mass

The renormalization of m{“ requires both Z, and Z,. By

defining Z‘;} under either the RI/MOM (@ = 0) or SMOM
(w = 1) scheme,

_ Zq
%Tr[AP([)l» P2)7s]

pi=p3=u*.(p1—p2)*=wu’
25 (AL (1, p2)7,]
v
11_2Tr[AP(pl . D2)7s)

’

pi=p3=p>.(p1—p2) =wp’

(A25)

Zp in the chiral limit can be extracted from the following
parametrization:

Zitesmt) = |+ (2300 + Cptmi]
(A26)

where m}C can be replaced by m; based on the GMOR
relation. As shown in Fig. 14, A%~ is negligible in the fit,
but A2=% will be nonzero due to the mass pole of the
Goldstone meson and is related to the dynamical quark
mass under the Landau gauge [51].

If one define the RI quark mass at given scale as [51]

LRI s TS (Pl oy
q RI ’
Zy (1)

(A27)

then for the overlap fermion action with exact chiral
symmetry, we can further define Z}' = m®'/m/ and have
the relation ZmZp =1 holding for arbitrary m, and u.
Thus, the following definition of the RI quark mass:

Z,mPC
~RI _ _“A™q
mg = ZMOM () (A28)
P H
105 a=0.105fm, w=0 @ a=0.105fm, w=1
1.00F a=0.077 fm, w =0 } a=0.077fm w=1
) E a=0.052 fm, w=0 ® a=0.052fm, w=1
0.95F 3= — = = =5
0.90F
,\7 3
3 0.85F
N 3
0.80F
0.75F
0.70F
0.65-|||l||||l||||l|| PR BT ST T T S N ST N T

0.4 05 06 07
m2 Gev?

0.1 0.2 0.3

FIG. 14. Valence pion mass square m2 ,, dependence of Z4~°
(RI/MOM, lighter points) and Z%~' (SMOM, darker points) with
a’u? = 4, at three lattice spacing and m, ;, ~ 300 MeV.

10'F — 2=0.105 fm, M}’
> — a=0.077 fm, m§'
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oL
3 10 a=0.105 fm, m§'
Zo E a=0.077 fm, m§'
£

a=0.052 fm, m§!

a=0.111 fm, m§' overlap

=

[S)

L
o
e

1072E,

00 25 50 75 100 125 150
U GeV

FIG. 15. Values of m}' (data points) and /' (bands) at three
lattice spacing with m, ~ 300 MeV at different RI/MOM scale
U ﬁﬁ;l (black crosses) using the overlap fermion are also shown
on the figure for comparison.

ensures that mj' = k' given the relation Z,m}® = m? for

the overlap fermion. However, the case of clover fermions
can be quite different due to its additive chiral symmetry
breaking.

In Fig. 15, we present both m' and mb' at three lattice
spacings with m, ~ 300 MeV, and compare them with the
results obtained from the overlap fermion at a = 0.111 fm.

We observe that /' seems to be insensitive to the lattice

1.2p

a=0.105 fm a=0.077 fm a=0.052 fm

L1f
1.0f

o.9§ \

o.8f

ZplZy

0‘7-|...|...|...|...|...|...|...|.

0 2 4 6 8 10 12 14
a?u?
1.2
[ a=0.105 fm a=0.077 fm a=0.052 fm
11}
~ 1o
N |
s |
N oof
07
a?y?
FIG. 16. a*u?* dependence of ZII\J/IS(2 GeV) through the RI/MOM

(w = 0, upper panel) and SMOM (@ = 1, lower panel) schemes,
at three lattice spacing and m, , ~ 300 MeV.
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0.0205 1.06
¢ RI/MOM [ 2=0.105 fm, w =0 T a=0.105fm, w=1
L a=0.077 fm, w=0 A a=0.077fm, w=1
i RUsMOM 1.04F a=0.052 fm, w=0 ® a=0.052fm, w=1
0.0200}
1.02f
> > [
< 0.0195F N 1.00F
E L
0.08f
0.0190} e — = = —
0.96F
0.000 0.002 0.004 0.006 0.008 0010 0.012 01 02 03 04 05 06 07
a2(fm?) m2 Gev
: : . 2 5w=0
FIG. 17. Renormalized quark mass with m, = 317 MeV at FIG. 18. Valence pion mass square mjy ,, dependence of Z¢

three lattice spacing, using ZF(Z GeV) through either RI/MOM or

SMOM scheme. The extrapolated values deviate by 3.1(1.5)%.

spacing and is close to the overlap result &' = m®' [51];
but m%' exhibits a significant a*4* error and some unknown
UV effects, resulting in large values at large u.

After Z% is extracted, it can be further converted to the
MS scheme at given scale likes p, = 2 GeV through the

perturbative matching, and shall be independent of both

u and . In Fig. 16, ZFQ V) obtained through the

RI/MOM scheme at the coarsest lattice spacing a =
0.105 fm can be consistent with that using the SMOM

(RI/MOM, lighter points) and Z%~' (SMOM, darker points) with
a’u?® = 4, at three lattice spacing and m, ;; ~ 300 MeV.

we obtain Zﬁ(z V) as shown in Fig. 19, through either the

RI/MOM scheme (upper panel) or the SMOM scheme
(lower panel) with the corresponding a’u’ errors. We
observe that the scheme dependence of Zg is much stronger
than that of Zp, but the difference diminishes as the lattice
spacing decreases.

Another comparison we can make is the ratio Zs/Zp
obtained through either the RI/MOM or SMOM scheme.

scheme, with the 34% systematic uncertainties from the L2r 0105 tm 0077 tm 0052 m
perturabative matching. The situation improves at smaller _
lattice spacing, and systematic uncertainties are also Lir
smaller there. In Fig. 17, we show the renormalized quark _
mass at MS(2 GeV) with m, = 317 MeV at three lattice o O
spacing, using Z»°%Y) through either RI/MOM or N ok
SMOM scheme. We can see that the lattice spacing
dependence using the RI/MOM scheme is consistent with o.sk
zero, while SMOM shows a nonvanishing dependence [
and make the continuum extrapolated value to be 3.1 P A S A T A S S
(1.5)% lower. 0 2 4 6 a2u28 10 12 14
d. Chiral symmetry breaking between Zp and Zg L2 2=0.105 fm a=0.077 fm 2=0.052 fm
The scalar current RC can be defined similarly with a 11F
slightly different parametrization, .
1 H —
A = Tr|A , N
Zgj(ﬂ) — ZV 481 [ V(pl p2)7;4] , Nm _
1 Ir[As(p1, p2)] pr=pi=1(p1=p2)*=0n’ 09r
Zw . ,,PC _Ag)(//t) 70 co PC A29 0 85 \
Q€)= (Zg(0) + CRumiS,  (A29) o TS
q [
) 07
where S = yy, and the AY term can be dropped for w = 1. a2
However, as shown in Fig. 18, the effect of the A¢ term is o
consistently negligible regardless of the value of w. FIG. 19. a2u? dependence of ZI;’IS@ GeV) through the RI/MOM

After converting to the MS scheme at a given scale using
the same matching procedure as in the pseudoscalar case,

(w = 0, upper panel) and SMOM (@ = 1, lower panel) schemes,
at three lattice spacing and m, , ~ 300 MeV.

054507-15



ZHI-CHENG HU et al.

PHYS. REV. D 109, 054507 (2024)
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FIG. 20. The ratio Zg/Zp through the RI/MOM scheme at
three lattice spacing as functions of a”p?.

As depicted in Fig. 20, the chiral symmetry breaking effect
is significantly smaller when using the SMOM scheme
(bands) compared to the RI/MOM scheme (data points).
Moreover, both schemes exhibit further suppression at
smaller lattice spacings. Similar to the Z,/Zy case, the
inclusion of the O(«a,) term is necessary to restore chiral
symmetry in the continuum.

e. Zy and brief summary on renormalization

For completeness, we also show the tensor current
renormalization using both the RI/MOM and SMOM
schemes,

_ g, AP )]
%Tr[AT,w (P1.P2)ou] Pr=pi=1?.(p1—p2)*=op’

(A30)

Z9(n)

’

where T,, = yo,yp. Then Zl}ds(z GeV) can be obtained

through the corresponding perturbative matching after
performing a linear m2 extrapolation to the continuum,

as shown in Fig. 21. The systematic uncertainty arising

1.08
I a=0.105fm, w=0 @ a=0.105fm, w=1
[ a=0.077 fm, w=0 A a=0.077fm, w=1
1.06F a=0.052 fm, w=0 ® a=0.052fm, w=1
N 1.04:
3
N 1.02F
eaee—————— =
1.00F
0.98-|||l||||l||||l|| PR BT ST (T T R T N S T R

04 05 06 07
m?2 Gev?

0.1 0.2 0.3

FIG. 21. Valence pion mass square m2,, dependence of Z¢=°
(RI/MOM, lighter points) and Z$~' (SMOM, darker points) with
a*u? = 4, at three lattice spacings and m, ¢, ~ 300 MeV.

1.16
i a=0.105 fm a=0.077 fm a=0.052 fm
1.1af /
s l12p
E I
N 1 10F /
1.08f
L 1 1 1 1 " 1 P - 1 1
1.06%5 2 4 6 8 10 12 14
a?u?
1.16
i a=0.105 fm a=0.077 fm a=0.052 fm
1.14f
s Lizp
S
N 110}
1.08f
L FRNERNETIN [T S NS T T ST SN S WU S U NS ST S TN
1.06%5 2 4 6 8 10 12 14
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MS(2 GeV
FIG. 22. a*u® dependence of Zj (2 GeV) through the RI/MOM

(w = 0, upper panel) and SMOM (w = 1, lower panel) schemes,
at three lattice spacing and m, ;;, ~ 300 MeV.

from the SMOM matching is estimated to be 2-3%, which

implies that 21}45(2 V) is considered independent of the

intermediate scheme within this uncertainty. At last, a’u’

dependence of ZFQ GeV) is showed in Fig. 22.

Based on the values of Z, g p 7 obtained in this work and
collected in Table VIII, it can be observed that the
dependence on the intermediate scheme (RI/MOM or

TABLE VIII. Normalization and renormalization constant at
MS(2 GeV) at three lattice spacing with 1, ~ 300 MeV, using
RI/MOM (@ = 0) or SMOM (w = 1) as intermediate scheme.)
In the RI/MOM case, the first line represents the result fit without
1/p? term, while the second line represents the fit with that term.

a (fm) [ Zy Zs Zp Zr

0.1053(2) 0 0.8547(13) 0.957(08)(34) 0.727(09)(26) 0.864(01)(05)
0.8388(39) 0.897(20)(44) 0.672(36)(31) 0.867(04)(04)
1 0.8177(04) 0.754(02)(09) 0.698(05)(08) 0.848(01)(27)

0.0775(2) 0 0.8821(08) 0.879(05)(18) 0.701(05)(15) 0.923(01)(03)
0.8792(25) 0.892(12)(11) 0.689(22)(09) 0.919(05)(02)
1 0.8533(06) 0.738(01)(07) 0.689(02)(06) 0.906(01)(22)

0.0519(3) 0 0.9011(04) 0.796(09)(10) 0.683(05)(08) 0.978(01)(02)
0.8998(07) 0.822(08)(04) 0.683(08)(03) 0.973(01)(01)
1 0.8838(02) 0.720(01)(05) 0.684(01)(05) 0.961(00)(19)
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TABLE IX. Normalization and renormalization constants at MS(2 GeV) on all the ensembles. The RCs include two uncertainties where the former one is the ensemble

independent statistical and systematic uncertainties, and the latter one is the systematic uncertainties from the perturbative matching which are fully correlated on different

ensembles.

H48P32
0.86855(04)
0.90113(36)

F48P21
0.83567(05)
0.88063(98)

F32P21
0.83579(09)
0.88069(60)

0.871(06)(21)

0.704(05)(17)
0.920(01)(04)

F48P30
0.83511(04)
0.88213(77)

0.879(05)(18)

0.701(05)(15)
0.923(01)(03)

F32P30
0.83548(12)
0.88161(64)

0.871(09)(22)

0.699(07)(17)
0.922(01)(04)

C48P14
0.79957(06)
0.85605(94)

0.963(04)(34)

0.727(11)(26)
0.866(01)(05)

C48P23
0.79954(05)
0.85674(96)

0.966(10)(34)

0.733(09)(27)
0.865(01)(05)

C32P23
0.79957(13)
0.85593(87)

0.957(06)(33)

0.733(08)(26)
0.865(01)(05)

C32P29
0.79810(13)
0.8547(13)

C24P29
0.79814(23)
0.85442(85)

C24P34
0.79676(32)

0.85698(89)
0.960(05)(33)  0.953(06)(31)  0.957(08)(34)

0.732(11)(26)  0.733(13)(24)  0.727(09)(26)
0.865(02)(05)  0.864(01)(05)  0.864(01)(05)

Zy

Zy

0.878(04)(17)  0.796(09)(10)
0.701(08)(15)  0.683(05)(08)

0.922(01)(03)  0.978(01)(02)

Zp
Zr

SMOM) is reduced as the lattice spacing decreases.
However, it is important to note that the scheme depend-
ence is not completely eliminated even after performing the
continuum extrapolation. Considering the lattice spacing
dependence of the renormalized f,, m,, and g, it is
recommended to use the RI/MOM scheme to suppress the
discretization error.

In Table VIII, we also show the renormalization con-
stants using the RI/MOM scheme but with an additional
1/p? term [32]. This term can have an obvious impact at
the coarsest lattice spacing but is consistent with zero at the
finest lattice spacing. This is understandable as the fitting
range at finer lattice spacing is much larger, reducing the
possible influence of a 1/p? pole in the inferred region.
Thus, it can be considered a discretization effect that will be
eliminated in the continuum extrapolation.

As a summary of this section, Table IX summarizes the
normalization and renormalization constants for all the
ensembles used in this work, obtained through the inter-
mediate RI/MOM scheme. The first uncertainty of RCs is
ensemble independent, while the second one is fully
correlated on different ensembles and can be suppressed
after the continuum extrapolation.

3. Global fit

In order to process this continuum extrapolation sys-
tematically, we calculate the quark propagators with unitary
light quark mass and also two partially quenched quark
masses with the constraint m, L > 3.5, on each of the 11
ensembles. Then we use the following NLO partially
quenched yPT form [41] to describe the pion masses
and decay constants with different valence and sea quark
masses, in addition to extra parameters c,, s ,/; for the finite
lattice spacing/volume corrections:

2
m%,vv = A;z(z)’v{l + N_f [(2yv - ys) ln(2)7v) + (yv - ys)]

+ 2y, (2ag — as) + 2y,N(2a6 — 054)}
X [1+cfe™b 4+ ct(mg —m?2 | )]

1s-phys
x (14 cZa?), (A31)

2
< [1+dfe " +di(my —my )]

x (1+ d=a?), (A32)

Ny
Fn:,vv:F 1_7(yv +ys)ln(yv+ys)+yva5 +ysta4

where Ny = 2 for two light flavors and A, = 4z F is the

intrinsic scale of yPT with F being the pion decay constant

in the chiral limit. The dimensionless expansion parameters
v/s

=m)* .
Yvjs = % involve the chiral condensate X and quark mass
X
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m,; for the valence and sea quark masses, respectively.
Additionally, a; represents the NLO low-energy constants
of yPT at the intrinsic scale A,. These constants can be
converted to the usual scale-dependent partially quenched
¥PT NLO coefficients as L;(u) = 1217 (@; + c;In A%) with
2 2

C4568 = {—%,—%, _%’%}’ respectively [52,53].
We also introduce additional corrections terms with the
coefficients ¢,, s 4/1/s to account for the discretization,
finite volume and strange quark mismatch effects, with
m, = 689.63(18) MeV from Ref. [48].

Since the statistics on each ensemble are different, we
perform 4000 bootstrap resamplings on each ensemble and
conduct the correlated global fit based on these bootstrap
samples. In such a strategy, the correlation between differ-
ent ensembles vanishes within the statistical uncertainty of
the resampling and is suppressed by the number of boot-
strap samples. The lattice spacing and renormalization
constants are sampled for each bootstrap sample using a
Gaussian distribution with their uncertainties as the width
of the distribution. These values are then applied to the
dimensionless quantities extracted from the joint fit defined
in Egs. (A5)—(A8).

The lattice spacing uncertainty is sampled with an
uniform seed at a given lattice spacing, since this uncer-
tainty is fully corrected on all the ensembles at this lattice
spacing. Similarly, The perturbative matching uncertainty
of Zp is sampled with a uniform seed on all the ensembles,
but with respective rescale factors on each ensemble. On
the other hand, the uncertainty of lattice spacing and the
nonperturbative uncertainty of Zp are sampled independ-
ently on each ensemble. In order to show the impact of two
Zp uncertainties in the global fit, we preform the following
four cases of fit, and show the results of X, F, a4 56, and
also ¢,/¢.q/1/s in Table X:

(1) Fitting with the statistical uncertainty 50 from the

dimensionless observable O with O = m,,, mF©, and
[ and also lattice spacing uncertainty da.

(2) Fitting with 80, da and nonperturbative uncer-

tainty 6,,Zp.

(3) Fitting with 60, da and perturbative uncertainty

OpZp-

(4) Fitting with 80, éa, OnpZp and also 6,Zp.

All four cases provide reasonable y?/d.o.f. values, and
similar values of F which are irrelevant to Zp. However, the
uncertainty of X is highly sensitive to 6Zp, as expected. By
imposing the conditions y; =yy, M, = M, hys =
134.98 MeV, a — 0, and L — oo, we can extract the light

MS(2 GeV) . . e
quark mass m, ( ) in the continuum and infinite

volume limits from the global fit. The m; obtained from
different cases of fits are also listed in Table X.

As shown in the table, the extrapolated quark mass m; =
3.60(3) MeV obtained in Case (1) is consistent with the
value 3.64(8)(11) MeV at a = 0.105 fm, as we argued

TABLE X. Global fits with and without nonperturabtive un-
certainty J,,Zp and perturabtive uncertainty 6,Zp.

6Zp included N/A Snp 3y Onp + 6p
y*/d.o.f. 1.3

F (GeV) 0.08659(69) 0.08659(72) 0.08659(71) 0.08660(74)
=13 (GeV) 0.2684(14) 0.2685(30) 0.2685(14) 0.2686(36)
ay 0.342(93)  0.343(99)  0.340(99) 0.34(10)
as —0.38(18) —0.39(19) —0.38(18) —0.38(20)
Qg 0.056(41)  0.058(84)  0.054(47) 0.054(86)
ag 0.482(79) 0.48(18) 0.483(81) 0.48(18)
cr (fm‘z) 2.12(67) 2.1(1.8) 2.1(3.7) 2.0(4.1)
cf 0.64(20) 0.65(53) 0.64(20) 0.65(51)
7 (GeV?) 0.058(32) 0.06(14) 0.101(32) 0.07(14)
dr (fm™2)  —5.56(45) —5.55(47) —5.57(55) —5.57(57)
& —0.73(14)  —0.73(15) —0.73(14) —0.73(15)
dr (GeV?) 0.197(28)  0.197(31)  0.197(29)  0.198(32)
My pnys (MeV)  3.600(31) 3.60(11) 3.60(03) 3.60(11)
Frphys MeV) 130.73(89)  130.73(90) 130.73(90)  130.74(92)

before. Additionally, it has a smaller uncertainty due to the
constraints from the other ensembles and the exclusion of
0Zp. However, the uncertainty is enlarged to 2.7% in Case
(4) where both the nonperturbative and perturbative uncer-
tainties of Zp are included, while the central value remains
almost unchanged. Treating 5,Zp as correlated across all the
ensembles significantly suppresses its impact from 3% (at
a = 0.105 fm) to 0.5% after the continuum extrapolation, as
shown in Case (3); However, Case (2) suggests that the 5,,Z p
is enlarged from 1% (at a = 0.105 fm) to 2.5% simulta-
neously since it is independent for different ensembles.

It is worth mentioning that the relative uncertainty of X
and m; in Cases (2)-(4) is almost the same and will be
canceled when we consider the renormalization indepen-
dent combination Xm,.

Currently, 90% of the uncertainty of m; = 3.60(11) MeV
comes from the independent statistical uncertainty of Zp
using the RI/MOM scheme on different ensembles, which
can be suppressed if we adopt a more aggressive treatment
on the renormalization constants. However, the current 3%
uncertainty of m; is similar to the difference between the
continuum extrapolation of m; at m, = 317 MeV using
either the RI/MOM or SMOM scheme. Therefore, we
reserve this opinion for future study, where more lattice
spacings can be utilized to gain a better understanding of
the chiral symmetry breaking effect in the renormalization
constants.

With the m; extracted above, we can also determine the
physical f, in the continuum and infinite volume limits to
be 130.7(9) MeV, which is consistent with the experimental
value of 130.4(2) MeV [40]. Based on F extracted above,
we predict F,/F = \/1/2f,/F = 1.0675(19).

As shown in Table X and inspired by the previous
sections, the discretization error in quark mass is consistent
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with zero, while this error in f, is much more significant.
On the other hand, the finite volume effect appears to be
compariable with the discretization effect, with the correc-
tion on the F32P21 ensemble with the smallest m,L being
about 4.6(1.1)%.

It is worth mentioning that the dependence of the pion
mass on the strange quark mass is almost consistent with
zero, as expected based on the direct calculation of the
strange content in the pseudoscalar meson and the
Feynman-Hellman theorem [54]. However, the dependence
of the pion decay constant on the strange quark mass is
more significant, which is partially attributed to the smaller
uncertainty. Currently, the strange quark mass on the
C24P34, C48P14, and H48P32 ensembles is higher than
the physical value, while on all the other ensembles it is
lower. Therefore, this dependence may arise from other
systematic effects, and we cannot exclude this possibility
with the present ensembles. Further studies with tuned
quark masses would be helpful in verifying this.

To illustrate the lattice spacing dependence and the
unitary quark mass dependence, we subtracted the partially
quenching effect using bootstrap samples of the fit param-
eters from the original data points md? and fd32. We
define the corrected m™ and £ as follows:

(muni)Z _ (mgfi\t/?/)z

n - —m,L 2 2
1+ Cpp€ "+ Cps (mm - mr[l‘,phys)

- Aoy (ys — yv){— Nif [In(2y,) + 1]

+ 2’]vf(za6 - a4)}(1 + cm,aaz)’

data

funi _ VY
T = “m,L 2 _ 2
I+ Crpe "+ Cfn\‘(mﬂ.\ mi]S,phyS)

N
—F(y, - yv){—{ln(yv +¥s) + Nfa4}

X (1+cpqa%). (A33)

The m, and f, with unitary valence and sea quark
masses y =y, = y, have another widely used parametri-
zation,

2yA2
m2 = A22y {1 —|—y<ln Z £ _ f3> + (’)(yz)}, (A34)
mr:.phys
2yA}2( )
F,=F|1=-2y(In—=—"~~=7, ) +0(7)|. (A35)
mﬂ.phys
where 7’5 4 is related to a4 56 by
A2
f3 =In 2){ —2[(208 —a5) —|—2(2a6—a4)],
mir,phys
Af( 1
£y = In—"—+ = (as + 2ay). (A36)
mﬂ,phys 2

Our determination of ¢54 are also collected in Table II,
consistent with the current FLAG average but have smaller
uncertainties.
In this work, we use the m g+ and mgo with the constraint
phys phys phys .
my > +my;°>" =2m; ", to determine the up, down, and
strange quark masses m,, ;. The partially quenched kaon
masses and decay constants on all the ensembles are fitted
with the following form proposed in a recent work [35]:

) . .
myg (m), m;, my, ms, a)

= (bymy + bym§ + b)m) + bim})

x [1+ ckm) + cKa? + cKexp (-m,L)], (A37)
Jx(mj,my. mg, mg, a)
= (dy + dim} + dim5 + dym) + dymy)
x [1 + d¥a® + d¥ exp (—m,L)]. (A38)

Based on the QED correction Aggpmg obtained in
previous literature [34],

AQEDmKi - AQEDmKo = 207(15) MeV,
AqepmZ, = 0.174(24) x 1073 GeV?, (A39)
we can obtain Aggpmgo = 0.17(2) MeV and Agppniyg: =

2.24(15) MeV, respectively. Thus, the pure QCD kaon
mass with physical quark mass will be

TABLE XI. Global fit of the kaon mass and decay constant, with both 6,,Zp and 6,Zp.

y?/d.of. b} (GeV) by (GeV) b? (GeV) b3 (GeV) K (Gev) cX(fm=2) ck
0.94 2.36(94) 0.23(25) 2.30(12) 0.07(13) 1.2(3.3) 1.4(4.2) 0.24(35)
y*/d.of. d; (GeV) dy d; dv ds df (fm™2) dt
0.98 0.1291(32) 0.161(51)  0.573(49) 0.1601(80) 0.085(30) —5.43(87) —0.386(94)
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Mmgo qep = m‘,’;éys — Agepmyo =497.44(02) MeV,
Mg gep = M = Agepmy- = 491.44(15) MeV,  (A40)

. hys hys hys
and the physical quark masses m5 ", m)™* and m5™>" can
be determined using the following three conditions:

phys _ phys  phys _ phys _
mg(my>, m mgY mg,0) = Mgo ocp»
phys _phys _ phys _phys _
mg(my >, m; > my > my 0, 0) = Mg+ ocps
h h h
S B = 2P (A41)

Note that we ignored the isospin symmetry breaking effect
in the sea quark masses, since it should be O((my — m,,)?)
and negligible given the current uncertainties.

The corrected kaon mass m¢ and the decay constant f¢
shown in Fig. 4 are defined as

(m§)* = (mig)? = mi (my. mj.my.m3. a.L)

+m%((ml,0hys, mfhys, mY,m¥,a,L - ), (A42)
[ = fE% — fx(m), m},my,m,a,L)
hys
+ fr(m™ m™ mY mY,a, L — ), (A43)

with the light quark mass m; corrected to its physical value
mP™* using the bootstrap samples of the fitted my.

As a consistency check, we also calculate m, on each
ensemble and perform a similar global fit with the follow-

ing functional form:

m3 = [him§ + hym) + him$ + hp(m3)?]

x (1 + hga® + hye™st), (A44)

The y?/d.o.f. of the fit is 1.4 an all the coefficients except
h! are consistent with zero within the uncertainty, but
dropping more terms will enlarge the 2 /d.o.f. significantly
and then we keep all the coefficients. Using the physical
light and strange quark masses, we predict m, =
687.4(2.2) MeV in the infinite volume and continuum
limit, which is consistent with the BMWc value of 689.63
(18) MeV [48] we used in the fits for lattice spacing and f,.

Additively, we extract the dependence of m,%x on the strange

(j;:ljf =4.9(1) GeV, which is slightly lower

than the value of m2/ m, shown in Fig. 3.
The physical quark masses m,, 4 ; and also corresponding

frx using m?™* and intermediate RI/MOM scheme, are
collected in Table II. In addition, Table II shows the global-
fit results using the z, p through the SMOM scheme for
comparison. As we can see from the continuum extrapo-
lation tests using a 317 MeV pion mass, the SMOM scheme
yields quark masses that are 3-4% lower and decay
constants that are ~2% lower compared to the RI/MOM
scheme. However, the ratio of the quark masses or decay
constants remains unchanged within the uncertainty as the
renormalization constants are canceled.

Therefore, we consider the result using the RI/MOM
scheme as the central value due to its smaller discretization
error, and treat the difference between the results obtained
using the two schemes as systematic uncertainties. Such
a systematic uncertainty can also be considered as an
estimate of the residual discretization error, as the correct
continuum limit should be independent of the intermediate
renormalization scheme. With this systematic uncertainty,
all our determinations are consistent with the present lattice
averages [26] and/or PDG [40] within 1 — 20, and the low-
energy constants X and 54 have smaller uncertainties.
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