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Abstract The departure of the latest FNAL experimental
average for the muon anomalous magnetic moment aμ =
(gμ − 2)/2 measurements, having increased from 4.2σ

(Abi et al. in Measurement of the positive muon anoma-
lous magnetic moment to 0.46 ppm, arXiv:2104.03281,
2021) to 5.0σ (Muon g-2, D.P. Aguillard et al. in Mea-
surement of the positive muon anomalous magnetic moment
to 0.20 ppm, arXiv:2308.06230, 2023) with respect to the
white paper (WP) consensus (Aoyama et al. in Phys Rep
887:1, arXiv:2006.04822, 2020), may indicate a hint for new
physics. As the most delicate piece of aμ is its leading-order
hadronic vacuum polarization (HVP) part aHV P−LO

μ , meth-
ods to ascertain its theoretical value are crucial to appropri-
ately interpreting this departure from the measurement. We,
therefore, propose to closely examine the dipion spectra from
the η/η′ → π+π−γ decays in the hidden local symmetry
(HLS) context using its BHLS2 broken variant. We thus have
at our disposal a framework where the close relationship of
the dipion spectra from the η/η′ and τ decays and of the
e+e− → π+π− annihilation can be simultaneously consid-
ered. A special focus is given to the high-statistics dipion
spectra from the η decay collected by the KLOE/KLOE2
Collaboration and η′ decay collected by the BESIII Collabo-
ration, and it is shown that the BHLS2 framework provides a
fair account of their dipion spectra. More precisely, it is first
proven that a single Omnès representation real polynomial is
required, common to both the η and η′ dipion spectra. More-
over, it is shown that fits involving the η/η′/τ dipion spectra,
and excluding the e+e− → π+π− annihilation data, allow
for a prediction of the pion vector form factor data Fπ (s)
which agrees fairly well with the usual dipion spectra col-
lected in the e+e− → π+π− annihilation channel. Even if
more precise η/η′/τ dipion spectra would help to be fully
conclusive, this confirms the dispersive approach results for
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aHV P−LO
μ and points toward a common non-experimentally

dependent origin to this tension with the now well-accepted
LQCD result.
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1 Preamble: various aspects of the dispersive approach
to the muon HVP

The hadronic vacuum polarization (HVP) aμ ≡ (gμ − 2)/2
plays a central role in precision physics, in particular in the
Standard Model prediction of the muon anomalous magnetic
moment, but equally importantly for a precise calculation of
the running electromagnetic fine structure constant αem(s)
and the electroweak mixing parameter sin2 θW (s). Therefore,
accurate predictions suffer from the non-perturbative contri-
butions from low-lying hadron physics that are difficult to
address precisely from first principles.

Recently [2], the Fermi National Accelerator Laboratory
(FNAL) Muon g − 2 experiment re-estimated the previous
average value of their run 1 data sample [2] and the latest
Brookhaven National Laboratory (BNL) measurement [4]
by also considering their run 2 and 3 data samples; this turns
out to increase the statistics by a factor of � 4. Moreover, the
Muon g − 2 FNAL Collaboration achieved an improvement
in their systematic uncertainty by about a factor of 2. The
derived updated average

aexp.μ = 116592059(22) × 10−11(0.19ppm)

increases the deviation from the white paper (WP) Standard
Model consensus [3] from 4.2 σ [1] to 5.0 σ [2]. The dif-
ference δa = aexp.μ − ath.

μ is now δa = 24.4 ± 4.5 in units
of 10−10, dominated by the uncertainty agreed upon by the
WP theory consensus [3]. Of course, this departure from the-
oretical expectations deserves to be explored, as the overall

pattern reflected by the various model/theoretical approaches
is indeed unclear, even contradictory.

The WP Standard Model consensus for ath.
μ resorts to a

data-driven dispersion relation (DR) approach, where the
experimental low-energy hadron production cross sections
provide the non-perturbative input to calculate the HVP
effects. Fortunately, the problem can be restricted to precise
knowledge of the process e+e− → γ ∗ → hadrons, and for
what concerns the muon g − 2, the e+e− → π+π− channel
provides the dominant contribution to the model uncertainty.

Regarding its non-perturbative hadronic content, the stan-
dard dispersion-based (DR) evaluation of the HVP consists
of deriving the contribution of each e+e− → γ ∗ → hadrons
annihilation channel by combining the different spectra col-
lected by the different experiments in the hadronic chan-
nel considered, employing algorithms of different levels of
sophistication. The full HVP value is then defined, for what
concerns its non-perturbative content, by the sum of these
different contributions. The WP Standard Model consensus
[3] is based on a combination of two such evaluations [5,6].

Although the main challenge is then, seemingly, the sim-
ple ππ production process, the experimental challenge is
highly complex, depending on a precise understanding of the
detectors and, on the theory side, the radiative corrections
required to disentangle hadronic effects from electromag-
netic contamination. Unfortunately, the data samples pro-
vided by the different experiments do not exhibit satisfactory
consistency—and some can even be in strong contradiction
[7] with the others. The use of the τ → π−π0ντ decay
information, first proposed by [8], has been considered to
discriminate among the π+π− spectra, but it did not lead to
convincing enough conclusions.

It is widely considered that all low-energy hadronic pro-
cesses derive from quantum chromodynamics (QCD), even
though in the non-perturbative low-energy regime, tools to
make valid predictions of real-time hadronic cross sections
are missing. Nevertheless, as hadron physics is accepted
to derive from QCD, it follows that the various specific
hadronic decay processes are highly correlated with each
other. This motivates the need to address these correlations,
especially in order to constrain the non-perturbative sector
of the e+e− → γ ∗ → hadrons annihilations.

Although we lack methods to predict a process like
e+e− → π+π−, we know that QCD implies well-defined
symmetry patterns such as approximate chiral symmetry, and
gives rise to chiral perturbation theory (ChPT), a systematic
expansion about the chiral symmetry point. It allows one to
work out reliable predictions from first principles for the low-
energy tail of the QCD hadron spectrum (up to about the η

meson mass).
With this in mind, an attempt to consider the e+e− →

π+π− annihilation not only in relation to the τ± → π±π0ντ

decay but also in relation to other related spectra is impor-
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tant; it motivates a unified modeling1 by a version of the
resonance Lagrangian approach (RLA) [9,10]—we adopted
the hidden local symmetry (HLS) version2 [12,13]—needed
to extend the chiral perturbation theory toward higher energy
to cover the ρ, ω, and φ energy range.3 To practically suc-
ceed in such a program, the original HLS model (see, for
instance, [16] for a review) has been supplied with appro-
priate symmetry-breaking mechanisms with various levels
of sophistication to derive the earlier versions of the BHLS
model in [17–19], or the more refined BHLS2 version [20],
updated in [21].

One thus achieved a simultaneous consistent fit of the
e+e− → π+π− data from CMD-2 [22], SND [23], KLOE
[24–26], BaBar [27,28], BESIII [29,30], and CLEO-c [31],
and the τ → π−π0ντ decay spectral functions collected by
ALEPH [32], CLEO [33], and Belle [34] (see [17,18,20,21]).
This updated BHLS2 fairly recovers the known properties of
the [π0, η, η′] system thanks to its kinetic breaking mecha-
nism [21].

Besides keeping the neutral vector current conserved, this
breaking mechanism also generates a violation of the charged
vector current conservation and a departure of Fτ

π (s = 0) =
1 by a few per mil. Such an option finds support in [34] in
Belle own in their own fit results reported in their Table VII;
additional τ spectra are needed to conclude—see the discus-
sion in Section 3 of [21]—as such a breaking mechanism
might affect τ -based predictions for the muon HVP.

Alongside the π+π− annihilation channel and the τ →
π−π0ντ decay spectra, BHLS2 [20,21] also successfully
addressed the π+π−π0, (π0/η)γ and KK final states in a
fully correlated way represented by a single Lagrangian. A
few additional radiative partial width decays are also con-
sidered, notably those for π0/η/η′ → γ γ , and some more
V Pγ radiative decays.

In view of the significant inconsistencies in the data sam-
ples collected by some experiments, the global fit approach
has two advantages: first, the additional data are expected
to reduce the uncertainties of the HVP evaluations, and sec-
ond, it provides consistency checks of each e+e− → γ ∗ →
hadrons data set versus the other samples collected in the
same annihilation channel or in another one.

In the present work, we go a step further by also involv-
ing the η/η′ → π+π−γ decay modes in order to obtain
additional ππ dipion spectra from experiments with system-
atics quite different from those encountered in e+e− anni-

1 Considering individual channels in isolation, as is usually done, does
not help much to uncover inconsistencies between different experimen-
tal data sets sometimes involving different final states.
2 See also [11] for an equivalent version.
3 A precise evaluation of the photon HVP implies a precise account of
the energy range

√
s ≡ [2mπ , 1.05 GeV], the largest contribution of the

non-perturbative region which extends up to� 2 GeV, as experimentally
observed [14,15].

hilations. As will be seen below, these decays allow for a
new test of the self-consistency of the DR-based estimates of
aμ. Indeed, the η/η′ decay spectra can provide a DR evalu-
ation for aμ(π+π−,

√
s < 1 GeV), which can be fruitfully

compared with those directly derived by directly integrat-
ing the e+e− → π+π− annihilation data. One may expect
that the η/η′ dipion spectra benefit from systematics largely
independent of those in the e+e− annihilation.

Besides the DR approach which gave rise to several eval-
uations of the muon HVP aμ listed in the white paper [3],
the challenging lattice QCD (LQCD) approach has been
used by several groups and produced results with relatively
poor precision at the time of the white paper. They were
not used to define the so-called WP Standard Model con-
sensus reported in [3] which, based on some DR estimates,
provided the leading-order (HVP-LO) consensus aLO

μ [th.] =
693.1(4.0) × 10−10. Using the LQCD approach, the BMW
Collaboration, which first got [3,35] aLO

μ = (711.1 ± 7.5 ±
17.4) × 10−10, later improved their calculation and got
aLO
μ = (707.5 ± 5.5) × 10−10 [36], at clear variance with

the WP consensus just mentioned. This evaluation finds
support from the new evaluations by other LQCD groups:
aLO
μ = (720.0 ± 12.4stat ± 9.9syst) × 10−10 (Mainz/CLS

19) [37,38] and aLO
μ = (715.4 ± 16.3stat ± 9.2syst) × 10−10

(RBC/UKQCD18) [39].
The lattice calculation of aLO

μ thus brings the SM predic-
tion of aμ into acceptable agreement with the experiment
but generates significant disagreement between the LQCD
results and the different data-driven dispersive results; this
now looks well established. It adds to the former puzzle from
data versus predictions a puzzle between LQCD and the DR
approaches, which deserves clarification.

2 Introduction

In this article, we focus on the traditional way of estimating
the contribution of the non-perturbative energy region to the
photon HVP which relies on dispersive methods using as
basic ingredients the e+e− annihilation cross sections to all
the possible exclusive hadronic final states collected up to√
s � 2 GeV.
The different successive broken variants of the HLS

model, especially BHLS2 [20,21], provide a well-adapted
framework to address the most relevant e+e− annihilations to
hadronic channels in the crucial part of the low-energy region
(
√
s ≤ 1.05 GeV), namely the e+e− annihilations to the

π+π−, KK/π+π−π0/π0γ /ηγ final states; these already
provide more than 80% of the muon HVP, when integrated
up to the φ meson mass.

A BHLS2-based computer code was used for this analysis
which considered the large number of available data sam-
ples (several dozen), more than 1400 data points and, thus,
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practically the whole set of the available data samples has
been exhausted. They have been listed, analyzed, and dis-
cussed in full detail previously, especially in the recent arti-
cles [20,21], where a large number of previous references can
be found.4 This computer code faithfully takes into account
all the uncertainty information provided together with these
data samples, and therefore, yielding satisfactory global fit
probabilities turns out to simultaneously have a satisfactory
model, satisfactory handling of data of the samples collected
in several physics channels, and also satisfactory dealing with
their reported uncertainty information.

In this perspective, the given data samples exhibiting con-
tradictory aspects compared to most of the others either may
lead to discarding them or, when meaningful, may motivate
several solutions that avoid mixing up contradictory spec-
tra; this has led us in our previous studies [20,21] to provide
different HVP evaluations based on some of the reported dip-
ion KLOE samples—namely [24–26]—on the one hand, and
separately on their BaBar analog [27,28] on the other hand.

Regarding the various dipion spectra, the studies found
strong contradictions between the so-called KLOE8 data
sample [40] or the recently published SND spectrum [41],
and the bulk of the other considered data samples have been
discarded.

Comparing our own evaluations with those based on dis-
persion relations collected in [3], one does not observe any
loss in precision with any of the various reported values of
the muon g−2; however, differences between central values
can be observed, clearly related to the contradictory proper-
ties of some data samples, especially KLOE [24,25] versus
BaBar [27,28], reported long ago [18,19,42].

As noted above, the contribution of the listed HLS chan-
nels to the HVP is large; however, it is also worth mentioning
that their contribution to the HVP uncertainty is almost neg-
ligible compared to that of the rest of the non-perturbative
region. Moreover, as the HLS approach implies tight connec-
tions between the various annihilation channels, it allows one
to perform stringent consistency checks on the different data
samples involving the same physics channels or the other
channels addressed by the HLS Lagrangian. It is worthwhile
pointing out this important property specific to global models
like the BHLS2 model and also stressing that, by far, most of
the available data samples fulfill this stringent constraint.

4 The CMD-3 Collaboration has recently published a high-statistics
measurement of the e+e− → π+π− cross section [7] which deserves a
specific analysis beyond the scope of the present work, which is focused
on a quite different topic. Nevertheless, the information provided by
the CMD-3 Collaboration in their article regarding the consistency of
their spectrum with the previously collected data samples may indicate
that, as it is, their measurement is not consistent with any subset of the
relevant existing data samples and thus should hardly accommodate a
global framework like HLS, so it should not impact the conclusions of
the present work.

On the other hand, as indicated in the previous section,
the updated version BHLS2 variant [21] of the broken HLS
model [20] allows us to fairly address the physics of the
[π0, η, η′] system within the HLS corpus. Indeed, besides
the e+e− → (π0/η)γ annihilations, the PS decays to γ γ ,
and the V Pγ couplings, the pseudoscalar meson (PS) mixing
properties in the octet-singlet [43–45] and quark flavor [46–
48] basis parameterizations have been analyzed, leading to a
satisfactory comparison with expectations.

Among the other processes involving the properties of
the [π0, η, η′] system, the η′ → π+π−γ decay spectrum
deserves special attention. The measurements of this decay
process started long ago—as early as 1975 [49]—and several
experiments have collected samples of limited statistics [50–
57], motivated by a reported 20 MeV mass shift of the ρ

peak compared to its observed value in the e+e− → π+π−
annihilation.

This effect was soon attributed to an interference between
the η′ → ργ (ρ → π+π−) resonant amplitude and the
Wess–Zumino–Witten (WZW) anomalous η′π+π−γ con-
tact term [58,59]; this so-called box anomaly was expected
to occur alongside the triangle anomaly responsible for the
two-photon decays of the π0, η and η′ mesons. A basic HLS
approach including this anomalous interaction term along-
side the dominant η′ρ0γ coupling [60] confirmed this guess.

However, the dipion η′ spectrum from the BESIII Collab-
oration [61] published much later, thanks to its large statistics
(970,000 events), modified the picture: It led to the conclu-
sion that supplementing the (ρ0, ω) resonance contributions
by only a contact term is insufficient to reach a satisfactory
description of the dipion spectrum.

On the other hand, the reported dipion spectrum observed
in the parent η → π+π−γ decay has undergone many fewer
measurements. Besides former spectra5 from Layter et al.
[62] and Gormley et al. [63], WASA-at-COSY reported for
a 14,000-event spectrum [64], whereas the KLOE/KLOE2
Collaboration collected a 205,000-event spectrum [65].

As the dipion spectra reported from the recent measure-
ments of the η/η′ → π+π−γ decays carry high statistics,
it thus becomes relevant to re-examine whether (and how)
they fit within the recently defined BHLS2 framework of the
HLS model, especially thanks to its kinetic breaking (see
Appendix A.5), which has already allowed for a satisfactory
description of the [π0, η, η′] system properties [21]. More-
over, even if the physics of the η/η′ mesons is interesting
per se, a better understanding of their properties is impor-
tant, given their important role in the light-by-light (LbL)
contribution to the muon anomalous magnetic moment.

The paper is organized as follows. Section 3 recalls the
Kroll conditions [66] which reduce the number of free param-

5 The numerical content of these spectra can only be derived from the
paper figures.
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eters of the kinetic breaking mechanism from 3 to 1; it also
recalls and corrects Lagrangian pieces relevant for the present
study. Section 4 identifies the Lagrangian pieces contribut-
ing to the considered η and η′ radiative decays and displays
the involved diagrams; the BHLS2 amplitudes for these are
constructed in Sect. 5 for the η → π+π−γ decay and in
Sect. 6 for the η′ → π+π−γ one. The relation between the
anomalous HLS amplitudes and their WZW [58,59] analogs
is given in Sect. 7. The derivation of the dipion mass spec-
trum in the η/η′ radiative decays is done in Sect. 8, and the
role of the additional polynomial factor in the η/η′ radiative
decays is thoroughly examined in Sect. 9. The polynomial
factors accompanying the pion form factor parameterize an
approximation to higher inelastic effects (beyond the two-
pion channel) and are associated with the production vertex.6

Section 10 constitutes the central part of the present study.
Section 10.1 provides an exhaustive presentation of the avail-
able η/η′ → π+π−γ data samples; for this purpose it
is important to note that all the available spectra carry an
arbitrary absolute normalization, and that accounting for the
η/η′ → π+π−γ partial widths also implies using an exter-
nal piece of (PDG [70]) information. A detailed study of the
additional polynomial degrees is the subject of Sect. 10.2,
which reports on the fits performed separately with the η and
η′ spectra to find the appropriate degrees of the requested
polynomials. This allows us to perform the fits of the dipion
spectra reported in Sect. 10.3, where it is proved that a unique
polynomial can satisfactorily account for both the η and η′
dipion spectra simultaneously.

Section 10.4 is devoted to comparing our polynomial
results with those reported in the literature. The role of inter-
mediate ρ± exchanges is emphasized in Sect. 10.6. The
global BHLS2 fits performed to simultaneously describe the
dipion spectral line shapes examined in the previous sub-
sections and the PDG information for the partial widths
�(η/η′ → π+π−γ ) are worked out in Sect. 10.7. A brief
numerical analysis of some parameter values returned by the
fits of the η/η′ dipion spectra is the subject of Sect. 10.5.
Finally, in Sect. 11, we examine the issues relative to the
connection between the η/η′ → π+π−γ decays (and also
the τ decay data) and the hadronic contribution to the muon

6 The polynomials addressed here are process-dependent and also
appear in the Omnès representation of the pion form-factor-related ππ

production in e+e− annihilation [67–69].

anomalous magnetic moment aμ. Section 12 summarizes the
conclusions reached in the present study.

For ease of reading, the main pieces of information regard-
ing the HLS model are briefly revisited in Appendix A.1,
whereas its symmetry-breaking mechanisms are briefly sum-
marized in Appendices A.2 to A.5. An erratum to the pre-
vious broken version of the BHLS2 version is the subject of
Appendix B. Also for ease of reading in the present work,
it is appropriate to give the most relevant parts of the non-
anomalous and anomalous BHLS2 pieces under the Kroll
conditions—mentioned just below—in Appendices C and
D.

3 The Kroll conditions and VPP Lagrangian pieces

In the Feldmann–Kroll–Stech (FKS) approach [46–48] to the
[π0, η, η′] system, it has been found appropriate to impose
the Kroll conditions [66] to axial current matrix elements.
Applied to the BHLS2 axial currents, these conditions,

〈0|Jaμ|ηb(p)〉 = i pμ faδab, |ηb(p)〉 = |bb(p)〉,
Jaμ = aγμγ5a, {a, b = u, d, s}, (1)

lead to two nontrivial relations [21]—referred to below as
A± solutions—among the λi parameters of the generalized
’t Hooft term [45,71] (see Appendix B); one gets

{
Solutions A± ⇐⇒ λ0 = √

2λ8 = ±
√

3

2
λ3

}
, (2)

which reduces the actual parameter freedom of the kinetic
breaking from three to only one.

One thus should note that the Kroll conditions tightly
couple the breaking in the BHLS2 Lagrangian of the origi-
nal U(3) symmetry to SU(3)×U(1) and a particular isospin-
breaking piece (via λ3 
= 0); it also leads to Fτ

π (s = 0) =
1 − λ2

3/2.
The ±1 factor in Eq. (2) is propagated below as d±; thus,

A+ corresponds to d+ and A− to d−. The non-anomalous
pieces Lη′π± and Lηπ± of the BHLS2 Lagrangian acquire
simplified expressions compared to [21]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Lπ0π± = iag

2
(1 + �V )

(
1 − λ2

0

3

)[
ρ− · π+ ↔

∂ π0 − ρ+ · π− ↔
∂ π0

]

Lηπ± = − iag

2
[1 + �V ]

[
ε − A±

2
sin δP

] [
ρ− · π+ ↔

∂ η − ρ+ · π− ↔
∂ η

]

Lη′π± = − iag

2
[1 + �V ]

[
ε′ + A±

2
cos δP

] [
ρ− · π+ ↔

∂ η′ − ρ+ · π− ↔
∂ η′]

(3)

where

A± = �A + d±λ2
0, (4)
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Fig. 1 The classes of tree diagrams. P stands for either of η and η′. In
diagrams a and b, the double lines stand for the neutral vector mesons
(subject to mixing). In the c diagrams, the intermediate vector meson
is ρ±, whereas the external one is neutral. The pions are charged. The
vanishing of the AV P couplings (see text) implies that diagrams (b2)
and (c1) do not contribute to the decay amplitudes

exhibiting the Bando–Kugo–Yamawaki (BKY) �A, and δP
is defined by

cos δP = 1√
3

[
sin θP + √

2 cos θP

]
,

sin δP = − 1√
3

[
cos θP − √

2 sin θP

]
(5)

in terms of θP , the third mixing angle [72] which is one
of the BHLS2 fit parameters. It was shown in [21] that the
BKY parameter �V can be dropped out without any loss in
generality.

One should note that if Lπ0π± is the leading order, both
Lηπ± andLη′π± are manifestlyO(δ), i.e., first order in break-
ings. Finally, it is worthwhile to recall that terms of order
O(δ2) or higher in amplitudes are discarded.

4 The η/η′ → π−π+γ decays in the BHLS2 framework

The amplitudes for the η/η′ → π−π+γ decays a priori
involve the APPP , V PPP , and AV P sectors of the full
BHLS2 Lagrangian [20,21]. The interaction terms involved
are displayed in Appendices C and D in terms of the physi-
cal pseudoscalar fields and ideal vector fields which should
be replaced by their physical partners following the method
developed in [20]. The V − γ transition couplings can be
found in [20], Appendix A, and the relevant non-anomalous
VPP couplings have been displayed for convenience in
Sect. 3 just above.

The classes of diagrams involved a priori in the η/η′
decays to π−π+γ are displayed in Fig. 1. Namely, diagram
(a1) illustrates the APPP interaction, whereas diagram (a2)
sketches the V PPP contributions with V − γ transitions
(V = ρ0, ω, φ) provided by the non-anomalous BHLS2

Lagrangian ([20], Appendix A). These two kinds of diagrams
are generally named box anomaly terms.

Diagram (b1) sketches the diagram class involving VV P
couplings; these diagrams provide the major contribution to
the η/η′ dipion spectra. As one assumes that c3 = c4 thanks
to former works [18], all contributions involving AV P cou-
plings, such as those depicted in Figs. (b2) and (c1), iden-
tically vanish. Finally, the (c2) diagram class illustrates the
diagrams reflecting the two possible choices for the π±π∓
pair, each involving an intermediate ρ± exchange.

In the following, for the η and η′ decays, the non-resonant
(a1) and (a2) contributions are gathered into the T N R partial
amplitude, whereas the (b1) and (c2) resonant contributions
are given by the T R1 and T R2 terms, respectively.

5 The η → π+π−γ amplitude within BHLS2

As three kinds of diagrams contribute, the full T (η) ampli-
tude for the η → π+π−γ decay is written as

T (η) = T N R(η) + T R1(η) + T R2(η), (6)

and they include the common tensor object

F = εμναβεμ(γ, q)qν p
−
α p+

β (7)

typical of the anomalous Lagrangian piece expressions; F
exhibits the obvious momentum notations. This factor is
understood in the T (η/η′) amplitude expressions here and
below to lighten the writing; it is restored in the final expres-
sions involving the differential decay widths.

As already stated, the first term in the expansion (6) gathers
the non-resonant (APPP/V PPP) contributions, whereas
the second and third terms collect the resonant contributions
of different structures generated via the VVP Lagrangian as
noted in the section just above.

The T η
N R term can be written (A± = �A + d±λ2

0):

T N R(η) = − ie

4π2 f 3
π

[
1 − 3c3

2

]
gηπ+π−γ with

gηπ+π−γ = ε +
{

1 − A±
2

− 3λ2
0

4

}
sin δP . (8)

It is worth noting that (i) the dependence upon c1 − c2

drops out when summing up the APPP and V PPP con-
tributions, and (ii) if one cancels out the symmetry-breaking
contributions, T N R(η) remains nonzero and corresponds to
the WZW term [58,59].
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On the other hand, the T R1(η) contributions to the T (η)

amplitude can be written (m2 = ag2 f 2
π ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T R1(η) = c3
iem2

8π2 f 3
π

[
T 0

ρ (η)

Dρ(s)
+ T 0

ω(η)

Dω(s)
+ T 0

φ (η)

Dφ(s)

]

T 0
ρ (η) = ε + 2β(s)

zA
cos δP

+3

[
1 − 3λ2

0
4 − A±

6 + α(s)
3 + 2ξ3

]
sin δP

T 0
φ (η) = −

[
2β(s)

zA

]
cos δP

T 0
ω(η) = − α(s) sin δP

, (9)

where Dρ(s), Dω(s), and Dφ(s) are the indicated inverse
vector meson propagators; they are parameterized as defined
in Section 9 of [20]. Equation (9) displays the dependency
upon the angles α(s) and β(s) defining the dynamical vector
meson mixing (see Appendix A.4) and upon the parameter
defined by the kinetic breaking mechanism (see Appendix
A.5) once the Kroll conditions [66] are applied. It is worth
remarking that ρ0 is the only resonant contribution which sur-
vives when symmetry-breaking terms are turned off. More-
over, the ω and φ contributions are outside the phase space
actually available in the η decay.

T R2(η), the second resonant contribution, is produced by
thenon-anomalousρ±ηπ∓ coupling purely generated by our
breaking procedures (see Eq. (3)) and by the ωρ±π∓ term
of the VVη Lagrangian piece (see Appendix C.2.2). Setting

s±0 = (p± + q)2, q = photon momentum,

we write:⎧⎪⎨
⎪⎩
T R2(η) = c3

iem2

8π2 f 3
π

T±
ρ (η)

[
1

D±(s+0)
+ 1

D±(s−0)

]

T±
ρ (η) = ε − A±

2
sin δP .

(10)

The D±(s±0)s denote the inverse ρ± propagators; the T R2

contribution, a pure product of symmetry breakings, can-
cels out when all symmetries are restored. Finally, the three
amplitude pieces just defined depend on the HLS parameter
c3.

At the chiral point

s = s+0 = s−0 = 0,

the vector meson inverse propagators fulfill [20] DV (0) =
−m2

V , with

m2
ρ± = m2, m2

ρ0
= m2(1 + ξ3)

2, m2
ω = m2(1 + ξ0)

2,

m2
φ = m2zV (1 + ξ0)

2, (11)

where m2 = ag2 f 2
π , the conditions α(0) = β(0) = 0 being

exactly fulfilled.

6 The η′ → π+π−γ amplitude within BHLS2

The decay process η′ → π+π−γ undergoes a quite similar
treatment to those performed for the η → π+π−γ decay
in the preceding section, and so one will avoid duplicating
the comments on the η′ amplitude already stated on the η

amplitude. The three different kinds of contributions to the
η′ decay amplitude are

T (η′) = T N R(η′) + T R1(η′) + T R2(η′). (12)

The first term, which gathers the APPP and V PPP con-
tributions to the full amplitude T η′

, is given by

T N R(η′) = − ie

4π2 f 3
π

[
1 − 3c3

2

]
gη′π+π−γ with

gη′π+π−γ = ε′ −
{

1 − A±
2

− 3λ2
0

4

}
cos δP (13)

and does not depend on c1 − c2. On the other hand, the
contributions gathered in T R1(η′) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T R1(η′) = c3
iem2

8π2 f 3
π

[
T 0

ρ (η′)
Dρ(s)

+ T 0
ω(η′)
Dω(s)

+ T 0
φ (η′)
Dφ(s)

]

T 0
ρ (η′) = ε′ + 2β(s)

zA
sin δP

−3

[
1 − 3λ2

0
4 − A±

6 + α(s)
3 + 2ξ3

]
cos δP

T 0
φ (η′) = −

[
2β(s)

zA

]
sin δP

T 0
ω(η′) = + α(s) cos δP

,(14)

where, as for the η decay, only the ρ0 term is O(δ0 = 1) in
breakings. Finally,
⎧⎪⎪⎨
⎪⎪⎩
T R2(η′) = c3

iem2

8π2 f 3
π

T±
ρ (η′)

[
1

D±(s+0)
+ 1

D±(s−0)

]

T±
ρ (η′) = ε′ + A±

2
cos δP

,

(15)

which is purely O(δ).
The ω contribution in the η′ decay must be visible in

high-statistics data samples (like [61]) and is worth com-
paring with its line shape in the e+e− → π+π− annihila-
tion. Regarding the φ contribution, it is somewhat outside the
allowed phase space—by � 60 MeV. Finally, the influence
of higher vector mesons, especially the first radial excitation
ρ′, is outside the HLS scope; global fit properties may reveal
their actual influence w.r.t. the broken HLS context.

7 BHLS2 and the WZW box anomalies

Traditionally, the amplitudes associated with the box anoma-
lies are derived from the Wess–Zumino–Witten (WZW)
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Lagrangian [58,59]:

LWZW = −i
Nce

3π2 f 3
π

εμναβ AμTr
[
Q∂ν P∂αP∂β P

]
, (16)

where P is the bare pseudoscalar meson U (3) matrix. This
Lagrangian differs from the anomalous APPP Lagrangian
piece of the HLS model (see Eq. (86)) by the factor
[

1 − 3

4
(c1 − c2 + c4)

]

.
The BHLS2 η/η′ decay amplitudes just defined are

expected to coincide with their WZW analogs at the chiral
point, where the HLS ci ’s dependencies of the decay ampli-
tudes should cancel out. Their expressions at the chiral point
(s = s+0 = s−0 = 0) are given by7:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (η) = − ie

4π2 f 3
π

[
ε +

{
1 − A±

2
− 3λ2

0

4

}
sin δP

]
,

T (η′) = − ie

4π2 f 3
π

[
ε′ −

{
1 − A±

2
− 3λ2

0

4

}
cos δP

]
,

T (π0) = + ie

4π2 f 3
π

×
[{

1 − A±
2 − λ2

0
3

}
− ε sin δP + ε′ cos δP

]

(17)

and coincide with those which can be directly derived from
the WZW Lagrangian equation (16) after applying the break-
ing procedures mentioned in the Appendices.

8 η/η′ radiative decays: the BHLS2 dipion mass spectra

The amplitudes T (η) and T (η′) allow us to describe—within
the full EBHLS2 framework [20,21]– the dipion mass spectra
observed in the η/η′ radiative decays have been derived in
Sects. 5 and 6, respectively; both should be multiplied by
the function8 F(s, s0+) (see Eq. (7)). The differential decay
widths can be written as

d2�X

dsds0+
= 1

(2π)3

1

32M3
X

|TX F(s, s0+)|2, X = η, η′ (18)

in terms of, respectively, s, the (π+π−), and s0+, the (π+γ )
pair invariant masses squared of the η/η′ decay products. The
accessible invariant mass spectra being functions of only s,

7 The coupling π0π+π−γ is involved in the e+e− → π0π+π− anni-
hilation [20,21].
8 The notations ε(γ, q) for the photon polarization vector, p±, and q
for the pion and photon momenta are generally understood.

this expression should be integrated over s0+:

d�X

ds
= 1

(2π)3

1

32M3
X

∫ smax

smin

|TX F(s, s0+)|2ds0+,

X = η, η′ (19)

where

smin/max = M2
X + 2m2

π − s

2
∓ pπ

M2
X − s√
s

and

pπ =
√
s − 4m2

π

2
. (20)

Both amplitudes T (η) and T (η′), generically referred to
as TX , can be written

TX (s, s0+) = RX (s) + CXG(s, s0+) with

G(s, s0+) = 1

Dρ(s0−)
+ 1

Dρ(s0+)
, (21)

having defined s0± = (q + p±)2 related by

s0− − m2
π = (M2

X − s) − (s0+ − m2
π ).

RX (s) collects the contributions previously named T N R(X)

and T R1(X) and is (by far) the dominant term, whereas9

T R2(X) = CXG(s, s0+) is only O(δ) in breakings.
On the other hand, the [F(s, s0+)]2 factor in Eq. (19) is

[F(s, s0+)]2 = s

4
(s0+ − m2

π )(s0− − m2
π )

−m2
π

4
(M2

X − s)2 (22)

and can be solely expressed in terms of s and s0+ to perform
the integration shown in Eq. (19). This leads to pre-defining
within the fitting code the following integrals:

I1(s) =
∫ smax

smin

|F(s, s0+)|2ds0+,

I2(s) =
∫ smax

smin

|F(s, s0+)|2|G(s, s0+)|2ds0+

I3(s) =
∫ smax

smin

|F(s, s0+)|2Re [G(s, s0+)
]
ds0+,

I4(s) =
∫ smax

smin

|F(s, s0+)|2Im [
G(s, s0+)

]
ds0+. (23)

Actually, I1(s) can be integrated in closed form:

I1(s) = (M2
X − s)3

3

p3
π√
s

(24)

with pπ given in Eq. (20). The three other functions should be
integrated numerically within the iterative procedure context

9 CX can be read off the relevant expressions for T R2(X) given in
Sects. 5 and 6.
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already running to address the e+e− → π+π−π0 annihi-
lation data within the BHLS [18] or BHLS2 [20,21] frame-
works. One then gets

d�X

ds
= 1

(2π)3

1

32M3
X

×
[
|RX (s)|2 I1(s) + C2

X I2(s) + 2CX (Re [RX (s)]

I3(s) + Im [RX (s)] I4(s))
]

(25)

In the BHLS2 approach, only leading-order terms in the
breaking parameters O(δ) (as the CX term) are addressed,
and then terms of order O(δ2)—like the C2

X contribution—
can be neglected.

The I1(s) term in Eq. (25) can be rewritten, for subsequent
use in the text:

d�̃X

ds
= �0(s)|RX (s)|2, with

�0(s) = s(M2
X − s)3[σπ(s)]3

3 · 211π3M3
X

and

σπ(s) =
√

1 − 4m2
π

s
. (26)

9 Pion form factor in the η/η′ radiative decays

The study in [73], also referred to hereafter as SHKMW,
has placed a valuable emphasis on the connection between
the pion vector form factor Fπ (s)—as it comes out of the
e+e− → π+π− annihilation process—and the dipion spec-
tra from the η/η′ → π+π−γ radiative decays. Further works
have followed (see, for instance, [74–78] for further refer-
ence), generally motivated by a better understanding of the η

and η′ meson properties regarding their contributions to the
light-by-light (LbL) fraction of the muon anomalous mag-
netic moment aμ.

(i) It is worthwhile to briefly outline how this connection
is established [73]. The pion vector form factor Fπ (s) and
the P-wave π+π− scattering amplitude Tππ (s) are related
by

Im [Fπ (s)] = σπ(s) [Tππ (s)]∗ Fπ (s)�(s − 4m2
π ), (27)

valid along the energy region where the π+π− scattering
is elastic; σπ(s) has been defined just above. Therefore, in
this energy region, the pion vector form factor Fπ (s) and
the elastic scattering amplitude Tππ (s) should carry equal
phases. The Heaviside function indicates that Fπ (s) is real
below the 2π threshold; the first significant inelastic channel
being ωπ , the validity range of Eq. (27) practically extends
up to � 922 MeV, substantially above the η mass and slightly
below the η′ mass (by only 36 MeV). Stated another way, the

phase-equality property holds over almost the whole HLS
energy range of validity (

√
s ≤ 1.05 GeV).

On the other hand, assuming theπ+π− scattering is elastic
for all s ≥ 4m2

π , the P-wave amplitude Tππ (s) is written as

Tππ (s) = sin δ11(s)eiδ11(s)

σπ (s)
(28)

in terms of the P-wave phase shift δ11(s), and the solution
to Eq. (27) can be expressed in terms of the Omnès function
�(s) by

Fπ (s) = K (s)�(s), where

�(s) = exp

(
s

π

∫ ∞

4m2
π

dz

z

δ11(z)

z − s − iε

)
, (29)

K (s) being some appropriate real analytic function, required
to be free of singularities over the physical region s ≥ 4m2

π .
This expression intends to factor out the non-perturbative
contribution to Fπ (s) contained in the �(s) function, and so
the remaining part K (s) (perturbative in the sense of ChPT,
at low energy) is expected to behave smoothly and can be
well approximated by a polynomial [73] along our region of
interest (up to � mφ). This smooth function K (s) is process-
dependent, whereas �(s), being determined by the ππ final
state re-scattering phase shifts, represents a more universal
part of the vector form factor. It is shown in [74] that a first-
degree polynomial K (s) = 1+α�s allows us to reach a nice
(linear) correlation up to s � 1 GeV2 between the dipion
spectrum from Belle [34] and the �(s) functions derived
from the phase shift data from [79], see also [67–69]; a value
α� � 0.1 GeV−2 can be inferred from Figure 1 in [74].
The deterioration of the linear behavior above s � m2

φ is
actually not unexpected because of rising inelasticities and
of the high-mass vector meson influence.

(ii) Assuming the pion pair emerging from the η/η′ radia-
tive decays is purely isospin 1 and a P-wave [61,64], its
amplitude should carry the same analytic properties as Fπ (s),
i.e., they may only differ by a real analytic function, free of
right-hand side singularities. Reference [73] thus proposes
to write the differential dipion spectra as

d�X

ds
= �0(s)|AX PX (s)Fπ (s)|2, (X = η/η′), (30)

where �0(s) has already been defined in Eq. (26), and the
AX ’s being appropriate normalization constants. The PX (s)
functions (PX (0) = 1) are remaining correction factors spe-
cific to the η and η′ radiative decays (in the present case,
but are more generally dependent on higher inelastic effects
existing at any ππ production vertex), which could both be
analyzed within the extended ChPT context [43,45] (see also
[80]) and are free of right-hand side singularities.

As just argued regarding the pion vector form factor
and its K (s) factor, the PX (s) functions should satisfac-
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torily be approximated by low-degree polynomials [73].
This is what is shown by the bottom panel in Figure 1
of [74], which moreover indicates that Pη(s) = Pη′(s)
should likely hold. Of course, procedures to complement
this approach by symmetry-breaking effects also have to be
invoked, prominently—but not only—the ρ0 −ω mixing for
the η′ decay process.

(iii) The issue is now to relate d�X (Eq. (30)) and d�̃X

(Eq. (26)) within the HLS framework when no breaking is
at work. Equivalently, this turns out to check whether the
RX (s)’s and Fπ (s) (can) carry the same phase in this case.

Let us consider the pion vector form factor Fπ (s) as given
in [20], discarding terms of order O(δ) or higher in break-
ing parameters; keeping only tree contributions (loop cor-
rections, like the ρ0 − γ transition amplitude, are counted as
O(δ)), and dropping out the Lp4 contributions, one derives
(m2 = ag2 f 2

π , the unbroken ρ0 HK mass.):

Fπ (s) =
(

1 − a

2

[
1 + m2

Dρ(s)

])
+ O(δ). (31)

Similarly, the RX (s) functions in Eq. (26) reduce to

Rη = − ie sin δP

4π2 f 3
π

(
1 − 3

2
c3

[
1 + m2

Dρ(s)

])
,

Rη′ = + ie cos δP

4π2 f 3
π

(
1 − 3

2
c3

[
1 + m2

Dρ(s)

])
(32)

up to terms of O(δ) in breaking parameters.
These equations lead us to define a no-breaking reference

by requiring the following:
(1) Holding of the vector meson dominance assumption,

which implies a ≡ aVMD = 2 within the generic HLS model
[12,16], it is worth recalling here (see Section 2 in [21] for
details) that the HLS parameter a is not reachable by fit, once
the BKY breaking (see Appendix A.2) is at work. Indeed, all
Lagrangian terms of interest for our physics depend on the
product a′ = a(1+�V ) and not on each of these parameters
separately; therefore, one can freely fix a = 2, and then the
term δa = aVMD�V is clearly10 O(δ).

(2) The universality of the ρ phase implies that Rη(s),
Rη′(s), and Fπ (s) share the same phase, and therefore it
requires the existence of an “unbroken” value for c3. Indeed,
imposing cre f3 = 2/3 alongside aVMD = 2, one can derive
a satisfactory no-breaking reference as

Fπ (s) = − m2

Dρ(s)
, Rη = + ie sin δP

4π2 f 3
π

m2

Dρ(s)
,

Rη′ = − ie cos δP

4π2 f 3
π

m2

Dρ(s)
, (33)

10 In the course of the fitting procedure, it is appropriate to either choose
to fit a, fixing �V = 0 or fix a and fit �V ; we chose the first option.

which should be complemented by O(δ) contributions to
account for real data.

The issue becomes whether the values returned for a and
c3 from fits to the (real) data differ little enough from aVMD

and cre f3 that their differences can be consideredO(δ) effects.
For this purpose, one can refer to the latest published BHLS2

standard fit results collected in Table 10 of [21], in particular,
one finds the following:

• a = 1.766±0.001, which shows a deviation δa = 0.244
from aVMD = 2 corresponding to having �V = 0.122;
and

• c3 = 0.742±0.003 which deviates by δc3 = 0.076 from
cre f3 = 0.667,

focusing on the favored solution A− [21] to the Kroll condi-
tions (see Sect. 3)—the A+ solution actually provides similar
values. Thus, δa and δc3 look small enough to be viewed as
departures from, respectively, aVMD and cre f3 and treated as
O(δ) corrections, on the same footing as the manifest break-
ing parameters. To our knowledge, it is the first time that an
identified physics condition can propose a constraint on one
of the FKTUY [13] parameters, namely11 c3.

(iv) From what has been just argued, it is clear that within
the BHLS2 context, the η/η′ → π+π−γ decay amplitudes
TX (s) reported in Sects. 5 and 6 above can actually be written
as

TX (s) = BX Fπ (s) + O(δ), X = η/η′, (34)

the BX ’s being definite constants depending on the breaking
parameters. Fπ (s) contains already manifest breaking terms
like the ω and φ signals with, however, different weights from
their analogs in the TX (s) amplitudes.12

On the other hand, as shown in [20], yielding a fair descrip-
tion of the data samples for |Fπ (s)| (see Figure 2 and Table
3 in [20]), BHLS2 also leads to a fair account of the phase
shift δ11(s) over its whole range of validity without involving
any phase shift data sample in its derivation. This is illus-
trated by13 Fig. 2, which reflects the fair accord reached by
the BHLS2 prediction with the phase derived from the Roy
equations [83] or the pion form factor phase of Ref. [84]
on the one hand, and the experimental phase shift data from
[81,82] on the other hand. Moreover, the same BHLS2 spec-
trum was smeared over 10 MeV bins, to mimic the CERN-
Munich spectrum [81] (black star symbols), to clearly show

11 Actually, another condition comes out from the data in analyses
performed within the HLS context: c3 = c4.
12 For instance, BHLS2 predicts that the coupling ratio ωππ to ρ0ππ

is three times smaller in the η′ radiative decay than in the pion vector
form factor.
13 Reprinted from Figure 10 in [20].
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Fig. 2 The δ11 phase shift
plotted as a function of

√
s.

Besides the data points of
[81,82], the dashed black curve
is the solution to the Roy
equations [83], the green full
line shows the phase
reconstructed in [84], and the
red full line shows the BHLS2
phase shift exhibiting the ω and
φ signals. The black stars show
the smeared BHLS2 spectrum
(e.g., the red curve)

that the ω and φ signals cannot be manifestly observed in the
existing data.

All this leads to the conclusion that the SHKMW modifi-
cation [73] shown in Eq. (30),

Fπ (s) → AX PX (s)Fπ (s),

also applies in the global BHLS2 context. In this case, this
turns out to perform the change

TX (s) �⇒ HX PX (s)TX (s)

when using the amplitudes constructed in Sects. 5 and 6. Our
notations are connected with those in Ref. [73] by writing
the following14:

AX = A0
X HX , HX ≡ 1 + δX , X = η, η′ (35)

as the A0
X factors are already accounted for in the TX ampli-

tudes derived from the BHLS2 Lagrangian as shown below.

14 Actually, to be formally exact, Ref. [73] writes A = A0(1 + δ) for
the η meson decay, and A′ = A′

0(1 + δ′) for the η′ meson, as can be
read around their Relations (9).

Then the global character of the BHLS2 fitting con-
text15 ensures that the non-perturbative effects are suitably
accounted for as reflected by Fig. 2.

From now on, the PX (s) functions are chosen polynomi-
als of the lowest possible degree consistent with a satisfac-
tory fitting. Being beyond the BHLS2 scope, these functions
are supplemented within the fit procedure by performing the
change

TX (s) �⇒ HX PX (s)TX (s), with PX (0) = 1, X = η, η′

(36)

in Eq. (25) above. Practically, each term in the right-hand
side of Eq. (25) gets a factor of |HX PX (s)|2, the coefficients
of which have to be derived by the global fit, where the [CX ]2

term can be discarded as it is manifestly O(δ2).

15 In this case, its reference set of data samples HR [20,21], which
already includes most of the existing pion form factor data samples,
will be supplemented with the η/η′ dipion spectra.
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10 Fits of the η/η′ radiative decay spectra within
BHLS2

The reference set of data samples HR included within the
BHLS2 framework has been presented several times and
recently in [20,21]; it covers the six e+e− annihilation chan-
nels to π+π−, K+K−, KLKS , π+π−π0, π0γ , and ηγ ,
some more decay widths (in particular π0/η/η′ → γ γ ),
and, finally, the dipion mass spectrum in the τ → ππν

decay. These represent already the largest set of data (alto-
gether 1366 data points) successfully submitted to a global
fit, as reflected by Table 9 in [21]; they will not be dis-
cussed here further. It is nevertheless relevant to remember
that HR encompasses almost all existing samples except for
the recent CMD-3 dipion data as already argued in footnote
4, the KLOE08 [40], BaBar [27,28], and the recent SND [85]
dipion spectra because of the strong tension they exhibit with
respect to the rest of the (more than 60) HR samples. This
issue has been thoroughly reexamined in [21].

The present study aims to include also the dipion spec-
tra measured in the η/η′ radiative decays within the global
BHLS2 framework. However, it is certainly cautious to
avoid using simultaneously the η/η′ dipion spectra and the
π+π−π0 annihilation data within global fits as long as a
specific study has not assessed some clear statement about
process-specific corrections (accounted for by a polynomial)
in the latter channel16 and data.

For the general model dependence of BHLS/BHLS2 mod-
els and also the magnitude of possible biases in the fits, we
rely on our previous studies (notably [20] and also [89]) that
demonstrated those are limited with respect to other sources
of systematics.

More recently, our 2022 publication [21] (see, for exam-
ple, Section 11.3 therein), which extends BHLS2 and intro-
duced a comprehensive treatment of the [π0, η, η′] system,
includes also a detailed discussion on model dependencies
in the new framework (partly by studying model variants)17.
This 2022 study, which in fact prefigured and allowed the
present work, reached again the conclusion that model depen-
dence exists but is not a strong source of systematics. It
confirmed previous studies which explored systematic dif-
ferences between BHLS and BHLS2 types of models (and
various subvariants); see, for example, Section 17 in [20].

16 The studies [86,87] and the fit results reported in [20,21] may as well
indicate that polynomial corrections are small or effectively absorbed
in the parameter values returned by the fits. Anyway, this certainly
deserves a devoted work [88].
17 On the aμ determination question, since for this purpose we always
end using well-constrained, high global and partial probability fits that
use all the experimental data, this guarantees the fitted pion form factor
is very close to the data, and hence that the aμ is also very close to
the integral model-independent determinations from other groups. This
remains true when swapping KLOE and BaBar ππ data in the fit.

We explore below eventual new sources of (model and oth-
ers) systematics, again by studying the fit result dependencies
when using model and hypotheses variations (in particular,
but not only, for the PX polynomials), in the same spirit as
in our previous works.

It is worthwhile to stress that all the published dipion
spectra of the η/η′ → π+π−γ decays carry an arbitrary
normalization; so they only provide the spectrum line shapes
measured by the various experiments. It follows from this
peculiarity that they allow fitting only the PX (s) polynomials,
and they are totally insensitive to the HX parameter values;
this issue will be addressed by performing global fits where
the corresponding partial widths [taken from the “Review of
Particle Properties” (RPP) [70]] are also considered inside
the fitting procedure.

10.1 Available dipion spectra from the η/η′ → π+π−γ

decays

Measurements of the dipion spectrum in the η′ → π+π−γ

decay started long ago, as early as 1975 [49], and several
experiments have collected samples of various (but low)
statistics motivated by the� 20-MeV shift reported for theρ0

peak location compared to its value in e+e− → π+π− anni-
hilations: JADE [50], CELLO [51], TASSO [52], PLUTO
[53], TPC-2γ [54], ARGUS [55], and Lepton F [56]; the
Crystal Barrel Collaboration published in 1997 is the most
precise spectrum [57], carrying 7400 events. The break-
through has come from the BESIII Collaboration [61] which
published a 970 ,000-event spectrum in 2017.

The formerly collected samples have been examined, and
their behavior is briefly reported below. Dealing with the
uncertainty information provided with these η′ samples is
generally straightforward, except for the BESIII dipion spec-
trum [61], for which a spectrum for the energy resolution is
provided. It is accounted for by replacing within the mini-
mization procedure the genuine model function value by that
of its convolution with the resolution function, assuming the
provided resolutions are the standard deviations of Gaus-
sians; the net effect of the BESIII energy resolution informa-
tion deserves to be shown (see below).

The BESIII data [65] are provided as two 112-data-point
spectra, the former giving the numbers of η′ event candidates
in 10 MeV bins (Ni

evt ), the latter the estimated numbers of
background events (Ni

bkg) within the same bins. One has

provided our global fitting code with the Ni
signal = Ni

evt −
Ni
bkg spectrum; we have assumed the original distributions to

be Poissonian and fully correlated by attributing to Ni
signal

an uncertainty σi =
√
Ni
evt +

√
Ni
bkg; it is shown below

that these specific assumptions allow a fair dealing with the
BESIII spectrum [61].
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On the other hand, the reported dipion spectrum observed
in the parent η → π+π−γ decay has undergone much less
measurement. Besides former spectra18 from Layter et al.
[62] and Gormley et al. [63], WASA-at-COSY reported for
a 14 ,000-event spectrum [64], whereas the KLOE/KLOE2
Collaboration has collected a 205 ,000-event spectrum [65];
it should be noted that the WASA dipion spectrum is given
with only statistical errors.

It is worth stressing again that the normalization of all
these spectra being arbitrary, the theoretical (absolute) dis-
tribution scales provided by the BHLS2 Lagrangian are lost
when normalizing to the specific scale of each data set
when fitting; stated otherwise, these data samples only allow
addressing the fit of the PX (s) functions (X = η, η′) and not
of the HX constants which are canceled out when normaliz-
ing the model functions to the experimental spectra.

10.2 η/η′ experimental spectra: fits in isolation

The first exercise is thus to explore the degree issue for the
PX (s) polynomials and so does not need to deal with compli-
cations due to keeping the constant HX within the fit proce-
dure. Therefore, fits have been performed, supplementing the
reference data set of samples HR by either of the experimen-
tal η′ or η spectra. In this section, one only reports on using
the A− BHLS2 variant,19 [21] which will be our working
BHLS2 version.

Regarding the Pη′(s) polynomial, the results given in the
Table just below20 focus on only the BESIII η′ sample (112
data points) [61]; indeed, because of their statistics, all the
other η′ dipion spectra, including the Crystal Barrel one [57],
do not exhibit any clear sensitivity to the Pη′ degree and may
easily accommodate Pη′ ≡ 1:

Pη′(s) degree 1 2 3

χ2
BESI I I (N = 112) 160 99 98

χ2
T OT (N = 1187) 1167 1097 1096

Probability 44.7% 90.6% 90.8%

This clearly points out that, thanks to the statistics reached
by the BESIII Collaboration, the first degree for Pη′(s) can
be excluded (〈χ2〉 = 1.43), and the third degree is obviously
useless.

18 The numerical content of these spectra can only be derived from the
paper figures.
19 Nevertheless, the most relevant results obtained using the A+ BHLS2
variant are summarized in the following subsections.
20 The fits which provide these results have been performed with our
reference set amputated from the e+e− → π+π−π0 annihilation data.
The number of BESIII data points and the total number of fitted data
points are given by the N values within parentheses.

Regarding the η data, complementing HR with the
KLOE/KLOE2 sample (59 data points) [65] alone or together
with the WASA sample (37 data points) [64], the pic-
ture returned by the fits is much less conclusive, as a
first-degree Pη(s) provides21 χ2(K LOE/K LOE2) = 55
and χ2(WASA)= 45, and a second-degree Pη(s) yields
χ2(K LOE) = 51 andχ2(WASA)= 51 with similar fit prob-
abilities, both at the 90% level, as just above. The choice of
a minimal degree has been preferred for Pη(s).

Therefore, in the following, when different, the polyno-
mials Pη(s) and Pη′(s) are definitely chosen, the former first
degree, the latter second degree. The polynomial coefficients
returned by the global fits performed with the A− BHLS2

variant are discussed below and given in Table 2.
It is worthwhile noting that the degradation of the fit qual-

ity observed when assuming a first-degree Pη′(s) is essen-
tially carried by the the BESIII η′(s) data sample itself, with
a quite marginal influence on the standard channels of the
BHLS2 framework and on the η dipion spectra. This empha-
sizes the robustness of the BHLS2 Lagrangian.

In order to lighten the forthcoming discussion, let us com-
ment on the formerly collected (η/η′) dipion spectra listed in
the subsection above, which have also been analyzed within
the BHLS2 context; they quite generally yield stable χ2/N
values. Some of them return large χ2/N values from the
global fit procedure, namely, those from TPC-2γ (69/13),
LEPTON-F (45/20), and Layter et al. (60/15). Most of these
former samples, however, achieve reasonable χ2/N values,
typically 8/12 (TASSO), 15/21 (CELLO), 23/18 (PLUTO),
20/15 (ARGUS), 11/17 (CRYSTAL BARREL22), and 13/14
(Gormley et al.) but have a quite negligible impact on the
issues examined in the present study. Therefore, one focuses
on the high-statistics data samples from BESIII and KLOE/
KLOE2; the case for the WASA data set may be nevertheless
commented on21.

10.3 The η/η′ experimental spectra: analysis within the
BHLS2 context

Table 1 collects the relevant fit quality information derived
when running global fits within the A− BHLS2 variant. The
first data column gives the fit information in a global fit per-
formed23 by discarding the η/η′ to provide the BHLS2 refer-
ence fit pattern; using the full HR , one would have found the
numbers given in the last data column of Table 9 in [21]. The
second and third data columns report on the fits performed

21 Note that χ2(WASA) is always overestimated because of incomplete
reported experimental error information.
22 Its data point at 812.5 MeV, soon identified as an outlier, being
dropped out; see footnote 21 in [90].
23 The e+e− → π+π−π0 annihilation data are switched off.
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by including η/η′ dipion spectra within the fit data set HR

under the conditions indicated in the top line of Table 1.
The fit information concerning the e+e− → π+π− anni-

hilation data collected in scan mode (with different detectors
at the various Novosibirsk facilities) is displayed in the first
data line (the exact sample content behind the wording NSK
is explained in [21], for instance). The line KLOE stands
for the merging of the KLOE10 [24] and KLOE12 [25] data
samples. The spacelike vector pion form factor data merges
the NA7 and Fermilab samples [91,92].

Taking the first data column of Table 1 as a reference,
one can clearly conclude that the fit quality obtained when
using the η/η′ dipion spectra is unchanged and fairly good.
Indeed, the χ2 increase of the NSK set of scan data samples
is obviously negligible, and those of the ISR data collected
under the name KLOE and spacelike data are unchanged.
The description of the data samples in the other channels
from BHLS2 (not shown) is also unchanged.24

Regarding the triangle anomaly sector, the χ2 information
for the π0/η/η′ → γ γ decays are

⎧⎪⎪⎨
⎪⎪⎩

BHLS2 A− variant with Pη(s) 
= Pη′ (s) : (χ2
π0 , χ

2
η , χ2

η′ )
= (1.08, 0.01, 3, 33)

BHLS2 A− variant with Pη(s) ≡ Pη′ (s) : (χ2
π0 , χ

2
η , χ2

η′ )
= (0.73, 0.03, 4.77).

(37)

Thus, the RPP width [70] for π0 → γ γ is reproduced at the
(0.9 ÷ 1) σ level, and the one for η → γ γ is reconstructed
at nearly its RPP value; the width for η′ → γ γ is found in
the range (1.8÷2.2) σ , somewhat larger but still acceptable.

On the other hand, and more importantly, comparing the
second and third data columns of Table 1 obviously sub-
stantiates the SHKMW conjecture [73] about the unique-
ness of the PX (s) function, e.g., Pη(s) ≡ Pη′(s). One may
also note the slight improvement generated by having stated
Pη(s) ≡ Pη′(s); this should be due to having provided its cur-
vature to Pη(s) which in turn lessens the (already marginal)
tension between the KLOE/KLOE2 and BESIII data sam-
ples.

Before going on with solely using the A− variant of the
BHLS2 Lagrangian, it is worthwhile reporting on its A+ vari-
ant behavior. Let us limit this to reporting on the A+ variant
best fit performed assuming Pη(s) ≡ Pη′(s) is of the sec-
ond degree; one obtains χ2/N (BESI I I ) = 110/112, and
the η dipion spectrum from the KLOE/KLOE2 Collabora-
tion yields this ratio at 54/59; for its part, the unfitted WASA
sample yields 49/37. The global fit probability is 51.5% only,

24 Their variations are always χ2 unit fractions.

to be compared to 90.6 % for the global fit performed under
the A− variant reported in Table 1.

This drop in probability is noticeable, and the cause
deserves to be identified; indeed, the χ2(BESI I I ) increases
by “only” eight units, whereas the χ2 for the η dipion spec-
tra are almost unchanged compared to Table 1. Moreover, the
usual BHLS2 channels also benefit from χ2’s comparable in
magnitude to their A− analogs. Surprisingly, the single place
where the disagreement blows up is in the γ γ decays, as

(χ2
π0 , χ

2
η , χ2

η′) = (29.92, 0.34, 0.08);
e.g., the π0 → γ γ partial width is at more than 5σ from its
accepted value [70], which is by far too large to be accept-
able. Indeed, this implies that the A+ fit central value for the
π0 → γ γ partial width is reconstructed at 70% of its present
RPP value [70]; this should be brought into balance with the
A− variant, which yields this partial width reconstructed 5%
larger than the expected value (7.8 eV).

Therefore, the A+ variant unexpectedly exhibits a strong
tension between the triangle and box anomaly sectors of
the BHLS2 Lagrangian, whereas the A− variant behaves
smoothly in both sectors. Therefore, from now on, we will
focus on the A− variant of BHLS2 which becomes our ref-
erence model; results derived using the A+ variant are no
longer reported except when explicitly stated.

Regarding the η spectra, Fig. 3 shows an almost perfect
account of the KLOE/KLOE2 spectrum: the BHLS2 spec-
trum matches the dipion spectrum from KLOE/KLOE2 [65]
on the whole energy range, except for a marginal issue in
the 0.45-GeV energy region. Even if its χ2 value is accept-
able, the WASA spectrum [64] may look somewhat distorted
with respect to its KLOE/KLOE2 partner, clearly favored by
BHLS2 expectations21.

Regarding the η′ spectrum, Fig. 4 shows a noticeably fair
accord between the BHLS2 modeling and the BESIII spec-
trum [61] all along the energy range. The vertical green dotted
lines locate the ω mass and thus the ρ − ω drop-off region,
otherwise magnified in the inset. Here, one can observe the
effect of convoluting the BHLS2 model function with energy
resolution Gaussians as provided by the BESIII Collabora-
tion: It does perfectly what it is supposed to do, i.e., soften the
drop-off to its right line shape with, moreover, a noticeable
accuracy. On the rest of the spectrum, the convoluted curve
and the underlying model curve superimpose on each other
within the thickness of the curves. One should also state that
no tension in the ρ −ω drop-off region is observed in the fits
with any of the other dipion spectra submitted to the fit.
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Table 1 Fit properties of
selected dipion data sample sets
using the A− BHLS2 variant.
The fit reported in the first data
column is free of η/η′ dipion
influence. The second data
column corresponds to fitting
with independent Pη(s) and
Pη′ (s), whereas the third data
column reports on the fit where
Pη(s) ≡ Pη′ (s) has been
imposed. The χ2/Npts value for
the WASA sample, fitted or not,
is in the range21 (44 − −47) for
37 data points

χ2/Npts fit configuration (A−) No η/η′ spectra Pη(s) 
= Pη′ (s) Pη(s) ≡ Pη′ (s)

NSK π+π− (127) 137/127 139/127 140/127

KLOE π+π− (135) 141/135 140/135 140/135

Spacelike π+π− (59) 64/59 64/59 64/59

η′ BESIII (112) × 100/112 102/112

η KLOE/KLOE2 (59) × 57/59 55/59

Total χ2/Npts 995/1075 1156/1246 1154/1246

Fit probability (%) 88.6 89.7 90.6

Fig. 3 The dipion invariant
mass spectrum in the
η → π+π−γ decay. The blue
data points are the
KLOE/KLOE2 spectrum, and
the green ones display the
WASA spectrum. The red curve
is the BHLS2 fit leaving free the
Pη(s) polynomial. Vertical units
are arbitrary

123



295 Page 16 of 37 Eur. Phys. J. C (2024) 84 :295

Fig. 4 The dipion invariant
mass spectrum in the
η′ → π+π−γ decay. The blue
data points are the BESIII
spectrum, and the green ones are
those from Crystal Barrel. The
red curve is the fit function, i.e.,
the convolution of the BHLS2
model function with the energy
resolution function assumed
Gaussian; the blue curve is the
underlying BHLS2 model
function itself. Both curves
superimpose over the whole
energy range except for the
ρ − ω drop-off region. Vertical
units are arbitrary

It is useful to consider the spectra25

PX (s) =
[
d�exp(s)

d
√
s

/
d�theor (s)

d
√
s

]
X

PX (s), X = η, η′

(38)

to illustrate the behavior of the PX (s) polynomials under
the two assumptions discussed above. As the bracketed term
in Eq. (38) fluctuates around 1 and reflects the experimen-
tal uncertainty spectrum, the PX (s) spectrum looks to be
an appropriate experimentally based evaluation of its corre-
sponding model function PX (s).

Figure 5 displays the Pη′(s) and Pη(s) spectra defined just
above for the BESIII, KLOE/KLOE2, and WASA spectra
together with their model partners Pη′(s) (second degree)
and Pη(s) (first degree). As could be inferred from the fit
properties shown in Table 1, Pη′(s) (the red dashed curve in
the inset) is also a good evaluation for Pη(s).

Figure 6 also displays the Pη′(s) and Pη(s) spectra for
the BESIII, KLOE/KLOE2, and WASA data samples but

25 It is, of course, understood that when dealing with the BESIII η′
dipion sample, d�theor (s)/d

√
s is actually the convolution product of

the model function with the BESIII energy resolution function.

together with their common model fit function denoted
PX (s), a second-degree polynomial. As reflected by the
fit information mentioned in the body of the figure, a fair
simultaneous parameterization of the η and η′ dipion spec-
tra is reached by only supplying the BHLS2 model ampli-
tudes with a single second-degree polynomial PX (s) fulfill-
ing PX (0) = 1.

10.4 PX (s): BHLS2 fit results versus others

The top bunch in Table 2 displays the values returned for the
polynomial coefficients of

Pη(s) = 1 + α1s and Pη′(s) = 1 + α′
1s + α′

2s
2. (39)

When using the same polynomial for the η and η′ spec-
tra, it is second degree and denoted PX (s). It should be
noted that the coefficients for Pη′(s) (second data column)
and PX (s) (third data column) carry numerical values close
to each other, i.e., at � 1 σ from each other for both the
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Fig. 5 The Pη′ (s) and, in the
inset, the Pη(s) spectra (Eq. 38).
The full red curve and full black
curve superimposed to,
respectively, Pη′ (s) and Pη(s)
are, respectively, the Pη′ (s) and
Pη(s) polynomials returned by
the fits. The dashed red curve in
the inset is also Pη′ (s) but
superimposed to the Pη(s)
spectrum. Some pieces of fit
information are also displayed

first- and second-degree coefficients.26 In the case of hav-
ing a (single) common function PX (s), the covariance is
〈δα′

1 δα′
2〉 = −0.746.

Regarding the systematics: In the BHLS2 approach, the
statistical and systematic uncertainties provided by the exper-
iments together with their spectra are carefully embodied
within the fitting code without any modification; so our
reported uncertainties automatically merge both kinds of
experimental errors.

On the other hand, the last two data lines in Table 2 clearly
illustrate that δa = a − 2 and δc3 = c3 − 2/3 remain con-
sistent with expectations, i.e., they can be regarded as O(δ)

breaking parameters. The other fit parameter values are given
in Table 3 displayed in the next Sect. 10.5; they are scruti-
nized in order to detect eventual hints of effects spoiling the
BHLS2 model fit in the 3π channel—where correction poly-
nomials are not implemented by now.

26 It might be useful to provide, for completeness, the covariances
when Pη(s) 
= Pη′ (s): Using obvious notations, they are 〈δα1 δα′

1〉 =
−0.005, 〈δα1 δα′

2〉 = −0.026, and 〈δα′
1 δα′

2〉 = −0.812.

• (j) Regarding the Pη(s) polynomial, it is worth comparing
our numerical value for α1 with those available in the
literature. The first published evaluation (GeV−2) of α1

is the one from the WASA-at-COSY Collaboration (α1 =
1.89 ± 0.25stat ± 0.59syst ± 0.02th) [64], soon followed
by α1 = 1.96 ± 0.27 f i t ± 0.02Fπ [73]; more precise
evaluations have been proposed27 since (GeV−2):

α1 = 1.32 ± 0.08stat ± 0.10syst ± 0.02th[65],
α1 = 1.52 ± 0.06stat [75]. (40)

Our own evaluation (reported in Table 2) is in good
agreement (� 1σ ) with the KLOE/KLOE2 Collabora-
tion result [65].

• (jj) As far as we know, there are only two evaluations
for the Pη′(s) coefficients available in the literature, the
former from the BESIII Collaboration [61]:

27 Introducing a possible a2 exchange, Ref. [75] also reports for a
smaller value (α1 = 1.42 ± 0.06stat ).
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Fig. 6 The Pη′ (s) and, in the
inset, the Pη(s) spectra
(Eq. 38). The full red curve is
superimposed on the Pη′ (s) and,
in the inset, the Pη(s) spectra is
their common fit function
PX (s). The ω pole location is
indicated. Some pieces of fit
information are also displayed

BESIII :⎧⎪⎪⎨
⎪⎪⎩

α′
1( GeV−2)= 0.992±0.039stat

±0.067syst±0.163th
α′

2( GeV−4)= −0.523 ± 0.039stat
±0.066syst ± 0.181th

⎫⎪⎪⎬
⎪⎪⎭

, (41)

the latter from the HHHK group [77,78]. In their Adden-
dum Table 1, the HHHK group proposes quite compa-
rable values (we quote here the values obtained by the
likelihood method):

HHHK :
{
α′

1 = 0.714 ± 0.055 GeV−2,

α′
2 = −0.412 ± 0.055 GeV−4

}
. (42)

Here, one is faced with a surprising pattern: While the
BESIII parameterization for PX (s) is far from the favored
A− variant reported in Table 2, it is in quite remarkable
accord with the A+ solution displayed in the last data col-
umn of Table 2; as BESIII does not deal with the intrinsic
relationship between the box and the triangle anomalies,

their modeling is not influenced by the π0 → γ γ partial
width issue identified in Sect. 10.3 just above.

As a matter of conclusion, within the BHLS2 framework, it
has been shown that the conjecture Pη′(s) = Pη(s) is a valid
statement at the (high) degree of precision permitted by the
spectra from the BESIII and KLOE/KLOE2 Collaborations.
Moreover, Table 1 exhibits fair fit probabilities and does not
reveal any noticeable tension among the dipion spectra from
KLOE/KLOE2 and BESIII on the one hand and, on the other
hand, the other channels embodied within the BHLS2 fit pro-
cedure and their data, especially the dipion spectra collected
in e+e− annihilations.28

10.5 Brief analysis of the BHLS2 parameter values

Table 3 collects the model parameter values of the BHLS2

Lagrangian. In order to figure out the effect of the e+e− →
π+π−π0 annihilation data on the numerical results, its first

28 Let us recall that KLOE08 [40], BaBar [27,28], and SND [85] dipion
spectra have been discarded because of tensions with the HR set.
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Table 2 The parameter values from the A− BHLS2 variant fit. The
first data column reports on the fit using the usual set of data samples
HR , excluding the e+e− annihilation to 3π data. The second and third
data columns report on the fits performed on the same amputated HR

sample set, completed with the η/η′ dipion spectra under the conditions
indicated in the top line of the table (PX (s) = Pη(s) ≡ Pη′ (s)). The fair
probability values can be emphasized. The last data column displays the
fit results when using the A+ variant

Fit parameter value no η/η′ Pη(s) 
= Pη′ (s) [A−] : PX (s) [A+] : PX (s)

α′
1 (GeV−2) × 1.388 ± 0.072 1.326 ± 0.053 0.953 ± 0.065

α′
2 (GeV−4) × −0.607 ± 0.055 −0.553 ± 0.048 −0.511 ± 0.052

α1 (GeV−2) × 1.169 ± 0.063 × ×

aHLS 1.789 ± 0.001 1.842 ± 0.001 1.821 ± 0.001 1.830 ± 0.001

(c3 + c4)/2 0.756 ± 0.005 0.773 ± 0.005 0.772 ± 0.004 0.819 ± 0.007

Fit probability (%) 88.6 89.7 90.6 51.4

data column29 displays the fit parameter values derived when
they are considered, whereas the second data column pro-
vides the same information when they are excluded from the
fit procedure. The third and fourth data columns report the
fit results when the η/η′ dipion spectra are included within
the set of data samples HR amputated from the 3-pion data.

Besides providing the parameter values themselves, the
issue here is to reach an educated guess about unaccounted-
for effects in the fit (like PX polynomial equivalent correc-
tions) in the e+e− → π+π−π0 annihilation process: some
effects in this channel could be numerically invisible or be
absorbed effectively by the other model parameters.

First of all, the last line in Table 4 clearly shows that one
always reaches fair accounts of the spectra submitted to the
BHLS2 global fit. Regarding the parameters collected in the
top rows of the table, one observes value differences beyond
the reported fit uncertainty, however, with magnitudes con-
sistent with reasonable systematic effects.

The parameters in the lower section of the table look less
well behaved. Indeed, regarding ε, ε′, and ξ3, the pieces of
information derived by the three fits excluding the 3-pion data
are consistent with each other but not with the first column
result. The values for ξ0 look confusing and may only indicate
large systematics.

This is in fact reproducing an enduring situation since
our previous 2022 publication [21]: there, we also noticed
such variations in the isospin-breaking parameters, and also
shifts from those same parameter estimations based on meson

29 Same as the last column in Table 10 in [21].

mass differences (see Sects. 17 and 21 in [21]).30 This was
not the case for the mixing parameters (Section 20 in [21])
which behaved more robustly and were close to other groups’
results.

While this situation is not pleasing, we have not investi-
gated yet what could be the origin of these variations, because
we feel that (a) their understanding probably needs long
investigations; (b) they seem to have little influence on the
central subject matter of the present work, which is focused
primarily on our first shot at global fitting the η/η′ data in the
HLS framework, and secondarily on the implications for the
aμ estimation, especially concerning the DR-LQCD discrep-
ancy; and (c) the limited number of independent evaluations
of these isospin-breaking parameters from other groups.

Good candidate explanations for this situation could be
the effect of higher-order corrections, which may in part
be accounted for by the fit and absorbed in these parame-
ters; parametric ambiguities in the fit representation of the
model31, particularly in the case of parameters which are
more indirectly connected to fitted physics observables, or
only in combination with other parameters.32

30 The sign difference between ε and ε′ in the last columns of Table
3 is related to the fact that we are using a fit that leaves ε and ε′ free
(corresponding to the A− solution in the last column of Table 10 and
13 in [21]), which allows for unlike signs (and has the best global fit
probability in [21], compared to the so-called “Condition C” fit that
constrains more ε and ε′, and indirectly forbids a different sign).
31 See the discussion after Eq. (32) for a simple example; it can certainly
be more complex.
32 Indeed, parameters like ε and ε′ enter in the mixing description with
many others (see Eq. 101 and subsequent equations in [21]).
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Table 3 Fit parameter values based on the A− BHLS2 variant: The first
data column presents the parameter values when including the 3π spec-
tra only, and the second column provides the same information when

the 3π spectra are discarded from the fit procedure. The third and fourth
data columns display the fit results when the η/η′ spectra are included
and the 3π spectra excluded

Fit parameter 3π spectra only No η/η′/3π spectra Pη(s) 
= Pη′ (s) Pη(s) ≡ Pη′ (s)

aHLS 1.766 ± 0.001 1.789 ± 0.001 1.842 ± 0.001 1.821 ± 0.001

g 6.954 ± 0.002 6.334 ± 0.001 6.236 ± 0.001 6.379 ± 0.001

(c3 + c4)/2 0.742 ± 0.003 0.756 ± 0.005 0.773 ± 0.005 0.772 ± 0.004

θP (degrees) −15.59 ± 0.28 −16.471 ± 0.295 −17.614 ± 0.282 −17.433 ± 0.282

λ0 0.285 ± 0.009 0.325 ± 0.008 0.339 ± 0.008 0.334 ± 0.008

zA 1.406 ± 0.004 1.416 ± 0.015 1.418 ± 0.005 1.415 ± 0.005

zV 1.420 ± 0.001 1.375 ± 0.007 1.304 ± 0.001 1.320 ± 0.001

�A × 102 12.94 ± 4.91 12.191 ± 4.05 10.173 ± 5.39 10.249 ± 5.428

ε × 102 3.62 ± 0.30 5.383 ± 0.440 6.456 ± 0.439 6.385 ± 0.411

ε′ × 102 0.17 ± 0.27 −3.623 ± 0.711 −6.809 ± 0.581 −7.021 ± 0.475

ξ0 × 102 −6.838 ± 0.018 1.178 ± 0.018 1.119 ± 0.013 −0.538 ± 0.014

ξ3 × 102 1.496 ± 0.150 6.082 ± 0.153 6.070 ± 0.136 5.609 ± 0.137

Fit probability (%) 83.5 88.6 89.7 90.6

In this context, the question of the 3-pion data (see the first
column), which is not used in the present work, is still open,
and is complicated by the fact that no correction polynomial
(à la PX ) was used in [21].

Nevertheless, there is no obvious hint of significant fit
probability spoiling effects in the e+e− → π+π−π0 anni-
hilation process, but it is clear that this process and the way it
could be integrated into the fit certainly deserve more scrutiny
in future work [88].

10.6 The T R2(η/η′) terms in BHLS2: the role of ρ±
exchanges

Thanks to the breaking mechanisms [20,21] which lead to
the BHLS2 Lagrangian, the derived η/η′ decay amplitudes

involve ρ± exchanges as depicted in Fig. 1 by the diagram
classes (c1) and (c2). Relying on previous works in the HLS
context which have shown that c3 = c4 is fairly well accepted
by the data, this constraint is assumed; as a straightforward
consequence [12,16], all diagrams involving direct AV P
couplings—all proportional to (c3 − c4)—identically van-
ish, and therefore, the diagram class (c1) contributions also
vanish. Nevertheless, the (c2) diagram class, also O(δ) in
breakings, survives and participates to the decay amplitudes
Tη′ and Tη at O(δ). Such contributions are not involved in the
BHLS2 vector pion form factor Fπ (s) expression [20]; they
come naturally in the derivation of the amplitude T (η/η′)
and are not governed by an additional ad hoc parameter.

Even with O(δ) corrections, the T R2(η/η′) amplitudes
play a noticeable role within the BHLS2 context:
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Table 4 Main global fit results involving the KLOE+NSK and
BaBar+NSK samples collected in e+e− → π+π− annihilations. On
top are displayed the parameters involved in the correction polynomi-

als (see text for details) followed by the contribution to aμ(ππ) of the
[2mπ , 1.0-GeV] energy range. The lowest bunch provides statistical
information relative to the corresponding global fits

Fit parameter NSK+KLOE NSK+KLOE NSK+BaBar NSK+BaBar

fit PX (s) only fit PX (s) and HX fit PX (s) only fit PX (s) and HX

Hη × 0.789 ± 0.017 × 0.797 ± 0.017

Hη′ × 0.671 ± 0.017 × 0.682 ± 0.015

α′
1 (GeV−2) 1.326 ± 0.053 1.309 ± 0.055 1.248 ± 0.058 1.241 ± 0.041

α′
2 (GeV−4) −0.553 ± 0.048 −0.562 ± 0.047 −0.535 ± 0.048 −0.560 ± 0.037

1010 × aμ(ππ) 490.09 ± 0.89 490.15 ± 0.89 494.98 ± 0.91 494.85 ± 0.88

(χ2/N )BESI I I 102/112 99/112 101/112 99/112

(χ2/N )K LOE/K LOE2 55/59 53/59 55/59 53/59

(χ2/N )T OT AL 1154/1246 1149/1248 1346/1381 1341/1383

Fit probability (%) 90.6 92.3 55.9 59.4

• (i) They are necessary in order for the full amplitudes
T (η/η′) = T N R(η/η′)+T R1(η/η′)+T R2(η/η′) to coin-
cide with their analogs directly derived from the WZW
Lagrangian [58,59] at the chiral point33 s = s0+ =
s0− = 0.
Indeed, at the chiral point, the intensities T±(η/η′) of
the T R2(η/η′) amplitudes defined in Sects. 5 and 6 are
written as

T R2(η) = − iec3

4π2 f 3
π

[
ε − A±

2
sin δP

]
and

T R2(η′) = − iec3

4π2 f 3
π

[
ε′ + A±

2
cos δP

]
(43)

and manifestly depend on the FKTUY parameter [13] c3.
The condition for the amplitudes T (η′) and T (η) to coin-
cide with those derived from the WZW Lagrangian (see
Eq. 17) is that all dependencies upon the FKTUY param-
eters vanish at s = s0+ = s0− = 0; this condition cannot
be fulfilled if dropping out (artificially) the T R2(η/η′)
terms from the full-amplitude expressions T (η/η′).

• (ii) To identify the effects of the T R2(η/η′) terms, fits
have been performed by discarding them in the full ampli-
tudes and rather fit using T (η/η′) = T N R(η/η′) +
T R1(η/η′). The fits have been performed by imposing
the constraint Pη(s) = Pη′(s) and return the results col-
lected in the next table.

33 One has previously defined s = (p+ + p−)2, s0+ = (p+ + p0)
2,

and s0− = (p− + p0)
2.

T R2(η/η′) (off/on) of f on

χ2
BESI I I (N = 112) 122 102

χ2
K LOE/K LOE2 (N = 59) 57 55

χ2
T OT AL (N = 1246) 1187 1154

Probability(%) 73.0 90.6

The χ2 values indicate that T R2(η) can be safely
neglected, but also that discarding T R2(η′) is not safe.
The PX (s) parameterization returned by the fit is

{
A−/no TR2 : α′

1 = 0.437 ± 0.039 GeV−2,

α′
2 = −0.573 ± 0.007 GeV−4

}
, (44)

closer to the HHHK results [77,78] recalled in Expres-
sions (42) than to those in Table 2. Therefore, the follow-
ing is clear from the results collected in Table 2 and the
other presented results:
(1) The η dipion spectrum is essentially insensitive to
using or discarding the T R2 term in its parameterization;
whereas
(2) the η′ dipion spectrum parameterization is signifi-
cantly degraded if its T R2 component is dropped out.
This absence may explain the reported failure of the so-
called “model-dependent” fit in [61].

In summary, one may conclude that once the polynomial
correction and the O(δ) T R2 contribution predicted by the
kinetic breaking of BHLS2 [21] are considered, the average
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χ2 per data point for the η/η′ dipion spectra can be consid-
ered optimum (〈χ2〉 � 1). Thus, at the level of precision per-
mitted by the presently available η [65] and η′ [61] dipion
spectra, additional contributions beyond those of the basic
vector meson nonet—like the higher-mass vector mesons
[61] or the a2(1320) exchanges [75]—need not be invoked.

10.7 Dealing with the absolute scale of the η/η′ dipion
spectra

Having determined the η/η′ dipion spectrum line shapes by
fitting their common factor PX (s) (X = η/η′), it remains to
derive the value of the HX ’s (X = η/η′) to also have their
absolute magnitudes. As already noted, the value of the HX

constants can be derived by introducing the accepted values
[70] for the �(η/η′ → π+π−γ ) partial widths into the fitting
procedure. This can be (and has been) done, and global fits
have been performed in order to get the optimum values for
the {Hη, Hη′ , PX (s)} triplets.

However, regarding the η/η′ → π+π−γ decays, each
of the published dipion spectra is solely given by its line
shape; concerning their normalization, they are tightly related
to their partial widths. It happens that the single available
“measurement” for each of these decays is the corresponding
RPP piece of information [70]. In this case, as just argued,
the values for HX (X = η/η′) can be derived through the
fitting code appropriately modified to take the partial widths
into account, but also algebraically once the fit to determine
the PX (s) (X = η/η′) function has been performed. In this
case, one has, using obvious notations,
[
�(η/η′ → π+π−γ )

]
RPP

≡
∫ [

d�X (s)

d
√
s

]
exp.

d
√
s

= H2
X

∫ [
d�X (s)

d
√
s

]
BHLS2

[PX (s)]2d
√
s, (45)

the integrals being performed over the whole energy range
of the X = η/η′ decays, and the fit values for the �(η/η′ →
π+π−γ ) partial widths coincide with the RPP pieces of
information.

Two cases have been considered regarding the specific
e+e− → π+π− annihilation sample combinations involved;
the first one is {HR + η/η′}, which corresponds to global
fitting with the {KLOE, NSK, BESIII, CLEO-c} combina-
tion. Correspondingly, the second case involves the {BaBar,
NSK, BESIII, CLEO-c} sample combination. The relevant fit
results regarding the correction polynomials are summarized
in Table 4.

The average χ2 per point of the η and η′ dipion spectra
are clearly insensitive to using either of the KLOE or BaBar
e+e− → π+π− annihilation data within the global fit pro-
cedure. The global fit probabilities are instead quite differ-

ent and correspond to our previous BHLS2 results [20,21].
This insensitivity to the KLOE versus BaBaR issue is well
reflected by the fit results collected in the top part of Table 4:
None of the PX and HX parameter central values are observed
to differ by more than 1σ in the various fit configurations.

Similarly, as the different PX (s) parameter values derived
from fitting with the various sample combinations look like
statistical fluctuations, differences observed between fitting
only PX (s) or the (PX (s)andHη/η′) triplet look like statisti-
cal fluctuations. Moreover, defining δX = HX −1 and focus-
ing, for instance, on the KLOE+NSK combination, one gets

δη = −0.211 ± 0.017, δη′ = −0.329 ± 0.017, (46)

which corresponds to, respectively, δ and δ′ as defined by
Stollenwerk et al. [73], for which these authors derived the
values δ = −0.22 ± 0.04 and δ′ = −0.40 ± 0.09; these
are clearly identical to our δη and δη′ , respectively. As a last
remark, it should be noted that once PX (s) is determined,
which implies that both d�X (s)

d
√
s

and both BHLS2 functions

are known, Eq. (45) implies that both HX are not free but are
algebraically related.

11 η/η′ decays: the muon anomalous magnetic moment

The renewed interest34 in the η/η′ physics is intimately
related to dealing with the light-by-light contribution to
the anomalous magnetic moment (AMM) of the muon. As
shown above and previously in [21], the BHLS2 approach can
address accurately several topics related to the η/η′ physics,
and its results are supported by fair probabilities; these proba-
bilities faithfully reflect the actual behavior of each of the data
samples within the global framework, as the error informa-
tion provided with it is embodied without any ad hoc enlarge-
ment inside the fitting code.

11.1 Accuracy of the PX (s) parameterization

It has been shown above that a single polynomial PX (s)
allows us to address simultaneously both the η/η′ →
π+π−γ decays within the BHLS2 framework and that the
second degree is quite satisfactory. The PX (s) parameteri-
zations derived using the A± variants of BHLS2 displayed
in Table 2 are based on the choice of the largest set of data
samples collected in almost all physics channels covering the
HLS energy region (e.g., up to the � φ mass region) and are
consistent with each other. It was also shown that the A−
parameterization is the best favored, but nevertheless, one
found it relevant to also provide the A+ parameterization
despite its (sole real) identified failure with the π0 lifetime

34 See, for instance, [74,93] and the references collected therein.

123



Eur. Phys. J. C (2024) 84 :295 Page 23 of 37 295

(or partial width) that A+ reconstructs at more than 5σ from
its commonly accepted value [70].

In this section, one aims to emphasize the reliability of
the A− parameterization by examining carefully how the
PX (s) parameter values evolve while using the various dipion
spectra collected in e+e− annihilations which are known to
exhibit—sometimes severe—inconsistencies among them-
selves.

A possible fit bias in the parameterizations reported in
Table 2 is the choice of the dipion data samples because of
their mutual consistency; this issue is examined first. For
this purpose, it is useful to define and name some sets of data
samples in order to ease the reading.

Basically, the data samples23 common to the sets of data
samples presently embodied within the BHLS2-based fit pro-
cedure are the {(π0/η)γ , KLKS , K+K−} e+e− annihilation
channels, the dipion spectra from the τ decay provided by
the ALEPH, CLEO, and BELLE Collaborations, and the pion
and kaon spacelike spectra from NA7 [91] and Fermilab [92];
let us, for clarity, name this basic set Xτ .

Regarding the available e+e− → π+π− annihilation
spectra, one has distinguished four groups35 (two of which
being, actually, a one sample “group”): (1) the scan data col-
lected under the name NSK (see [19] for its content), (2)
the KLOE (≡ KLOE10+KLOE12) [24,25] ISR data sample
group, (3) the KLOE08 ISR sample [40], and (4) the BaBar
one [27,28]. For definiteness, the largest set of data sam-
ples found consistent with each other and referred to here
and before [20,21] as HR gathers the sets Xτ , NSK, and
KLOE just listed. Finally, the set of dipion spectra from the
η/η′ → π+π−γ decays [61,65] is referred to as η/η′.

The four top lines in Table 5 display the coefficient val-
ues of the first- (α′

1) and second-degree (α′
2) terms of the

polynomial PX (s); as indicated in its first column, the cor-
responding fits differ from each other only by the exact con-
tent of the e+e− → π+π− annihilation spectra sample set
submitted to the minimization procedure. Whatever the fit
quality, reflected by its corresponding 〈χ2

ππ 〉 value and its
probability, the different values derived for α′

1 as for α′
2 are

not distant by more than (1 ÷ 2)σ from each other. It should
also be remarked that the parameter values derived in the
fit for {HR + η/η′ }—which includes the KLOE and NSK
data sets together—are intermediate between those involving
the KLOE and NSK sample sets separately. Therefore, the
large spread of probabilities between the fits involving NSK
and/or KLOE, and those involving BaBar or KLOE08, does

35 As the more recent dipion spectra from BESIII [29,30] and Cleo-c
[31] accommodate easily any of the groups we are listing, they would
not be conclusive and have been put aside for clarity; regarding the
SND20 spectrum [41] deeply analyzed in our [21], we have proceeded
likewise.

not produce a significant change in the determination of the
common η/η′ function PX (s).

The last line in Table 5 displays the PX (s) coefficients
returned by a fit excluding the e+e− → π+π− annihilation
spectra. The linear term coefficient α′

1 is never found dis-
tant by more than � 2σ from the other corresponding values
displayed in the same Table. In contrast, the curvature coeffi-
cient α′

2 exhibits a � (4 ÷ 5)σ departure regarding the other
reported fit values. Relying on Figs. 5 and 6, one expects
the second-degree term (α′

2) to mostly affect the ρ0 − ω

energy region. This piece of information renders it interest-
ing to compare the pion form factor predicted by the fit of
the {Xτ + η/η′} set36 with the e+e− → π+π− annihilation
data and the fit results derived when fitting the {HR + η/η′}
set. This is the purpose of Fig. 7.

Comparing the curve in both panels of Fig. 7, the over-
all agreement between both fits is fairly good, except for the
magnitude at the veryρ0 peak location which may look some-
what underestimated37 by the η′ dipion spectrum. Instead, the
drop-off location and its intensity are fairly well predicted
by the {Xτ + η/η′} sample set. This behavior deserves to be
confirmed by new precise η′ dipion spectra, complementing
[61]. So, while within the BHLS2 framework, the η′ decay is
accounted for largely independently of the e+e− → π+π−
annihilation process, but this does not prevent its prediction
for Fπ (s) to exhibit a relatively fair accord with the (fully
independent) e+e− → π+π− annihilation spectra.

Still, this accord is not perfect, and one has to contrast
the good compatibility of the η/η′ samples with the rest of
the reference data set (as reflected in the high corresponding
fit probability), and also the high probability of the {Xτ +
η/η′} fit (without the annihilation data contribution), and the
visible pion form factor deviation causing the aμ shift. It is
difficult to be categorical at the moment about the nature of
this effect on the form factor, which could be due to a variety
of causes,38 also because, as discussed in Sect. 11.3 below,
it is sometimes difficult to interpret restricted data set fits,
which have a more exploratory and confirmatory nature than
“full” fits, and in principle, one should trust more our full
data set fits, which indeed have no difficulty using the usual
data sets in association with the η/η′ data.

36 Supplemented by the phase information between the ρ and ω propa-
gators or by the product of branching fractionsB(ω → e−e+)×B(ω →
π+π−) available in the RPP [70].
37 Nevertheless, the line shape is in good correspondence with those
of the KLOE12 spectrum included in the {HR + η/η′} sample set but
slightly smaller than the others.
38 We rechecked our calculations, the various fit information and other
aspects but found no anomaly or hints about what could explain the
shift. Of course, relatively straightforward causes of the deviation are
almost surely excluded by the fact that the full data sets fit works quite
well.
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Table 5 The PX (s) parameter values from the A− BHLS2 variant fit.
The first column indicates which data set combination is submitted to
the global fit. 〈χ2

ππ 〉 indicates the average χ2 of the timelike Fπ (s) data
points of the sample named in the first column. α′

1 and α′
2 are the coeffi-

cients of the first- and second-degree terms of PX (s), respectively. The
last data column displays the probability of the corresponding global fit

Data set 〈χ2
ππ 〉 α′

1 α′
2 Prob. (%)

Xτ + KLOE08 + η/η′ 1.57 1.294 ± 0.053 −0.379 ± 0.049 61.4

Xτ + BaBar + η/η′ 1.20 1.249 ± 0.076 −0.522 ± 0.0.69 39.6

Xτ + NSK + η/η′ 0.98 1.314 ± 0.054 −0.606 ± 0.052 96.6

Xτ + KLOE + η/η′ 0.99 1.341 ± 0.054 −0.525 ± 0.050 92.4

HR + η/η′ 1.07 1.326 ± 0.053 −0.553 ± 0.048 90.6

Xτ + η/η′ × 1.453 ± 0.060 −0.792 ± 0.065 96.3

Fig. 7 The curve displayed in the left panel a is the pion form factor
predicted by fitting the data sample set {Xτ +η/η′} and, superimposed,
the unfitted pion form factor spectra (including those from BaBar). The

right panel b shows the pion form factor derived from fitting the full
{HR + η/η′} data sample set which includes the KLOE and NSK pion
form factors (but not the BaBar spectrum). See the text for comments

In any case, it seems that the aμ value from valid fits where
the e+e− → π+π− annihilation data are, to some extent,
replaced by the η/η′ data are much closer to the dispersive
estimations than to the LQCD ones. This could indicate that
part of the DR-LQCD discrepancy may not depend on exper-
imental or analysis artifacts in the various experiments, since
we witness a similar effect for the newly HLS fitted η/η′. If
the present study is taken at face value, the DR-LQCD puzzle

seems in fact bolstered, but on the other hand, tentative solu-
tions based on potential purely experimental-level problems
could appear less favored (to be clear, we also trust LQCD
results).

Based on the current knowledge, other specific interpreta-
tions for the DR-LQCD conundrum are speculative (possible
effects beyond the Standard Model? ππ loop differences in
e+e− annihilation channel? See also 11.3.2 below), and in
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this light, the same can be stated about the FNAL measure-
ment discrepancy [2] (and even more speculative are eventual
causal links between the three aμ determinations).

Regarding the function PX (s), awaiting for other theoret-
ical estimates of it, one can conclude that our favored PX (s)
parameterization39 derived from fitting (HR + η/η′) provides
already a reliable one and benefits from, respectively, a � 3%
and � 10% precision for, respectively, the linear and the cur-
vature terms.

11.2 The η/η′ spectra and HVP estimates

The purpose of Fig. 8 is to elucidate the overall picture of the
estimates for aμ(ππ,

√
s < 1.0 GeV) which emerges from

the present work. The top bunch of data points display the
values for aμ(ππ,

√
s ≤ 1 GeV) in units of 10−10 derived by

direct integration of the dipion data taking all dipion spectra,
but either excluding the BaBar spectrum or excluding the
KLOE spectra; the reason to proceed this way is related to
inconsistencies occurring when fitting the pion form factors
[21] as reported years prior [42].

The point showing the KNT19 result [6], the usual ref-
erence [3], is followed by the evaluation derived from the
BHLS2 global fit involving the Xτ + K LOE + NSK +
BABAR sample set which contains the same e+e− →
π+π− dipion spectra40 as KNT19. The central values
derived for aμ(ππ,

√
s ≤ 1 GeV) are substantially iden-

tical, reflecting the fact that the normalization uncertainty
treatment used to derive the KNT19 evaluation is similar
to our own [89]. The BHLS2 uncertainty is however much
improved (by a factor of �2), as can be expected from having
performed a (more constraining) global fit; indeed, within a
global context, in contrast with KNT19 and others who treat
the dipion spectra in a standalone mode, one benefits from
also involving the τ dipion spectra and all non-ππ final-state
spectra, which play as an increased statistics for all the chan-
nels involved by the underlying HLS context, in particular
the ππ one. Therefore, comparing KNT19 and our evalu-
ation illustrates that the BHLS2 Lagrangian approach does
not generate biases and that the difference in the central val-
ues is essentially due to the data samples chosen to derive
motivated physical conclusions.

39 The PX (s) polynomial may well be interpreted as the lowest-order
terms of the Taylor expansion of a more complicated function which
does not behave as fast as a power law; for instance, one has checked
that the function U (s) = 1 + 0.5 log (1 + 4s) (i.e., with no free param-
eter) gives results identical to those derived using the second-degree
polynomials PX (s). Indeed, the probability returned by the fit of the
{HR + η/η′} data sample set is then 91.7%, and the average χ2’s per
data point are quite favorable: For instance, 1.08 for NSK, 1.04 for
KLOE, 0.92 for the BESIII η′ spectrum, and 0.90 for the η spectrum
from KLOE/KLOE2.
40 It should be recalled that the corresponding fit probability is low [21]
(11.4%), reflecting the KLOE-BaBar tension.

The top two data points of the lowest bunch substantiate
numerically the amplitude of the tension between usingXτ +
K LOE+NSK andXτ +BABAR+NSK ; both agree with
the direct integration results and exhibit a � 5.4 × 10−10

distance between their evaluations of aμ(ππ,
√
s ≤ 1 GeV).

In both cases, the first number displayed is the evaluation
derived by a standard BHLS2 fit and is 100% consistent with
the results published in [21].

The number within parentheses instead displays the result
obtained when adding the η/η′ data set defined above
according to, respectively, Xτ + K LOE + NSK and Xτ +
BABAR + NSK . One should note that the fit probabilities
are unchanged when adding the η/η′ data set and reflect fairly
good fits: 88.7% → 90.6% forXτ +K LOE+NSK (+η/η′)
and 47.2% → 55.9% for Xτ + BABAR + NSK (+η/η′).
This illustrates that there is no tension between the e+e− →
π+π− dipion spectra and those derived from the (η/η′)
decays, as the probability difference between the fits involv-
ing the two data sample sets is not degraded by including the
(η/η′) samples. The corresponding central values are very
similar too, confirming that there are no bad surprises with
the η/η′ data and the new Lagrangian terms describing them,
at least in theXτ +K LOE+NSK andXτ +BABAR+NSK
cases.

11.3 The case for the τ data

11.3.1 Fitting the τ data

Among the data set combinations that look interesting to
explore and fit, and in addition to the ones mentioned above,
the quasi “standalone” fitting of the τ decay-specific data, in
the spirit of what was achieved in our previous works [18],
[19], and [89]41 for the BHLS model, seems in order.

Since the inception of the BHLS2 type of models [20],
we are unable to reach a satisfactory convergence (and good
global probability) for such a fit, using the same type of
complementary simple (ππ -independent) RPP data that was
used for BHLS (with some tentative variations in these data
choices, and also in the MINUIT fit handling). We made
additional tries42 by adding in the fitted data set spacelike
ππ data (the idea being to constrain the fit behavior around
s = 0, while mostly preserving independence from the anni-
hilation ππ information, due also to the limited statistical
weight of the spacelike data sets), but to no avail. So, whereas
the working quasi “standalone” τ fit in the BHLS framework
allowed us to nicely reconstruct the full pion vector form fac-
tor43 (including in the near spacelike region), and vice versa

41 See Section 7.1 and Figure 4 in the last reference for example.
42 Recently, for some of them.
43 By also using some simple complementary RPP information; see
details in our previous [19], Section 4.1.
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Fig. 8 aμ(ππ,
√
s < 1.0 GeV)

in units of 10−10 for various
data sample combinations. The
top two data points display the
values derived by a direct
integration of all the dipion
spectra (when including BaBar,
KLOE is excluded) [94]. The
point tagged by KNT19 [6] is a
usual (external) reference; the
following point is derived using
BHLS2 with the indicated
(largest) content of
e+e− → π+π− spectra. The
two following points show our
fit results for two indicated
combinations of data samples;
within parentheses, one also
displays the results obtained by
also including the η/η′ samples
within the global fit procedure.
The small magnitude of the
BHLS2-derived uncertainties
should be noted (see text). The
bottom entry in this figure
exhibits the prediction derived
for aμ(ππ,

√
s < 1.0 GeV)

when all annihilation to dipion
data are discarded from the fit.
The growth of its uncertainty
reflects the drastic reduction of
the statistics involved in the
corresponding fit

for the dipion spectra in τ decays, using only the τ data for
the former and only the annihilation ππ data for the latter,
BHLS2 does not seem to behave in the same way.

While this could seem disappointing, the importance of
not being able to fit the τ data in “standalone” form should
be put into perspective. Indeed, several considerations are
relevant:

• (i) Compared to BHLS, in BHLS2 more general methods
are employed to break symmetries (covariant derivative,
kinetic breaking, for example); while those allow for a
more consistent and more powerful way to parameterize
the breakings, it seems that BHLS2 is differently con-
strained in the τ sector. This could have the unfortunate
effect of spoiling the BHLS2 standalone τ fit convergence
(due to secondary false minima, for example).

• (ii) While the standalone τ fit does not work in BHLS2,
we stress that the global fit, involving the full range of
usual data sets (plus the τ and the new η/η′ data), is
well behaved and returns good probabilities, as reported
above. This means BHLS2, when correctly constrained,

describes adequately the data, and that the involved data
sets, including the τ , are statistically compatible44

• (iii) While it is advisable to perform partial data fits (like
the τ one, and also the Xτ + η/η′ fit), there is no guar-
antee that fits will continue to converge while discard-
ing data sets (without changing the model). It is difficult
with relatively complicated and parametrically intricate
models like BHLS2 to predict the minimal set of data
allowing sound convergence, and in practice, one resorts
to the empirical method of trying to fit, hoping for good
convergence and probability.45 So while many workers
use partial fits to explore sensitivities (of aμ, for exam-
ple) relative to the data set composition, in some cases,
the meaning of those fits should be pondered. The min-

44 The BHLS τ standalone fit was demonstrated at a time (around 2012)
where various groups were doing and discussing this type of aμ estima-
tions (in particular due to the “τ puzzle”), so some effort was invested
into the study of this fit.
45 This is indeed an example of some type of model dependence, and
probably of the price to pay for having a global model encompassing
all sorts of data.
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imal acceptability requirement is of course that partial
fits behave correctly and yield probabilities comparable
to the full data set fits.

Apart from the well-known variations in the fitted data sets
(like replacing KLOE by BaBar data, Fig. 8), in this work,
we explored two interesting partial fits: the Xτ +η/η′ fit and
the standalone τ fit. The former fit has good convergence and
good probability, which is not the case for the latter (here, we
confirmed our previous observations). This is why we kept
the Xτ +η/η′ fit and discarded the incomplete τ fit, and give
no aμ estimation from this last fit.

Again, we emphasize that the role of these partial fits
should not be overestimated: the real benchmarks for data
compatibility and model adequacy are the full fits.

A worry could be that in full fits, data sets with lower sta-
tistical weight may be of little influence when fitted together
with large and precise data sets (BaBar, KLOE, etc.). In these
regards and in the aμ determination case at least, we can think
of two reasons to be reassured: (a) we consider only fits with
high probability, meaning high global χ2 probability which
practically guarantees that the fitted pion form factor will be
close to the data, and hence to the usual dispersive estima-
tions; (b) we require also good local (partial) χ2 probability
in the various sectors/data sets in the function to be min-
imized, which de facto eliminates full fits which describe
poorly a particular data set, and also allows sometimes to
detect discrepancies between data sets.

Still, in view also of the recent renewed interest for the
τ decay data, we have not completely abandoned the idea
of demonstrating a τ quasi-standalone BHLS2 fit, but the
present lack of success in this endeavor certainly indicates
an unknown level of difficulty.

11.3.2 τ data and aμ

To broaden the discussion on the τ decay data, we repeat
the comment conveyed in Subsection 21.3 of [20], where
we put forward the idea that the QCD-QED interference at
work in the neutral current (NC) π+π− channel may cause
a shift of the data with respect to the LQCD result. While
in the neutral channel (NC) process e+e− → π+π−, exper-
iments measure the photon propagator, at leading order in
lattice QCD one is calculating the pure QCD hadronic cur-
rent two-point correlator, free of external QED corrections. In
the charged current (CC) τ± → π±π0ντ decay, in contrast,
one measures the W propagator in the quasi-static limit, and
the ρ+ meson does not mix with a photon exchange (also,
no HVP subtraction correction needs to be applied), and the
hadronic blob exhibited in the τ data is naturally much more
directly related to the LQCD HVP than the one in the NC data.
Actually, some recent τ data-driven analyses [95–97] find
results such as aHV P−LO

μ [τ ] = 704.1+4.1
4.0 × 10−10, which

also is close to the dispersive results [98] of aHV P−LO
μ [τ ] =

705.3 ± 4.5[689.8 ± 5.2] × 10−10 (result excluding τ data
in brackets).
When combining e+e− and τ data in HVP calculations,
usually, the τ data are corrected towards matching the
e+e− ones, where in the latter the QCD-QED mixing is
inherent. A part of the QCD-QED mix-up is the ρ0 − γ

[84] mixing. Besides having corrected the τ spectra by the
commonly accepted isospin-breaking effects, other correc-
tions like the ρ0 − γ mixing or the mass and width shift
between ρ0 and ρ± can be applied to the I=1 component
of π+π− data in order to reduce the QED contamination
of the latter.46 In 2008, Belle [34] already, after applying
standard (commonly accepted) isospin-breaking corrections,
obtained the τ data-driven result aππ

μ [2mπ , 1.8 GeV] =
(523.5±1.5(exp.)±2.6(Br.)±2.5(isospin))×10−10 (τ data
from Belle), which was compared to the e+e− data-driven
NSK result aππ

μ [2mπ , 1.8 GeV] = (504.6 ± 3.1(exp.) ±
0.9.6(rad)) × 10−10 (e+e− : CMD2, SND). The differ-
ence is 18.9 × 10−10, and if applied to dispersive result
aHV P−LO
μ [e+e−] = (694.79 ± 4.18) × 10−10 [94], one

gets 713.7 × 10−10, and we note that with aHV P−LO
μ =

718.2×10−10, we would have the coincidence of theory and
experiment in the muon g − 2: aexp.μ = ath.

μ . Recently, the
CMD-3 Collaboration [99], for the range 0.327 to 1.2 GeV,
obtained ahad;LO

μ (2π, CMD3 = (526.0 ± 4.2) × 10−10,
to be compared to (506.0 ± 3.4) × 10−10 reported in
the white paper document. Again, the difference shifts the
WP value aHV P−LO

μ [e+e−] = (693.1 ± 4.0) × 10−10 to
(713.1 ± 4.7) × 10−10. We note that the CMD-3 result,
clearly at variance with all previous e+e− → π+π− results,
has been obtained by applying a new RLA-based generalized
vector dominance model (GVDM) correction [100], whereas
other experiments apply scalar QED to perform QED correc-
tions. Using older ππ data, our HLS global fits (standalone
or not) showed no incompatibility between the τ data and the
annihilation ππ data, which seems to shift the problem away
from a pure τ data incompatibility with other main data sets
but rather towards a questioning of the relation between aμ

and the pion form factor as we know it.

11.4 η/η′-based evaluations of the HVP

If, as conjectured long ago [73], an accurate enough determi-
nation of the function PX (s) can be provided (by extended
ChPT [43–45], possibly), dipion spectra from the η′ decay
may provide a new way to estimate the dipion contribution to

46 In HLS, however, and as a consequence of using the extended BKY
isospin-breaking mechanism, we showed that the data is better described
by the induced difference in the universal vector coupling constant g
appearing in the anomalous and non-anomalous parts of the Lagrangian
(see [18], Section 12, for example).
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the muon HVP up to � 1 GeV. The present work has shown
that phenomenology is able to provide already a function
PX (s) carrying a noticeable precision, and moreover, it has
also been shown that a unique function accommodates easily
the available η and η′ high-precision dipion spectra simulta-
neously.

Indeed, within the BHLS2 context [20,21], the amplitudes
for the η/η′ → π+π−γ decays and for the e+e− → π+π−
annihilation proceed from the same Lagrangian and do not
call for a special treatment of their common dominant neutral
ρ meson signal. Moreover, once the PX (s) effects are fac-
tored out, the derivation of both amplitudes from the same
Lagrangian is unchanged.

On the other hand, discrepancies revealed by comparing
with each other the dipion spectra collected in scan mode
(NSK) and the various samples collected in ISR mode by
KLOE [24,25,40] and BaBar [27,28] has not resulted in
a really satisfactory solution; the recent SND20 [41]—and
even more, presumably, the new CMD3 [7] data—seems
rather to darken the picture.

Therefore, getting high-statistics dipion spectra indepen-
dent of the e+e− annihilation mechanism, carrying different
kinds of systematics, may helpfully contribute to a more sat-
isfactory understanding of the crucial π+π− contribution to
the muon HVP.

For the time being, the limited number of high-statistics
η [65] and η′ [61] dipion spectra allow us to already derive
the prediction for aμ(ππ,

√
s < 1.0 GeV) displayed in the

bottom of Fig. 8, namely,

aμ(ππ,
√
s ≤ 1 GeV) = (484.98 ± 1.93) × 10−10 (47)

with a 96.3% fit probability, and is distant from its estimate
based on fitting the HR data sample set47 by 2.6σ (con-
servatively). Therefore, additional high-statistics η/η′ data
samples can put more light on the issue, clearly located in
the ρ0 − ω invariant mass region.

12 Concluding remarks

The present work has shown that besides the already reported
e−e+ annihilation spectra, some decay modes (especially
the P → γ γ modes) or τ dipion spectra [20,21], BHLS2

can encompass the dipion spectra from the η and η′ decays;
however, to reach this result, one has to invoke a (common)
correction polynomial—not a part of the HLS model—as
inferred by the SHKMW group in [73].

In this context, BHLS2 offers a fairly good simultaneous
fit of the η and η′ dipion spectra together with the e+e−

47 It is interesting to note that the distance between this prediction and
the solution derived using NSK+KLOE is almost equal to the distance
between the NSK+KLOE and NSK+BaBar solutions.

annihilations into π+π−/KK/π0γ /ηγ final states and the
τ± → π±π0ντ decay also addressed by the BHLS2 frame-
work in our previous [20,21].

This proves that once the PX (s) correction is accounted
for, the BESIII η′ spectrum [61] does not need more infor-
mation that that already present in BHLS2 to get a satisfac-
tory picture; the picture is found as fair for the η spectrum
reported in [65]—and, actually, even for those in [64]. The
role of the charged ρ meson—a natural feature of BHLS2,
[21], never considered elsewhere—has been shown to pro-
vide a fair treatment of the η′ → π+π−γ dipion spectrum.

This turns out to state that most of the parameters needed
to write out the relevant decay amplitudes are not free but are
numerically shared with the other channels embodied within
the same BHLS2 framework. This is an additional step in
the proof in which a unified effective Lagrangian can fairly
describe the low-energy physics up to and including the φ

mass region.
One has first shown that the η and η′ dipion spectra are

well fitted with specific low-degree polynomials supplement-
ing the amplitudes derived from the BHLS2 Lagrangian. In
a second step, it has been proved that, actually, the same
second-degree polynomial PX (s) is involved in the consid-
ered η and η′ decays, as inferred in [73]. As already noted, the
ρ± exchange implied by the kinetic breaking defined in [21]
is shown to enhance the global fit quality. The polynomial
coefficients have been derived from our fits with fair preci-
sion and found that they remain stable when varying the fit
conditions (see Table 5).

It should be noted that the picture revealed by compar-
ing both panels of Fig. 7 suggests that the traditionally used
dipion spectra carry a line shape compatible with the η′ dip-
ion spectrum. Thus, higher statistics on this can be a help-
ful tool in the present controversy concerning the disper-
sive approaches and LQCD, due to the different systematics
affecting the η′ dipion spectrum, certainly independent of
those involved in the e−e+ → π+π− annihilation. At its
level of accuracy, the present η′ dipion spectrum [61] rather
favors the DR prediction, as shown in Fig. 8; this could indi-
cate that the DR-LQCD aμ discrepancy is not entirely related
to experimental biases, since it appears also in the indepen-
dent η/η′ data, but could rather be a misunderstood effect in
dispersive estimations for processes involving pion pairs.48

However, better statistics and a finer binning in the ρ0 − ω

energy region look mandatory for a competing estimate of
the muon aμ(π+π−,

√
s < 1.0 GeV). This may motivate

our colleagues to enlarge the available η′ dipion sample by
analyzing the already existing data or by collecting new sam-
ples at other detectors.

48 It should be noted also that, in our global fit, the present η/η′ data
do not impact the appraisal of the BaBar/KLOE discrepancy.
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Appendices

A Brief outline of the HLS/BHLS2 approach

For the reader’s convenience, it appears worthwhile to avoid
too much cross-references and briefly collect here the various
ingredients which participate in the definition and working of
our symmetry-broken hidden local symmetry (HLS) model
which is spread out into several references. The HLS model
admits a non-anomalous sector [12] and also an anomalous
sector [13]—see also [16]. To make this approach a success-
ful tool in its physical realm, the HLS model should undergo
symmetry-breaking mechanisms. The salient features of the
broken version named BHLS2 which underlie the present
study can be found, recalled, or defined, in49 [20,21]. As it
grounds the present study, the anomalous sector of the HLS
model [13,16] is mostly discussed in the body of the text.

A.1 The unbroken non-anomalous HLS Lagrangian

The non-anomalous HLS Lagrangian is a generalization of
the ChPT Lagrangian [101,102] which can be written [16]
as

Lchiral = f 2
π

4
Tr

[
∂μU ∂μU †

]

= − f 2
π

4
Tr

[
∂μξL ξ

†
L − ∂μξR ξ

†
R

]2
, (48)

49 For full details, the interested reader is referred to these articles,
where former references can also be found.

where fπ (= 92.42 MeV) is the pion decay constant, and

ξR/L(x) = exp [±i P(x)/ fπ ] �⇒ U (x) = ξ
†
L(x)ξR(x),

(49)

when working in the so-called unitary gauge, which removes
a scalar field term in the definition of ξR/L(x); P(x) is
the usual pseudoscalar (PS) field matrix. Ignoring in this
reminder the weak sector [16,20], the HLS approach turns
out to replace in Eq. (48) the usual derivative by the covariant
derivative:

DμξR/L = ∂μξR/L − igVμξR/L + ieξR/L AμQ, (50)

where Aμ is the photon field, Q = Diag[2/3,−1/3,−1/3] is
the quark charge matrix, and Vμ is the vector field matrix; the
expressions for P and50 V are the usual ones—fulfilling the
U (3) flavor symmetry—and can be found in [16,18,103], for
example. In this way, the first HLS Lagrangian piece named
LA is derived from Eq. (49). However, a second piece—LV —
can be defined, which vanishes in the inverse substitution
Dμ → ∂μ. The two pieces are written as

LA = − f 2
π

4
Tr

[
DμξL ξ

†
L − DμξR ξ

†
R

]2
,

LV = − f 2
π

4
Tr

[
DμξL ξ

†
L + DμξR ξ

†
R

]2
., (51)

and the full non-anomalous HLS Lagrangian is written as

LHLS = LA + aLV , (52)

where a is a free parameter specific to the HLS approach [16].
This (unbroken) HLS Lagrangian can be found expanded in
[103].

A.2 Breaking the HLS Lagrangian I: the BKY mechanism

The first breaking mechanism for the HLS Lagrangian has
been proposed in [104]; one uses a modified version of it
given in [103] in order to avoid identified undesirable prop-
erties of the original proposal [105]. Originally, the BKY
mechanism was intended to only break the U (3) symmetry
of the HLS Lagrangian; it has been extended following the
lines of [106] to also cover isospin-breaking effects.

Defining L = DμξL ξ
†
L and R = DμξR ξ

†
R , the (modified

and extended) BKY breaking is implemented in the BHLS2

framework by modifying Eq. (51) as follows:

LA = − f 2
π

4
Tr [(L − R)XA]2 ,

LV = − f 2
π

4
Tr [(L + R)XV ]2 , (53)

50 In the V matrix the ρ, ω and φ fields correspond to the so-called
ideal fields.
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where the constant matrices XA/V provide departures from
the unit matrix; they have been parameterized as XA/V =
Diag(qA/V , yA/V , zA/V ). In practice, one prefers setting
qA/V = 1 + (�A/V + �A/V )/2 and yA/V = 1 + (�A/V −
�A/V )/2. As zA and zV are affecting the ss entries, their
departure from 1 can be (and are found) large compared to
qA/V and yA/V —which refer to, respectively, the uu and dd
entries [18,20,21].

Within the BHLS2 context opened in [20], it has been
shown that the diagonalization of the vector meson mass
term implies �V = 0; on the other hand, it has also been
proved [20] that �V is actually out of reach and can be fixed
to zero without any loss of generality. Therefore, the BKY-
breaking mechanism introduces three free parameters: zA
and �A tightly related with the ratio fK / fπ and zV with the
Higgs–Kibble φ meson mass.

A.3 Breaking the HLS Lagrangian II: the covariant
derivative (CD) breaking

The main ingredient in the HLS approach is the covariant
derivative as displayed in Eq. (50), complemented when rel-
evant by W and Z0 terms [16]. Thus, a relevant breaking
mechanism can be chosen affecting the covariant derivative
itself; this can be done by replacing Eq. (50) by

DμξR/L = ∂μξR/L − ig
[
V I

μ + δVμ

]
ξR/L + ieξR/L AμQ,

(54)

where δVμ can be chosen to break the U (3)V symmetry in a
controlled way. Breaking the universality of the vector cou-
pling g is an interesting tool; a priori one may think that
breaking nonet symmetry (i.e., along the Gell–Mann matrix
T 0) can be performed independently of breaking the SU (3)V
symmetry (i.e., along the Gell–Mann matrix T 8); the diag-
onalization of the vector meson mass term and the expected
values of the pion and kaon form factors at the chiral point
prevent such a freedom of choice [20].

Identifying the field combinations associated with each of
the canonical Gell–Mann Ta U (3) matrix basis, one is led
to define the following components which can participate to
δVμ separately or together:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δV 0
μ = ξ0√

2

[√
2ωI

μ + �I
μ

3

]
Diag[1, 1, 1],

δV 8
μ = ξ8√

2

[
ωI

μ − √
2�I

μ

3
√

2

]
Diag[1, 1,−2],

δV 3
μ = ξ3√

2

[
ρ0
I√
2

]
Diag[1,−1, 0],

(55)

in terms of the usual ideal field combinations; the CD-
breaking term is

δVμ = δV 0
μ + δV 8

μ + δV 3
μ.

The (free) breaking parameters ξ0, ξ8, and ξ3 are only
requested to be real in order that δVμ is hermitian as V I

μ itself.
Clearly, δV 0

μ defines a breaking of the nonet symmetry down
to SU (3)V ×U (1)V , δV 8

μ rather expresses the breaking of the
SU (3)V symmetry, while δV 3

μ is related to a direct breaking
of isospin symmetry in the vector sector.

As mentioned above, it happens that the ξ parameters
introduced by Eq. (55) should fulfill [20] ξ0 = ξ8, and so
that the CD breaking only involves two new free parame-
ters. This means that within BHLS2, one cannot solely break
nonet symmetry, which should be accompanied by a SU (3)

breaking of similar intensity.

A.4 Breaking the HLS Lagrangian III: dynamical vector
meson mixing

The unbroken HLS Lagrangian already exhibits couplings

for ρI /ωI /φI → K+K−/K 0K
0

transitions; this property is
naturally transferred to all its broken versions. This implies
that at one-loop order, the ρ0/ω/φ squared mass matrix
exhibits non-diagonal entries, and thus, the ideal vector fields
are no longer mass eigenstates.

At one-loop order, the squared mass matrix of the ρ0/ω/φ

system can be written as

M2(s) = M2
0 (s) + δM2(s), (56)

where the dependence upon the momentum squared s flowing
through the vector lines is made explicit. After the BKY and
CD breakings just sketched, the vector meson masses are
written51 as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m2
ρ0 = m2 [1 + �V + 2 ξ3] ,

m2
ω = m2

[
1 + �V + 4

3
ξ0 + 2

3
ξ8

]

= m2 [1 + �V + 2 ξ0] ,

m2
� = m2 zV

[
1 + 2

3
ξ0 + 4

3
ξ8

]
= m2 zV [1 + 2 ξ0] .

(57)

in terms of the various breaking parameters;�V has been kept
for convenience. The M2

0 (s) matrix occurring in Eq. (56) is
thus written as

M2
0 (s) = Diag(m2

ρ0 + �ππ(s),m2
ω,m2

φ) . (58)

and is diagonal; �ππ(s) is the pion loop and includes the
ρπ+π− coupling squared.

51 One should note that within BHLS2, the charged and neutral ρ

mesons carry different masses as m2
ρ± = m2 (1 + �V ).
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The expression for δM2(s) is slightly more involved.
Having defined the (ρ0, ω, φ) renormalized fields, gener-
ally indexed by R (i.e., those which diagonalize the vector
meson mass term), one can derive the V i

R → V j
R transitions

(i, j = ρ0, ω, φ). For this purpose, having defined �±(s)
and �0(s), respectively, the amputated charged and neutral
kaon loops, the transition amplitudes (i, j = ρ0, ω, φ) are
written as

δM2
i, j (s) = giK+K−g

j
K+K−�±(s) + gi

K 0K
0g

j

K 0K
0�0(s),

(59)

where the gKK coupling constants are displayed in Section
10 of [20].

The physical ρ0, ω, φ are the eigenvectors of the full
squared mass matrix M2(s); they are related to their renor-
malized partners by⎛
⎝ρR

ωR

�R

⎞
⎠ =

⎛
⎝ 1 −α(s) β(s)

α(s) 1 γ (s)
−β(s) −γ (s) 1

⎞
⎠
⎛
⎝ρPhys

ωPhys

�Phys

⎞
⎠ (60)

The three complex angles occurring here are combinations
of the δM2(s) matrix elements and of the eigenvalues of the
full M2(s) matrix, as displayed in Subsection 10.2 of [20].

It is worth remarking that the dynamical mixing just
sketched has provided the first solution [17,18] to the long-
standing puzzle “e+e− versus τ” [98,107,108], as it gen-
erates a s-dependent difference between the ρ± − W± and
ρ0 − γ transition amplitudes.

A.5 The kinetic breaking and the [π0, η, η′] system

This section is mostly aimed at reviewing the notations used
in the body of the paper; these essentially deal with the pseu-
doscalar meson (PS) sector of the HLS model.

The full pseudoscalar meson kinetic energy term of the
BHLS2 Lagrangian [21] is written as

L′
kin = Tr [∂PbareX A∂PbareX A] + 2 {Tr [XH∂Pbare]}2,

(61)

where Pbare is the PS bare field matrix. The first term is
already broken by the BKY mechanism applied to the LA

HLS Lagrangian piece (see Eq. 53 in Appendix A), and the
second one expresses the so-called kinetic breaking general-
izing the ’tHooft mechanism [71]. It has been shown in [21]
that an appropriate choice for the XH matrix is

XH = λ0T0 + λ3T3 + λ8T8 (62)

in terms of the canonical U (3) Gell–Mann matrices (T0 =
I/

√
6, Tr[TaTb] = δab/2) with real λi coefficients in close

correspondence with the CD breaking term δV affecting
the vector sector (see Appendix A.3). This choice mani-
festly allows for isospin symmetry breaking, nonet symme-
try breaking (the so-called ’t Hooft term [71]), and SU (3)

breaking.
It is useful to introduce the vector of PS fields as

Vany = (π3
any, η

0
any, η

8
any) where any = (bare, R1, R)

(63)

to clarify the component indexing.
The diagonalization of the kinetic energy Eq. (61) which

leads from the bare PS fields to their renormalized partners
(hereafter indexed by R) is performed in two steps. The inter-
mediate step (from bare to to R1 fields) turns out to diago-
nalize Tr [∂PbareX A∂PbareX A] and to define the W trans-
formation matrix as

W =

⎛
⎜⎜⎜⎜⎜⎝

1 −�A√
6

− �A

2
√

3

−�A√
6

B A

− �A

2
√

3
A C

⎞
⎟⎟⎟⎟⎟⎠

(64)

which depends on the BKY breaking parameter �A and via

A = √
2
zA − 1

3zA
, B = 2zA + 1

3zA
, C = zA + 2

3zA
(65)

on the other BKY breaking parameter zA (see Appendix A.2
above).

In order to achieve the diagonalization of the (full) kinetic
energy term of the BHLS2 Lagrangian, one still has to define
the linear transform which relates the intermediate R1 and
final R renormalized PS fields (see Eq. (28) in [21]). Given
the (co-)vector

at = ( λ3, λ0B + λ8A, λ0A + λ8C) , (66)

one can then prove [21] that Eq. (61) becomes canonical (at
first order in breakings) when expressed in terms of the VR

fields defined by

Vbare = W ·
[

1 − 1

2
a · at

]
· VR . (67)

However, the VR fields are not still the PS mass eigen-
states denoted by the triplet (π0, η, η′). One expects these
physical states to be related with the VR fields via a three-
dimensional rotation and thus three angles. Adopting the
Leutwyler parameterization [109], one has
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⎛
⎝π3

R
η8
R

η0
R

⎞
⎠ =

⎛
⎝ 1 −ε −ε′

ε cos θP + ε′ sin θP cos θP sin θP
−ε sin θP + ε′ cos θP − sin θP cos θP

⎞
⎠
⎛
⎝π0

η

η′

⎞
⎠

(68)

to relate the R fields which diagonalize the kinetic energy
to the physical (i.e., mass eigenstates) neutral PS fields. The
three angles (ε, ε′, and even θP ) are assumed O(δ) pertur-
bations; nevertheless, for clarity, the so-called third mixing
angle [72] is not treated as manifestly small.

On the other hand, the “angles” ε and ε′ are related with
the light quark masses, and it is worth stating that they are
expected to have like signs (see the discussion in [21]).

B Erratum: the VPP/APP interaction pieces in BHLS2

It is worthwhile to list the V PP and APP interaction terms
of the BHLS2 Lagrangian, corrected when needed, related
with the present study, i.e., the charged and neutral pion fields,
the η and η′ mesons. We have

Lπ−π+ = ie
[
1 − a

2
(1 + �V )

]
A · π− ↔

∂ π+

+ iag

2
(1 + �V ) [1 + ξ3] ρ0

I · π− ↔
∂ π+

Lπ0π± = iag

2
(1 + �V )(1 − λ2

3

2
)

[
ρ− · π+ ↔

∂ π0 − ρ+ · π− ↔
∂ π0

]

Lηπ± = − iag

2

[{
1

2
√

3
�A + λ3̃λ8

2

}
cos θP

−
{

1√
6
�A + λ3̃λ0

2

}
sin θP + ε

]

[1 + �V ]
[
ρ− · π+ ↔

∂ η − ρ+ · π− ↔
∂ η

]

Lη′π± = − iag

2

[{
1√
6
�A + λ3̃λ0

2

}
cos θP

+
{

1

2
√

3
�A + λ3̃λ8

2

}
sin θP + ε′

]

[1 + �V ]
[
ρ− · π+ ↔

∂ η′ − ρ+ · π− ↔
∂ η′] (69)

The last two Lagrangian pieces supersede the correspond-
ing formulae displayed in Eq. (45) of [21]; they were given
for completeness but unused. In the present study, they should
be considered.

In the expressions above, the kinetic breaking parameters
occur; besides λ3, one also has

λ̃0 = λ0B + λ8A, λ̃8 = λ0A + λ8C, (70)

where A, B, andC have also been mentioned in the Appendix
A.5 just above. On the other hand, we have chosen here

to keep the �V parameter for clarity. However, it has been
shown in [21] that it is out of reach and can be fixed to zero
without any loss of generality.

C A± solutions: the AAP and VV P Lagrangians

It is worthwhile displaying the anomalous BHLS2 Lagrangian
pieces associated with the so-called triangle anomalies, hav-
ing imposed the Kroll conditions [66], examined in full
details in [21] and briefly sketched in Sect. 3. Using obvi-
ous notations, these anomalous pieces are derived from the
following [13,16]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

LVV P = − Ncg2

4π2 fπ
c3εμναβTr[∂μVν∂αVβ P]

LAAP = − Nce2

4π2 fπ
(1 − c4)εμναβ∂μAν∂α AβTr[Q2P]

LAV P = − Ncge

8π2 fπ
(c4 − c3)εμναβ∂μAνTr[{∂αVβ, Q}P].

(71)

The phenomenology examined so far with the broken variants
of the HLS model never led to us consider a nonzero c3 −c4;
therefore, one assumes c3 = c4, which turns out to discard
the LAV P Lagrangian piece.

Unless otherwise stated, the neutral vector fields displayed
here are the so-called ideal combinations generally named
ρ I , ωI , and φ I . The transformation which connects the bare
vector fields to their physical partners is treated in [20] and
briefly mentioned in Appendix A above.

We also recall here the definition for δP :

{
sin δP = 1√

3

(√
2 sin θP − cos θP

)
,

cos δP = 1√
3

(√
2 cos θP + sin θP

)
(72)

and (d± ≡ ±1)

A± = �A + d±λ2
0. (73)

used below.

C.1 The AAP Lagrangian

The AAP Lagrangian defined in the header just above where
Q is the quark charge matrix and P the U (3) symmetric
matrix of the bare pseudoscalar fields is given for definite-
ness:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gπ0γ γ = 1

6

{
1 − 5

6
A± − λ2

0

3

}

− ε

18zA

{
5zA sin δP + √

2 cos δP

}

− ε′

18zA

{√
2 sin δP − 5zA cos δP

}
,

gηγ γ = −ε

6
−

√
2

18zA
cos δP

+ 1
12

{
A± + 5

6 (3λ2
0 − 4)

}
sin δP

gη′γ γ = −ε′

6
−

√
2

18zA
sin δP

− 1
12

{
A± + 5

6 (3λ2
0 − 4)

}
cos δP .

(74)

The coupling constants for the physical mesons P0γ γ (P0 =
π0, η, η′) are given by

GP0γ γ = −3αem

π fπ
(1 − c4)gP0γ γ , (75)

and the AAP Lagrangian can also be written as

LAAP0 = GP0γ γ P0 εμναβ∂μAν∂αAβ for each of

P0 = π0, η, η′. (76)

C.2 The VV P Lagrangian

The VV P Lagrangian is given by

LVV P = − 3g2

4π2 fπ
c3 εμναβTr

[
∂μVν∂αVβ P

]
,

C = −Ncg2c3

4π2 fπ
. (77)

C.2.1 The V Vπ Lagrangians

The VVπ Lagrangians relevant for our phenomenology are
given by

LVV P (π±) = C

2
εμναβ

{[(
1 + 2ξ0 + ξ8

3

)
∂μωI

ν

+
√

2

3
(ξ0 − ξ8)∂μφ I

ν

]

×
[
∂αρ+

β π− + ∂αρ−
β π+]} (78)

and:

LVV P (π0) = C

2
εμναβ

{
G0∂μρ I

ν ∂αωI
β + G1

[
2∂μρ−

ν ∂αρ+
β

+∂μρ I
ν ∂αρ I

β + ∂μωI
ν∂αωI

β

]

+G2∂μφ I
ν ∂αφ I

β + G3∂μρ I
ν ∂αφ I

β

}
π0 (79)

where:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0 =
[

1 − λ2
0

3
+ 2ξ0 + ξ8

3
+ ξ3

]

G1 = − A±
4

+ 1

2

[
ε′ cos δP − ε sin δP

]
G2 = − 1

zA
√

2

[
ε′ sin δP + ε cos δP

]

G3 =
√

2

3
(ξ0 − ξ8).

(80)

Actually, one imposes ξ0 = ξ8, so that, always, G3 = 0.

C.2.2 The V Vη Lagrangian

The VVη Lagrangian is given by

LVV P (η) = C

2
εμναβ

{
K1∂μρ−

ν ∂αρ+
β + K2∂μρ I

ν ∂αρ I
β

+K3∂μωI
ν∂αωI

β + K4∂μφ I
ν ∂αφ I

β

+K5∂μωI
ν∂αφ I

β + K6∂μρ I
ν ∂αωI

β

}
η. (81)

Having defined52

{
H2 = 1

8

[
3λ2

0 − 4
]
, H3 = −

√
2

6zA
[(3 + 2ξ0 + 4ξ8)]

}

(82)

the VVη couplings become:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K1 = 2H2 sin δP , K2 = (H2 − ξ3) sin δP

K3 =
[
H2 − 2ξ0 + ξ8

3

]
sin δP , K4 = H3 cos δP

K5 = − (ξ0 − ξ8)

3zA

[
2 cos δP + zA

√
2 sin δP

]
,

K6 = A±
2

sin δP − ε

(83)

Actually, similarly to just above, the K5 term drops out in the
practical BHLS2 context.

C.2.3 The V Vη′ Lagrangian

The VVη′ Lagrangian is given by

LVV P (η′) = C

2
εμναβ

{
K ′

1∂μρ−
ν ∂αρ+

β + K ′
2∂μρ I

ν ∂αρ I
β

+K ′
3∂μωI

ν∂αωI
β + K ′

4∂μφ I
ν ∂αφ I

β

+K ′
5∂μωI

ν∂αφ I
β + K ′

6∂μρ I
ν ∂αωI

β

}
η′

(84)

52 Referring to [21], the Kroll conditions turn out to fix H1 = 0.
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the VVη′ couplings being

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K ′
1 = −2H2 cos δP , K ′

2 = −(H2 − ξ3) cos δP

K ′
3 = −

[
H2 − 2ξ0 + ξ8

3

]
cos δP , K ′

4 = H3 sin δP

K ′
5 = − (ξ0 − ξ8)

3zA

[
−zA

√
2 cos δP + 2 sin δP

]
,

K ′
6 = − A±

2
cos δP − ε′

(85)

where also the K ′
5 term drops out in the practical BHLS2

context, where ξ0 = ξ8. The Hi functions occurring here have
been defined in our previous paper and have been mentioned
in the subsection just above—H1 vanishes thanks to having
requested the Kroll conditions.

One should also note that the VVη′ couplings are related
to the VVη couplings and can be derived by making in the
VVη couplings

{sin δP → − cos δP and cos δP → sin δP }.

D A± solutions: the AP P P and V P P P Lagrangians

Besides the Lagrangian pieces associated with the triangle
anomalies mentioned in the Appendix just above, those asso-
ciated with the so-called box anomalies play an important
role in the η/η′ → π+π−γ decays and in the e+e− →
π+π−π0 annihilation thoroughly considered in our [21]. We
find it helpful to provide their expressions while the Kroll
conditions are applied. The APPP and V PPP Lagrangian
pieces introduce a new HLS parameter (c1 −c2) which is not
fixed by the model and should be derived from fits.

As for the VV P interactions mentioned in Appendix C,
the neutral vector fields occurring in the V PPP interac-
tion Lagrangian are their ideal combinations; they should be
expressed in terms of physical vector fields as developed in
[20] in practical applications.

D.1 The APPP Lagrangian

The APPP Lagrangian is given by

LAPPP = D εμναβ AμTr
[
Q∂νP∂αP∂β P

]
,

D = −i
Nce

3π2 f 3
π

[
1 − 3

4
(c1 − c2 + c4)

]
. (86)

Regarding the phenology we address, the relevant APPP
Lagrangian piece to be considered is

L1
APPP = Dεμναβ Aμ

{
gγπ0∂νπ

0 + gγ η∂νη + gγ η′∂νη
′}

∂απ−∂βπ+, (87)

in terms of fully renormalized PS fields. Requiring the A±
Kroll conditions, these gγ P couplings can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gγπ0 = −1

4

[
1 − A±

2
− λ2

0

3
− ε sin δP + ε′ cos δP

]

gγ η =
[

1 − A±
2

− 3λ2
0

4

]
sin δP

4
+ ε

4

gγ η′ = −
[

1 − A±
2

− 3λ2
0

4

]
cos δP

4
+ ε′

4
,

(88)

keeping only the leading-order terms in the breakings.

D.2 The V PPP Lagrangian

The V PPP anomalous HLS Lagrangian is

LV PPP = −i
Ncg

4π2 f 3
π

(c1 − c2 − c3)ε
μναβ

Tr[Vμ∂ν P∂αP∂β P] (89)

where the ci are the FKTUY parameters not fixed by the
model. Nc is the number of colors fixed to 3.The V and P
field matrices are the bare ones.

The relevant part of LV PPP within the present context is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LV P0π+π−

= Eεμναβ
{[

g0
ρπ∂νπ

0 + g0
ρη∂νη + g0

ρη′∂νη
′
]

ρ I
μ

+
[
g0
ωπ∂νπ

0 + g0
ωη∂νη + +g0

ωη′∂νη
′] ωI

μ

+g0
φπ∂νπ

0 φ I
μ

}
∂απ−∂βπ+

with E = −i
3g(c1 − c2 − c3)

4π2 f 3
π

(90)

in terms of the physical pseudoscalar fields. Keeping only
the A± solutions and the leading-order breaking terms, the
couplings just defined are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g0
ρπ0 = 1

4

[
A±
2

+ ε sin δP − ε′ cos δP

]

g0
ρη = 1

4

[
1 + ξ3 − 3

4
λ2

0

]
sin δP

g0
ρη′ = −1

4

[
1 + ξ3 − 3

4
λ2

0

]
cos δP

(91)

and:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0
ωπ0 = −3

4

[
1 + 2ξ0 + ξ8

3
− 1

3
λ2

0

]

g0
ωη = 3

4

{
ε − A±

2
sin δP

}

g0
ωη′ = 3

4

{
ε′ + A±

2
cos δP

}

g0
φπ = −

√
2

4
[ξ0 − ξ8] , g0

φη = 0, g0
φη′ = 0.

(92)
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As pseudoscalar meson form factor values at origin imply
[20] ξ0 = ξ8, one observes that no term involving φ I survives
at leading order in breakings.
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74. C. Hanhart, A. Kupśc, U.G. Meißner, F. Stollenwerk, and
A. Wirzba, Dispersive analysis for η → γ γ ∗. Eur. Phys. J. C
73, 2668 (2013). arXiv:1307.5654 [Erratum: Eur. Phys. J. C 75,
242 (2015)]

75. B. Kubis, J. Plenter, Anomalous decay and scattering processes
of the η meson. Eur. Phys. J. C 75, 283 (2015). arXiv:1504.02588

76. L.-Y. Dai, X.-W. Kang, U.-G. Meißner, X.-Y. Song, D.-L. Yao,
Amplitude analysis of the anomalous decay η′ → π+π−γ . Phys.
Rev. D 97, 036012 (2018). arXiv:1712.02119

77. S. Holz, C. Hanhart, M. Hoferichter, B. Kubis, A dispersive anal-
ysis of η′ → π+π−γ and η′ → �+�−γ . Eur. Phys. J. C 82, 434
(2022). arXiv:2202.05846

78. S. Holz, C. Hanhart, M. Hoferichter, B. Kubis, Addendum: A
dispersive analysis of η′ → π+π−γ and η′ → �+�−γ . Eur.
Phys. J. C 82, 1159 (2022)

79. R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, F.J.
Yndurain et al., The Pion-pion scattering amplitude. IV: Improved
analysis with once subtracted Roy-like equations up to 1100 MeV.
Phys. Rev. D 83, 074004 (2011). arXiv:1102.2183

80. J. Bijnens, A. Bramon, F. Cornet, Three pseudoscalar photon inter-
actions in chiral perturbation theory. Phys. Lett. B 237, 488 (1990)

81. B. Hyams et al., ππ phase shift analysis from 600-MeV to 1900-
MeV. Nucl. Phys. B 64, 134 (1973)

82. S.D. Protopopescu, ππ partial wave analysis from reactions
π+ p → π+π−�++ and π+ p → K+K−�++ at 7.1-GeV/c.
Phys. Rev. D 7, 1279 (1973)

83. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Roy
equation analysis of pi pi scattering. Phys. Rep. 353, 207 (2001).
arXiv:hep-ph/0005297

84. F. Jegerlehner, R. Szafron, ρ0 − γ mixing in the neutral channel
pion form factor |Fπ |2 and its role in comparing e+e− with τ spec-
tral functions. Eur. Phys. J. C 71, 1632 (2011). arXiv:1101.2872

85. SND, M. Achasov et al., Measurement of the e+e− → π+π−
process cross section with the SND detector at the VEPP-
2000 collider in the energy region 0.525<

√
s<0.883 GeV.

arXiv:2004.00263 (2020)
86. M. Hoferichter, B.-L. Hoid, B. Kubis, Three-pion contribu-

tion to hadronic vacuum polarization. JHEP 08, 137 (2019).
arXiv:1907.01556

87. M. Hoferichter, B.-L. Hoid, B. Kubis, D. Schuh, Isospin-breaking
effects in the three-pion contribution to hadronic vacuum polar-
ization. JHEP 08, 208 (2023). arXiv:2307.02546

123

http://arxiv.org/abs/0906.4331
http://arxiv.org/abs/2004.00263
http://arxiv.org/abs/hep-ph/0007101
http://arxiv.org/abs/hep-ph/9806336
http://arxiv.org/abs/hep-ph/9709408
http://arxiv.org/abs/hep-ph/9812269
http://arxiv.org/abs/hep-ph/9802409
http://arxiv.org/abs/hep-ph/9907491
http://arxiv.org/abs/nucl-th/0306078
http://arxiv.org/abs/1712.01525
http://arxiv.org/abs/1107.5277
http://arxiv.org/abs/1209.4611
http://arxiv.org/abs/hep-ph/0509031
http://arxiv.org/abs/hep-ph/0212324
http://arxiv.org/abs/hep-ph/0312017
http://arxiv.org/abs/hep-ph/9905350
http://arxiv.org/abs/1108.2419
http://arxiv.org/abs/1307.5654
http://arxiv.org/abs/1504.02588
http://arxiv.org/abs/1712.02119
http://arxiv.org/abs/2202.05846
http://arxiv.org/abs/1102.2183
http://arxiv.org/abs/hep-ph/0005297
http://arxiv.org/abs/1101.2872
http://arxiv.org/abs/2004.00263
http://arxiv.org/abs/1907.01556
http://arxiv.org/abs/2307.02546


Eur. Phys. J. C (2024) 84 :295 Page 37 of 37 295

88. D. Stamen, T. Isken, B. Kubis, M. Mikhasenko, M. Niehus, Anal-
ysis of rescattering effects in 3π final states. arXiv:2212.11767
(2022)

89. M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, Muon g−2
estimates: can one trust effective Lagrangians and global fits? Eur.
Phys. J. C 75, 613 (2015). arXiv:1507.02943

90. M. Benayoun, P. David, L. DelBuono, O. Leitner et al., A global
treatment of VMD physics up to the φ: I. e+e− annihilations,
anomalies and vector meson partial widths. Eur. Phys. J. C 65,
211 (2010). arXiv:0907.4047

91. NA7, S.R. Amendolia et al., A measurement of the space-like pion
electromagnetic form-factor. Nucl. Phys. B 277, 168 (1986)

92. E.B. Dally et al., Elastic scattering measurement of the negative
pion radius. Phys. Rev. Lett. 48, 375 (1982)

93. L. Gan, B. Kubis, E. Passemar, S. Tulin, Precision tests of funda-
mental physics with η and η’ mesons. Phys. Rep. 945, 1 (2022).
arXiv:2007.00664

94. F. Jegerlehner, The effective fine structure constant and other SM
running couplings. https://people.physik.hu-berlin.de/~fjeger/
alphaQED23.pdf (2023)

95. J.A. Miranda, P. Roig, New τ -based evaluation of the hadronic
contribution to the vacuum polarization piece of the muon
anomalous magnetic moment. Phys. Rev. D 102, 114017 (2020).
arXiv:2007.11019

96. P. Masjuan, A. Miranda, P. Roig, arXiv:2305.20005 (2023)
97. P. Masjuan, A. Miranda, P. Roig, Tau data-driven evaluation of

the Hadronic Vacuum Polarization, in 26th High-Energy Physics
International Conference in QCD. arXiv:2310.14102 (2023)

98. M. Davier et al., The discrepancy between τ and e+e− spectral
functions revisited and the consequences for the muon magnetic
anomaly. Eur. Phys. J. C 66, 127 (2010). arXiv:0906.5443

99. F. Ignatov et al., Recent results from CMD-3. EPJ Web Conf. 212,
04001 (2019)

100. F. Ignatov, R.N. Lee, Phys. Lett. B 833, 137283 (2022).
arXiv:2204.12235

101. J. Gasser, H. Leutwyler, Chiral perturbation theory to one loop.
Ann. Phys. 158, 142 (1984)

102. J. Gasser, H. Leutwyler, Chiral perturbation theory: expansions
in the mass of the strange quark. Nucl. Phys. B 250, 465 (1985)

103. M. Benayoun, H.B. O’Connell, SU(3) breaking and hid-
den local symmetry. Phys. Rev. D 58, 074006 (1998).
arXiv:hep-ph/9804391

104. M. Bando, T. Kugo, K. Yamawaki, On the vector mesons as
dynamical gauge bosons of hidden local symmetries. Nucl. Phys.
B 259, 493 (1985)

105. A. Bramon, A. Grau, G. Pancheri, Effective chiral lagrangians
with an SU(3) broken vector meson sector. Phys. Lett. B 345, 263
(1995). arXiv:hep-ph/9411269

106. M. Hashimoto, Hidden local symmetry for anomalous processes
with isospin/SU(3) breaking effects. Phys. Rev. D 54, 5611
(1996). arXiv:hep-ph/9605422

107. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of
the hadronic contributions to the muon g-2 and to alpha(MZ). Eur.
Phys. J. C 71, 1515 (2011). arXiv:1010.4180

108. M. Benayoun, The HLS approach to (g − 2)μ: a solution to
the τ versus e+e− puzzle. EPJ Web Conf. 118, 01001 (2016).
arXiv:1511.01329

109. H. Leutwyler, Implications of η−η′ mixing for the decay η → 3π .
Phys. Lett. B 374, 181 (1996). arXiv:hep-ph/9601236

123

http://arxiv.org/abs/2212.11767
http://arxiv.org/abs/1507.02943
http://arxiv.org/abs/0907.4047
http://arxiv.org/abs/2007.00664
https://people.physik.hu-berlin.de/~fjeger/alphaQED23.pdf
https://people.physik.hu-berlin.de/~fjeger/alphaQED23.pdf
http://arxiv.org/abs/2007.11019
http://arxiv.org/abs/2305.20005
http://arxiv.org/abs/2310.14102
http://arxiv.org/abs/0906.5443
http://arxiv.org/abs/2204.12235
http://arxiv.org/abs/hep-ph/9804391
http://arxiv.org/abs/hep-ph/9411269
http://arxiv.org/abs/hep-ph/9605422
http://arxiv.org/abs/1010.4180
http://arxiv.org/abs/1511.01329
http://arxiv.org/abs/hep-ph/9601236

	The η/ηrightarrowπ+ π- γ decays within BHLS2 and the muon HVP
	Abstract 
	1 Preamble: various aspects of the dispersive approachto the muon HVP
	2 Introduction
	3 The Kroll conditions and VPP Lagrangian pieces
	4 The η/η� → π−π+γ decays in the BHLS2 framework
	5 The η → π+π−γ amplitude within BHLS2
	6 The η� → π+π−γ amplitude within BHLS2
	7 BHLS2 and the WZW box anomalies
	8 η/η� radiative decays: the BHLS2 dipion mass spectra
	9 Pion form factor in the η/η� radiative decays
	10 Fits of the η/η� radiative decay spectra withinBHLS2
	10.1 Available dipion spectra from the η/η� → π+π−γdecays
	10.2 η/η� experimental spectra: fits in isolation
	10.3 The η/η� experimental spectra: analysis within theBHLS2 context
	10.4 PX (s): BHLS2 fit results versus others
	10.5 Brief analysis of the BHLS2 parameter values
	10.6 The T R2(η/η�) terms in BHLS2: the role of ρ±exchanges
	10.7 Dealing with the absolute scale of the η/η� dipionspectra

	11 η/η decays: the muon anomalous magnetic moment
	11.1 Accuracy of the PX(s) parameterization
	11.2 The η/η spectra and HVP estimates
	11.3 The case for the τ data
	11.3.1 Fitting the τ data
	11.3.2 τ data and aµ

	11.4 η/η-based evaluations of the HVP

	12 Concluding remarks
	Acknowledgements
	Appendices
	A Brief outline of the HLS/BHLS2 approach
	A.1 The unbroken non-anomalous HLS Lagrangian
	A.2 Breaking the HLS Lagrangian I: the BKY mechanism
	A.3 Breaking the HLS Lagrangian II: the covariant derivative (CD) breaking
	A.4 Breaking the HLS Lagrangian III: dynamical vector meson mixing
	A.5 The kinetic breaking and the [π0, η, η] system

	B Erratum: the VPP/APP interaction pieces in BHLS2
	C Apm solutions: the AAP and VVP Lagrangians
	C.1 The AAP Lagrangian
	C.2 The VVP Lagrangian
	C.2.1 The VVπ Lagrangians
	C.2.2 The VVη Lagrangian
	C.2.3 The VVη Lagrangian


	D Apm solutions: the APPP and VPPP Lagrangians
	D.1 The APPP Lagrangian
	D.2 The VPPP Lagrangian

	References




