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1 Introduction

Even if a classical system was identical to its “mirror image”, its quantum counterpart would
not be. This is the essence of the chiral anomaly which appears ubiquitously in all quantum
many-body systems involving massless chiral fermions. The possibility of observing the
quantum chiral anomaly at a macroscopic scale has stimulated various explorations and
intellectual efforts in several physics research fields from high-energy to condensed matter [1, 2].
Dissipationless transport has been identified as one of the most promising routes in this
regard, leading to the discovery of several anomaly-induced phenomena such as the chiral
magnetic effect [3], the chiral separation effect [4] and the chiral vortical effect [5, 6]. In
addition to these transport properties, the chiral anomaly also manifests itself at macroscopic
scale in the low-energy dynamics by originating a novel propagating collective excitation
know as the chiral magnetic wave (CMW) [7, 8]. The CMW represents a propagating wave
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of fluctuating vector and axial charge densities that is expected to appear, as a result of the
interplay between the chiral magnetic effect (CME) and the chiral separation effect (CSE),
in chiral anomalous systems when exposed to a background magnetic field B⃗.

The experimental identification of propagating CMW in chiral anomalous systems is
an active area of research [9–11]. In this chase, a prime candidate has always been the
quark-gluon plasma (QGP), a highly energetic quantum soup of quarks and gluons generated
in heavy ion collisions, as those produced in the relativistic heavy ion collider (RHIC) or
large hardron collider (LHC). Numerical simulations have suggested that a gapless CMW
would induce a chiral dipole moment, resulting in a possibly observable charge dependent
elliptic flow in QGP [12]. The observation of a charge dependent elliptic flow has been
reported in experiments [9–11, 13], seemingly supporting the existence of CMW in the QGP.
Nevertheless, a thorough analysis indicated that it is impossible to definitively infer the
existence of CMW from these experimental signatures [9–11]. This is attributed to the
fact that the physical origin of the elliptic flow [9–11] cannot be exclusively ascribed to
chiral anomalies, thereby complicating any conclusive statement [13, 14]. Additionally, from
a theoretical perspective, it has been shown that, due to the relaxation of axial charge
induced by dynamical gluonic fields and the screening effects associated with the dynamical
electromagnetic field (Coulomb interactions), the propagating CMW becomes overdamped
and remains therefore elusive to experimental observations [15–21]. In [17], it was concluded
that because of these reasons, it is highly unlikely, if not even impossible, to detect an
underdamped CMW in heavy ion collision experiments.

Topological semimetals, such as Dirac or Weyl semimetals (DSM or WSM), represent
another important class of chiral anomalous systems [22]. Performing measurements on
anomalous transport in such systems is certainly simpler compared to the complex QGP
high-energy environment. In contrast to QGP, where the axial charge quickly relaxes due to
not only the axial anomaly but also the contribution from the dynamical gluons [23], the
axial charge in DSM or WSM could be nearly conserved, as suggested by the presence of
a large negative magnetoresistance [24].

Additionally, in topological semimetals, the tunability of the dimensionless parameter
eB/T 2 (with B the magnetic field, T the temperature and e the electric charge) potentially
facilitates the observation of the chiral magnetic wave. Finally, the scattering time of Weyl
fermions in topological semimetals spans a large range of values, from the long lifetime Weyl
quasiparticle regime [25, 26] to the hydrodynamic strongly correlated one [27–29] and plasma
regime [30]. All these factors together create favorable conditions that could potentially
enable the observation of CMW in such anomalous systems. Therefore, a theoretical study of
CMW in topological semimetals is timely and necessary to ascertain this further.

The objective of this study is to investigate the fate of CMW in a class of strongly
coupled topological semimetals described by holography [31, 32], in which time reversal
symmetry is broken while parity symmetry is preserved. In a weakly coupled WSM, due to
the topological protection of the WSM phase, the system maintains its WSM characteristics
even with an increasing separation of the Weyl nodes, provided that no topological phase
transition occurs [32]. Consequently, as the distance between the Weyl nodes in the Brillouin
zone increases, the transfer rate of chirality decreases, leading to an almost conserved axial
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charge. It is natural to expect that similar physics occurs in the holographic counterpart,
significantly influencing the dynamics of CMW as already anticipated in [15].

On top of that, Coulomb interactions are unavoidable in metals and semimetals [33–36],
and they undoubtedly influence many of their properties such as the charge susceptibility and
the electric conductivity [37]. The chiral magnetic wave, determined by the location of the
lowest poles in the density-density correlation functions of electric and axial charge, is also
subject to corrections due to Coulomb screening. In the holographic duality, the screening
effect is attributed to the presence of a dynamical gauge field in the boundary system,
achievable by using mixed-boundary conditions for the bulk gauge fields or equivalently
the double-trace deformation (DTD) method [38–40]. This approach has been used in the
literature in many instances, e.g., [41–48].

The focus of this work is to study the nature of the CMW, and the feasibility of its
experimental observation, in strongly coupled Weyl semimetals by taking into account the
effects of both axial charge relaxation and Coulomb interactions. More in general, our
investigation aims to offer theoretical insights for potential experimental setups in table-top
condensed matter systems.

This paper is organized as follows. In section 2, we construct the hydrodynamic theory
for chiral magnetic waves with and without Coulomb interactions. In section 3, we review the
holographic Weyl semimetal model and present the bulk solutions in the presence of a magnetic
field in the probe limit. In section 4, we introduce Coulomb interactions in the holographic
Weyl semimetals using mixed boundary conditions. In section 5, we investigate the dispersion
relation of the collective chiral magnetic waves in strongly coupled Weyl semimetals by
using the aforementioned holographic model. We conclude and discuss the most relevant
open questions in section 6. The computational details and additional information can be
found in appendices A to C.

2 Hydrodynamics of chiral magnetic waves in Dirac and Weyl semimetals

Chiral magnetic waves appear as a direct consequence of the combination of the chiral
magnetic effect (CME) and the chiral separation effect (CSE) in the presence of a background
magnetic field. As a result of these two effects, the vector charge ρV and the axial charge ρA

are able to generate each other inducing the propagation of a pair of longitudinal waves —
chiral magnetic waves. Aside from their longitudinal nature, this phenomenon is very similar
to the propagation of electromagnetic waves created by the interplay between magnetic and
electric fields and described by standard Maxwell equations. Recently, important analogies
have been also found in comparison to the emergence of second sound in superfluids [49].

The chiral magnetic effect refers to the generation of a vector current along a background
magnetic field direction B induced by a finite axial charge density [3], i.e.,

Jz
V = σCMEBz , σCME = 8αµA , (2.1)

where, without loss of generality, we choose the magnetic field along the z direction. Here, α

is the chiral anomaly coefficient, σCME the chiral magnetic conductivity, and µA the axial
chemical potential that relates to the axial charge density ρA = χAµA via the corresponding
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axial charge susceptibility χA. Similarly, the chiral separation effect is the generation of axial
current along a background magnetic field direction Bz induced by a finite charge density, i.e.,

Jz
A = σCSEBz , σCSE = 8αµV , (2.2)

where µV is the vector chemical potential. The vector charge density is then given by
ρV = χV µV with χV being the vector charge susceptibility.

The expressions mentioned above, and defining the CME and CSE, are valid only
in the homogeneous case, where all quantities do not depend on the spatial coordinates.
After introducing spatial dependence along the coordinate z, and taking into consideration
dissipative dynamics, the constitutive equations for the vector and axial currents are given,
to first order in derivatives O(∂) [8], by

Jz
V = σCMEB − σV ∂zµV = 8αB

χA
ρA − DV ∂zρV ,

Jz
A = σCSEB − σA∂zµA = 8αB

χV
ρV − DA∂zρA ,

(2.3)

where B = Bz. In the constitutive equations, eq. (2.3), we have assumed that parity symmetry
is preserved and only time reversal symmetry is broken, to have the same symmetry pattern
with the holographic Weyl semimetal set-up in section 3. σV , σA are respectively the vector
and axial conductivities, and

DV = σV

χV
, DA = σA

χA
, (2.4)

are the diffusion constants for the vector and axial charges, respectively (Einstein relations).
Moreover, in eq. (2.3) we have used the concrete expression for the CME and CSE con-
ductivities from [3, 4]. Note that the susceptibilities χA,V and conductivities σA,V in the
constitutive equations eq. (2.3) are just one contribution to the total DC conductivities once
axial charge relaxes over a long time scale introducing a Drude-like term, see appendix B.
When the axial charge is conserved, the first order hydrodynamic transport coefficients in
eq. (2.3) directly enter in the real part of the total DC conductivities.

In presence of a magnetic field B⃗ along z direction, but in absence of an electric field E⃗,
one has E⃗ · B⃗ = 0 and the axial anomaly does not contribute to any dynamics. However,
the U(1) axial symmetry is not a fundamental symmetry of nature; hence, axial charge is
not a conserved quantity but it rather decays at a rate Γ ≡ 1/τ5. In Weyl semimetals, the
axial charge relaxation time τ5 is usually much larger than the quasi-particles lifetime [50].
Therefore, axial charge is approximately conserved. The dynamics are then governed by
the conservation of the U(1) vector current and the softly broken non-conservation of the
axial one [15],

∂µJµ
V = 0 , ∂µJµ

A = −ΓρA . (2.5)

Here, the axial charge relaxation rate Γ is a phenomenological quantity that depends on
temperature, magnetic field and the separation between the Weyl nodes. We notice that the
second equation in eqs. (2.5) is meaningful only in the limit in which Γ is small (compared
to the characteristic timescale of the system).
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Combining the constitutive equations eqs. (2.3) with eqs. (2.5), we obtain the dispersion
relations for the two lowest excitations

ω± = − iΓ
2 − i

2(DA + DV )k2
z ±

√
(8αB)2

χAχV
k2

z − ((DA − DV )k2
z + Γ)2

4 . (2.6)

In the limit of small breaking of axial charge conservation, eventual corrections to σA, χA, DA

can be ignored, and one can consistently assume for simplicity that χA = χV = χ, σA =
σV = σ and that all parameters only depend on B (see [8] for more details about the validity
of this limit). Then, eq. (2.6) can be simplified to [15]

ω± = − iΓ
2 − iDk2

z ± 1
2

√
(16αBkz)2

χ2 − Γ2 . (2.7)

The above dispersion relation indicates that, in presence of axial charge relaxation, chiral
magnetic waves are not gapless propagating sound waves anymore. On the contrary, the real
part of their dispersion is nonzero only above a critical wave-vector. This type of dispersion,
gapped in momentum space, appears in several branches of physics [51]. As a concrete
example, it is the dispersion expected for shear waves in classical liquids [52].

In addition to axial charge relaxation, in Dirac and Weyl semimetals, the inevitable
Coulomb interactions play an important role as well. For example, at zero doping, Coulomb
interactions can induce non-Fermi liquid behavior [33], and a further phase transition into an
interaction-driven topological insulator [34, 35]. When we consider chiral magnetic waves,
Coulomb interactions are also non-negligible. For example, the dielectric function gets
screened by Coulomb effects [36]. The important effects of Coulomb interactions on chiral
magnetic waves have been noticed and discussed for the first time in [17], casting serious
doubts about the potential experimental detection of the latter in the quark-gluon plasma.

Simplifying the analysis by restricting it along the z direction, the parity-preserved
longitudinal currents can be now written as

JV
z = σCME B + σ (Ez − ∂zµV ) =

8αB

χA
ρA − D ∂zρV + σEz ,

JA
z = σCSE B − σ∂zµA = 8αB

χV
ρV − D∂zρA

(2.8)

where, as a consequence of dynamical electromagnetism, an electric field is naturally generated
by the presence of charge. In particular, the electric field satisfies Gauss’s law ∇⃗ · E⃗ = ρV /εe

where εe is the electric permittivity. Let us emphasize that, at this point, the electric field
Ez is not external but rather a dynamical field. Eqs. (2.8) are the most general constitutive
relations for the currents, since there are no Hall effect terms for the longitudinal currents in
the probe limit, i.e., when we ignore the variations of the temperature δT and velocity δuµ.
Also, terms like B · δσCME and B · δσCSE, that capture non-linear effects in the magnetic
field, do not appear at this order. As shown below, in our setup, the dynamical magnetic
field vanishes and, as a consequence, there are no terms like σCMEδB or σCMEδB either.

The above analysis is consistent with Maxwell equations,

∇⃗ · E⃗ = ρV

εe
,
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∇⃗ · B⃗ = 0 ,

∇⃗ × B⃗ = µmJ⃗ + εeµm
∂E⃗

∂t
,

∇⃗ × E⃗ = −∂B⃗

∂t
(2.9)

where µm is the magnetic permeability. In the presence of a charge density ρV (t, z), a
longitudinal electric field Ez(t, z) is generated according to Gauss’s law. Since ∇⃗ × E⃗ = 0,
there is no time-dependent magnetic field generated by the dynamical electric field, and we
have only an external background magnetic field Bz. Finally, ∇⃗ · B⃗ = 0 is trivially satisfied
and Ampere’s law reduces to J⃗ + εe

∂E⃗
∂t = 0. This equation is nothing but the relaxation of

electric lines in the presence of charged matter, which corresponds to the explicit breaking
of the electric 1-form global symmetry [53].

Because of the EM-generated dynamical electric field, the axial anomaly does not vanish
anymore and the dynamical equations become

∂µJµ
V = 0 , ∂µJµ

A = 8α E⃗ · B⃗ − ΓρA . (2.10)

The above equations, together with the constitutive equations, lead to the corresponding
dispersion relation for chiral magnetic waves,

ω± = − iΓ
2 − iσ

2εe
− iDk2

z ±

√
4εe (8αB)2 (χ + εek2

z)− (σ − εeΓ)2χ2

2εeχ
. (2.11)

Notice that the dispersion relation eq. (2.11) gets corrected by both axial relaxation and
Coulomb screening effects, which is beyond the results of [8], where neither of these effects is
included, and of [15] where only axial relaxation is considered.

Using a non-relativistic hydrodynamic framework for WSM, CMW along with other
collective modes have been investigated in [29], where a steady state of the chiral electron
fluid is realized by introducing momentum dissipation in the Euler equation. In contrast, our
setup does not consider the dynamics of energy and momentum (which are not relevant for
the holographic model in the probe limit) and Ohm’s law appears directly in the constitutive
equation for the dynamical electric field self-generated by the near-equilibrium Weyl plasma.
Let us stress that the analysis in [29] is limited to the hydrodynamic framework where the
hydrodynamic parameters cannot be determined. On the contrary, in our case we will make
use of the holographic model as a microscopic description allowing a direct estimate of all
the hydrodynamic coefficients as well.

The results in absence of Coulomb interactions presented above in eq. (2.7) can be
obtained by sending εe → ∞ in eq. (2.11). We remind that χ and σ here are the unscreened
transport coefficients computed in absence of Coulomb interactions. Later on, we will discuss
this point in more detail, and we will show that the dispersion relations in eqs. (2.11) are
nothing but the poles of the screened current-current correlator.
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3 Magnetic field effects on holographic Weyl semimetals

We consider the holographic Weyl semimetal model [31, 32] (see [54] for a review) described
by the five-dimensional bulk action

S =
∫

d5x
√
−g

[ 1
2κ2

(
R + 12

L2

)
− 1

4e2F
2 − 1

4e2 F 2 − (DµΦ)∗(DµΦ)− V (Φ) (3.1)

+ ϵµνρστ Aµ

(
α

3
(
FνρFστ + 3FνρFστ

))]
,

with Fµν = ∂µVν − ∂νVµ, Fµν = ∂µAν − ∂νAµ and DµΦ = (∂µ − iqAµ)Φ. The axial anomaly
in the dual field theory is introduced using Chern-Simons terms proportional to α that are
determined by the anomalous structure of the currents. The ratio between the coefficients of
A∧F ∧F and A∧F∧F is fixed by considering the consistent current choice where the vector
current is conserved and only the conservation of axial current is broken (by anomaly).1 The
complex scalar field Φ couples to the axial vector field Aµ and its scalar potential is given by
V (Φ) = m2|Φ|2. Whenever this scalar has a non-zero boundary source, axial symmetry is
explicitly broken and axial charge relaxes. Here, we choose the scalar mass m2 = −3 and
switch on only the z component of the axial gauge field Az. Without loss of generality, we
will choose 2κ2 = L2 = e2 = 1 in the rest of the manuscript.

With these definitions, the consistent currents in the dual field theory can be defined
by the following expressions [2]

Jµ
V = lim

r→∞
δS

δVµ
= lim

r→∞

√
−g (Fµr + 4αϵrµνρσAνFρσ) , (3.2)

Jµ
A = lim

r→∞
δS

δAµ
= lim

r→∞

√
−g

(
F µr + 4

3αϵrµνρσAνFρσ

)
, (3.3)

where r is the radial coordinate in the bulk and r = ∞ is the UV AdS boundary.
The Ward identities for the consistent currents are then

∂µJµ
V =0 ,

∂µJµ
A = lim

r→∞

√
−g

(
−α

3 ϵrµνρσ (FµνFρσ+3FµνFρσ)−iq[Φ(DrΦ)∗−Φ∗(DrΦ)]
)
+c.t. ,

(3.4)

where “c.t.” stands for contact terms. As expected, the vector current is conserved. On
the contrary, the axial current is not conserved due to the axial anomaly proportional to
α and the effects of the scalar field Φ. When E⃗ = 0 , B⃗ ̸= 0, only a source for the scalar
field can explicitly break axial charge conservation.

3.1 The solution in the probe limit

We work in the probe limit in the presence of background magnetic field and at finite
temperature. In the context of holographic Weyl semimetals, the probe limit is a reasonable
approximation as long as the system is not too close to the quantum critical point and Bz

is not parametrically larger than temperature [55].
1We use the following convention for Levi-Civita symbol ϵ̃txyzr = 1 or ϵ̃txyzr = −1, and the Levi-Civita

tensor ϵµνρστ ≡
√
−gϵ̃µνρστ and ϵµνρστ ≡ 1√

−g
ϵ̃µνρστ .
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In order to study chiral magnetic waves in WSM, we consider the simplest setup with

µ = µ5 = ρ5 = 0 , ρ ̸= 0 , E⃗ = 0 , Bz ̸= 0 , bz ̸= 0 , M ̸= 0 . (3.5)

From the bulk point of view, this corresponds to the AdS-Schwarzschild solution where we
neglect the backreation of matter field on the metric, i.e.,

ds2 = −udt2 + dr2

u
+ r2dx⃗2 , u(r) = r2

(
1− r4

h

r4

)
,

V = Vtdt + B

2 (ydx − xdy) , A = Azdz , Φ = ϕ(r) .

(3.6)

Here B = Bz is in the same direction of z.
The asymptotic behaviors of the matter fields near to the AdS boundary, r → ∞, are

given by

rϕ(r) = M + . . . ,

Az(r) = b + . . . ,

Vt(r) = µ + . . . .

(3.7)

where M corresponds to a source for the dual scalar operator that breaks U(1) axial symmetry,
b relates to the separation of the chiral nodes and µ is the chemical potential in the boundary
field theory. We will be interested in zero chemical potential states.

The equations of motion for Az , ϕ , and Vt are

A′′
z +

(1
r
+ u′

u

)
A′

z −
2q2ϕ2

u
Az +

8αB

ru
V ′

t = 0 ,

ϕ′′ +
(3

r
+ u′

u

)
ϕ′ −

(
m2

u
+ q2A2

z

r2u
+ λϕ2

u

)
ϕ = 0 ,

V ′′
t + 3

r
V ′

t + 8αB

r3 A′
z = 0 .

(3.8)

Notice that the last equation in (3.8) reduces to a total derivative

(r3V ′
t + 8αBAz)′ = 0 , (3.9)

and its solution can be formally written as

Vt(r) =
∫ r

r0

ds

s3

(
c1 − 8αBAz(s)

)
+ c2 , (3.10)

where c1 and c2 are integration constants. As required by the regularity conditions, Vt

vanishes at the horizon, i.e., c2 = 0. The choice of c1 is arbitrary and is related to the
chemical potential µ in the field theory. We will focus on zero chemical potential states µ = 0
via choosing c1 that is a function of the parameters in the boundary field theory.

For later convenience, we define the dimensionless parameters in our system as

B̃ ≡ B

π2T 2 , M̃ ≡ M

πT
, b̃ ≡ b

πT
. (3.11)
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3.2 Magnetic field effects on the phase diagram

An interesting question arises when we switch on a magnetic field in a Weyl semimetal,
that is, does the topological phase still exist or is it broken by the magnetic field? In other
words, does the magnetic field change the phase diagram and the topological phase transition
between a topological Weyl semimetal to a gapped trivial phase?

In the weakly coupled field theory [56, 57], this can be investigated by solving the Landau
levels from the Hamiltonian where the electrons couple to the magnetic field B. One can
find [56, 57] that the chiral conduction band splits into an infinite number of Landau levels
in the presence of B. Importantly, the lowest Landau level remains the chiral band and it
is unchanged by B. More precisely, via tuning the ratio M/b between the mass and the
time-reversal breaking in the Lorentz violating Dirac equation [58][

γµ (i∂µ − eVµ)− γ5γzb − M
]
Ψ = 0 (3.12)

in the presence of the magnetic field, Vµ = (0, By/2,−Bx/2, 0), the topological phase
transition pattern remains unchanged. Now, the energy spectrum is made of Landau Levels.
The lowest one is defined by the dispersion

E0 = b ±
√

k2
z + M2 , (3.13)

where we have set kx = ky = 0. Expression (3.13) takes exactly the same form as without
magnetic field. The detailed expression for higher Landau levels can be found in e.g. [57].
The key observation is that the magnetic field does not alter the lowest band structure.
However, this analysis is reliable only when the magnetic field is sufficiently small, since
otherwise the degrees of freedom from the higher Landau levels would get excited as well,
spoiling this approximation.

In strongly coupled Weyl semimetals, the notion of electronic bands is absent and the
anomalous Hall conductivity (AHE) serves as the order parameter to identify the Weyl
semimetal phase and the topological phase transition [31, 32]. To compute the AHE, the
transverse sector of fluctuations at kz = 0 is switched on, i.e., δvx, δvy, δax, δay. The EOMs
for the transverse sector are summarized in appendix A.2. It turns out that in the probe
limit with background magnetic field the holographic formula for the anomalous Hall effect
remains unchanged,

σAHE = 8αAz(rh) , (3.14)

and depends only on the horizon behavior of Az.
The structure of the phase diagram for different values of the magnetic field B can be

obtained by looking at the order parameter σAHE shown in figure 1. For small magnetic field,
for which the probe limit is valid,2 the inflection point does not move. Hence, the location of
the quantum critical point in terms of the dimensionless parameter M/b does not depend on
B (or on the sign of B). Interestingly, this phenomenon is the exactly same as in the weakly
coupled theory in which the Weyl semimetal phase and the topological phase transition are
dominated by the lowest Landau level that is independent of B.

2The backreaction of the magnetic field might have nontrivial effects on magnetotransport properties,
e.g., [59].
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Figure 1. Anomalous Hall conductivity σAHE as a function of M/b for different, and small values of
the dimensionless magnetic field B̃, at a low temperature T/b = 1/(8π).

In the backreacted case with finite magnetic field, we do not have such a simple expression
for AHE as eq. (3.14). This can be seen as follows. First, let us notice that there exists a
topological Chern-Simons charge induced by the anomaly, i.e., ρCS ∝ b⃗ · B⃗. In the gravitation
theory, this indicates the necessity of having a nonzero time component of the vector gauge
field Vt ̸= 0. When we switch on the fluctuations to compute anomalous Hall conductivity,
this non-vanishing potential couples the fluctuations of vector and metric fields together,
making the computations complicated. In this case the anisotropy of the butterfly velocity
has been investigated as an effective probe of the phase transition [57]. In this work, we
focus on the probe limit for simplicity.

3.3 Axial charge relaxation time

When axial charge conservation is weakly broken, the conservation equation is modified into

∂µJµ
A = −ΓρA , (3.15)

which indicates that the axial charge ρA decays with a relaxation time τ5 ≡ 1/Γ. This
relaxation time τ5 can be computed by looking at the corresponding purely imaginary pole
in the axial charge density-density correlation function of, i.e.,

τ−1
5 ≡ −Im(ω∗) = Γ , (3.16)

where ω∗ is the non-hydrodynamic pole related to axial charge relaxation. In the holographic
dual picture, the pole in the correlation function can be derived from the quasi-normal modes
(QNM) spectrum of the bulk theory.

The dependence of the axial relaxation time τ5 on b̃ is shown in the left panel of figure 2.
The horizontal axis represents the dimensionless separation of the Weyl nodes in wave-vector
space, b̃, while the vertical axis represents the inverse axial charge relaxation time normalized
by temperature, (τ5T )−1. We observe that (τ5T )−1 decreases monotonically by increasing b̃

for all values of M̃ . In the small b̃ regime, we find that the decay can be well approximated by
a quadratic power law scaling. In the large b̃ regime, τ−1

5 decays to zero. This indicates that
even in the small external magnetic field regime, B ≪ T 2, with fixed M̃ , τ5T can be made
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Figure 2. Left: the dimensionless axial relaxation time as a function of b̃ for different values of M̃

with fixed B̃ = 0.1. In the small b̃ regime, the decrease in (τ5T )−1 obeys a square law in terms of b̃

which is shown by the dashed black curve. Right: (τ5T )−1 as a function of M̃ , for different values of b̃.

arbitrarily large by taking the limit M/b → 0. This is consistent with the physical intuition
that the larger the distance between the two chiral nodes in the Brillouin zone, the more
inhibited the processes between the two nodes that do not conserve chirality. For completeness,
we show the dependence of (τ5T )−1 on M̃ for different b̃ in the right panel of figure 2. The
results are consistent and show that the axial relaxation rate Γ follows approximately a
quadratic power law behavior Γ ≃ aM̃2 where the coefficient a decreases as we increase b̃.

Interestingly, the axial relaxation time τ5 displays a universal relation

(τ5T )−1 ≃ 2
χA

ϕ2
h , (3.17)

where ϕh ≡ ϕ(rh) is the horizon value of the bulk scalar field. The coefficient 2/χA depends
only on the magnetic field B and not on b̃, as demonstrated in the right panel of figure 3.
This relation indicates that τ5, or equivalently Γ, depends only on a single IR quantity ϕh.
Nevertheless, it is important to notice that such an horizon value does not have a clear
interpretation from the boundary field theory perspective, where it is a function of both
M̃ and b̃. This universal relation is robust against variations of temperature T , magnetic
field B, the chiral separation b, and the fermion mass M .

Eq. (3.17) can be obtained as follows. In holography, the longitudinal DC conductivity
in the presence of a background magnetic field B and axial relaxation reads

σDC = πT + 32B2α2

π3T 3q2ϕ2
h

, (3.18)

where the second term is proportional to B2 due to the axial charge relaxation and represents
the phenomenon of negative magnetoresistance [27, 55]. On the other hand, the longitudinal
DC conductivity can also be calculated from chiral hydrodynamics [27] at zero densities,

σDC = σV + (8Bα)2τ5
χA

, (3.19)

where σV ≃ πT since the above formulae are valid only when the magnetic field is weak
and the axial relation time is long.
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Figure 3. The universal relation between Γ and the horizon value of the bulk scalar field, i.e.
ϕh ≡ ϕ(rh). In the right panel, a different representation which emphasizes the universal behavior
τ−1

5 ≃ 2
χA

ϕ2
h (dashed black line) where χA only depends on B.

Figure 4. Contour plot of (τ5T )−1 in the M̃ -b̃ plane for B̃ = 0.1.

Comparing the two equations, eq. (3.18) and eq. (3.19), we conclude that

Γ = τ−1
5 ≃ 2π3T 3 q2ϕ2

h

χA
, (3.20)

which is exactly the universal relation found numerically in figure 3 where we work in the unit
πT = 1 and have set q = 1. Note that this relation is valid only when B/T 2 ≪ 1 and τ5T ≪ 1.

To summarize our findings, we present a contour plot of (τ5T )−1 in the M̃ -b̃ plane in
figure 4. The changes in the rainbow color confirm that (τ5T )−1 increases with M̃ , and the
more and more dense contour lines indicate the quadratic increase. Finally, the vertical
bending in the contour lines shows that chiral separation increases the lifetime of axial charge.
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4 Coulomb interactions in the holographic Weyl semimetal model

Coulomb interactions are inevitably present in Dirac and Weyl semimetals, and impose
corrections to the transport properties. As a concrete example, the susceptibility is de-
fined from the second order variation of the free energy with respect to the charge density.
Coulomb interactions between electrons and ions contribute to the free energy and hence
the susceptibility gets screened.

In the presence of Coulomb interactions, the dynamical density-density correlation
function in the random-phase approximation (RPA) is (see appendix C for details)

χsc(ω, k⃗) = χ(ω, k⃗)
1− λe

|⃗k|2
χ(ω, k⃗)

, (4.1)

where the inverse momentum squared indicates the Coulomb potential in the momentum
representation. λe is the electromagnetic coupling constant, which is left as a tunable
parameter. On the left side, χsc(ω, k⃗) is the screened density-density correlation function in
response to the external charge density ρext. On the right side, χ(ω, k⃗) is the unscreened
density-density correlation in response to the external gauge potential vext that dictates the
response of the system in absence of the Coulomb potential.

Coulomb interactions have also important effects on the electric conductivity. In their
presence, the (locally resolved) screened longitudinal conductivity σsc is given in terms of
the unscreened one σ as

σsc(ω, k⃗) = σ(ω, k⃗)
1− λe

iω σ(ω, k⃗)
, (4.2)

which is also based on RPA.
Coulomb interactions lead to different poles in the screened density-density and current-

current correlation functions with respect to their unscreeed counterparts. The ratio between
the unscreened susceptibility (conductivity) and the screened susceptibility (conductivity)
defines the dynamical dielectric function, i.e.,

ϵ(ω, k⃗) ≡ 1− λe

|⃗k|2
χ(ω, k⃗) = 1− λe

iω
σ(ω, k⃗) , (4.3)

which plays a fundamental role in this discussion and which reduces to 1 in absence of
Coulomb interactions. We can now anticipate the different meanings of poles of χ(ω, k⃗) and
χsc(ω, k⃗) and their interpretation in the holographic side. To compute the poles of χ(ω, k⃗),
we must take Dirichlet boundary conditions for the vector gauge field at the boundary. This
means that we switch off the external source of the charge density, e.g., vext = 0. On the
contrary, to compute the poles of χsc(ω, k⃗), we take the dynamical dielectric function to vanish

ϵ(ω, k⃗) = 0 , (4.4)

which corresponds to the external charge density ρext to vanish, i.e., ρext = 0. In the zero
wave-vector limit k⃗ → 0, ϵ(ω = Ωpl, k⃗ → 0) = 0 gives the plasma frequency ω = Ωpl. We
refer to [60] for a nice discussion on this point in holography.
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Here, we consider a dynamical gauge field in the boundary field theory by imposing
mixed boundary conditions for the vector gauge field. We start from the total action for
the gauge field

SV
total =

∫
d5x

√
−g

[
−1
4F

2 + αϵµνρστ AµFνρFστ

]
+
∫

r=r∞
d4x

√
−γ

[ log r

4 F2 − 1
4λe

F2 + VµJµ
ext

]
,

(4.5)

where the last two terms are a boundary kinetic term and a Legendre transform. Then,
SV

total leads to the equation of motion

Πµ
V − 1

λe
∂νF

µν + Jµ
ext = 0 , (4.6)

where λe is the electromagnetic coupling at the boundary since we have fixed the bulk
electromagnetic coupling to unit in the bulk. Considering the time component of eq. (4.6),
we find the electric permittivity (by comparing with eq. (2.9))

εe = 1/λe . (4.7)

The conjugate momentum Πµ
V along the radial direction is given by

Πµ
V = lim

r→∞
δSren
δVµ

= lim
r→∞

√
−g (Fµr + 4αϵrµνρσAνFρσ) . (4.8)

Here, we have taken the saddle point approximation and Sren is the renormalized on-shell
action defined in eq. (A.14). The radial conjugate momentum corresponds to the U(1) vector
current Πµ

V = Jµ
V with ∂µΠµ

V = 0 such that eq. (4.8) is simply the Maxwell equation in
the boundary field theory.

In terms of the boundary expansions (r → ∞)

vt = v
(0)
t + v

(1)
t

r2 log r − v
(2)
t

r2 + . . . , vz = v(0)
z + v

(1)
z

r2 log r + v
(2)
z

r2 + . . . ,

at = a
(0)
t + a

(1)
t

r2 log r − a
(2)
t

r2 + . . . , az = a(0)
z + a

(1)
z

r2 log r + a
(2)
z

r2 + . . . ,

(4.9)

we have

Πt
V = 2v

(2)
t + 8αBa(0)

z , ∂µF
µt = kz(ωv(0)

z + kzv
(0)
t ) ,

Πz
V = 2v(2)

z − 8αBa
(0)
t , ∂µF

µz = ω(ωv(0)
z + kzv

(0)
t ) .

(4.10)

The first-order variation of the conjugate momentum immediately follows as

δΠt
V = 2 δv

(2)
t + 8αB δa(0)

z , δ

( 1
λe

∂µF
µt
)
= kz

λe

(
ω δv(0)

z + kz δv
(0)
t

)
,

δΠz
V = 2 δv(2)

z − 8αB δa
(0)
t , δ

( 1
λe

∂µF
µz
)
= ω

λe

(
ω δv(0)

z + kz δv
(0)
t

)
,

(4.11)

and therefore

δJ t
ext = −2 δv

(2)
t − 8αB δa(0)

z − kz

λe

(
ω δv(0)

z + kz δv
(0)
t

)
,

δJz
ext = −2 δv(2)

z + 8αB δa
(0)
t − ω

λe

(
ω δv(0)

z + kz δv
(0)
t

)
.

(4.12)
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In terms of the U(1) gauge invariant quantity v ≡ vt + ω
kz

vz, we obtain the variation rule

δJ t
ext = − 2k2

z

ω2 − k2
z

δv(2) − 8αB δa(0)
z − k2

z

λe
δv(0) ,

δJz
ext = − 2ωkz

ω2 − k2
z

δv(2) + 8αB δa
(0)
t − ωkz

λe
δv(0) .

(4.13)

Setting the external currents above to zero corresponds to a vanishing dynamical dielectric
function, and gives us therefore the poles of the screened density-density correlation function.

5 Chiral magnetic waves (CMW) in the holographic Weyl semimetal
model

Let us first briefly review some general properties of the chiral magnetic waves. Since CMW
appear both for finite densities µ ̸= 0 , µ5 ̸= 0 and zero densities µ = µ5 = 0, for simplicity,
we limit our analysis to the second simpler case.

In the absence of a magnetic field and axial charge relaxation, i.e., B = Γ = 0, both the
vector and axial charges diffuse at late time, corresponding to two independent hydrodynamic
diffusive modes. Switching on a background magnetic field, B ̸= 0 ,Γ = 0, due to the axial
anomaly, the two diffusive modes mix with each other via the CME and CSE and result in
two propagating modes — chiral magnetic waves [8]. Instead, by switching off the magnetic
field and considering the axial charge relaxation effect, i.e. B = 0 ,Γ ̸= 0, the axial charge
diffusive mode becomes a non-hydrodynamic gapped diffusive mode (described by a U(1)
quasi-hydrodynamic theory [61]) while the diffusive mode corresponding to vector charge
fluctuations remains unchanged.

In the presence of both the magnetic field and axial charge relaxation, i.e. B ̸= 0 ,Γ ̸= 0,
the diffusive hydrodynamic mode arising from the conservation of the vector charge and
the gapped non-hydro mode induced from the non-conserved axial charge display a complex
interplay. This situation has been studied numerically in [15] but without considering the
separation between the Weyl nodes which is relevant for the case of WSM.

5.1 CMW in holographic WSM without Coulomb screening

We first consider the simplest case without Coulomb screening. With the help of numerical
techniques, we demonstrate that the dispersion relation of CMWs in holographic WSM is
in perfect agreement with the predictions in eq. (2.7) from chiral quasi-hydrodynamics. We
provide an example in figure 5, where the orange solid lines represent the analytical predictions
from eq. (2.7), while the blue dots are the numerical results from the holographic computations.
We have checked that as long as τ5T ≫ 1, eq. (2.7) fits well the numerical results.

The spectrum displays a hydrodynamic diffusive mode and a non-hydrodynamic transient
mode that collide on the imaginary axes at a real value of the wave-vector kc. Above such a
value a real part of the dispersion develops and for k ≫ kc a propagating wave re-emerges.
Following (2.7), the location of the critical point is given by

kc =
Γχ

16αB
, ωc = − iΓ

2 − iD

( Γχ

16αB

)2
, (5.1)
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Figure 5. The two lowest QNMs with B̃ = 0.05 , b̃ = 1 , M/b = 0.1. The numerical results are shown
by the numerical points while the prediction from quasi-hydrodynamics in eq. (2.7) by the solid lines.

in the slow axial relaxation regime τ5T ≫ 1. Here, χ and D are only functions of B. When
we fix B, M and T , Γ decreases monotonically with respect to chiral separation parameter b,
as shown in figure 2. As a consequence, chiral separation decreases the value of the critical
wave-vector kc pushing the propagating regime towards smaller wave-vectors.

5.2 CMW in holographic WSM with Coulomb screening

Next, we take Coulomb interactions into consideration as a more realistic scenario for
conducting semimetals. We recall the corresponding dispersion relation for the lowest
excitations

ω± = − iΓ
2 − iσ

2εe
− iDk2

z ±

√
4εe (8αB)2 (χ + εek2

z)− (σ − εeΓ)2χ2

2εeχ
. (5.2)

One can notice that there are two timescales that might possibly destroy the hydrodynamic
nature of the modes in eq. (5.2): (I) τ−1

5 = Γ that comes from axial relaxation and (II)
τ−1 = σ/εe that arises because of electric field relaxation due to Coulomb screening. Let us
first assume τ5 ≫ τ so that axial relaxation can be ignored, i.e. Γ = 0. Then, we have

ω± = − iσ

2εe
− iDk2

z ±

√
4εe (8αB)2 (χ + εek2

z)− σ2χ2

2εeχ
. (5.3)

This equation is quite interesting. By tuning the magnetic field B or the permittivity εe,
the term in the square root can either be negative or positive as kz → 0, which is different
from eq. (2.7), where that is always negative at kz = 0.

When the term inside the square root is negative, the two modes are purely imaginary in
the small momentum regime, which is similar to eq. (2.7). However, now both of ω± have an
imaginary gap since even the vector charge dissipates at long wavelength due to screening
effects. This structure of the modes is very similar to what found in the linear axion model
for momentum relaxation [62, 63]. It has also been found and discussed in the context of
holographic plasmons [64–67], where nevertheless the dynamics are more complicated since
they are a result of a three modes interaction. As an example, taking a sufficiently small B,
figure 6 demonstrates this qualitative difference in comparison with figure 5. Notice that in
this regime the gap is still in wave-vector space and there is no finite real part below kc.
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Figure 6. Lowest modes with B̃ = 0.002, M̃ = b̃ = 0 and λe/(πT ) = 10−3. The numerical results
are displayed by the numerical bullets while the quasi-hydrodynamical prediction from eq. (5.3) by
solid lines.
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Figure 7. Lowest modes with B̃ = 0.005, M̃ = b̃ = 0 and λe/(πT ) = 10−3. The numerical results
are displayed by the numerical bullets while the quasi-hydrodynamical prediction from eq. (5.3) by
solid lines.

As the magnetic field B increases and becomes larger than a critical value, the term in
the square root in eq. (5.3) can become positive for arbitrary values of the wave-vector k.
As a result, the critical momentum kc does not exist anymore and the gap is transferred in
frequency — a mass gap. Once again, notice the similarities with [63] (figure 10 therein).
This implies the emergence of a mass/frequency gap in as illustrated in figure 7.

Now, let us move beyond the limit in which axial relaxation is negligible and consider
Γ ̸= 0. As Γ increases, the real parts in ω± are suppressed. Reaching a critical Γ, the real
parts vanish and the critical momentum kc further develops. We provide an example in
figure 8, where the temperature T , magnetic field B, and permittivity εe are the same as
those in figure 7. The only difference is we switch on axial relaxation with M/b = 0.1. One
can find that axial relaxation forces the real part to disappear, and thus figure 8 becomes
qualitatively similar to figure 6, instead of figure 7. In other words, axial charge relaxation
favours the scenario with a k-gap rather than that with a frequency gap.

5.3 Properties of CMW and screened conductivity in holographic WSM

We finally study the properties of the CMW in a strongly-coupled WSM. When the magnetic
field is not too strong and the electric charge and axial charge slowly dissipate, the dispersion
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Figure 8. Lowest QNMs with B̃ = 0.005 , λe/(πT ) = 10−3 , b̃ = 1 and M/b = 0.1. The numerical
results are represented by the numerical points while the prediction from quasi-hydrodynamics eq. (5.2)
by solid lines.

relations of the CMW are precisely described by the quasi-hydrodynamic theory presented in
section 2. Therefore, in such limit, we can directly use the quasi-hydrodynamic expressions
eq. (5.2) to illustrate our results in figure 9.

As shown in eq. (5.2), in general the dispersion of the lowest modes ω± has a real
part which corresponds to the characteristic energy of the excitation and a imaginary part
describing its attenuation rate or lifetime. Without loss of generality, we focus on ω− and define

ω−(kz) = −Ω(kz)− iγ(kz) , (5.4)

where the minus sign in the real part indicates it propagates along the opposite direction with
respect to the z axis. Ω(kz) and γ(kz) depend on the parameters B, εe and Γ. Importantly,
we define the ratio Ω/γ as a good indicator to establish the nature of the excitations. For
Ω/γ ≫ 1, the modes are underdamped and eventually propagating. On the contrary, for
Ω/γ ≪ 1, the modes are overdamped and they are not able to propagate. This condition
will obviously render their experimental detection very hard.

The magnetic field B plays the most crucial role in controlling the ratio Ω/γ. In the
small B regime, there is a k-gap in the real part of the dispersion. As B increases, the k-gap
disappears and the absolute value of the real part increases with B. Correspondingly, Ω/γ

at kz = 0 remains zero below a critical value of the magnetic field and can reach very high
values when the magnetic field is strong, which indicates that the overdamped wave becomes
underdamped. As a concrete example, we take εe = 100 and Γ = 1/1000 (in unit πT = 1)
to show the effects of B in the first and second rows in figure 9.

Both the energy of the CMW and the ratio Ω/γ are not very sensitive to the permittivity
εe. As shown in the third row in figure 9, when we fix B = 0.1 and Γ = 1/1000 (in unit
πT = 1), the behavior of CMW remains qualitatively similar as εe ranges from 102 to 104.

The relaxation of the axial charge tends to destroy the CMW at small wave-vector, and
consequently leads to a k-gap in the spectrum. For example, in the last row in figure 9 we
take B = 0.1 and εe = 100 (in unit πT = 1) to demonstrate the effects of axial relaxation.
It appears clear that a k-gap develops and then increases with Γ, while Ω/γ decreases
monotonically to zero, which gradually makes the CMW overdamped and hence difficult
to detect with experimental probes.
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Figure 9. Waterfall plots for the real part of the dispersion relation Re(ω) ≡ −Ω (Left) and the ratio
Ω/γ ≡ Re(ω)/Im(ω) (Right) as a function of the wave-vector kz and the magnetic field (rows 1–2),
permittivity (row 3), and axial relaxation (row 4) respectively.
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In addition to the damped CMW, another observable that is accessible from experiments
is the screened AC conductivity defined by

σsc(ω, k⃗ = 0) = σ(ω, k⃗ = 0)
ϵ(ω, k⃗ = 0)

= σ(ω, k⃗ = 0)
1− λe

iω σ(ω, k⃗ = 0)
, (5.5)

where σ(ω, k⃗ = 0) is the bare AC conductivity computed from eq. (B.12) with infalling
boundary conditions. Since the CMW is defined from the condition ϵ(ω, k⃗ = 0) = 0, its
signature should emerge in the conductivity when the imaginary part is small enough. As
a result, σsc(ω, k⃗ = 0) is a good observable to detect the magnitude of Ω/γ and to observe
the CMW when it is underdamped.

As shown in figure 10, both the real and imaginary parts of σsc(ω) present qualitatively
different behaviors depending on whether Ω/γ is large or small. In the real Weyl semimetals,
the axial charge can be nearly conserved [24] and for simplicity, we take the Γ = 0 limit
in order to focus on the screening effect. The magnetic field is fixed as B̃ = 0.05, and we
dial the strength of the Coulomb interactions, i.e., λe = ε−1

e . Increasing λe, the location of
the pole on the complex plane, defined from the condition ϵ(ω, k⃗ = 0) = 0, moves towards
larger values as shown by the blue curve in the upper left plot of figure 10. On the contrary,
the ratio Ω/γ decreases with it as shown in the corresponding upper right plot. Regarding
the screened conductivity, when the magnitude of Ω/γ is sufficiently large, the real part
of σsc presents a sharp resonance peak located at approximately, but not exactly, Re[ω(0)].
When the magnitude of Ω/γ diminishes, the width of the resonance peak increases and
the response becomes incoherent and flat. A similar behavior is found in the imaginary
part. Intuitively, the features found in the conductivity are just related to the nature of the
corresponding excitation which needs to be underdamped to produce a nice peak feature
in the conductivity, and therefore be detectable.

We summarize this section with a contour plot of the ratio Ω/γ at Γ = 0 and kz = 0,
which is a reasonable approximation compared with the realistic Weyl semimetals. As shown
in figure 11, when the magnetic field is small, i.e., B̃ ≲ 0.02, the CMW is always overdamped
with Ω/γ ≲ 10 and decays exponentially to zero at long wavelengths, kz → 0. In the
strong Coulomb interaction limit λe → ∞ (εe → 0), the CMW is also overdamped due to
charge decay. On the contrary, when the parameters are chosen to be above the contour line
Ω/γ = 20, the CMW is underdamped and still propagates at long wavelength, leading to an
observable peak in the real part of the screened AC conductivity σsc.

6 Conclusions

Using hydrodynamics and bottom-up holography, we have performed a comprehensive study of
the dispersion relation of collective chiral magnetic waves in strongly-coupled Weyl semimetals.
In both frameworks, we have included the effects of axial charge relaxation and Coulomb
interactions. Moreover, we have explicitly verified that the two methods give consistent results.

Using the holographic model as the underlying microscopic theory, we have first verified
that the magnetic field does not affect the phase diagram in the probe limit. Then, we
observed that the axial relaxation time τ5 becomes longer in the Weyl semimetal phase than
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Figure 11. Contour plot of Ω/γ at Γ = 0 and kz = 0, in the εe-B̃ plane.
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in the trivial semimetal one, which indicates that the Weyl nodes separation tends to restore
axial charge conservation. Consequently, we argued that a longer τ5 would facilitate the
observation of chiral magnetic waves as underdamped collective excitations, making Weyl
semimetals a possibly more promising experimental platform for their identification than heavy
ion collisions. We also notice that in Weyl semimetal experiments, the behavior of negative
longitudinal magnetoresistance [24, 50] indicates the presence of a large axial relaxation time.

Coulomb interactions, that are realized in holography using mixed boundary conditions
for the bulk gauge field, modify the diffusion of vector charge fluctuations into a relaxation
of the latter which is governed by the electric conductivity. However, Coulomb interactions
also induce an energy gap (plasma frequency) that makes the dynamics of chiral magnetic
waves more complicated. Now, different regimes can appear in which the dispersion relation
of the chiral magnetic waves display a gap either in energy or in wave-vector, depending
on which of the parameters dominate. We have confirmed that the hydrodynamic theory
considered capture all these effects well and indeed is quantitatively consistent with the
numerical data from holography.

Finally, in order to verify whether chiral magnetic waves could be observable as under-
damped excitations, we have investigated the ratio between the energy and relaxation rate,
i.e., Ω/γ, and focused on the effects of the magnetic field, Coulomb interactions, and axial
relaxation that are the typical measurable parameters in Weyl semimetals. To provide a
more direct test of the aforementioned ratio, we also computed the screened conductivity in
the holographic Weyl semimetal model and showed a one-to-one correspondence with the
damped propagating chiral magnetic wave. As expected, when the chiral magnetic wave is
underdamped, we observe a peak in the screened conductivity σsc that could be in principle
directly accessible to experiments.

Many questions are left to be explored. It would be interesting to study the possibility
of observing CMW in holographic nodal line semimetals [68–70], as well as to explore the
observable effects of CMW in neutron stars [71, 72], or even in our early universe [73, 74].

Moreover, it would be fruitful to investigate in more detail the dielectric response
and the properties of the plasmon frequency with respect to magnetic field in topological
semimetals [75], which might be another feasible method to detect CMW. Additionally,
it is known that there might exist other types of waves in Weyl semimetals due to the
torsional strain deformations, e.g., chiral sound wave [76], chiral density wave [77]. It would
be interesting to study these waves in the holographic Weyl semimetal model by introducing
the effects of elasticity and strain (see [78]).
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A Equations of motion

The action for the holographic WSM model is given by

S =
∫

d5x
√
−g

[ 1
2κ2

(
R + 12

L2

)
− 1

4e2F
2 − 1

4e2 F 2 − (DµΦ)∗(DµΦ)− V (Φ) + ϵµνρστ Aµ

(
α

3
(
FνρFστ + 3FνρFστ

))]
,

(A.1)

where V (Φ) = m2|Φ|2 is the potential of the scalar. We consider the probe limit, i.e., the
gravitational background is fixed to be the thermal AdS-Schwarzschild background. The
equations of motion for the matter fields are

∇νF
νµ + 2αϵµτβρσFτβFρσ = 0 ,

∇νF νµ + ϵµτβρσ
[
α
(
FτβFρσ + FτβFρσ

)]
+ iq

[
Φ(DµΦ)∗ − Φ∗(DµΦ)

]
= 0 ,

DµDµΦ− m2Φ = 0 .

In the manuscript, we have taken 2κ2 = 1 and e2 = 1.

A.1 Equations for the longitudinal fluctuations

We consider the longitudinal sector and switch on the following fluctuations

δat , δaz , δvt , δvz , δϕ1 , δϕ2 , (A.2)

where δϕ1 and δϕ2 are the real and imaginary parts of the complex scalar fluctuation δΦ, with
the definition δΦ ≡ δϕ1 + iδϕ2. We work in Fourier space by decomposing the fluctuations as

δat = at(r)e−iωt+ikzz , δaz = az(r)e−iωt+ikzz ,

δvt = vt(r)e−iωt+ikzz , δvz = vz(r)e−iωt+ikzz ,

δϕ1 = ϕ1(r)e−iωt+ikzz , δϕ2 = ϕ2(r)e−iωt+ikzz .

(A.3)

In the probe limit, the second-order equations of motions for the fluctuations are

a′′
t + 3a′

t

r
−
(

k2
z

r2u
+ 2q2ϕ2

u

)
at +

8αBv′z
r3 − ωkz

r2u
az −

2iqωϕ

u
ϕ2 = 0 ,

a′′
z +

(1
r
+ u′

u

)
a′

z +
(

ω2

u2 − 2q2ϕ2

u

)
az +

8αB

ru
v′t +

ωkz

u2 at −
4q2Azϕ

u
ϕ1 +

2iqkzϕ

u
ϕ2 = 0 ,

v′′t + 3
r

v′t −
k2

z

r2u
vt +

8αB

r3 a′
z −

ωkz

r2u
vz = 0 ,

v′′z +
(1

r
+ u′

u

)
v′z +

ω2

u2 vz +
8αB

ru
a′

t +
ωkz

u2 vt = 0 ,

ϕ′′
1 +

(3
r
+ u′

u

)
ϕ′

1 +
(

ω2

u2 − m2

u
− k2

z

r2u
− q2A2

z

r2u

)
ϕ1 −

2qAz

r2u
(qϕaz − ikzϕ2) = 0 ,

ϕ′′
2 +

(3
r
+ u′

u

)
ϕ′

2 +
(

ω2

u2 − m2

u
− k2

z

r2u
− q2A2

z

r2u

)
ϕ2 − iqϕ

(
ωat

u2 + kzaz

r2u

)
− 2iqkzAz

r2u
ϕ1 = 0 .

(A.4)
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There are also two first-order equations (constraints)
ω

u
v′t +

kz

r2 v′z +
8αB

r3u
(kzat + ωaz) = 0 ,

ω

u
a′

t +
kz

r2 a′
z +

8αB

r3u
(kzvt + ωvz) + 2iq

(
ϕϕ′

2 − ϕ′ϕ2
)
= 0 .

(A.5)

A.2 Equations for the transverse fluctuations

In order to compute the anomalous Hall conductivity σAHE, we consider the transverse sector
and switch on the fluctuations at kz = 0 as follows

δax , δay , δvx , δvy . (A.6)

We consider only homogeneous perturbations, hence

δax = ax(r)e−iωt , δay = ay(r)e−iωt ,

δvx = vx(r)e−iωt , δvy = vy(r)e−iωt .
(A.7)

The equations for these perturbations read

v′′x +
(1

r
+ u′

u

)
v′x + ω2

u2 vx + 8iαω

ru
A′

zvy = 0 ,

v′′y +
(1

r
+ u′

u

)
v′y + ω2

u2 vy − 8iαω

ru
A′

zvx = 0 ,

a′′
x +

(1
r
+ u′

u

)
a′

x +
(

ω2

u2 − 2q2ϕ2

u

)
ax + 8iαω

ru
A′

zay = 0 ,

a′′
y +

(1
r
+ u′

u

)
a′

y +
(

ω2

u2 − 2q2ϕ2

u

)
ay − 8iαω

ru
A′

zax = 0 .

(A.8)

By changing variables to v± ≡ vx ± i vy, the equations simplify into

v′′± +
(1

r
+ u′

u

)
v′± + ω2

u2 v± ± 8αω

ru
A′

zv± = 0 . (A.9)

In order to compute the DC σAHE, we expand v± around ω = 0 as

v± =
(
1− r4

h

r4

)− iω
4rh (

v
(0)
± + ωv

(1)
± + . . .

)
. (A.10)

After imposing the regularity condition near the horizon, we obtain the solutions v
(0)
± = c0 and

v
(1)
± = −

∫ ∞

r
dx

c0
x3f

[
ix3f ′

4rh
− irh ∓ 8α (Az − Az(rh))

]
. (A.11)

Therefore, the obtain the Green’s function G± = ω (±8α(b − Az(rh)) + irh) and

σxy = G+ − G−
2ω

= 8α (b − Az(rh)) , (A.12)

which is the Hall conductivity for the covariant current. In order to consider the consistent
current, we have to add the contribution form the Chern-Simons term and finally

σAHE = 8αb − σxy = 8αAz(rh) . (A.13)

In the presence of magnetic field B, σAHE is a function of B through the horizon value of Az.
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A.3 On-shell action

The on-shell action for the fluctuations is necessary to define the proper susceptibilities and
conductivities. The renormalized action of the boundary field theory is given by

Sren = S + Sbnd (A.14)

with S defined in eq. (3.1) and

Sbnd = 1
κ2

∫
r=r∞

d4x
√
−γK − 1

2κ2

∫
r=r∞

d4x
√
−γ

[
6 + 1

2R + . . .

]
+ log r

4

∫
r=r∞

d4x
√
−γ

[
FµνF

µν + FµνF µν + |DmΦ|2 + 1
3 |Φ|

4
] (A.15)

where γab is the induced metric on the boundary. K and R are the extrinsic and intrinsic
curvatures respectively.

Substituting the fluctuations at ω ̸= 0, kz = 0 into the total renormalized action (A.14),
we obtain the relevant part in the renormalized on-shell action

So.s. ⊃
∫

dω

2π
dx3

[
− 2a

(0)
t (−ω)a(2)

t (ω) + 2a(0)
z (−ω)a(2)

z (ω)

− 2v
(0)
t (−ω)v(2)

t (ω) + 2v(0)
z (−ω)v(2)

z (ω)

+ O(ω2) + contact terms
]

.

(A.16)

Note that there is a factor 2 which is crucial to properly define the susceptibilities and
DC conductivities.

B Susceptibilities and conductivities

The total axial charge susceptibility χtot
A is defined from the correlation function of the axial

charge density, i.e., χtot
A = ⟨ρAρA⟩R|ω=k=0. It can be obtained in holography by solving

a′′
t + 3

r
a′

t −
(
64B2α2

r4u
+ 2q2ϕ2

u

)
at = 0 . (B.1)

The asymptotic expansion of at near the boundary is given by

at(r) = a
(0)
t − q2M2a

(0)
t

r2 lnr − a
(2)
t

r2 + . . . , (B.2)

hence χtot
A = 2a

(2)
t

a
(0)
t

. χA in the constitutive equations is obtained by taking ϕ = 0 during
the computation.

The total vector charge susceptibility χtot
V is defined from the correlation function of the

charge density, i.e., χtot
V = ⟨ρV ρV ⟩R|ω=k=0, which can be extracted from

v′′t + 3
r

v′t +
8Bα

r3 a′
z = 0 ,

a′′
z +

(1
r
+ u′

u

)
+ 8Bα

ru
v′t −

2q2ϕ2

u
az = 0 .

(B.3)
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The UV expansions of the relevant bulk fields are given by

az(r) = a(0)
z − q2M2a

(0)
z

r2 lnr + a
(2)
z

r2 + . . . ,

vt(r) = v
(0)
t − v

(2)
t

r2 + . . . .

(B.4)

This implies that χtot
V = 2v

(2)
t

v
(0)
t

with the sourceless boundary condition a
(0)
z = 0. χV in the

constitutive equations is obtained by taking ϕ = 0 during the computation.
The total longitudinal DC axial conductivity σA

DC is defined from the correlation func-
tion of the longitudinal axial current, i.e., σA

DC = Im 1
ω ⟨J

z
AJz

A⟩R|kz=0,ω→0, which can be
obtained from

a′′
z +

(1
r
+ u′

u

)
+
(

ω2

u2 − 2q2ϕ2

u
− 64B2α2

r4u

)
az = 0 . (B.5)

The UV expansion for az reads

az(r) = a(0)
z − q2M2a

(0)
z

r2 lnr + a
(2)
z

r2 + . . . , (B.6)

and gives σA
DC = 2lim

ω→0
Im
[

a
(2)
z

a
(0)
z

]
. σA in the constitutive equations is obtained by taking

ϕ = 0 during the computation.
The total longitudinal DC electric conductivity σV

DC can be computed analytically due
to the existence of the radial conserved quantity when ω = 0. It can be solved from the
coupled equations

v′′z +
(1

r
+ u′

u

)
+ 8Bα

ru
a′

t = 0 ,

a′′
t + 3

r
a′

t +
8Bα

r3 v′z −
2q2ϕ2

u
at = 0 .

(B.7)

From the first equation in eq. (B.7) we have the radial conserved quantity J = −ruv′z −8Bαat

satisfying ∂rJ = 0, which means J |r→∞ = J |r→r0 ≡ j and σV
DC can be computed at the

horizon. Near the horizon,

vz = − E

4πT
ln(r − r0) + . . . ,

at = − 2E(8Bα)
(4πT )r2

0(qϕh)2 + . . . ,
(B.8)

and therefore

σV
DC = j

E
= πT + 32B2α2

π3T 3q2ϕ2
h

. (B.9)

Alternatively, one can obtain the same result from numerices, by switching on a sub-leading
term a1(r − r0) in at in eq. (B.8), where a1 is determined from the UV expansion

at(r) = a
(0)
t − q2M2a

(0)
t

r2 lnr − a
(2)
t

r2 + . . . ,

vz(r) = v(0)
z + v

(2)
z

r2 . . . ,

(B.10)
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with the sourceless boundary condition a
(0)
t = 0. As a result, σV

DC = 2v
(2)
z

E is consistent
with the analytic result eq. (B.9).

The axial charge relaxation effects on transport are negligible when τT → ∞. In this
limit, the equations can be solved analytically as a function of B/T 2, leading to the quantum
critical conductivities in the presence of B, i.e.

σA = σV = σ = π2T

8 β2sec
(

π

2

√
1− β2

) Γ
[

3−
√

1−β2

4

]
Γ
[

3+
√

1−β2

4

]
Γ
[

5−
√

1−β2

4

]
Γ
[

5+
√

1−β2

4

] (B.11)

with β = 8Bα
π2T 2 . When β ≪ 1, we have σ = πT (1 − log 2

2 β2 + O(β4)).
Finally, to compute the AC conductivity σV (ω) at zero momentum k⃗ = 0 without axial

relaxation, i.e., ϕ = 0, we solve the ODE

v′′z +
(1

r
+ u′

u

)
v′z +

(
ω2

u2 − 64α2B2

r4u

)
vz = 0 (B.12)

with the infalling boundary condition of vz at the horizon.

C Coulomb screening, density-density correlation function and
conductivities

In the following, we give a brief introduction to Coulomb screening effects on electric
susceptibility (density-density correlation function) and electric conductivity (current-current
correlation function). We follow the textbook [37] and use SI units.

For simplicity, we start from electrostatics in the jellium model. Switching on an external
potential vext(x⃗), we can write down the energy functional E[ρ] of the charge density ρ(x⃗)
of the electrons with number density n(x⃗), and each electron carries charge −e that defines
the electric charge density ρ(x⃗) = −en(x⃗),

E[ρ] = Eint[ρ] +
∫

dx⃗ ρ(x⃗)vext(x⃗) ,

Eint[ρ] = Eint[ρ0] +
1
2

∫
dx⃗

∫
dx⃗′δρ(x⃗) δ2Eint[ρ]

δρ(x⃗) δρ(x⃗′)

∣∣∣
ρ0

δρ(x⃗′) + . . .
(C.1)

where in the Taylor expansion the linear term vanishes at equilibrium, ρ(x⃗) = ρ0.
Minimizing the energy functional with respect to ρ(x⃗), we obtain

δE[ρ]
δρ(x⃗) =

∫
dx⃗′ δ2Eint[ρ]

δρ(x⃗) δρ(x⃗′)

∣∣∣∣∣
ρ0

δρ(x⃗′) + vext(x⃗) = 0 (C.2)

that defines the response function to the external source vext

δρ(x⃗) =
∫

dx⃗′χ(x⃗, x⃗′)vext(x⃗) , (C.3)

and further the electric charge density-density correlation function as

χ(x⃗, x⃗′) = −
[ δ2Eint[ρ]
δρ(x⃗) δρ(x⃗′)

∣∣∣∣∣
ρ0

]−1
. (C.4)
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Then, we perform the Fourier transformation and define the density-density correlation
function in the momentum space

χ(k⃗) ≡
∫

dx⃗ χ(x⃗)e−ik⃗·x⃗ , with δρ(k⃗) = χ(k⃗)vext(k⃗) . (C.5)

In order to distinguish the quantities with or without Coulomb screening, we use a
normal symbol for the unscreened observables (non-interacting/bare quantities), while using
a subscript “sc” for the screened ones (interacting/renormalized quantities).

We consider the energy functional

Eint[ρ] =
1
2

∫
dx⃗

∫
dx⃗′ρ(x⃗) λe

4π|x⃗ − x⃗′|
ρ(x⃗′) + TS [ρ] , (C.6)

where the first term represents the energy due to the Coulomb potential with the strength
tunable that is proportional to λe and TS [ρ] the energy for non-interacting electrons. For
the non-interacting electrons, the density-density correlation only comes from TS [ρ] that
is defined as

χ(x⃗, x⃗′) = −
[ δ2TS [ρ]
δρ(x⃗) δρ(x⃗′)

∣∣∣∣∣
ρ0

]−1
. (C.7)

Making a comparison between the density-density correlation function with and without
Coulomb interactions in momentum space, we find

−χ−1
sc (k⃗) = λe

|⃗k|2
− χ−1(k⃗) . (C.8)

After taking into account the frequency dependence to consider dynamical processes, we finally
obtain the dynamical density-density correlation function in the random-phase approximation
(RPA) that we ignore the exchange-correlation contribution in the energy functional and
consider the effect of Coulomb interaction at Hartree level,

χsc(ω, k⃗) = χRPA(ω, k⃗) = χ(ω, k⃗)
1− (λe/|⃗k|2)χ(ω, k⃗)

. (C.9)

On the left side, χsc(ω, k⃗) is the screened density-density correlation function in response
to the external potential vext with Coulomb potential. On the right side, χ(ω, k⃗) is the
unscreened density-density correlation in response to the external potential vext without
Coulomb potential.

We then discuss the different meanings of the poles of χ(ω, k⃗) and χsc(ω, k⃗) in holography,
based on eq. (C.9). To compute the poles of χ(ω, k⃗), we take the vanishing Dirichlet boundary
condition for the field at the boundary. This means that we switch off the external source
for the operator δρ, e.g. vext = 0. On the contrary, to compute the poles of χsc(ω, k⃗), we
take the dynamical dielectric function to vanish

ϵ(ω, k⃗) ≡ 1− (λe/|⃗k|2)χ(ω, k⃗) = 0 , (C.10)

which corresponds to the displacement field vanishing or the external charge ρext vanishing,
i.e. D⃗ = ρext = 0. In the zero wave-vector limit k⃗ → 0, ϵ(ω = Ωpl, k⃗ → 0) = 0 gives the
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plasma frequency ω = Ωpl. In the finite wave-vector k⃗ regime, the dispersion relation of the
plasma oscillations can be obtained from ϵ(ω, k⃗) = 0.

Let us move to discuss the screening effects on the longitudinal conductivity. To start
with, we recall the Maxwell’s equations

∇⃗ · D⃗ = ρext , ∇⃗ · E⃗ = (ρint + ρext) ≡ ρtot (C.11)

where the electric displacement field D⃗ is related to the electric field E⃗ via the dielectric
function as

D⃗ = ϵE⃗ . (C.12)

Here we should be careful to define the conductivity since we can express J⃗ ≡ J⃗int with
respect to D⃗ as well as E⃗ as

J⃗ = σscD⃗ , J⃗ = σE⃗ . (C.13)

In the first equation, the conductivity is defined with respect to the external field D⃗, then
the Coulomb screening effect is included in the conductivity; while in the second equation,
the current responds to the total electric field and the Coulomb screening effect is included
in the electric field or the electric potential. Therefore, we can conclude that

ϵ = χ

χsc
= σ

σsc
= D⃗

E⃗
= Vext

V
, (C.14)

where the electric potential Vext, V are defined from D⃗ = −∇Vext and E⃗ = −∇V respectively.
Next, we can relate the conductivity σ with the dielectric function, via the continuity

equation
∂ρ

∂t
+ ∇⃗ · J⃗ = 0 , (C.15)

where both ρ = −en ≡ ρint and J⃗ ≡ J⃗int are the responses inside the matter. After Fourier
transformation,

ρ(ω, k⃗) = 1
ω

k⃗ · J⃗(ω, k⃗) = 1
ω

σ(ω, k⃗)(k⃗ · E⃗(ω, k⃗)) . (C.16)

Recall that

D⃗(ω, k⃗) = ϵ(ω, k⃗)E⃗(ω, k⃗) = E⃗(ω, k⃗) + P⃗ (ω, k⃗) (C.17)

where P⃗ is the polarization field satisfying ∇⃗ · P⃗ = −ρint/εe with εe = 1/λe. Combining
eq. (C.16) and eq. (C.17), we finally obtain the relation

ϵ(ω, k⃗) = 1− λe

iω
σ(ω, k⃗) (C.18)

and therefore the relation between the screened longitudinal conductivity σsc and the un-
screened one σ as

σsc(ω, k⃗) = σ(ω, k⃗)
1− λe

iω σ(ω, k⃗)
, (C.19)

which is also based on RPA.
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