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A R T I C L E I N F O A B S T R A C T

Editor: A. Ringwald It was recently shown that, taking into account the granular structure of graphene lattice, the Dirac-like dynamics 
of its quasiparticles resists beyond the lowest energy approximation. This can be described in terms of new 
phase-space variables, (�⃗�, 𝑃 ), that enjoy generalized Heisenberg algebras. In this letter, we add to that picture 
the important case of noncommuting �⃗�, for which [𝑋𝑖, 𝑋𝑗 ] = i 𝜃𝑖𝑗 and we find that 𝜃𝑖𝑗 = 𝓁2 𝜖𝑖𝑗 , with 𝓁 the lattice 
spacing. We close by giving both the general recipe and a possible specific kinematic setup for the practical 
implementation of this approach to test noncommutative theories in tabletop analog experiments on graphene.
1. Introduction

In this letter, in the same spirit of [1], that is, regarding graphene as 
an analog of certain quantum gravity (QG) scenarios, we consider the 
possibility that coordinates enjoy canonical noncommutativity (CNC)

[𝑋𝑖,𝑋𝑗 ] = i𝜃𝑖𝑗 , (1)

with 𝜃𝑖𝑗 a constant antisymmetric tensor of dimension 𝐿2 and 𝑖, 𝑗, ... =
1, 2.

With analogs we can test the behaviour of one physical system, by 
doing experiments on another physical system [2]. This becomes partic-

ularly important when we want to test theories describing phenomena 
that otherwise lie far beyond our experimental capabilities [3].

The research on gravity analogs can be seen as originating from the 
seminal work of Unruh [4]. He proposed searching for experimental 
signatures of the Unruh [5] and the Hawking effect [6], in a fluid-

dynamical analog. These days, we can reproduce many different aspects 
of fundamental physics in analog systems, in Bose–Einstein conden-

sates [7], in Weyl semimetals [8], in graphene [9–13], and on many 
more platforms [14].

Our interest here is on graphene as an analog of high-energy fun-

damental physics, based on the fact that its low-energy quasiparticle 
excitations [15] are massless Dirac pseudo-relativistic fermions (the 
matter fields 𝜓), propagating in a carbon two-dimensional honeycomb 
lattice. We shall focus on a regime that goes slightly beyond the low-

* Corresponding author.

est energy regime just recalled, where nonlinear effects start playing a 
role, and the modified structure of space-time of QG may be mimicked.

As it was first recognised in [16,17], the effective high-energy mo-

menta in combination with the standard (low-energy) spatial coordi-

nates obey a modified Heisenberg algebra, characterised by deformed 
commutation relations between position and momenta, which is char-

acteristic of certain QG models involving a minimal length (MLM) [18].

A recent paper [1] continued on this, allowing the spatial coordi-

nates at high energy to be modified as well. One crucial result there 
is that, in two important cases with GUPs, such high-energy coordi-

nates simply coincide with the low-energy coordinates. In other cases, 
such coordinates have complicated expressions regarding the standard, 
measurable phase space variables. In all cases, though, coordinates 
commute. Here we show that noncommuting coordinates are indeed 
possible in a canonical form, putting on more firm grounds what was 
first speculated in [17].

CNC is one of the earliest models of noncommutativity, appearing 
independently in various high-energy physics theories [19–22]. For in-

stance, in [19], it is argued that the uncertainty relations descending 
from (1) may reflect constraints on the localization of a particle due to 
classical gravity when the distance becomes less then the Schwarzschild 
radius. The idea there is that there is a value of the wavelength of 
the photon, 𝜆𝛾 , used to measure the position of a particle, that coin-

cides with the Schwarzschild radius, 𝑅𝛾 , associated with that energy, 
𝐸𝛾 = ℏ𝜔𝛾 . When such a length scale is reached, one cannot go beyond 
it. Hence, there is a minimal length, which gives a minimal spatial un-

certainty. In [19], and usually, such length is Planck’s, but there are 
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also alternatives [23]. In this letter, as we shall see in a moment, we do 
not need such arguments, as the minimal length is there regardless of 
any gravitational radius (on this, see also [23]).

In CNC models, the algebra is usually given by (1) and by the two 
standard commutation relations, between momenta and momenta and 
between positions and momenta. In the case of graphene, however, in 
addition to (1), the commutation relation between positions and mo-

menta changes as well to

[𝑋𝑖,𝑃𝑗 ] = iℏ𝐹𝑖𝑗 (𝑃 ), (2)

where 𝐹𝑖𝑗 (𝑃 ) is an antisymmetric tensor that shares many features with 
those appearing in MLMs. This leads to a novel type of noncommutativ-

ity, which is a mix of CNC and MLM.

The letter is organized as follows. Section 2 is dedicated to recall-

ing the main reasons why graphene can be seen as a QG analog and 
to setting the notation. Section 3 is where we obtain noncommuting 
coordinates. Section 4 is where we explain, in general terms, how to 
use graphene as a tabletop laboratory to test noncommutative theories, 
while in Section 5, we focus on a specific kinematic arrangement. Sec-

tion 6 is dedicated to our conclusions.

2. The set-up

The dispersion relations of graphene can be approximated by [1]

𝐸± = 𝜂
(
±| |− 0.15| |2) (3)

where 𝜂 ≃ −2.8 eV is the nearest neighbour hopping energy,

 (�⃗�) =
3∑

𝑚=1
𝑒(i∕ℏ)�⃗�⋅𝑠

(1)
𝑚 = 𝑒−i𝓁𝑘2∕ℏ

[
1 + 2𝑒i

3
2 𝓁𝑘2∕ℏ cos

(√
3

2ℏ
𝓁𝑘1

)]
, (4)

𝓁 is the lattice spacing, the three vectors 𝑠(1)𝑚 connect nearest neigh-

bouring lattice sites [16] (all vectors are spatial two-dimensional), and 
the zero of the energy is set at the Dirac points, i.e. 𝐸±|𝑘𝐷 = 0.

Expanding around the Dirac points, see [15], at the leading order in 
the parameter 𝓁|𝑝|∕ℏ (the long-wavelength limit), one gets

𝐸± = ±𝑣𝐹 |𝑝| , (5)

where 𝑝 is a small momentum and 𝑣𝐹 ≡ 3∕2 𝜂𝓁∕ℏ ≃ 𝑐∕300, is the Fermi 
velocity. Therefore, the physics of the conductivity quasiparticles of 
graphene is governed, at order 𝑂(|𝑝|), by the standard Dirac linear 
Hamiltonian

𝐻(𝑝) = 𝑣𝐹
∑
𝑝

𝜓†
𝑝 ∕𝑝𝜓𝑝 , (6)

that, through

det(𝐻 −𝐸1) = 0 , (7)

gives (5) as dispersion relation. Our convention is1 𝜓†
𝑝 = (𝑏∗𝑝, 𝑎

∗
𝑝), where 

𝑎𝑝 and 𝑏𝑝 are the annihilation operators for the 𝐿𝐴 and 𝐿𝐵 sublattices 
[15].

Once one gets away from the Dirac points, higher-order momenta 
enter, and the dispersion relation is no longer linear. It has been recog-

nised in [16] that one can maintain a linear dispersion relation, pro-

vided one redefines the momenta. The relation (3) defines the auxiliary 
quantity

𝑃0 ≡ −ℏ
𝓁

(Re , Im ) , (8)

that was dubbed supermomentum in [1].

1 There are many conventions for the different choices of pairs of inequivalent 
Dirac points and various arrangements of the 𝑎 and 𝑏 operators to form the 
2

spinor 𝜓 . See Appendix B of [24] for more details.
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The dispersion relation (3) can be obtained from the secular equa-

tion (7), written for the following Hamiltonian given in terms of the 
supermomentum 𝑃0

𝐻(𝑃0) = 𝑉𝐹
∑
�⃗�

𝜓†
�⃗�

(
̸𝑃0 −𝐴 ̸𝑃0 ̸𝑃0

)
𝜓
�⃗�
, (9)

where 𝑉𝐹 = 𝜂𝓁∕ℏ = 2∕3 𝑣𝐹 , ∕𝑃 0 ≡ �⃗� ⋅ 𝑃0, �⃗� = (𝜎1, 𝜎2) are the usual Pauli 
matrices and 𝐴 ≃ 0.15𝓁∕ℏ.

Noticeably, this is the same Hamiltonian, obtained in the phe-

nomenology of QG, when generalizing the Dirac Hamiltonian to ac-

commodate a GUP with a minimal fundamental length [18]. Here such 
a fundamental length is clearly given by the carbon-to-carbon distance, 
𝓁.

In [18], the authors introduce two different “layers” describing the 
given physical system. Namely, “high energy” and “low energy” phase-

space variables that, adjusting our notation to theirs, we may call (�⃗�, 𝑃 )
and (�⃗�0, 𝑃0), respectively. Here (and there), the definition of the “high-

energy momenta” descends directly from (9), that in turn is associated 
with the dispersion relations (3)

𝑃 ≡ 𝑃0(1 −𝐴|𝑃0|) . (10)

This we call the hypermomentum.

With this definition, we arrive again at the standard Dirac linear 
Hamiltonian

𝐻(𝑃 ) = 𝑉𝐹
∑
𝑘

𝜓†
𝑘
∕𝑃 𝜓𝑘 , (11)

with dispersion relation

𝐸± = ±𝑉𝐹 |𝑃 | . (12)

Notice that, to obtain 𝐻(𝑃0) from 𝐻(𝑃 ), one should first use the 
expansion (10), and then use the customary Dirac prescription |𝑃0| →
∕𝑃 0

𝐻(𝑃 (𝑃0)) = 𝑉𝐹
∑
𝑘

𝜓†
𝑘
�⃗� ⋅ 𝑃 𝜓𝑘

= 𝑉𝐹
∑
𝑘

𝜓†
𝑘
�⃗� ⋅

(
𝑃0(1 −𝐴|𝑃0|)) 𝜓𝑘

→ 𝑉𝐹
∑
𝑘

𝜓†
𝑘

(
�⃗� ⋅ 𝑃0 −𝐴(�⃗� ⋅ 𝑃0) (�⃗� ⋅ 𝑃0)

)
𝜓𝑘

= 𝑉𝐹
∑
𝑘

𝜓†
𝑘

(
∕𝑃 0 −𝐴|𝑃0|2) 𝜓𝑘 =𝐻(𝑃0) , (13)

where, in the second term of the last line, we used 𝜎𝑖𝜎𝑗 = 𝛿𝑖𝑗1 + 𝑖𝜖𝑖𝑗𝑘𝜎𝑘
and the symmetry of 𝑃 𝑖0𝑃

𝑗

0 .

For all the above, see [1]. There it is shown that, in this set-up, we 
do know supermomenta and hypermomenta in terms of the measurable 
momenta 𝑝

𝑃 𝑖0(𝑝) and 𝑃 𝑖(𝑃0(𝑝)) , (14)

and one needs to find supercoordinates and hypercoordinates in terms 
of measurable phase-space variables (�⃗�, ⃗𝑝)

𝑋𝑖
0(𝑥, 𝑝) and 𝑋𝑖(𝑋0(𝑥, 𝑝), 𝑃0(𝑝)) , (15)

where, for the latter, we can take as an experimental fact that the phase-

space variables are canonical

[𝑥𝑖, 𝑝𝑗 ] = iℏ𝛿𝑖𝑗 , [𝑥𝑖, 𝑥𝑗 ] = 0 = [𝑝𝑖, 𝑝𝑗 ] . (16)

Henceforth, we shall always have

[𝑃 𝑖0(𝑝), 𝑃
𝑗

0 (𝑝)] = 0 = [𝑃 𝑖(𝑝), 𝑃 𝑗 (𝑝)] , (17)

whereas a great variety of choices are allowed for the associated gener-
alized coordinates.
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3. Noncommuting hypercoordinates

Upon introduction of the hypermomenta 𝑃 𝑖 in equation (10), 𝑃 𝑖 =
𝑃 𝑖0(1 −𝐴 |𝑃0|), which, in turn, can be expressed in terms of standard 𝑝𝑖
as [1]

𝑃 1 = 𝑝1(1 −𝐴 |𝑝|)
+ 𝓁

(
𝐴 (𝑝1)2

(
(𝑝1)2 − 3(𝑝2)2

)
4𝑝

+ 1
4
(1 −𝐴 |𝑝|)((𝑝2)2 − (𝑝1)2

))

− 1
8
𝓁2 |𝑝|2 𝑝1 , (18)

𝑃 2 = 𝑝2(1 −𝐴 |𝑝|) + 𝓁 𝑝2
(
−𝐴(𝑝1)3 − 5𝐴𝑝1(𝑝2)2 + 2|𝑝|𝑝1)

4|𝑝|
− 1

8
𝓁2 |𝑝|2𝑝2 ,

the question is to find hypercoordinates 𝑋𝑖(𝑥, 𝑝) that complement 𝑃 𝑖
in a way that closes the Heisenberg algebra. As discussed at length in 
[1], unlike the momenta 𝑃 𝑖(𝑝), whose functional dependence on the 
“true” (laboratory) momenta 𝑝𝑖 is dictated by the dispersion relation, 
the functional form of the hypercoordinates on the laboratory phase-

space variables is not uniquely fixed by the algebraic requirements 
alone. Two possible definitions were explored in [1].

Here we consider another, more general, case:

[𝑋𝑖,𝑃 𝑗 ] = iℏ𝐹 𝑖𝑗 (𝑃 ) , [𝑋𝑖,𝑋𝑗 ] = i𝐺𝑖𝑗 (𝑃 ) , [𝑃 𝑖,𝑃 𝑗 ] = 0 , (19)

where [1]

𝐹 𝑖𝑗 (𝑃 ) ≡ 𝑓 𝑖𝑘(𝑃 )

(
(1 −𝐴 |𝑃 |−𝐴2 |𝑃 |2)𝛿𝑘𝑗 −𝐴 𝑃𝑘 𝑃 𝑗|𝑃 | (1 +𝐴 |𝑃 |)) ,

(20)

with

𝑓 𝑖𝑗 (𝑃 ) = 𝛿𝑖𝑗 + 1
2
𝓁 (1 +𝐴|𝑃 |)( −𝑃 1 𝑃 2

𝑃 2 𝑃 1

)
− 1

2
𝓁2

(
(𝑃 1)2 𝑃 1𝑃 2

𝑃 1𝑃 2 (𝑃 2)2

)
,

(21)

being 𝐺𝑖𝑗 an arbitrary antisymmetric function of 𝑃 . Besides zero, the 
simplest choice for 𝐺𝑖𝑗 is

𝐺𝑖𝑗 =𝐿2 𝜖𝑖𝑗 , (22)

where 𝜖𝑖𝑗 is the totally antisymmetric tensor in two dimensions and 𝐿
is a length scale. Since these calculations are 𝑂(𝓁2), length scales of 
higher orders could not be appreciated, henceforth

𝐿(𝓁) = 𝑎𝓁 , (23)

where 𝑎 is a 𝑂(1) numerical constant that we set to 1, for simplicity.

Note that this is the only possibility compatible with our require-

ments, apart from the choice of [1], 𝐺𝑖𝑗 = 0. If one wants a result 
proportional to |𝑃 |, this requires a factor of 𝓁3 to compensate for the 
physical dimension, which is bigger than 𝑂(𝓁2). If we include 𝓁∕|𝑃 |, 
we do have the correct physical dimension, but 𝐺𝑖𝑗 would not have a 
reasonable limit for |𝑃 | → 0.

Therefore we have

[𝑋𝑖,𝑋𝑗 ] = i𝜃𝑖𝑗 , (24)

where

𝜃𝑖𝑗 = 𝓁2 𝜖𝑖𝑗 . (25)

This is the CNC we were looking for, realized in terms of the com-

mutative phase-space variables, (�⃗�, ⃗𝑝), by 𝑋1 = 𝑥1 − 1∕(2ℏ) 𝓁2 𝑝2 and 
3

𝑋2 = 𝑥2 + 1∕(2ℏ) 𝓁2 𝑝1, i.e.,
Physics Letters B 852 (2024) 138630

𝑋𝑖 = 𝑥𝑖 − 1
2ℏ
𝜃𝑖𝑗𝑝

𝑗 . (26)

This realization is known in the literature as the Bopp’s shift, see, e.g., 
[25].

4. Operational recipe for the analog noncommutativity

We now want to give the operational recipe to use graphene to 
test noncommutative theories in an analog lab. Notice that this scheme 
could also be applied to other analog systems.

First, we have to bear in mind that we only have experimental ac-

cess to the measurable “lab” variable (�⃗�, ⃗𝑝). The system is described 
by an Hamiltonian 𝐻(𝑝), written in terms of (�⃗�, ⃗𝑝). This Hamiltonian 
is very complicated, as it must include higher orders; see [1,16] and 
(27) later here. However, this is not an issue because we have access 
to experiments. Hence, “nature makes the computations”, so it should 
be possible to compute everything, at least numerically. To this 𝐻(𝑝)
corresponds the 𝐻(𝑃 ) in (11), where the variables are the noncommu-

tative �⃗�.

With these, the operational recipe is

• Measure observables in the lab, such as the spectrum, 𝐸𝑛(𝑥, 𝑝). We 
might do so for the free system as a test and then apply a suitably 
engineered potential, 𝑉 (𝑥, 𝑝). Such potential should correspond, 
through 𝑥𝑖(𝑋, 𝑃 ) and 𝑝𝑖(𝑃 ) (see (26) and (18)), to a wanted po-

tential, 𝑉 (𝑋), in the “target noncommutative system”.

• Rewrite the outcomes of that measurement in the noncommuting 
variables, e.g., 𝐸𝑛[𝑥(𝑋, 𝑃 ), 𝑝(𝑋, 𝑃 )], for the example of the spec-

trum.

• Perform a calculation using the Hamiltonian 𝐻(𝑃 ), first for the free 
case and then adding the potential 𝑉 (𝑋) to it. The free case is only 
for setting up/verifying the correspondence. We want to study the 
interacting case to test the model based on noncommuting �⃗�. We 
then obtain the observables, e.g., 𝐸𝑛(𝑋, 𝑃 ). Here, we are entirely 
theoretical/mathematical.

• Compare the measured observables with the theoretical prediction 
based on the noncommutative theory. E.g., 𝐸𝑛[𝑥(𝑋, 𝑃 ), 𝑝(𝑋, 𝑃 )], 
obtained experimentally, with 𝐸𝑛(𝑋, 𝑃 ), obtained from the non-

commutative theory.

Notice that we shall have two sets of data written in the (�⃗�, 𝑃 )
variables: one set is obtained by rewriting the results of the experiments 
and calculations done with the setting 𝐻(𝑝), (�⃗�, ⃗𝑝). The other set is 
obtained by performing the (noncommutative) calculations within the 
setting 𝐻(𝑃 ), (�⃗�, 𝑃 ).

The above recipe can be sketched in the following diagram

(�⃗�, 𝑝);𝐻(𝑥, 𝑝) 𝐸𝑛(𝐻(𝑥, 𝑝))

(�⃗�, 𝑃 );𝐻(𝑋,𝑃 ) 𝐸𝑛(𝐻(𝑋,𝑃 ))

experiment

NC analog comparison

calculation

For instance, for the free case (no external potential), a typical 
Hamiltonian that departs from the linear approximation, given in lab 
variables (�⃗�, ⃗𝑝), is [1]

𝐻 = 𝑣
∑

𝜓†
[
𝜎

(
𝑝 − 𝓁 (𝑝2 − 𝑝2) − 𝓁2

𝑝 (𝑝2 + 𝑝2)
)

𝐹

𝑝
𝑝 1 1 4 1 2 8 1 1 2
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𝑃

�⃗�

�⃗�′

�⃗� 𝑃

�⃗�′

�⃗�

𝐾 ′

Fig. 1. An electron of the initial momentum 𝑃 absorbs two photons of the momenta �⃗� and �⃗�′ in the opposite order in diagrams on the left and the right. The 
resulting momenta of the electron are, in general, different in the two cases, 𝐾 ≠𝐾 ′.
+ 𝜎2
(
𝑝2 +

𝓁
2
𝑝1𝑝2 −

𝓁2

8
𝑝2(𝑝21 + 𝑝

2
2)
)

− 3
2
𝐴

(
(𝑝21 + 𝑝

2
2) −

𝓁
2
𝑝31 +

3𝓁
2
𝑝1𝑝

2
2

)]
𝜓𝑝 . (27)

To this corresponds the free Hamiltonian (11), 𝐻(𝑃 ) = 𝑉𝐹
∑
𝑘 𝜓

†
𝑘
∕𝑃 𝜓𝑘, 

written in terms of the hypervariables.

5. Applying the recipe in a specific setup

The construction of physical theories pertaining to the deformed 
commutator in (24) has a long and rich tradition, see, e.g., [20,21,

26,27], among many other references. Such noncommutativity relies 
on the mapping between algebras of functions of the commuting co-

ordinates (standard) and functions of noncommuting coordinates. The 
quintessential ingredient is the commutator (24) itself [21].

In this section, we shall provide an example of a possible applica-

tion of the recipe of the last section. Given the generality of the results 
of this letter, we shall not do that by focusing on a full-fledged quantum 
electrodynamic calculation. The latter would need to face the subtleties 
of having to deal with massless particles, an issue that points to the 
Klein paradox, somehow faced in graphene with deformed algebras 
already, albeit in a commutative context [28]. Future work on the non-

commutative Klein paradox, within the approach presented here, has 
been planned [29].

What we shall do, instead, is to focus on kinematics, which is the 
most straightforward way to test the novel noncommutativity intro-

duced in this work, Eq. (24). This does not require the application of 
the full dynamics of the deformed field theory to describe the processes. 
We only need to recognize that position operators represent generators 
of infinitesimal displacements on the momentum space. Since they do 
not commute, this also implies that finite displacements of the momenta 
will only commute when collinear, but in general, they do not commute. 
The action of the displacement of electrons’ momentum represents the 
absorption or emission of a photon. With this in mind, the example we 
single out here will convey general information common to many dy-

namical theories.

The noncommutativity then can be observed experimentally in the 
following way. Let us assume an electron with a fixed initial value of 
the momentum, 𝑃 , absorbs two non-collinear photons momenta �⃗� and 
�⃗�′, in succession. In the commutative case, the final value of electron 
momentum, �⃗� , does not depend on the order in which the two photons 
are absorbed. In the noncommutative case, the ordering will make a 
difference due to the noncommutativity of the momenta addition law, 
which is a direct consequence of (24). Thus, the two final momenta of 
the electron �⃗� and 𝐾 ′ are generally different for the processes depicted 
in the figure below.

The experimental setting required to achieve this is the following. 
One needs two sets of electrons prepared in the same initial state of 
the definite momenta 𝑃 , which are exposed to two consecutive short 
monochromatic non-collinear electromagnetic pulses. The interaction 
of light with the 𝜋-electrons of graphene is well-studied these days, a 
noticeable example being the theoretical and experimental studies on 
4

the laser-graphene interaction [30], see also [31].
The order of the shooting of photons on the two sets must be as in 
Fig. 1. Finally, one measures the difference between the momenta of 
the electrons in the two final sets.

Now, the general form of the momentum addition law is not familiar 
for the noncommutativity defined by relation (24). One can, however, 
on purely dimensional grounds, determine the leading order form

�⃗� ⊕ 𝑃 = (1 + 𝑎1𝜃𝑗𝑘𝑃𝑗𝑄𝑘)𝑃 + (1 + 𝑎2𝜃𝑗𝑘𝑃𝑗𝑄𝑘)�⃗� . (28)

The symbol ⊕ represents the fact that the momentum conservation law 
gets deformed; we follow a convention where the momentum on the 
left displaces the momentum on the right; that is, the electron of the 
momentum 𝑃 absorbs (gets displaced by) the photon of the momen-

tum �⃗�.2 The difference in the coefficients 𝑎1 and 𝑎2 is the measure of 
noncommutativity of the momenta addition law. For the two processes 
described above, we have then,

�⃗� = �⃗�′⊕ (�⃗� ⊕ 𝑃 ) ,

and

�⃗� ′ = �⃗� ⊕ (�⃗�′⊕𝑃 ) .

After some algebra, we can express the difference 𝐾 ′ − �⃗� in a conve-

nient expression that, in vectorial notation, reads

𝐾 ′ − �⃗� = 𝓁2 (𝑄′
1𝑄2 −𝑄1𝑄

′
2)

(
3𝑎1𝑃 + (𝑎1 + 𝑎2)(�⃗�+ �⃗�′)

)
. (29)

It is clear from Eq. (29) that the difference is zero when �⃗� and �⃗�′ are 
collinear and that the leading order correction in the length parameter 
is 𝓁2.

Now, the crucial part of the story: Suppose that the light interacting 
with graphene can probe nonlinear regimes of the dispersion relations 
for the 𝜋-electrons, as discussed in [31]. This nonlinearity, within the 
framework given here, see also [1], can be transferred to the new phase 
space variables, (�⃗�, 𝑃 ), with �⃗� given by (26), and noncommuting, as 
opposed to the phase space variables, (�⃗�, ⃗𝑝), which we actually mea-

sure in the lab. Suppose the results of the above-described experiments 
are now written in terms of (�⃗�, 𝑃 ). In that case, we can check whether 
the predictions of the theoretical arguments given above, based on non-

commutativity, indeed occur.

It is vital to notice two facts. First, if we use (�⃗�, ⃗𝑝), we shall only 
see some nonlinear effects, and no noncommutativity can be there. Sec-

ond, even in the new variables, (�⃗�, 𝑃 ), it is by no means trivial that 
we see the noncommutativity. We may as well not see any noncom-

mutativity at all, even in the new variables. It is then a real test of 
noncommutativity that we are performing by a clever change of phase 
space coordinates, in part dictated by the detailed form of the dispersion 
relations of the material, in part dictated by the presence of a length 
scale, given by the lattice spacing, 𝓁.

2 The development of the field theory of identical particles, such as scalar 𝜙𝑛
theory, on a noncommutative background, suffers from insurmountable ambi-

guities, related to their indistinguishability. This, however, does not represent 
a physical constraint since no known elementary particle emits or absorbs like-
particles.
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6. Conclusions and outlook

We discussed a conceptually simple realization of a phase space 
whose variables close a deformed Heisenberg algebra

[𝑋𝑖,𝑃 𝑗 ] = iℏ𝐹 𝑖𝑗 (𝑃 ) , [𝑋𝑖,𝑋𝑗 ] = i𝜃𝑖𝑗 , [𝑃 𝑖,𝑃 𝑗 ] = 0 . (30)

Deformations of the Heisenberg algebra are usually studied in the for-

malism of Hopf algebras and noncommutative geometry [32,33]. The 
deformation given above has not been studied yet in this context. It 
would be interesting, from a mathematical point of view, to investigate 
the elements of the noncommutative geometry, such as co-product, star 
product, and the deformation of the energy-momentum conservation 
(the momenta addition rule). From a physical point of view, the most 
interesting question is that of the structure of space-time following from 
the full algebra (30), given that the first commutator, while keeping the 
other two trivial, gives rise to a minimal length [18], whereas the sec-

ond commutator, while keeping the remaining two trivial, leads to the 
uncertainty compatible with the constraints on the position measure-

ment that are imposed by the (classical) gravity [19,34].

Albeit powerful and elegant, though, the mathematical formalism 
alone cannot resolve the inherent ambiguities when trying to define 
dynamics that would correspond to the given particular deformation. 
Given the results of this letter, graphene could be used not only to 
confirm theoretical models, but to guide the construction of the phys-

ical theory itself, by providing experimental constraints. Indeed, the 
Dirac-like dynamics resists beyond the lowest energy approximation 
of the conductivity electrons of graphene, hence a “quantum-gravity-

corrected” emergent field theory is there at our disposal. One must 
simply use new phase-space variables (�⃗�, 𝑃 ) that enjoy the generalized 
Heisenberg algebra (30), where noncommuting coordinates, �⃗�, obey-

ing [𝑋𝑖, 𝑋𝑗 ] = i 𝓁2 𝜖𝑖𝑗 , are very natural.

On the one hand, the effect here is enormous compared to the one 
that might take place at the fundamental level, Δ𝑋1 Δ𝑋2 ≥ 𝓁2∕2 ∼
1050 𝓁2

𝑃 𝑙𝑎𝑛𝑐𝑘
. On the other hand, there is no need for a magnetic length, 

𝓁𝐵 =
√
ℏ𝑐∕𝑒𝐵, as often required for noncommutativity in similar set-

ups [26], nor do we need localization processes that create micro black 
holes [19].

As such, our findings are very general, macroscopic, and easy to 
obtain. Hence, they offer a reliable and robust way to test noncommu-

tative theories in tabletop analog experiments. Here we propose both 
the general recipe for the practical implementation of this approach 
and a specific arrangement that illustrates how to apply that recipe.
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