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We investigate anomalies in the class of nonlocal field theories that have been proposed as an ultraviolet
completion of four-dimensional quantum field theory with generalizing the kinetic energy operators to an
infinite series of higher derivatives inspired by the string field theory and ghost-free nonlocal approaches to
quantum gravity. We explicitly calculate the vector and chiral anomalies in a string-inspired nonlocal
extension of QED. We show that the vector anomaly vanishes as required by gauge invariance and the Ward
identity. On the other hand, although the chiral anomaly vanishes to the leading order with massless
fermions, it nonetheless does not vanish with the massive fermions and we calculate it to the leading order
in the scale of nonlocality. We also calculate the nonlocal vector and axial currents explicitly and present an
illustrative example by applying our results to the decay of π0 → γγ.
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I. INTRODUCTION

It is a well-known fact that strings, being nonlocal
objects by their nature, are free from ultraviolet (UV)
divergences [1–13]. This fact inspired many physicists into
trying to mimic this good UV behavior by formulating
nonlocal quantum field theories (QFTs) as extensions of
local QFTs, where nonlocality is introduced to eliminate
any UV divergences that could exist in the local case.
The general prescription for transforming local QFTs to
nonlocal ones is to introduce nonlocality to the kinetic term
via an entire function with infinite derivatives. For instance,
in the scalar sector one writes

SNL ¼
Z

d4x

�
1

2
ϕKð□Þð□þm2Þϕ − VðϕÞ

�
; ð1Þ

and the form factor K has the function of smearing the
interaction vertex, such that it becomes spatially finite
in size, rather than being pointlike, thereby making the
interaction nonlocal. Apart from being an entire function of

the□ operator with infinite derivatives so that no new poles
are introduced to the theory, there are no conditions on the
form of Kð□Þ, and any function that has the required
properties is acceptable. However, in order for the UV
behavior of loop amplitudes to be finite and avoid diver-
gences, a common choice is to use a simple exponential
function

Kð□Þ≡ exp

�
□þm2

Λ2

�
; ð2Þ

where m is the mass of the particle and Λ is the scale of
nonlocality. With this choice of form factors, it is easy to
see that at high energies, loop amplitudes behave like
∼e−

s
Λ2 , which is suppressed when s > Λ2 and is thus free

from UV divergences. However, the construction in
Eqs. (1) and (2) is an ansatz not derived from first principles
and should be treated as an effective field theory of yet
another UV completion above the scale of nonlocality.
Furthermore, the form factor in Eq. (2) will render the
theory acausal, albeit at a level suppressed by the scale of
nonlocality (which should be high). This is the same issue
that plagues the Lee-Wick theory [14,15].1 Causality
violation in such theories was discussed in [16], and the
authors of [17] described how such a causality violation
could be measured in colliders. In spite of all of this,
nonlocality introduced this way can still be used to
calculate observables.
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1Actually, the Lee-Wick theory emerges as the leading order in
the expansion of the form factor in Eq. (2).
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The form factor in Eq. (2) is reminiscent of the star
product in noncommutative geometries (see, for instance,
[1,9,18]), which is defined as

ðϕ1⋆ϕ2ÞðxÞ ¼ e
i
2
Θμν

∂
y
μ∂

z
νϕ1ðyÞϕ2ðzÞjx¼y¼z; ð3Þ

where the matrix Θμν is a real antisymmetric matrix that
defines the algebra of the noncomutative geometry,

½xμ; xν� ¼ iΘμν: ð4Þ

However, there are subtle differences between the two.
For example, while the form factor in Eq. (2) is symmetric
and Lorentz invariant, the star product in Eq. (3) is
antisymmetric and is not Lorentz invariant. Nonetheless,
the noncommutative geometry encapsulated in the expo-
nent of the star product regulates UV divergences as does
the scale of nonlocality, and one can think of the scale of
nonlocality as an emergent scale from the scale of non-
commutativity. An example of how the two can be related
can be found in [18].
The first serious step toward constructing a realistic

nonlocal QFTwas taken in [19], where the nonlocal version
of the Abelian gauge theory was formulated and the
corresponding LHC phenomenology was studied. The
formulation of nonlocal QED makes it possible to inves-
tigate the effects of the putative nonlocality in this sector,
such as the possible enhancement/suppression of scattering
processes in colliders, the possible effect on electroweak
precision observables, and its impact on gauge anomalies.
Local gauge anomalies were first explained in [20–22],

and it is now understood that the anomaly associated with
the vector current vanishes as a direct result of gauge
invariance and the Ward identity, whereas the chiral
anomaly associated with the axial current is nonvanishing
since the axial current is global and cannot be gauged,
implying that it cannot be conserved. The first (and to the
best of our knowledge, only) study that attempted to
investigate the Uð1Þ gauge anomalies in nonlocal QED
was [23], where the authors utilized a novel formalism
dubbed the “shadow field formalism” to show that intro-
ducing nonlocality does not affect the conservation of the
vector current, nor does it remove the chiral anomaly. In the
present paper, we attempt to extend a similar treatment to
the nonlocal QED version formulated in [19]. In particular,
we will try to show that the vector anomaly vanishes and
that the Ward identity is respected, and we derive the
nonlocal chiral anomaly and the associated nonlocal
Noether currents. We show that our results through explicit
calculation using the nonlocal QED formulation in [19]
agree with the results obtained in [23].
This paper is organized as follows: In Sec. II, we review

the nonlocal QED theory introduced in [19]. In Sec. III
we explicitly calculate the vector and chiral anomalies
in nonlocal QED, and we derive the associated

Noether current. We relegate some technical detail to
Appendix A, and then we compare our results with [23]
and show that they agree. In Sec. IV we apply our findings
to the decay process of π0 → γγ and use the result to set an
experimental bound on the scale on nonlocality, and finally
we present our conclusions in Sec. V.

II. REVIEW OF NONLOCAL QED

We begin by providing a quick overview of the nonlocal
extension of QED that was derived in [19]. The basic idea
behind obtaining the nonlocal version of QED is to start
with the local version, and then introduce the nonlocality
factor represented by the exponential of an entire function
of derivatives, such that the action remains gauge invariant.
With this prescription in mind, the nonlocal version of QED
can be written as

LNL ¼ −
1

4
Fμνe

□

ΛgFμν þ 1

2
½iΨ̄e

−∇2
Λ2
fð∇þmÞΨþ H:c:�; ð5Þ

where ∇μ ¼ ∂μ þ ieAμ, which implies

∇2 ¼ □þ ieð∂ · Aþ A · ∂Þ − e2A2: ð6Þ

Here, we have accommodated for the fact that the scale of
nonlocality for the fermions and photon could be different
in principle. Notice that while we are using the ordinary
derivative in the photon’s kinetic term, the covariant
derivative has to be used in the fermion sector to keep it
gauge invariant. In calculating the nonlocal QED anomaly,
one only needs the Feynman rules for the fermion propa-
gator and the interaction vertices. The former is easily
extracted to be

Πf ¼ ie
p2

Λ2
fð=pþmÞ

p2 −m2 þ iϵ
: ð7Þ

It is easy to see that in the limit Λf → ∞ one recovers the
standard fermion propagator. On the other hand, extracting
the interaction vertex is more subtle, as special care is needed
to include the contribution from the covariant derivative in
the exponent. To proceed, we expand the covariant derivative
in the nonlocal factor, and then only keep the terms at linear
order in A. The final result is given by

Vðk1; k2Þ ¼ −
ie
2

2
664ðk1μk2 þ k2μk1Þ

0
BB@e

k2
1

Λ2
f − e

k2
2

Λ2
f

k21 − k22

1
CCA

þ
 
e

k2
1

Λ2
f þ e

k2
2

Λ2
f

!
γμ

3
775; ð8Þ
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where k1;2 are the momenta of the fermions. In the limit
Λf → ∞ one recovers the local QED.We refer the interested
reader to [19] for the detailed derivation.

III. ANOMALIES IN NONLOCAL QED

In this section, we will explicitly calculate the Uð1Þ
vector and axial anomalies in the nonlocal extension of
QED formulated in [19]. In our calculation, we follow
the method presented in [24] based on calculating the
triangle diagrams regularized via a Pauli-Villars regulator.
However, unlike the case of local QED, no regulator is
needed to calculate the loop diagrams in nonlocal QFTs, as
they are already superrenormalizable due to the nonlocality
form factor. Similar to the case of local QFTs, anomalies in
nonlocal QED arise from triangle diagrams with charged
fermions running in the loops, with two vector and one
axial currents attached to the vertices as shown in the top
row of Fig. 1. In nonlocal QED, there is an additional
contribution from the bubble diagram shown in the bottom
row of Fig. 1. One can see how this type of diagrams comes
into play by inspecting Eqs. (5) and (6). We can see that
when we expand the covariant derivative in the form factor,
we obtain an infinite tower of nonrenormalizable effective
vertices ∼Ψ̄ΨAn, where we see that the bubble diagram
arises from the vertex with n ¼ 2. These interaction vertices

are a direct consequence of the requirement of gauge
invariance, which necessitated using the covariant deriva-
tive instead of the ordinary one in the nonlocality form
factor. We present the detailed derivation of the Feynman
rule associated with the Ψ̄ΨA2 vertex in Appendix.
Before we proceed with calculating the anomalies,

we point out that in general, calculating loop diagrams
in nonlocal QFTs is not doable exactly due to the complex
nature of the form factor that contains loop momenta to be
integrated over. However, the calculation simplifies sig-
nificantly if we assume that the scale of nonlocality is much
larger than the external momenta, i.e., Λ ≫ p, q. Given the
lower bound on Λ ∼ 2.5–3 TeV [19], the validity of this
approximation is well justified, as was demonstrated in
detail in [25]. In this limit, the form factors in the
propagators and the interaction vertices are simplified
and reduced to eðk�pÞ2=Λ2 ≃ eðk�qÞ2=Λ2 ≃ ek

2=Λ2

, where k
is the loop momentum to be integrated over.

A. Vector and chiral anomalies with massless fermions

We first investigate the case where the fermions in the
loops are massless. We begin by calculating the bubble
diagram. In the limit of small external momenta, the
corresponding matrix element reads

Mμνρ
○

≃ ie2
Z

d4k
ð2πÞ4 e

4k2

Λ2Tr

�
γμγ5ðkþ =pÞVνρðkþ p; k − q; p; qÞðk − =qÞ

ðkþ pÞ2ðk − qÞ2
�
; ð9Þ

where Vνρ is given by Eq. (A17). Using the explicit expression of Vνρðkþ p; k − q; p; qÞ, we find that

Mμνρ
○

∼ Tr½γμγ5ðkþ =pÞ½ðk − =qÞðkþ pÞνðkþ p − qÞρ − ðkþ =pÞðk − qÞνkρ�ðk − =qÞ� ¼ 0: ð10Þ

Therefore, the bubble diagram does not contribute to either the vector or the chiral anomalies. On the other hand, the triangle
diagrams are given by

FIG. 1. Triangle (top) and bubble (bottom) diagrams contributing to the anomalies in nonlocal QED.
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Mμνρ
△

≃ −ie2
Z

d4k
ð2πÞ4 e

6k2

Λ2Tr

�
γ5γμðkþ =pÞγνkγρðk − =pÞ

ðkþ pÞ2k2ðk − qÞ2
�

þ
�
p ↔ q

ν ↔ ρ

�
; ð11Þ

in the limit of small external momenta. Notice that this is
identical to the local case multiplied by the nonlocality
factor. The factor of 6 arises from 3 nonlocal vertices and
3 nonlocal propagators.
We begin by calculating the vector anomaly. Our aim is

to verify that the vector anomaly indeed vanishes in the
nonlocal QED and that the Ward identity is preserved.
Prima facie, this should be the case, since the nonlocal

QED action is gauge invariant by construction. To
this avail, it is convenient to calculate pνM

μνρ
5 . Using

=p ¼ =pþ k − k, the trace in Eq. (11) simplifies to

1

k2ðk − qÞ2 Tr½γ
5γμkγρðk − =qÞ�

−
1

ðkþ pÞ2ðk − qÞ2 Tr½γ
5γμðkþ =pÞγρðk − =qÞ�: ð12Þ

It is a simple exercise to evaluate the traces. The first trace
yields −4ikνqσϵμνρσ, whereas the second trace evaluates to
−4iðkνpσ þ kνqσ þ pνqσÞϵμνρσ. Thus, Eeq. (11) becomes

pνM
μνρ
△

≃ −4e2ϵμνρσ
Z

d4k
ð2πÞ4 e

6k2

Λ2

�
kμqσ

k2ðk − qÞ2 þ
kνðpþ qÞσ þ pνqσ
ðk − qÞ2ðkþ pÞ2

�
þ
�
p ↔ q

ν ↔ ρ

�
: ð13Þ

It is sufficient to evaluate the first term. Focusing on the
first part of the first term, we notice that the only external
momentum it contains is qσ, which means that after
integrating over kμ, Lorentz invariance implies that the
result will be proportional to qμqσ, which vanishes upon
contraction with ϵμνρσ. This leaves us with the second
integral to perform. Such loop integrals are fairly simple to
evaluate and are UV finite due to the nonlocality form
factor. Details on how to calculate these nonlocal momen-
tum integrals are provided in [25]. Upon evaluating the
momentum integral in Eq. (13), we find

pνM
μνρ
△

∼ ðpνpσ − qνqσ − pνqσ − qνpσÞϵμνρσ; ð14Þ

and we can see that pνpσ and qνqσ vanish upon contraction
with ϵμνρσ. This leaves ðpνqσ þ qνpσÞϵμνρσ, and it is easy to
see that after relabeling ν ↔ σ in the second term and using
the antisymmetry of ϵμνρσ , the whole term vanishes.
The same argument holds for qνM

μνρ
△

since p and q are
symmetric. Thus, we can see that vector anomaly vanishes
in nonlocal QED, as it should.
Turning our attention to the chiral anomaly, we need to

calculate ðpþ qÞμMμνρ
△

. Using

γ5ð=pþ =qÞ ¼ γ5ð=pþ k − kþ =qÞ ¼ γ5ðkþ =pÞ þ ðk − =qÞγ5;
ð15Þ

the trace in (11) simplifies to

1

k2ðk − qÞ2 Tr½γ
5γνkγρðk − =qÞ�

þ 1

k2ðkþ pÞ2 Tr½γ
5ðkþ =pÞγνkγρ�: ð16Þ

Notice that the first term is identical to the first term in (12)
with μ → ν, and therefore it vanishes as we saw above.
On the other hand, the second traces yields −4iϵμνρσkμpσ.
Therefore, the chiral anomaly reads

−ðpþ qÞμMμνρ
△

≃ 4e2ϵμνρσ
Z

d4k
ð2πÞ4 e

6k2

Λ2

�
kμpσ

k2ðkþ pÞ2
�

þ
�
p ↔ q

ν ↔ ρ

�
; ð17Þ

and we see that the first term contains p only, which
means that after integrating over k, the result will be
∼pμpσ , which vanishes upon contraction with ϵμνρσ; i.e.,
the chiral anomaly seems to vanish in non-local QED!
This result is counter-intuitive, as the chiral anomaly in
local QED is nonvanishing, and one would expect the
same to carry on to the nonlocal case. The reason behind
this apparent contradiction lies in our approximations.
We limited our calculation to the leading order in the
expansion of p; q=Λ, and assumed massless fermions.
However, this situation does not hold once we include the
NLO expansion in external momenta and/or we use
massive fermions, and the chiral anomaly no longer
vanishes. In Sec. III B below, we shall redo our calcu-
lation with massive fermions and show that chiral
anomaly indeed persists. We will limit our calculation
to the leading order (LO) in p; q=Λ for simplicity.

B. Vector and chiral anomalies with massive fermions

Here we show the effect of including fermion masses on
both the vector and chiral anomalies. First, let us focus on
the bubble diagram. Including the fermion masses in
Eq. (9) to simplify it, Eq. (10) becomes
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Mμνρ
○

≃ ie2
Z

d4k
ð2πÞ4 e

4k2

Λ2Tr

�
γμγ5ðkþ =pþmÞVνρðkþ p; k − q; p; qÞðk − =qþmÞ

½ðkþ pÞ2 −m2�½ðk − qÞ2 −m2�
�
; ð18Þ

with Vνρðkþ p; k − q; p; qÞ, which is unchanged compared to the massless case. Here, too, we find that the trace vanishes,
and hence the bubble diagram does not contribute. On the other hand, the contribution of the triangle diagrams in Eq. (11)
becomes

Mμνρ
△

≃ −ie2
Z

d4k
ð2πÞ4 e

6k2

Λ2Tr

�
γ5γμðkþ =pþmÞγνðkþmÞγρðk − =pþmÞ
½ðkþ pÞ2 −m2�½k2 −m2�½ðk − qÞ2 −m2�

�
þ
�
p ↔ q

ν ↔ ρ

�
: ð19Þ

First, we investigate the vector anomaly by calculating
pνM

μνρ
△

. Simplifying the expression by writing =p ¼
ð=pþ k −mÞ − ðk −mÞ and then evaluating the traces
explicitly, it’s not hard to see that the result is identical
to Eq. (13) with the denominators being those of massive
fermions. Therefore, the result in Eq. (14) continues to
hold, and the vanishing of the vector anomaly remains
unaffected, as is expected.
Turning our attention to the chiral anomaly by consid-

ering −ðpþ qÞμMμνρ
△

in the massive case, we first simplify
the matrix element by using

γ5ð=pþ=qÞ¼ γ5ðkþ=p−mÞþγ5ð=q−k−mÞþ2mγ5

¼ γ5ðkþ=p−mÞþðk−=q−mÞγ5þ2mγ5; ð20Þ

which simplifies the trace in Eq. (19) to

¼Tr

�
γ5γνðkþmÞγρðk−qþmÞ
½k2−m2�½ðk−qÞ2−m2�

�

þTr

�
γ5ðkþ=pþmÞγνðkþmÞγρ
½ðkþpÞ2−m2�½k2−m2�

�

þ2mTr

�
γ5ðkþ=pþmÞγνðkþmÞγρðk−qþmÞ
½ðk−qÞ2−m2�½ðkþpÞ2−m2�½k2−m2�

�
: ð21Þ

Focusing on first and second terms, it is a simple exercise
to show that they yield identical results to Eq. (16) with the
mass added in the denominators, and therefore, they vanish
after integrating over k and contracting with ϵμνρσ. The last
term, on the other hand, is proportional to the mass and
does not yield a vanishing contribution. The trace yields the
factor 4impμqσϵμνρσ, and thus Eq. (19) becomes

−ðpþ qÞμMμνρ
△

≃
Z

d4k
ð2πÞ4 e

6k2

Λ2
−8e2m2pμqσϵμνρσ

½ðk − qÞ2 −m2�½ðkþ pÞ2 −m2�½k2 −m2� þ
�
p ↔ q

ν ↔ ρ

�
: ð22Þ

Evaluating the integral is fairly straightforward, and the result in terms of the Feynman parameters reads

−ðpþ qÞμMμνρ
△

≃
ie2

π2
pμqσϵμνρσ

Z
1

0

dxdy

�
1

1 − xy Q2

m2

þ 6m2

Λ2
þ 12m2

Λ2
Ei

�
6ðxyQ2 −m2Þ

Λ2

��
; ð23Þ

where Q2 ≡ ðpþ qÞ2, and the exponential integral func-
tion EiðxÞ is defined as

EiðxÞ ¼ −
Z

∞

−x
dt

e−t

t
: ð24Þ

Linking Eq. (23) to the massless case is straightforward
and can be done simply by taking the limit m → 0, which
leads to the vanishing of the anomaly at LO in the
expansion of the external momenta, in a manner consistent
with what we found in Sec. III A. On the other hand, the
link to the local case is more subtle. Here one expects that
the local case should be obtained by taking the limit
Λ → ∞; however, this turns out to be insufficient. The
reason behind this can be best understood by calculating

the local anomaly following the method in [24], where it is
shown that the chiral anomaly in the local case arises purely
from the regulator. However, a regulator is absent in the
nonlocal case since it is already finite. Therefore, simply
taking Λ → ∞ will not render the regularized local
result. Instead, we use the following prescription to remedy
the situation: We assume that m2 ≫ Q2, which corre-
sponds to the mass itself acting as regulator. In the limit
Λ ≫ m2 ≫ Q2, Eq. (23) becomes

− ðpþ qÞμMμνρ
△

≃
ie2

2π2
pμqσϵμνρσ

�
1þ 6m2

Λ2
þ 12m2

Λ2
Ei

�
−6m2

Λ2

��
; ð25Þ
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and it is easy to see that upon taking Λ → ∞, the local case
is retrieved.

C. Noether currents

Finally, here we derive the nonlocal Noether vector and
axial currents. Notice that the action in Eq. (5) is invariant
under the global transformations

Ψ → eiαΨ; Ψ → eiβγ
5Ψ: ð26Þ

To derive the corresponding Noether currents, we follow
the usual prescription of demanding that the Lagrangian be
invariant under the infinitesimal local transformations

Ψ → ð1þ iαðxÞÞΨ; Ψ → ð1þ iβðxÞγ5ÞΨ; ð27Þ

which leads to the current

JμðxÞ ¼ δL
δð∂μΨÞ

ΔΨ: ð28Þ

To derive the nonlocal QED Noether currents, we start
with the Lagrangian

L¼ i
2
Ψ̄exp

�
−□− ieð∂ ·AþA · ∂Þ− e2A2

Λ2

�
ð∂Ψþ ie=AΨÞ

þH:c: ð29Þ

Notice that in order to evaluate the variation of the
Lagrangian with respect to ∂Ψ, we need to pay special
attention to the derivatives in the exponent. To this avail, we
use the following prescription: First, we expand the
derivative operators in the exponents, and then we act
the derivatives on the associated field leaving only terms
∼∂Ψ. Finally, we exponentiate the results and restore the
operator form in the currents. Let us first focus on the
second term in the parentheses in Eq. (29). We assume
that the photon is on-shell, such that □ð=AΨÞ ¼ =A□Ψ ¼
−k21=AΨ. Therefore, we have

exp
�
−
□

Λ2

�
ð=AΨÞ ¼

X∞
n¼0

�ð−iÞn□n

Λ2nn!

�
ð=AΨÞ

¼
X∞
n¼0

� ðk21Þn
Λ2nn!

�
ð=AΨÞ

¼ exp

�
k21
Λ2

�
ð=AΨÞ: ð30Þ

On the other hand, the remaining derivative acting on =AΨ
can be evaluated as follows:

exp

�
−ieA · ∂

Λ2

�
ðie=AΨÞ

¼ ie
X∞
n¼0

ð−ieA · ∂Þn
Λ2nn!

ð=AΨÞ

¼ ie
X∞
n¼0

ð−ieAμÞn
Λ2nn!

Xn
k¼0

n
k

�
∂
n−k
μ =AÞð∂kμΨÞ

¼ ie=AA · ∂Ψ
X∞
n¼0

ð−ieAμÞn
Λ2nn!

Xn
k¼0

n
k

�
iq · AÞn−kð−ik1 · AÞk−1

¼ −
e2=AA · ∂Ψ
k1 · A

exp

�
eA · k2
Λ2

�
; ð31Þ

where we have used conservation on momentum to
eliminate the momentum of the photon. The Hermitian
conjugate yields identical results with k1 ↔ k2. Thus,
after restoring the operators, the second term in Eq. (29)
becomes

L2 ¼ −
ie2

2
Ψ̄ exp

�
−□ − ieA · ∂ − e2A2

Λ2

�

×

�
1

k1 · A
þ 1

k2 · A

�
=AA · ∂Ψ: ð32Þ

Notice that when the photon is assumed to be on-shell,
we have

1

k1 ·A
þ 1

k2 ·A
¼ ðk1þk2Þ ·A
ðk1 ·AÞðk2 ·AÞ

¼ q ·A
ðk1 ·AÞðk2 ·AÞ

¼0; ð33Þ

which implies that the second term in eq. (29) does not
contribute to the nonlocal Noether currents. On the other
hand, the first term will give a nonvanishing contribution.
Following the same procedure, we obtain

L1 ¼
i
2
Ψ̄ exp

�
k21 þ eA · k2 − e2A2

Λ2

�
∂Ψþ ð1 ↔ 2Þ: ð34Þ

Using Eq. (34) in Eq. (28), and then restoring the operators
in the exponents, we obtain the Noether currents

JμðxÞ ¼ Ψ̄γμΨ exp

�
−□ − ieA · ∂ − e2A2

Λ2

�
; ð35Þ

Jμ5ðxÞ ¼ Ψ̄γμγ5Ψ exp

�
−□ − ieA · ∂ − e2A2

Λ2

�
: ð36Þ

Notice that taking the limit Λ → ∞, the local limit is
retrieved, i.e., Jμ → Ψ̄γμΨ, and Jμ5 → Ψ̄γμγ5Ψ.
Before we conclude this section, there is an important

point that we need to clarify. As is well-known, local
anomalies are obtained by evaluating the expectation of
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the Noether currents. Thus, we should be able to obtain the
nonlocal anomalies by evaluatingZ

d4xd4yd4ze−ip:xeiq1:yeiq2:zhJμ5ðxÞJνðyÞJρðzÞi; ð37Þ

with the currents given by Eqs. (35) and (36). However,
given the field A in the exponents of the vector and axial
currents, we see that the expansion in A actually corre-
sponds to the sum of all insertions of the vector current in
the fermion loop; i.e., the quantity in Eq. (37) actually
encodes all higher-order anomalies that correspond to an
arbitrary number of the gauge field A inserted into a
fermion loop (in addition to the insertions of vector and
axial fields from the local piece). These anomalies in
general might not be vanishing; however, we are only
interested in the triangle anomalies. Triangle anomalies can
be obtained by keeping the leading order in A, i.e.,

exp

�
−□− ieA ·∂−e2A2

Λ2

�
≃exp

�
−
□

Λ2

�
þOðAÞ: ð38Þ

Thus we can see at this order that Eq. (37) leads to the same
results we obtained above.

D. Summary of the results

In this section we summarize the results that we obtained
in this paper:

(i) Vector anomalies in nonlocal QED vanish exactly,
whether the fermions in the loops are massless or
massive, and the Ward identity is respected. It is also
not hard to show that the vanishing of the vector
anomaly holds to all orders in the expansion of
p; q=Λ. This is expected, since the nonlocal QED
action in Eq. (5) is gauge invariant by construction,

(ii) Although in nonlocal QED with massless fermions,
the chiral anomaly appears to vanish at the LO in

p; q=Λ; one can show that it no longer holds once
higher-order corrections are included. In addition,
for nonlocal QED with massive fermions at LO, we
find that the chiral anomaly persists and that it has
the expected form. We found that while obtaining
the massless limit is straightforward, the local limit
is more subtle and cannot be obtained by simply
taking Λ → ∞. Instead, one needs to assume that the
mass of the fermions is much larger than the other
momentum scales in order to act as a regulator itself
in the local limit. Using this prescription, the correct
local limit is obtained,

(iii) The nonlocal vector and axial currents encode
anomalies that correspond to all insertions of the
gauge field in the fermion loop, with the triangle
anomalies obtained from the LO expansion in the
gauge field. This is a direct consequence of gauge
invariance, which leads to rich structures in nonlocal
QED that merit further investigation in the future.

(iv) Our results are consistent with those found in
Ref. [23] using the shadow field formalism.

IV. APPLICATION: π0 → γγ DECAY

We present an application to anomalies in nonlocal QED
by studying the decay process of π0 → γγ. This decay
proceeds through triangle diagrams such as the ones shown
in Fig. 1, with the axial current replaced with a pseudo-
scalar and with protons running in the loops. The inter-
action Lagrangian is given by

Lint ¼ −iλπΨ̄γ5Ψ: ð39Þ

The matrix element can be written as −λe2ϵ�1μϵ�2νMμν,
where at LO in q1;2=Λ we have

Mμν ≃
Z

d4k
ð2πÞ4 e

5k2

Λ2Tr

�
γμ

iðk − q1 þmÞ
ðk − q1Þ2 −m2

γ5
iðkþ q2 þmÞ
ðkþ q2Þ2 −m2

γν
iðkþmÞ
k2 −m2

�
þ
�
1 ↔ 2

ν ↔ ρ

�
; ð40Þ

where m is the mass of the proton. Mμν can be evaluated
following the procedure illustrated in Sec. III, and in the
limit m ≫ mπ , the decay width reads

ΓNLðπ0 → γγÞ ≃ Γ0 ×

�
1þ 5m2

Λ2
þ 10m2

Λ2
Ei

�
−
5m2

Λ2

��
2

;

ð41Þ
where

Γ0 ¼
α2

64π3
m3

π

f2π
ð42Þ

is the decay width in the local case and fπ is the pion decay
constant. We can use Eq. (41) to set a lower limit on the scale
of nonlocality. The most recent measurement of the decay
width of π0 → γγ comes from the PrimEx-II experiment:

ΓExpðπ0 → γγÞ ¼ 7.802� 0.052ðstatÞ � 0.105ðsystÞ eV;
ð43Þ

which can be used to set a 2σ limit on the scale of
nonlocality,

Λ≳ 57 GeV: ð44Þ
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This bound is not very stringent and cannot compete with the
collider bound of Λ≳ 2.5–3 TeV [19,26].

V. CONCLUSION AND OUTLOOK

In this paper, we investigated the vector and chiral
anomalies in the nonlocal QED formulated in [19]. We
found that the vanishing of the vector anomaly remains
unaffected and that the Ward identity continues to hold in
the nonlocal case as well. This is to be expected since
nonlocal QED is gauge invariant by construction.
We also found that at leading order the chiral anomaly

vanishes in the massless case, while it does not vanish in the
massive case. Also, the anomaly continues to exist at next
to leading order in the massless case. Naively, one might
speculate that since nonlocal QED lacks a regulator as it is
already regularized, and that since the chiral anomaly in the
local case arises purely from the regulator, the chiral
anomaly in the nonlocal case would vanish. Nonetheless,
this turned out not to be the case, and the chiral anomaly is
nonvanishing at next to leading order for the massless case,
and can be expressed in terms of the local anomaly plus
corrections suppressed by the scale of nonlocality. We
found that obtaining the local limit from the nonlocal case
would require special care, and we found that with the
correct prescription, the local limit is obtained when
Λ → ∞. Our results are consistent with the results found
in [23] by using the shadow field formalism. We also found
the corresponding vector and axial Noether currents in the
nonlocal case and found that they encode all higher-order
anomalies, with the triangle anomalies obtained from the
LO expansion in the gauge field. We also showed that in the
limit Λ → ∞, the local currents are obtained.
As a simple application of our results, we calculated the

corrections to the decay width π0 → γγ due to nonlocality
and found that the constraint corresponding to the current
experimental measurement is weak compared to the limit
obtained from the LHC.
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APPENDIX: DERIVATION OF THE
NONLOCAL Ψ̄Ψγγ VERTEX

Here we show how to derive the Feynman rule for the
Ψ̄Ψγγ vertex in nonlocal QED. The Feynman rule for the
Ψ̄Ψγ vertex was derived in [19] and is shown in Eq. (8).
The full Feynman rule of the Ψ̄Ψγγ vertex is rather
complex; therefore, we simplify by assuming that the
photons are on-shell, which is the case we are interested
in for calculating the anomalies, and we only keep the
leading terms in 1=Λ2. We start with the fermion part of the
nonlocal QED action in Eq. (5):

SNL ¼ 1

2

Z
d4x½iΨ̄e−∇2

Λ2ð∇þmÞΨþ H:c:�: ðA1Þ

We first expand the nonlocal form factor in powers of
1=Λ2 and write the covariant derivative explicitly as shown
in Eq. (6):

SNL ¼ 1

2

Z
d4x

�
iΨ̄
X∞
n¼1

ð−1Þn
Λ2nn!

½□þ ieð∂ · Aþ A · ∂Þ

− e2A2�n½∂þ ie=A�Ψþ H:c:

�
: ðA2Þ

To obtain the Ψ̄Ψγγ vertex, we only keep terms that are
proportional to A2, i.e., the terms ∼Oðe2Þ. Inspecting
Eq. (A2), we can see that we can obtain terms at OðA2Þ
through three different ways: (1) For n ¼ 1, we can have
the A2 term in the first bracket multiplied by the ∂Ψ term
in the second bracket. (2) For n ¼ 1, we can have the
ð∂:Aþ A:∂Þ term from the first bracket multiplied by the
=A term in the second bracket. (3) For n ¼ 2, we can have
the ð∂ · Aþ A · ∂Þ2 term from the first bracket multiplied by
the ∂Ψ term in the second term. Explicitly, we have

SNL ⊃ −
ie2

2

X∞
n¼0

ð−1Þn
Λ2nn!

Z
d4x

�Xn−1
m¼0

ð□mΨ̄Þ½A2□n−m−1ð∂ΨÞ þ ð∂ · Aþ A · ∂Þ□n−m−1ð=AΨÞ�

þ
Xn−2
m¼0

Xn−m−2

l¼0

ð□mΨ̄Þð∂ · Aþ A · ∂Þ□lð∂ · Aþ A · ∂Þ□n−m−l−2ð∂ΨÞ þ H:c:

�
; ðA3Þ

where we have integrated Ψ̄□m by parts to obtain□mΨ̄. We
treat each of the three terms separately. Starting with the
first term, notice that each □ operator will pull down a
factor of −k21;2, with k1;2 being the 4-momentum of Ψ̄ and

Ψ, respectively. On the other hand, the ∂Ψ will pull a factor
of −ik2, whereas the Hermitian conjugate will give a factor
of −ik1, thereby symmetrizing the result between k1 and k2.
Thus, the first term yields
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S1¼
e2

2

X∞
n¼0

1

Λ2nn!

Xn−1
m¼0

Z
d4xðk1þk2Þðk2m1 k2ðn−m−1Þ

2 ÞΨ̄ΨA2;

ðA4Þ

and the sums can be evaluated as follows:

X∞
n¼0

1

Λ2nn!

Xn−1
m¼0

k2m1 k2ðn−m−1Þ
2 ¼

X∞
n¼0

k2n−22

Λ2nn!

�
1 − ðk21=k22Þn
1 − ðk21=k22Þ

�

¼ e
k2
2

Λ2 − e
k2
1

Λ2

k22 − k21
; ðA5Þ

which, together with Eq. (A4), implies that the contribution
of the first term is given by

V1μνðk1;k2;q1;q2Þ¼ ie2ðk1þk2Þ

0
B@e

k2
2

Λ2 −e
k2
1

Λ2

k22−k21

1
CAgμν; ðA6Þ

where q1;2 are the momenta of the photons, which will be
relevant for the remaining contributions. Turning to the
second term in Eq. (A3), we have

SNL;2 ¼
ie2

2

X∞
n¼0

1

Λ2nn!

Xn−1
m¼0

Z
d4x
h
ðk2m1 k2ðn−m−1Þ

2 Þ

× Ψ̄ð∂ · Aþ A · ∂Þð=AΨÞ þ H:c:
i
; ðA7Þ

where we have acted with the□ operators on the respective
fields and assumed that the photon is on-shell, such that
□A ¼ −q21A ¼ 0. Notice that the sums are identical to
Eq. (A5). Therefore, writing the Hermitian conjugate
explicitly, Eq. (A7) reads

S2 ¼
ie2

2

�
e

k2
2

Λ2 − e
k2
1

Λ2

k22 − k21

�Z
d4x½Ψ̄ð∂ · Aþ A · ∂Þð=AΨÞ

þ ð∂ · Aþ A · ∂ÞðΨ̄=AÞΨ�: ðA8Þ

Notice that the second operator acts only on Ψ̄=A. Acting
with the partial derivative on the fermions, the photon will
pull down the momentum of the respective field, and one
can eliminate the momentum of the photon in favor of the
momenta of the two fermions, such that Eq. (A8) becomes

S2 ¼
ie2

2
ðk1μ þ k2μÞ

0
B@e

k2
2

Λ2 − e
k2
1

Λ2

k22 − k21

1
CAZ d4xΨ̄ΨAμ=A; ðA9Þ

which implies that the Feynman rule corresponding to the
second vertex is given by

V2μνðk1; k2; q1; q2Þ ¼ −e2ðk1μ þ k2μÞγν

0
B@e

k2
2

Λ2 − e
k2
1

Λ2

k22 − k21

1
CA:

ðA10Þ

Finally, we turn our attention to the last term given in the
second line of Eq. (A3). This part is quite complex, so we
resort to some approximations to evaluate it. First, we
notice that

ð∂ · Aþ A · ∂Þ□lð∂ · Aþ A · ∂Þ□n−m−l−2ð∂ΨÞ
¼ ik1νk2ðq1μ − k2μÞð−k22Þn−m−2AμAνΨ; ðA11Þ

where q1μ is the momentum of one of the photons, and we
have assumed that the photons are on-shell and utilized
conservation of momentum to eliminate the momenta of the
photons in favor of the momenta of the fermions whenever
possible. Therefore, the third term in (A3) reads

S3 ¼
e2

2

X∞
n¼0

1

Λ2nn!

Xn−2
m¼0

Xn−m−2

l¼0

Z
d4x
h
ðk2m1 k2ðn−m−2Þ

2 Þk1νk2ðq1μ − k2μÞAμAνΨ̄Ψþ H:c:
i
: ðA12Þ

We need to evaluate the sums over l, m, and n. First, notice that the sum over l is trivial and just leads to a factor of
n −m − 2. Therefore, the sum over m becomes

Xn−2
m¼0

ðn−m−2Þðk2m1 k2ðn−m−2Þ
2 Þ¼ðn−2Þ

�ðk22Þn−1−ðk21Þn−1
k22−k21

�
−ðk2ðn−2Þ2 Þ

�
k21
k22

��
1−ðn−1Þðk21=k22Þn−2þðn−2Þðk21=k22Þn−1

ð1−k21=k
2
2Þ2

�
;

ðA13Þ
and we can now plug this into Eq. (A12) to evaluate the sum over n. The first term in the sum over n yields

X∞
n¼0

ðn − 2Þ
Λ2nn!

 
k2ðn−1Þ2 − k2ðn−1Þ1

k22 − k21

!
¼ 1

Λ2ðk22 − k21Þ
��

1 −
2Λ2

k22

�
e

k2
2

Λ2 −
�
1 −

2Λ2

k21

�
e

k2
1

Λ2

�
; ðA14Þ

ANOMALIES IN STRING-INSPIRED NONLOCAL EXTENSIONS … PHYS. REV. D 109, 076013 (2024)

076013-9



whereas the second term yields

X∞
n¼0

1

Λ2nn!
ðk2ðn−2Þ2 Þ

�
k21
k22

��
1− ðn− 1Þðk21=k22Þn−2 þ ðn− 2Þðk21=k22Þn−1

ð1− k21=k
2
2Þ2

�
¼ 1

ðk22 − k21Þ2
��

k21
k22

�
e

k2
2

Λ2 þ
�
k21
Λ2

−
k22
Λ2

þ k22
k21

− 2

�
e

k2
1

Λ2

�
:

ðA15Þ

We simplify our results by keeping only the leading order in Λ, so we drop terms ∼Oð1=Λ2Þ. We plug Eqs. (A14)
and (A15) into Eq. (A12) and then evaluate the Hermitian conjugate, which can simply be obtained from the first part by
interchanging k1 ↔ k2. Finally, we arrive at the third contribution to the Feynman rule

V3μνðk1; k2; q1; q2Þ≃ ie2k1νk2ðq1μ − k2μÞ

8><
>:

2

k22 − k21

0
B@e

k2
1

Λ2

k21
−
e

k2
2

Λ2

k22

1
CAþ 1

ðk22 − k21Þ2
��

k21
k22

�
e

k2
2

Λ2 þ
�
k22
k21

− 2

�
e

k2
1

Λ2

�9>=
>;þ ðk1 ↔ k2Þ:

ðA16Þ

Putting all the pieces together from Eqs. (A6), (A10), and (A16), we arrive at the final result

Vμνðk1; k2; q1; q2Þ ≃ ie2½ðk1 þ k2Þgμν þ iðk1μ þ k2μÞγν�

0
B@e

k2
2

Λ2 − e
k2
1

Λ2

k22 − k21

1
CA

þ k1νk2ðq1μ − k2μÞ

8><
>:

2

k22 − k21

0
B@e

k2
1

Λ2

k21
−
e

k2
2

Λ2

k22

1
CAþ 1

ðk22 − k21Þ2
��

k21
k22

�
e

k2
2

Λ2 þ
�
k22
k21

− 2

�
e

k2
1

Λ2

�9>=
>;

þ k2νk1ðq1μ − k1μÞ

8><
>:

2

k21 − k22

0
B@e

k2
2

Λ2

k22
−
e

k2
1

Λ2

k21

1
CAþ 1

ðk21 − k22Þ2
��

k22
k21

�
e

k2
1

Λ2 þ
�
k21
k22

− 2

�
e

k2
2

Λ2

�9>=
>;: ðA17Þ
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