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A R T I C L E I N F O A B S T R A C T

Editor: H. Gao The primary objective of this study is to investigate hadronic molecules of 𝐾∗�̄�1(1270) using a one-boson-

exchange model, which incorporates exchanges of vector and pseudoscalar mesons in the 𝑡-channel, as well as 
the pion exchange in the 𝑢-channel. Additionally, careful consideration is given to the three-body effects resulting 
from the on-shell pion originating from 𝐾1(1270) → 𝐾∗𝜋. Then the BESIII data of the 𝐽∕𝜓 → 𝜙𝜂𝜂′ process is 
fitted using the 𝐾∗�̄�1(1270) scattering amplitude with 𝐽𝑃𝐶 = 0−− or 1−−. The analysis reveals that both the 
𝐽𝑃𝐶 = 0−− and 1−− assumptions for 𝐾∗�̄�1(1270) scattering provide good descriptions of the data, with similar 
fit qualities. Notably, the parameters obtained from the best fits indicate the existence of 𝐾∗�̄�1(1270) bound 
states, denoted by 𝜙(2100) and 𝜙0(2100) for the 1−− and 0−− states, respectively. The current experimental 
data, including the 𝜂 polar angular distribution, cannot distinguish which 𝐾∗�̄�1(1270) bound state contributes 
to the 𝐽∕𝜓 → 𝜙𝜂𝜂′ process, or if both are involved. Therefore, we propose further explorations of this process, 
as well as other processes, in upcoming experiments with many more 𝐽∕𝜓 events to disentangle the different 
possibilities.
1. Introduction

Exotic hadrons, which lie beyond the conventional quark model [1,

2], have gained significant attention in the past two decades due to 
the observation of numerous exotic states or their candidates in experi-

ments. Despite of extensive research on the structures and properties 
of these exotic states, many of them remain subjects of debate. We 
refer to Refs. [3–20] for recent reviews on the experimental and the-

oretical status of exotic hadrons. One intriguing observation is that 
many of the observed peaks are located very close to the thresholds 
of hadron pairs that they can couple to. This proximity can be at-

tributed to the 𝑆-wave attraction between the relevant hadron pair, as 
discussed in Ref. [21]. Consequently, a natural interpretation for these 

* Corresponding authors.

E-mail addresses: xiangkun@hiskp.uni-bonn.de (X.-K. Dong), teng@hiskp.uni-bonn.de (T. Ji), fkguo@itp.ac.cn (F.-K. Guo), meissner@hiskp.uni-bonn.de

states is the formation of hadronic molecules, as extensively reviewed 
in Refs. [3,8,14,17,19,20].

Among the exotic states, those with exotic quantum numbers 𝐽𝑃𝐶

that cannot be formed by conventional quark-antiquark mesons, such 
as 0−−, 1−+ and so on, are of extremely great interest. Currently, 
there have been four experimental candidates of such exotic states, 
namely 𝜋1(1400), 𝜋1(1600) [22], 𝜂1(1855) [23] and 𝜋1(2015) [24,25], 
all possessing 𝐽𝑃𝐶 = 1−+. Although numerous theoretical studies have 
proposed the existence of 0−− states, such as compact tetraquark 
states [26–30], hybrid states [31–36], glueballs [37–40], or a 𝐷∗�̄�∗

0
hadronic molecule [41], no experimental signals have been reported 
thus far. One should notice that the above predictions may have large 
uncertainties and some of them are still controversial, even problem-
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atic. For example, the QCD sum rules concluded that no 0−− tetraquark 
state exists below 2 GeV [42,43].

In a recent work [44], a narrow 0−− 𝐷∗�̄�1(2420) molecule 𝜓0(4360)
was predicted in the one-boson-exchange (OBE) model based on heavy 
quark spin symmetry and the assumption that the 𝜓(4230), 𝜓(4360)
and 𝜓(4415) can be identified as hadronic molecules consisting of 
𝐷�̄�1, 𝐷∗�̄�1(2420) and 𝐷∗�̄�∗

2 components, respectively [29,45–49]. 
This predicted state can be searched for in the 𝐽∕𝜓𝜂 or 𝐷�̄�∗ final 
states in 𝑒+𝑒− collisions, specifically in the processes 𝑒+𝑒− → 𝐽∕𝜓𝜂𝜂
or 𝑒+𝑒− →𝐷�̄�∗𝜂. Analogously, in the hidden strangeness channel, we 
can investigate the 0−− molecule composed of 𝐾∗�̄�1. These states may 
manifest in the 𝜙𝜂(′) or 𝐾�̄�∗ final states in the decays of 𝐽∕𝜓 .

In Ref. [50], a total of 1.3 × 109 𝐽∕𝜓 events were used to investi-

gate the decay process 𝐽∕𝜓 → 𝜙𝜂′𝜂. Notably, an enhancement around 
2.1 GeV was observed in the final states involving 𝜙𝜂′. By incorporat-

ing a Breit-Wigner (BW) resonance with 𝐽𝑃 = 1+ or 1−, the invariant 
mass distribution of 𝜙𝜂′ was well described, while the possibility of 
𝐽𝑃 = 0− was ruled out based on the distribution of the 𝜂 polar angle, 
which represents the angle between the outgoing 𝜂 meson and the in-

coming 𝑒+𝑒− beams in the rest frame of the 𝐽∕𝜓 . However, we will 
later explain that the current data do not provide conclusive evidence 
to exclude the 𝐽𝑃 = 0− possibility due to the significant contribution of 
the phase space (PHSP) processes derived from the experimental Monte 
Carlo simulations.

In the Review of Particle Physics (RPP) [51], there are two 𝐾1 parti-

cles, namely 𝐾1(1270) and 𝐾1(1400). Given that the observed enhance-

ment in 𝐽∕𝜓 → 𝜙𝜂′𝜂 is slightly below the threshold of 𝐾∗�̄�1(1270), 
it is reasonable to investigate whether the 𝜙𝜂′ invariant mass distribu-

tion can be explained by the presence of 𝐾∗�̄�1(1270) molecular states. 
In the following analysis, we will use 𝐾1 to refer to 𝐾1(1270) unless 
otherwise specified.

2. 𝑲∗�̄�𝟏 scattering in the OBE model

2.1. The 𝐾∗�̄�1 potentials

The flavor wave function of the 𝐾∗�̄�1 state with specific 𝐽𝑃𝐶 can 
be expressed as

||𝐾∗𝐾1⟩𝐽𝑃𝐶 = 1√
2

(||𝐾∗�̄�1
⟩
+𝐶(−1)𝐽−𝐽1−𝐽2 ||𝐾∗�̄�1

⟩)
, (1)

where 𝐽1 represents the spin of 𝐾∗, 𝐽2 represents the spin of 𝐾1, and 
 refers to the charge conjugation operator. Using the following phase 
conventions for the charge conjugation transformation,

 ||𝐾∗⟩ = − ||𝐾∗
⟩
,  ||𝐾1⟩ = ||�̄�1

⟩
, (2)

we have

||𝐾∗𝐾1⟩1−− = 1√
2

(||𝐾∗�̄�1
⟩
+ ||�̄�∗𝐾1

⟩)
, (3)

||𝐾∗𝐾1⟩0−− = 1√
2

(||𝐾∗�̄�1
⟩
− ||�̄�∗𝐾1

⟩)
. (4)

In order to assess the exchanges of the vector meson (𝑉 ) and 
pseudoscalar meson (𝑃 ) between 𝐾∗ and �̄�1 in the 𝑡-channel, the 
Lagrangian of 𝐾∗𝐾∗𝑉 ∕𝑃 coupling is needed. From the hidden lo-

cal symmetry formalism, the relevant Lagrangians can be constructed 
as [52–54]

𝑉 𝑉 𝑉 = 𝑖𝑔
⟨(
𝜕𝜇𝑉𝜈 − 𝜕𝜈𝑉𝜇

)
𝑉 𝜇𝑉 𝜈

⟩
, (5)

𝑉 𝑉 𝑃 = 𝐺′√
2
𝜖𝜇𝜈𝛼𝛽

⟨
𝜕𝜇𝑉𝜈𝜕𝛼𝑉𝛽𝑃

⟩
, (6)
2

where
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𝑉 𝜇 =
⎛⎜⎜⎜⎝

1√
2
𝜌0 + 1√

2
𝜔 𝜌+ 𝐾∗+

𝜌− − 1√
2
𝜌0 + 1√

2
𝜔 𝐾∗0

𝐾∗− �̄�∗0 𝜙

⎞⎟⎟⎟⎠
𝜇

, (7)

𝑃 =

⎛⎜⎜⎜⎜⎝
1√
2
𝜋0 + 1√

6
𝜂 𝜋+ 𝐾+

𝜋− − 1√
2
𝜋0 + 1√

6
𝜂 𝐾0

𝐾− �̄�0 − 2√
6
𝜂

⎞⎟⎟⎟⎟⎠
, (8)

and ⟨⋯⟩ means the trace in flavor space. The coupling constant 𝑔
is expressed as 𝑔 = 𝑚𝑉 ∕(2𝐹𝜋) where 𝑚𝑉 represents the mass of the 
vector meson 𝜌 and 𝐹𝜋 = 92.4 MeV is the pion decay constant. The 
coupling constant 𝐺′ is expressed as 𝐺′ = 3𝑔′2∕(4𝜋2𝐹𝜋) with 𝑔′ =
−𝐺𝑉 𝑚𝑉 ∕(

√
2𝐹 2

𝜋
) and 𝐺𝑉 = 𝐹𝜋∕

√
2 [55].

Expanding Eqs. (5) and (6), we obtain the following 𝐾∗𝐾∗𝑉 ∕𝑃 cou-

plings,

𝐾∗𝐾∗𝜌 =
𝑖𝑔√
2

{[
�̄�∗
𝜈
𝝉
(
𝜕𝜇𝐾

∗𝜈)− (
𝜕𝜇�̄�

∗
𝜈

)
𝝉𝐾∗𝜈] ⋅ 𝝆𝜇

+ 2�̄�∗
𝜈
𝝉𝐾∗

𝜇
⋅ (𝜕𝜈𝝆𝜇 − 𝜕𝜇𝝆𝜈)

}
, (9)

𝐾∗𝐾∗𝜔 = 𝑖𝑔√
2

{[
�̄�∗
𝜈

(
𝜕𝜇𝐾

∗𝜈)− (
𝜕𝜇�̄�

∗
𝜈

)
𝐾∗𝜈]𝜔𝜇

+ 2�̄�∗
𝜈
𝐾∗
𝜇
(𝜕𝜈𝜔𝜇 − 𝜕𝜇𝜔𝜈)

}
, (10)

𝐾∗𝐾∗𝜙 = −𝑖𝑔
{[

�̄�∗
𝜈

(
𝜕𝜇𝐾

∗𝜈)− (
𝜕𝜇�̄�

∗
𝜈

)
𝐾∗𝜈]𝜙𝜇

+ 2�̄�∗
𝜈
𝐾∗
𝜇
(𝜕𝜈𝜙𝜇 − 𝜕𝜇𝜙𝜈)

}
, (11)

𝐾∗𝐾∗𝜋 =
𝐺′

2
𝜖𝜇𝜈𝛼𝛽𝜕𝜇�̄�

∗
𝜈
𝝉 ⋅ 𝝅𝜕𝛼𝐾

∗
𝛽
, (12)

𝐾∗𝐾∗𝜂 = − 𝐺′

2
√
3
𝜖𝜇𝜈𝛼𝛽𝜕𝜇�̄�

∗
𝜈
𝜕𝛼𝐾

∗
𝛽
𝜂, (13)

with

𝐾∗ =
(
𝐾∗+

𝐾∗0

)
, �̄�∗ =

(
𝐾∗−, �̄�∗0) , (14)

𝝆 =

(
𝜌+ + 𝜌−√

2
,
𝜌− − 𝜌+

𝑖
√
2

, 𝜌0

)
, (15)

𝝅 =

(
𝜋+ + 𝜋−√

2
,
𝜋− − 𝜋+

𝑖
√
2

, 𝜋0

)
, (16)

and 𝝉 are the Pauli matrices in the isospin space.

We assume that the 𝐾1𝐾1𝑉 ∕𝑃 couplings have the same form as the 
𝐾∗𝐾∗𝑉 ∕𝑃 couplings,

𝐾1𝐾1𝜌
=

𝑖𝑔1√
2

{[
�̄�1𝜈𝝉

(
𝜕𝜇𝐾

𝜈
1
)
−
(
𝜕𝜇�̄�1𝜈

)
𝝉𝐾𝜈

1
]
⋅ 𝝆𝜇

+ 2�̄�1𝜈𝝉𝐾1𝜇 ⋅ (𝜕𝜈𝝆𝜇 − 𝜕𝜇𝝆𝜈)
}
, (17)

𝐾1𝐾1𝜔
=

𝑖𝑔1√
2

{[
�̄�1𝜈

(
𝜕𝜇𝐾

𝜈
1
)
−
(
𝜕𝜇�̄�1𝜈

)
𝐾𝜈

1
]
𝜔𝜇

+ 2�̄�1𝜈𝐾1𝜇 (𝜕𝜈𝜔𝜇 − 𝜕𝜇𝜔𝜈)
}
, (18)

𝐾1𝐾1𝜙
= −𝑖𝑔1

{[
�̄�1𝜈

(
𝜕𝜇𝐾

𝜈
1
)
−
(
𝜕𝜇�̄�1𝜈

)
𝐾𝜈

1
]
𝜙𝜇

+ 2�̄�1𝜈𝐾1𝜇 (𝜕𝜈𝜙𝜇 − 𝜕𝜇𝜙𝜈)
}
, (19)

𝐾1𝐾1𝜋
=
𝐺′
1
2
𝜖𝜇𝜈𝛼𝛽𝜕𝜇�̄�1𝜈𝝉 ⋅ 𝝅𝜕𝛼𝐾1𝛽 , (20)

𝐾1𝐾1𝜂
= −

𝐺′
1

2
√
3
𝜖𝜇𝜈𝛼𝛽𝜕𝜇�̄�1𝜈𝜕𝛼𝐾1𝛽𝜂, (21)

with

𝐾1 =
(
𝐾+

1
0

)
, �̄�1 =

(
𝐾−

1 , �̄�
0
1
)
. (22)
𝐾1
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We further assume that the coupling constants 𝑔1 and 𝐺′
1 should be 

of the same order as 𝑔 and 𝐺′, respectively. As a result, we opt to set 
𝑔1 = 𝑔 and 𝐺′

1 = 𝐺′ in the following calculations. This would be the 
case in the massive Yang-Mills model for vector mesons [52]. We have 
verified that any deviation of approximately 20% in 𝑔1 and 𝐺′

1 can be 
adequately accommodated by varying the cutoff to be introduced later.

Using the above Lagrangian, we obtain the potentials from 𝑡-channel 
meson exchanges in momentum space,

𝑉
(1)
𝑉 ,𝑡

(𝒒) = −𝑔2

2

(
1 −

𝒒2

3

(
1
𝜇2 − 4

𝑚𝐾∗𝑚𝐾1

))
𝐹 𝑡
𝑉

𝒒2 +𝑚2
𝑉
+ 𝑖𝜖

=𝐴
(1)
𝑉

− 𝑔2

2

(
1 +

𝑚2
𝑉

3

(
1
𝜇2 − 4

𝑚𝐾∗𝑚𝐾1

))
𝐹 𝑡
𝑉

𝒒2 +𝑚2
𝑉
+ 𝑖𝜖

, (23)

𝑉
(0)
𝑉 ,𝑡

(𝒒) = −𝑔2

2

(
1 −

𝒒2

3

(
1
𝜇2 − 6

𝑚𝐾∗𝑚𝐾1

))
𝐹 𝑡
𝑉

𝒒2 +𝑚2
𝑉
+ 𝑖𝜖

=𝐴
(0)
𝑉

− 𝑔2

2

(
1 +

𝑚2
𝑉

3

(
1
𝜇2 − 6

𝑚𝐾∗𝑚𝐾1

))
𝐹 𝑡
𝑉

𝒒2 +𝑚2
𝑉
+ 𝑖𝜖

, (24)

𝑉
(1)
𝑃 ,𝑡

(𝒒) = 𝐺′ 2

48
𝐹 𝑡
𝑃
𝒒2

𝒒2 +𝑚2
𝑃
+ 𝑖𝜖

= −𝐺′ 2

48
𝐹 𝑡
𝑃
𝑚2
𝑃

𝒒2 +𝑚2
𝑃
+ 𝑖𝜖

+𝐴
(1)
𝑃
, (25)

𝑉
(0)
𝑃 ,𝑡

(𝒒) = 2 𝑉 (1)
𝑃 ,𝑡

(𝒒) = −𝐺′ 2

24
𝐹 𝑡
𝑃
𝑚2
𝑃

𝒒2 +𝑚2
𝑃
+ 𝑖𝜖

+𝐴
(0)
𝑃
, (26)

where

𝐴
(1)
𝑉

=
𝑔2𝐹 𝑡

𝑉

2

(
1
𝜇2 − 4

𝑚𝐾∗𝑚𝐾1

)
, (27)

𝐴
(0)
𝑉

=
𝑔2𝐹 𝑡

𝑉

2

(
1
𝜇2 − 6

𝑚𝐾∗𝑚𝐾1

)
, (28)

𝐴
(0)
𝑃

= 2𝐴(1)
𝑃

= 𝐺′ 2

24
𝐹 𝑡
𝑃
, (29)

and 𝜇 is the reduced mass of 𝐾∗�̄�1 and 𝒒 = 𝒌 − 𝒌′ is the three-

momentum of the exchanged 𝜋 with 𝒌 and 𝒌′ the three-momenta of 
the incoming and outgoing particles in the center-of-mass (c.m.) frame, 
respectively. The superscripts (1) and (0) represent the results in the 1−−
and 0−− cases, respectively. The flavor factors are 𝐹 𝑡

𝜌
= 3, 𝐹 𝑡

𝜔
= 1, 𝐹 𝑡

𝜙
=

2, 𝐹 𝑡
𝜋
= 3 and 𝐹 𝑡

𝜂
= 1∕3. The constant components of the potentials, 

𝐴
(1∕0)
𝑉 ∕𝑃 , will be rewritten as two scale-dependent parameters [44,56],

𝐶 (1)(Λ) = 𝑐(Λ)
∑

𝑉 =𝜌,𝜔,𝜙
𝐴
(1)
𝑉

+ 𝑑(Λ)
∑

𝑃=𝜋,𝜂
𝐴
(1)
𝑃
, (30)

𝐶 (0)(Λ) = 𝑐(Λ)
∑

𝑉 =𝜌,𝜔,𝜙
𝐴
(0)
𝑉

+ 𝑑(Λ)
∑

𝑃=𝜋,𝜂
𝐴
(1)
𝑃
, (31)

which will serve as counterterms to absorb the cutoff (Λ) dependence 
as will be explained later. We will take 𝐶 (1) and 𝐶 (0) as free parameters 
to be fitted.

The 𝑆-wave 𝐾1𝐾
∗𝜋 coupling can be expressed as1

𝐾1𝐾∗𝜋 = 𝑖
𝑔𝑆√
2

(
𝜕𝜈�̄�

𝜇

1 𝝉𝐾
∗
𝜇
− �̄�

𝜇

1 𝝉𝜕𝜈𝐾
∗
𝜇

)
⋅ 𝜕𝜈𝝅 + h.c., (32)

where the coupling constant 𝑔𝑆 = 3.4 is determined by the partial decay 
width of 𝐾1 →𝐾∗𝜋. Note that we have ignored a possible 𝐷-wave con-

tribution. Utilizing the Lagrangian in Eq. (32), we obtain the potential 
for the 𝑢-channel 𝜋 exchange as

1 In principle, there should be other terms containing 𝜕𝜇𝜕𝜈𝜋, which are, how-

ever, one order higher than those in Eq. (32) in the power expansion of the pion 
3

momentum. Therefore, these terms are omitted.
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𝑉 (1)
𝜋,𝑢

(𝑞) = 3
8
𝑔2
𝑆

(
𝑚2
𝐾1

−𝑚2
𝐾∗

)2

4𝑚𝐾1
𝑚𝐾∗

1
𝑞2 −𝑚2

𝜋
+ 𝑖𝜖

, (33)

𝑉 (0)
𝜋,𝑢

(𝑞) = −𝑉 (1)
𝜋,𝑢

(𝑞), (34)

where 𝑞 represents the four-momentum of the exchanged pion.

2.2. Lippmann-Schwinger equation

The scattering amplitude can be obtained by solving the Lippmann-

Schwinger Equation (LSE),

𝑇 (𝐸;𝒌′,𝒌) =𝑉
(
𝐸;𝒌′,𝒌

)
+ ∫

d3𝒍
(2𝜋)3

𝑉
(
𝐸;𝒌′, 𝒍

)
𝑇 (𝐸; 𝒍,𝒌)

𝐸 − 𝒍2∕ (2𝜇) + 𝑖Γ(𝐸; 𝒍)∕2
, (35)

where 𝒌 and 𝒌′ are the three-momenta of the initial and final states in 
the c.m. frame, in order, 𝜇 is the reduced mass of 𝐾∗�̄�1, and 𝐸 is the 
energy relative to the threshold. The energy-dependent width Γ(𝐸; 𝒍) is 
the sum of the widths of 𝐾∗ and 𝐾1. The integral is ultraviolet divergent 
and it is regularized by introducing a Gaussian form factor,

𝑉
(
𝐸;𝒌′,𝒌

)
→ 𝑉

(
𝐸;𝒌′,𝒌

)
𝑒−𝒒

2∕Λ2
, (36)

where Λ is the cutoff parameter. The effects of the variation of Λ can be 
absorbed by adjusting the value of 𝐶 (1) or 𝐶 (0) introduced in Eqs. (30), 
(31).

After the 𝑆-wave projection, the LSE in Eq. (35) is reduced to

𝑇0(𝐸;𝑘′, 𝑘) =𝑉0
(
𝐸;𝑘′, 𝑘

)
+ ∫

d𝑙
2𝜋2

𝑙2𝑉0
(
𝐸;𝑘′, 𝑙

)
𝑇0(𝐸; 𝑙, 𝑘)

𝐸 − 𝑙2∕ (2𝜇) + 𝑖Γ(𝐸; 𝑙)∕2
, (37)

with 𝑘, 𝑘′ and 𝑙 the magnitudes of the corresponding three-momenta. 
We would like to emphasize that the 𝑆-wave projection of the potential 
is nontrivial, and it will result in additional cuts to the scattering am-

plitude [44,57]. This introduces significant complexity, particularly for 
the 𝑢-channel 𝜋 exchange. Further details can be found in the Supple-

mentary Materials.

The 𝐾∗ dominantly decays into 𝐾𝜋 with a decay width around 
Γ𝐾∗ = 50 MeV [51]. The total decay width of the 𝐾1 is (90 ± 20) MeV 
and the branching ratio of 𝐾1 → 𝐾∗𝜋 is (21 ± 10)% [51].2 For sim-

plicity, in Γ(𝐸; 𝑙) we only include the energy dependence of the partial 
width of 𝐾1 →𝐾∗𝜋 since this process contributes to the pion exchange 
between 𝐾∗ and �̄�1 in the 𝑢-channel. Explicitly, we have

Γ(𝐸; 𝑙) = Γ𝐾∗ + Γ𝐾1
(𝐸; 𝑙), (38)

Γ𝐾1
(𝐸; 𝑙) = 𝑔2

𝑆

(
𝑚2
𝐾∗𝜋 −𝑚2

𝐾∗
)2

8
𝑞eff (𝐸; 𝑙)
8𝜋𝑚2

𝐾∗𝜋

+ Γcons
𝐾1

, (39)

where Γcons
𝐾1

= 71 MeV is the decay width of 𝐾1 apart from the 𝐾∗𝜋

channel,

𝑚𝐾∗𝜋 =𝐸 +𝑚𝐾1
− 𝑙2

2𝜇
(40)

is the invariant mass of 𝐾∗𝜋 from the 𝐾1 decay, and 𝑞eff (𝐸; 𝑙) is the 
momentum of the 𝜋 in the rest frame of 𝐾1, determined by

𝑞eff (𝐸; 𝑙) = 𝑞cm
(
𝑚𝐾∗𝜋(𝐸; 𝑙),𝑚𝐾∗ ,𝑚𝜋

)
. (41)

The function

𝑞cm(𝑀,𝑚1,𝑚2) =
1

2𝑀

√
𝜆(𝑀2,𝑚2

1,𝑚
2
2) (42)

yields the momentum of 𝑚1 in the rest frame of 𝑀 in the decay process 
of 𝑀 → 𝑚1𝑚2 and 𝜆(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑦 − 2𝑦𝑧 − 2𝑧𝑥 is the 
Källén triangle function. The 𝐾∗𝜋 loop in the 𝐾1 propagator introduces 
an additional cut, which is represented by a three-body cut extending 
2 The central values are used in the following calculations.
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Table 1

The parameters from the best fits together with the pole positions, 𝐸𝑏 , relative to the 𝐾∗�̄�1 threshold at 2145 MeV.

𝐽𝑃𝐶 Λ (GeV) 𝑃𝑎 (103) 𝑃𝑏 (103) 𝑃𝑐 (103) 𝛼 𝛽 𝐶 (1∕0) 𝜒2∕d.o.f. 𝐸𝐵 (MeV)

1−− 1 (fixed) −1.6 ± 0.9 0 (fixed) 37.0 ± 2.9 1.44 ± 0.06 0.28 ± 0.02 −2.5 ± 4.5 38.1∕(60 − 5) −66 − 68𝑖
1 (fixed) 0 (fixed) 23.6 ± 5.4 29.1 ± 11.2 1.39 ± 0.06 0.28 ± 0.02 −0.7 ± 4.6 35.1∕(60 − 5) −60 − 68𝑖

0−− 1 (fixed) −1.4 ± 1.1 0 (fixed) 33.4 ± 2.5 1.48 ± 0.07 0.28 ± 0.02 −22 ± 6 37.6∕(60 − 5) −54 − 61𝑖
1 (fixed) 0 (fixed) 21.0 ± 4.6 30.3 ± 10.3 1.41 ± 0.06 0.28 ± 0.02 −20 ± 4 32.1∕(60 − 5) −48 − 61𝑖
from the 𝐾∗�̄�∗𝜋 threshold to infinity. To ensure a smooth crossing of 
this cut when searching for poles in the complex energy plane, the cut 
of the square root function in Eq. (42) is defined along the negative 
imaginary axis [44,57,58].

3. Fitting the 𝑱∕𝝍 → 𝝓𝜼′𝜼 data

3.1. 𝐽∕𝜓 → 𝜙𝜂′𝜂 amplitude with 𝐾∗�̄�1 rescattering

The 𝑆-wave 𝐾∗�̄�1 system can couple to both the 𝜙𝜂′ and 𝜙𝜂 final 
states. In the following analysis, we consider the interaction between 
the 𝜙𝜂, 𝜙𝜂′ and 𝐾∗�̄�1 coupled channels, which are labeled as channel 
1, 2 and 3, respectively. The scattering amplitudes are described by the 
coupled-channel LSE,

𝑇𝑖𝑗 = 𝑉𝑖𝑗 +
3∑

𝑘=1
𝑉𝑖𝑘𝐺𝑘𝑘𝑇𝑘𝑗 , (43)

where 𝐺𝑘𝑘 represents the loop function of the two-particle propagators 
of channel 𝑘. The term 𝑉33 is the 𝐾∗�̄�1 potential obtained in Sect. 2.1. 
Since the 𝐽𝑃𝐶 of the system is either 1−− or 0−−, the 𝜙𝜂(′) must be in 𝑃 -

wave. Therefore we neglect the interaction between 𝜙𝜂(′) which is not 
expected to alter the existence of the 𝐾∗�̄�1 molecular states. Similarly, 
we expect 𝑉31 and 𝑉32 to be small and treat them in perturbation theory. 
Consequently, the potential matrix reads

𝑉 =
⎛⎜⎜⎝

0 0 𝑣31𝑞𝜂
0 0 𝑣32𝑞𝜂′

𝑣31𝑞𝜂 𝑣32𝑞𝜂′ 𝑉33

⎞⎟⎟⎠ , (44)

where 𝑣31 and 𝑣32 are constants, 𝑞𝜂(′) represents the three-momentum 
of 𝜂(′) in the 𝜙𝜂(′) c.m. frame. We thus have

𝑇33 = 𝑉33 + 𝑉33𝐺33𝑇33 +(
𝑉 2
31, 𝑉

2
32
)
, (45)

𝑇31 = 𝑇33𝑉
−1
33 𝑉31 +(

𝑉 3
31, 𝑉

3
32
)
, (46)

𝑇32 = 𝑇33𝑉
−1
33 𝑉32 +(

𝑉 3
31, 𝑉

3
32
)
. (47)

Upon disregarding the  
(
𝑉 2
31, 𝑉

2
32
)

terms, it becomes apparent that 𝑇33
corresponds to the single-channel 𝐾∗�̄�1 scattering amplitude, which 
has been derived in Eq. (37). The process of 𝐾∗�̄�1 → 𝜙𝜂(′) inelastic 
scattering can be approximated as 𝑇33𝑉 −1

33 𝑉31 or 𝑇33𝑉 −1
33 𝑉32. Here, both 

𝑇33 and 𝑉33 are known, and the constants 𝑣31 and 𝑣32 can be absorbed 
into the normalization constant of the experimental data during the 
fitting process.

From the results obtained in Ref. [50], the contribution of the 
𝑓0(1500) in 𝜂𝜂′ can be considered negligible. Consequently, the am-

plitude of 𝐽∕𝜓 → 𝜙𝜂′𝜂 can be represented as follows,

𝑇𝐽∕𝜓→𝜙𝜂′𝜂 = 𝑃𝑎𝑞𝜂𝑞𝜂′ + 𝑃𝑏𝐺33𝑇31𝑞𝜂′ + 𝑃𝑐𝐺33𝑇32𝑞𝜂, (48)

where 𝑞𝜂′ denotes the three-momentum of the 𝜂′ in the 𝐽∕𝜓 rest frame 
in Fig. 1 (𝑏), whereas 𝑞𝜂 denotes the three-momentum of the 𝜂 in the 
𝐽∕𝜓 rest frame in Fig. 1 (𝑐). 𝑃𝑎, 𝑃𝑏 and 𝑃𝑐 are constants that represent 
the production parameters of 𝜙𝜂′𝜂, 𝐾∗�̄�1𝜂

′ and 𝐾∗�̄�1𝜂 in the decay 
of 𝐽∕𝜓 , respectively. Note that we introduce the additional momentum 
𝑞
𝜂(′) due to the fact that the 𝜂′ in Fig. 1 (𝑏) is in 𝑃 -wave, so is the 𝜂

in Fig. 1 (𝑐). The 𝑃𝑎 term represents the production of the 𝑃 -wave 𝜂
4

and 𝜙𝜂′, which is in fact a higher order term. The leading contribution 
Fig. 1. Diagrams of the 𝐽∕𝜓 → 𝜙𝜂′𝜂 decay with intermediate 𝐾∗�̄�1 rescatter-

ing.

from the 𝑆-wave 𝜙𝜂′𝜂 production leads to a constant contact term and 
is covered by the background to be introduced in Eq. (50). The loop 
propagator of the 𝐾∗�̄�1 channel reads

𝐺33 = ∫
d𝒍3

(2𝜋)3
𝑒
−𝒍2∕Λ2

1

𝐸 − 𝒍2∕(2𝜇) + 𝑖Γ(𝐸; 𝒍)∕2
, (49)

where the cutoff Λ1 is fixed to 1 GeV. The Λ1-dependence of the physi-

cal results will be absorbed by the production parameters.

The differential decay width of 𝐽∕𝜓 is now expressed as

dΓ𝐽∕𝜓→𝜙𝜂′𝜂

d𝑀𝜙𝜂′
= ∫ d𝑀2

𝜙𝜂

2𝑀𝜙𝜂′

256𝜋3𝑚3
𝐽∕𝜓

|||𝑇𝐽∕𝜓→𝜙𝜂′𝜂
|||2 + 𝛼𝑓bg(𝑀𝜙𝜂′ ). (50)

We have introduced a noninterfering background term 𝛼𝑓bg(𝑀𝜙𝜂′ ), 
where 𝑓bg(𝑀𝜙𝜂′ ) mimics the lineshape of the PHSP process determined 
by the Monte Carlo simulation in Ref. [50]. The parameter 𝛼 represents 
the magnitude that needs to be fitted. It can come from a purely 𝑆-

wave production term, which does not interfere with the 𝑃 -wave ones 
in Eq. (48).

3.2. 𝐾∗�̄�1 in only 𝜙𝜂′ channel

Only the invariant mass distribution of 𝜙𝜂′ is published in Ref. [50]

where the enhancement near 2.1 GeV was described by a BW resonance. 
Since the 𝜙𝜂 invariant mass distribution was not reported, we will first 
try to fit the data in Ref. [50] by considering only the 𝐾∗�̄�1 rescattering 
in the 𝜙𝜂′ channel, i.e., 𝑃𝑏 is fixed to 0. The reconstruction of the 𝜂′ in 
Ref. [50] involves two modes, where the 𝜂′ is reconstructed by 𝛾𝜋+𝜋−

and 𝜂𝜋+𝜋−, respectively. These two data sets are simultaneously fitted 
using the same differential decay width, as shown in Eq. (50). However, 
to take into account the efficiency difference between these two modes, 
a normalization factor 𝛽 is introduced. In total, there are 5 free param-

eters: 𝑃𝑎, 𝑃𝑐 , 𝛼, 𝛽 and 𝐶 (1) or 𝐶 (0). The parameters obtained from the 
best fits are listed in Table 1 with 𝑃𝑏 = 0 fixed and the fitting results are 
shown in Figs. 2 and 3. We can see that both assumptions, 𝐽𝑃𝐶 = 1−−
and 0−−, provide a satisfactory description of the data. With 𝐶 (1) and 
𝐶 (0) from the best fits, the pole positions of the 𝐾∗�̄�1 molecules are 
determined to be (2079 − 68𝑖) MeV for 1−−, denoted by 𝜙(2100) and 
(2091 − 61𝑖) MeV for 0−−, denoted by 𝜙0(2100).

The quantum numbers of the introduced resonance were analyzed in 
Ref. [50] by examining the 𝜂 polar angular distribution. If the quantum 
numbers 𝐽𝑃 of the introduced resonance in the 𝜙𝜂′ channel are 1+, 1−, 
or 0−, the 𝜂 polar angular distribution is proportional to 1, 1 +cos2 𝜃, or 
sin2 𝜃, respectively. It is found in Ref. [50] that both the assumptions of 
𝐽𝑃 = 1+ and 1− for the resonance in the 𝜙𝜂′ channel can describe the 

data, with the former being more preferred. However, the assumption 
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Fig. 2. The best fit of the 𝐽∕𝜓 → 𝜙𝜂′𝜂 data [50] with 1−− 𝐾∗�̄�1 rescattering only in the 𝜙𝜂′ channel (𝑃𝑏 = 0). The 𝜂′ is reconstructed by 𝛾𝜋+𝜋− and 𝜂𝜋+𝜋− in 
subplots (a) and (b), respectively. The line shape of the PHSP process is determined by a Monte Carlo simulation in Ref. [50].

Fig. 3. The best fit of the 𝐽∕𝜓 → 𝜙𝜂′𝜂 data [50] with 0−− 𝐾∗�̄� rescattering only in the 𝜙𝜂′ channel (𝑃 = 0). See the caption of Fig. 2.
1

of 𝐽𝑃 = 0− was excluded as it seemed to deviate significantly from the 
data in the analysis of Ref. [50].

It is important to note that the contribution of the PHSP process, in 
both Ref. [50] and our fit result, are much larger than that of the in-

troduced resonance. However, the 𝜂 polar angular distribution from the 
PHSP process is not settled based on the published data in Ref. [50], 
and it is not necessarily the same as that of the resonance. The authors 
in Ref. [50] did not consider the contribution of the PHSP process to 
the 𝜂 polar angular distribution. Here we assume that the 𝜂 polar an-

gular distribution from the PHSP process is flat as a consequence of the 
𝑆-wave nature of the background term in Eq. (50), the total 𝜂 polar 
angular distribution can be predicted as follows:

dΓ
dcos𝜃

∝ 1
4

⎧⎪⎨⎪⎩
(
�̃�1 +

3
4

(
1 − �̃�1

)(
1 + cos2 𝜃

))
for 1−−(

�̃�0 +
3
4

(
1 − �̃�0

)(
1 − cos2 𝜃

))
for 0−−

, (51)

where �̃�1 = 0.815 and �̃�0 = 0.835 represent the fraction of the PHSP 
process obtained in our 1−− and 0−− fits, respectively. The comparison 
between the predictions in Eq. (51) and the data are shown in Fig. 4. 
From Fig. 4 it is evident that both 1−− and 0−− assumptions provide a 
satisfactory description of the data. Consequently, we cannot definitely 
conclude whether the resonance signal is from the 𝜙(2100), 𝜙0(2100), 
or that both manifest in the 𝐽∕𝜓 → 𝜙𝜂′𝜂 decay. To address this, we 
propose to conduct an analysis of this process using the complete set 
of 𝐽∕𝜓 events recorded by the BESIII detector [59], which is one or-

der of magnitude larger than the sample size utilized in the previous 
5

study [50]. The difference of the two curves in Fig. 4 may be disen-
𝑏

Fig. 4. The 𝜂 polar angular distribution in 𝐽∕𝜓 → 𝜙𝜂′𝜂. The data are taken from 
Ref. [50] and the lines are the predictions from the best fits shown in Figs. 2

and 3.

tangled with the full dataset. Furthermore, performing a partial wave 
analysis on the polar angular distribution of the 𝜂, as well as the helicity 
angular distribution of 𝜙𝜂′, one may be able to ascertain the presence 
of the 1−− and 0−− 𝐾∗�̄�1 bound states. The information obtained from 
the 𝜙𝜂 channel is also of great value, as the 𝐾∗�̄�1 molecules can also 
decay into 𝜙𝜂.

3.3. 𝐾∗�̄�1 in both 𝜙𝜂′ and 𝜙𝜂 channels

In this subsection we try to include the contribution of 𝐾∗�̄�1 from 

the 𝜙𝜂 channel by letting 𝑃𝑏 free. As discussed before and confirmed 
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Fig. 5. The best fit of the 𝐽∕𝜓 → 𝜙𝜂′𝜂 data [50] with 1−− 𝐾∗�̄�1 rescattering in both 𝜙𝜂′ and 𝜙𝜂 channels. The green dot-dashed line represents the full contribution 
of 𝜙(2100) while the blue dotted and magenta dashed lines represent the individual contributions of 𝜙(2100) in 𝐽∕𝜓 → 𝜙(2100)𝜂, 𝜙(2100) → 𝜙𝜂′ and 𝐽∕𝜓 →
𝜙(2100)𝜂′, 𝜙(2100) → 𝜙𝜂, respectively. See the caption of Fig. 2.

Fig. 6. The best fit of the 𝐽∕𝜓 → 𝜙𝜂′𝜂 data [50] with 0−− 𝐾∗�̄�1 rescattering in both 𝜙𝜂′ and 𝜙𝜂 channels. The green dot-dashed line represents the full contribution 
of 𝜙0(2100) while the blue dotted and magenta dashed lines represent the individual contributions of 𝜙0(2100) in 𝐽∕𝜓 → 𝜙0(2100)𝜂, 𝜙0(2100) → 𝜙𝜂′ and 𝐽∕𝜓 →
𝜙 (2100)𝜂′, 𝜙 (2100) → 𝜙𝜂, respectively. See the caption of Fig. 2.
0 0

by the fits in the previous subsection, the 𝑃𝑎 term is of higher order. 
To reduce the number of parameters, we fix 𝑃𝑎 = 0 in the following 
calculation. We still have 5 free parameters in total, 𝑃𝑏, 𝑃𝑐 , 𝛼, 𝛽 and 
𝐶 (1) or 𝐶 (0). The parameters from the best fit are listed in Table 1 with 
𝑃𝑎 = 0 fixed. The fitting results are shown in Figs. 5 and 6. The resulting 
pole positions of the 𝜙(2100) and the 𝜙0(2100) hardly change.

The 𝜙𝜂 invariant mass distributions of 𝐽∕𝜓 → 𝜙𝜂′𝜂 decay are also 
predicted by the following expression,

dΓ𝐽∕𝜓→𝜙𝜂′𝜂

d𝑀𝜙𝜂

= ∫ d𝑀2
𝜙𝜂′

2𝑀𝜙𝜂

256𝜋3𝑚3
𝐽∕𝜓

|||𝑇𝐽∕𝜓→𝜙𝜂′𝜂
|||2 , (52)

where only the contribution of the 𝜙(2100) or the 𝜙0(2100) is included 
since the lineshape of the PHSP contribution in the 𝜙𝜂 invariant mass 
distribution is not available from the published data in Ref. [50]. The 
predicted 𝜙𝜂 invariant mass distribution is shown in Fig. 7, and one 
sees a peak near 2.1 GeV. In fact, from the Dalitz plot reported by 
the BESIII Collaboration [50], there seems a accumulation of events 
at 𝑚𝜙𝜂 ≃ 2.1 GeV.

4. Summary

The interaction between 𝐾∗ and �̄�1 has been investigated in the 
OBE model, where 𝑡-channel vector meson and pseudoscalar meson 
exchanges are taken into account. There are two parameters in the po-
6

tential to absorb the cutoff dependence of physical observables and they 
can be determined by experimental data. Additionally, the 𝑢-channel 𝜋
exchange, which plays a crucial role in the decay width of the 𝐾∗�̄�1
molecule, is also considered, where the three body effects of 𝐾∗�̄�∗𝜋

are carefully examined.

In order to investigate the cause of the observed enhancement near 
2.1 GeV in the 𝜙𝜂′ final states in the 𝐽∕𝜓 → 𝜙𝜂′𝜂 process [50], we 
conduct a fit analysis of the invariant mass distribution of 𝜙𝜂′. The in-

clusion of the 𝐾∗�̄�1 channel in the analysis yields satisfactory results, 
as both the 𝜙(2100) and the 𝜙0(2100) are able to adequately describe 
the data. However, it is difficult to determine whether one or both 
of these states contribute to the 𝐽∕𝜓 → 𝜙𝜂′𝜂 decay, even when con-

sidering the 𝜂 polar angular distribution. It is worth noting that the 
𝐾∗�̄�1 bound states are also capable of decaying into 𝜙𝜂. Therefore, 
valuable insights into the 𝐾∗�̄�1 bound states can be obtained by ana-

lyzing the invariant mass distribution of 𝜙𝜂, which is predicted in Fig. 7. 
The Dalitz plots in Ref. [50] reveal an accumulation of data within the 
range of [4, 4.5] GeV2 in the 𝜙𝜂 final states. Consequently, we propose 
conducting a study on the 𝐽∕𝜓 → 𝜙𝜂′𝜂 decay using the entire dataset 
of 𝐽∕𝜓 events collected by BESIII [59], which is approximately eight 
times larger than the dataset used in Ref. [50]. By performing a par-

tial wave analysis of the polar and helicity angular distributions, one 
may be able to disentangle the contribution of 𝜙(2100) and 𝜙0(2100) to 
the 𝐽∕𝜓 → 𝜙𝜂′𝜂 decay. Furthermore, other decays of 𝐽∕𝜓 into 𝜂𝐾�̄� , 

𝜂𝐾∗�̄�∗, 𝜂𝐾�̄�∗ and 𝜙𝜂𝜂 can also be explored to study the resonance(s) 
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Fig. 7. Predicted 𝜙𝜂 invariant mass distribution in the 𝐽∕𝜓 → 𝜙𝜂′𝜂 decay contributed from the 𝜙(2100) (left) or 𝜙0(2100) (right) with 𝐾∗�̄�1 rescattering in both 
𝜙𝜂′ and 𝜙𝜂 channels. See the caption of Fig. 5 for the meaning of each line.
around 2.1 GeV. While the 𝜙(2100) should contribute to all these pro-

cesses, the 𝜙0(2100) can only couple to the last two.
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