
Eur. Phys. J. C (2024) 84:466
https://doi.org/10.1140/epjc/s10052-024-12808-4

Regular Article - Theoretical Physics

Angular correlation function from sample covariance with BOSS
and eBOSS LRG

Paula S. Ferreira1,a , Ribamar R. R. Reis1,2,b

1 Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-972, Brazil
2 Observatòrio do Valongo, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 20080-090, Brazil

Received: 4 October 2023 / Accepted: 12 April 2024 / Published online: 6 May 2024
© The Author(s) 2024

Abstract The Baryon Acoustic Oscillations (BAO) are one
of the most used probes to understand the accelerated expan-
sion of the Universe. Traditional methods rely on fiducial
model information within their statistical analysis, which
may be a problem when constraining different families of
models. This work aims to provide a method that con-
strains θBAO through a model-independent approach using
the covariance matrix from the galaxy sample from thin red-
shift bins, later validated with a mock sample covariance
matrix. We used widths of δz = 0.002 separation for all sam-
ples as the basis for a sample covariance matrix weighted by
the statistical importance of the redshift bin. Each sample
belongs to the Sloan Digital Sky Survey: BOSS1, BOSS2,
and eBOSS, with effective redshift ze f f : 0.35, 0.51, 0.71,
and different numbers of bins with 50, 100, and 200. To get
θBAO , we correct the angular separation from the polyno-
mial fit (θ f i t ) by comparing each bin correlation function
with the correlation function of the whole set, a parameter
named α̃. We also tested such correction by choosing the bin
at ze f f and found that for eBOSS θBAO is in 1σ agreement
with the Planck 18 model. Finally, we found that the sam-
ple covariances are noisy compared to the mocks for lower z
samples, something expected due to nonlinear effects. Such
noise impact can be seen in the parameter constraints but
does not affect the eBOSS covariance sample. It is shown
that mocks’ results do tend to its chosen fiducial cosmology
θBAO . BOSS1 and BOSS2 showed agreement with Planck 18
and an agreement with Pantheon + SH0ES when α̃ is based
on the bin z = ze f f .

a e-mail: psfer@pos.if.ufrj.br (corresponding author)
b e-mail: ribamar@if.ufrj.br

1 Introduction

The Baryon Acoustic Oscillations (BAO) are one of the
most used probes to understand the accelerated expansion
of the Universe. Cosmological information can be extracted
through the two-point correlation function and power spec-
tra estimated with the sky distribution and redshift of stan-
dard tracers [39]. Among the tracers, the most used are the
luminous red galaxy (LRG) first used by [18,40]. Now, a
multi-tracer analysis is possible with emission line galaxies
[16,53], quasars [25] and Lyman-α forests [17].

Future and current surveys will reach a larger number of
observed objects, such as the Dark Energy Spectroscopic
Instrument (DESI) [20], the Dark Energy Survey (DES) [45],
the Large Synoptic Survey Telescope (LSST) survey [4], the
Javalambre-Physics of the Accelerated Universe Astrophys-
ical Survey (J-PAS) [8], Euclid [49]. Larger samples have the
advantage of being statistically robust and less susceptible to
cosmic variance [35]. Their goal is to reach higher precision
in order to test different cosmological models. This is only
achievable through a template analysis that can be applied to
any model.

The traditional methods rely on fiducial cosmology and ad
hoc parameters to fix nonlinear effects [51]. Moreover, the
statistical analysis carries fiducial model information within
its template. A possible issue with these methods is the appli-
cability to test other families of models. References [47,48]
analysed the angular and radial correlation functions using a
polynomial fit, also independent of the model. References
[32,33] followed this construction using the Sloan Digi-
tal Sky Server (SDSS) precise surveys. Other alternative
approaches have been proposed in the literature such as the
new standard ruler called Linear Point [5,6], which can be
used to derive a purely geometrical BAO distance [7].

Parameter estimation from Large Scale Structure (LSS)
galaxy counting requires a covariance matrix. Usually, the
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community uses hundreds of mock catalogs that mimic sur-
veys. This can be done by N-body simulations such as
the MultiDark-Patchy Mocks by [28,44], and the N-body
Parallel Particle-Mesh GLAM code (PPMGLAM) by [29],
which is the core of GLAM (GaLAxy Mocks). Simulation
mocks are highly computationally expensive because they
solve the matter density field evolution. The solution for
many collaborations was to use a modest mock construction
like the Log-Normal mocks, that can be found in CoLoRe
[41],FLASK [55],nbodykit [23]LogNormalCatalog.
Both approaches require fiducial cosmology, something that
would be desirable to avoid.

Reference [50] estimated the covariance matrix assuming
that the error distribution is Gaussian. References [57,58]
used the so-called jackknife error estimate, by dividing a
larger sample into sub-samples in order to find the covari-
ance matrix. Their analysis concluded that the results were
representative error estimators. Reference [46] also used sub-
samples to find the covariance matrix and error bars from the
data set. However, there was a lack of observed objects. The
latest data sets from spectroscopic surveys must provide even
more representative errors and covariance matrices once we
are provided with more objects, thus thinner redshift sub-
samples.

This work aims to provide a pipeline to constrain θBAO

through a model-independent estimation of the angular cor-
relation function using the covariance matrix from the data
sample (sample covariance). We use thin bins of redshift
with width δz = 0.002 as the basis for a such matrix
weighted by the statistical importance of the redshift bin. Our
analysis compares the sample covariance to the covariance
matrix originating from mock catalogs and also the tradi-
tional covariance from mocks, without the binning. We com-
pare samples with different effective redshift values, from
lowest z to highest z and check the consistency according to
each scale. Furthermore, we correct the angular separation
that encodes the BAO feature of the [47] polynomial fit by a
bias function that compares the correlation function of each
bin with the whole set.

Our analysis is first described with our methodology in
Sect. 2 where we describe the data used in Sect. 2.1, how
it was divided into redshift bins in Sect. 2.2, and finally its
correlation function estimator in Sect. 2.3. Next, we discuss
the construction of the covariance matrix with the data and
with mocks in Sect. 3. The polynomial function is described
in Sect. 4.2 and our θBAO method in Sect. 3.2. The results
and conclusion are found in Sects. 4 and 5, respectively.

2 Methods

2.1 Data and mocks

In this work, we used two data sets from the SDSS. The LRG
and the LRG CMASS data from the Data Release 16 (DR16)
[53] of the extended Baryon Oscillation Spectroscopic Sur-
vey (eBOSS) spectroscopic observations from the SDSS IV.
The sample is distributed in Northern Galactic Cap (NGC)
and Southern Galactic Cap (SGC) with a redshift range of
0.6 ≤ z ≤ 1.0 and a total of 552,274 galaxies. Its random
catalogue contains fifty times more galaxies than the real one.

The other set consists of galaxies from the BOSS sample
of the SDSS-III DR12. We separated a redshift range 0.3 ≤
z < 0.4 called the BOSS1 set and BOSS2 range is 0.4 ≤ z <

0.6. The summary of the data specification can be found in
Table 1. We chose this minimum redshift because, according
to our tests, smaller redshift ranges did not show a significant
signal for the BAO feature, as expected.

For the eBOSS set, we used N = 1000 realisations of real-
istic mocks catalogs from [60], for each galactic cap, based
on the effective Zel’dovich approximacovariancetion mock
generator (EZmock) by [15]. These mocks were constructed
using the Zel’dovich approximation [59] which is faster than
producing mocks using N-body simulations and accurate in
clustering statistics.

The BOSS set was validated with N = 1000 realisations
of the MultiDark-Patchy mocks (MD-Patchy mocks). These
mocks were constructed for both the LOWZ redshift range
[28] and the CMASS part [44]. We must keep in mind there
is a difference between the two mocks’ construction, MD-
Patchy mocks were written from the N-body simulation Big-
MultiDark simulations [30] using the Patchy code [26,27]
which considers a biasing model. EZmock also used Big-
MultiDark, but their approach is not fully N-body based, and
different from PATCHY, they avoid a strict biasing model.

We cut the mocks to match the survey’s redshift range. The
same routine was applied to calculate the angular correlation
function for the mocks using the same random catalogue for
all mocks.

2.2 Redshift bins

In order to get a direct BAO measurement, we used an
approach similar to the one developed by [47].

eBOSS sample was divided into 200 redshift bins with
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Fig. 1 Each sample bin separation. The black squares are the nef f of
each sample. BOSS1, BOSS2, and eBOSS are in gray, pink, and blue,
respectively

width δz = 0.002. The choice was made considering the dis-
tribution of galaxies in the sky. One wants many bins to con-
struct a fair covariance matrix and enough galaxies in each bin
to get the BAO feature through angular counting. The angular
pairs of each bin were computed using the code corrfunc
developed by [52]. The data-data (DD), the data-random
(DR), and random-random (RR) pairs counts calculated for
angular pixels from 0.8◦ to 10◦ with width δθ ∼ 0.4◦. This
was also a convenient choice to find the BAO feature. Larger
angles would provide a smeared function, while smaller ones
would have too few galaxies.

The BOSS1 set was divided into 50 bins with width δz =
0.002, angular range 1◦ < θ < 12◦ with δθ ∼ 0.31◦. BOSS2
was divided into 100 bins with the same redshift separation
and the same angular configuration as eBOSS. The redshift
distribution for the chosen binning can be visualized in Fig. 1.

With the pairs counts, we computed the angular two-point
correlation function for each redshift bin using the Landy-
Szalay estimator [31]. Each angular function was normalised
according to its corresponding i-th bin length. The angular
correlation function (wi ) of the i-th bin is written in the fol-
lowing equation:

wi (θ) =
(
Ni,rand

Ni,data

)2 DDi (θ)

RRi (θ)
− 2

Ni,rand

Ni,data

DRi (θ)

RRi (θ)
+ 1,

(1)

where Ni,rand is the number of galaxies in the random bin,
and Ni,data in a data bin.

2.3 Weighting-scheme and correlation function

In addition to normalisation, it is important to account for
the statistical significance of each bin. Our approach was to
use the total weights (wtot,a) that account for the systematic
effects of the spectrographs. For the LRG sample, the weights

given by

wLRG
tot = wsys,a · wcp,a · wnoz,a, (2)

which is described in [22]. We used the prescription described
in [42] with the pCMASS, eBOSS and CMASS BOSS sam-
ples:

wtot,a = wsys,a(wcp,a + wnoz,a − 1), (3)

where the total galaxy weights wtot,a depends on the total
angular systematic weightswsystot,a , the weight for close pair
correction wcp,a , and the total weight to the nearest neighbour
of the redshift failure wnoz,a . corrfunc [52] weights the
pairs using the pair_product method, which is simply
multiplying the weights of the galaxies in a pair.

We computed the effective redshift of the three samples
according to the following equation based on [10]:

ze f f =
∑

a<b
wawb(za+zb)

2∑
a<b wawb

, (4)

where a and b represent galaxies in a sample, and wa|b is
their wtot . The values are shown in Table 1.

Random and mock bins do not carry the systematic effects
of fibres on the spectrographs. Since the available FKP
weight by [19] accounts for the number of galaxies in a vol-
ume, we use unit weights w = 1.0 for the angular correlation
function. Although EZmock contains synthetic systematics
within their weights we kept them unitary as a matter of con-
sistency with MD-Patchy mocks.

As the bins have different sizes and redshifts, the bins also
need to be weighted. For that, we consider a bin weighting
revisiting [32]. Now, redshift bins are weighted instead of
pixels.

The weighting of each bin is similar to the variance of the
weights of each random galaxy. For each bin, the weight rri
is written as:

rri =
(∑

j RRi j

)2 − ∑
j RR

2
i j

2
(5)

where i stands for the redshift bin and j for j-angular sepa-
ration. Reference [32] wrote rrα as a weight for each pixel;
here we use the pair counting RR because all of them are
uncorrelated with the observed points but still an accurate
representation of them in terms of redshift. We want to weigh
the bins according to statistical significance and that is related
to how many galaxies are in the i j box.

Finally, the correlation function W(θ) is computed as a
weighted mean of the functions for each bin

W(θ) =
∑

i
wi (θ) · rri∑

i
rri

. (6)
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Table 1 Data specifications

Sample z range # of Galaxies ze f f No. of bins

BOSS1 0.3 ≤ z < 0.4 192, 285 0.35 50

BOSS2 0.4 ≤ z < 0.6 686, 370 0.51 100

eBOSS 0.6 ≤ z ≤ 1.0 552, 274 0.71 200

3 Covariance matrix and θBAO

The whole sample has an effective number of galaxies per
bin (nef f ):

nef f =
(∑

i
rri

)2

∑
i
rr2

i

. (7)

We consider a good sample the one that has an nef f close
to the number of galaxies at the zi ∼ ze f f . This can be seen
in Fig. 1, where we display the nef f of each sample as black
squares. The BOSS2 and eBOSS present this characteristic,
while the smaller sample with fewer bins shows disagreement
with the size of the bin.

Equation (1) works as a matrix of many correlation func-
tion realisations, similar to the usual usage of mocks. We use
each wi (θ) compared to W(θ) from Eq. (6) to construct the
sample covariance matrix ζml :

ζml = n−1
e f f

(Ni − 1)

Ni∑
i=1

[wi (θm) − W(θm)]

× [wi (θl) − W(θl)]. (8)

Basically, we compute the bias between each wi (θ) and
W(θ), but because wi (θ) is not weighted according to Eq. (3),
so we must correct this by nef f .

In order to validate our method we require realisations of
the survey catalogues from mock catalogues. Mocks are an
approximation of a survey concerning its footprint and red-
shift. However, when analysing the clustering statistics we
need to remember that mocks have the challenge of account-
ing for nonlinear effects which are inevitable for lower red-
shift values, which is mentioned by other studies. We use
mocks to compute Wk(θ) of the k-mock and test the method.
Now, the covariance matrix Cml :

Cml = n−1
e f f

N − 1

N=1000∑
k=1

[Wk(θm) − W̄(θm)]

× [Wk(θl) − W̄(θl)], (9)

where W̄ is the average over the correlation functionWk(θ) of
each mock. Nevertheless, Eq. (9) is not model-independent,

Table 2 Priors used in the MCMC, both with ζml and Cml

C θ f i t σ

BOSS1 N (5 × 10−3, 1 × 10−5) N (6.00, 0.01) N (1.00, 0.01)

BOSS2 C > 0 N (4.2, 0.1) N (0.04, 0.01)

eBOSS N (7.60 × 10−3, 1 × 10−5) N (2.70, 0.01) σ > 0

because the mocks were constructed assuming a fiducial cos-
mology.

3.1 Polynomial function

We used [47] expression below for the angular two-point
correlation function to fit our estimated W (θ).

W(θ) = A + Bθγ + Ce− (θ−θ f i t )
2

2σ2 (10)

The parameter A is related to the behaviour of the function
after the BAO peak. B and C weigh the importance of their
respective terms, if there is no BAO peak, for instance, C =
0. γ is the power law of the function’s overall shape. The
physical parameters are θ f i t and σ , θ f i t gives the position of
the BAO, while σ is the width of the BAO.

We applied Gaussian priors to the parameters that are
related to the BAO: C , θ f i t , and σ , the priors are written
in Table 2. The parameter estimation was done using the
maximum likelihood estimator method through the emcee’s
Affine Invariant Markov Chain Monte Carlo (MCMC)
Ensemble sampler software by [21]. The fitting is done with
the W (θ) from the data, we will compare the best-fit results
alternating between ζml and Cml .

The Chi-squared function is:

χ2 =
∑
ml

[W(θm) − W(θm)] ζ−1
ml [W(θl) − W(θl)] , (11)

the same equation is used with Cml .

3.2 The BAO scale θBAO

Should the estimator and its covariance matrix be represen-
tative of the angular pairs counting of the LSS, we can con-
strain cosmological parameters from fitting a model to the
data. For that we need to find the BAO signal, θBAO as a
function of θ f i t . Here, we will focus on the use of a totally
model-independent procedure, leaving a model that gets the
advantage of our estimator for future work.

We propose a similar method to [13] to find θBAO . We
take the correlation function estimation for the whole set, as
in Eq. (1) without weighting according to the random bins,
to find wδz=0(θ) and compute a bias function, the difference
between wδz=0(θ) and the wi (θ) not normalised by rri :

	wi (θ) = wi (θ) − wδz=0(θ), (12)
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Next, we take this bias function and compute the 20th per-
centile and the median over the bins to get our shift parameter
α̃ as a function of θ :

α̃p(θ) =
∑Np

i
	wi (θ)

Np
≥ p

100
, (13)

α̃p is normalised by
√∫ |wi (θ) − wδz=0(θ)|2dθ , which is the

contribution of all dispersion from wδz=0. Here, p stands for
percentile, α̃20(θ) represents the bias function of a bin that is
greater or equal to 20% of the bias function of the other bins,
α̃50(θ) is 50% greater or equal to the other bias functions.
In the case of the bias function for the bins was a normal
distribution, the average value would be the percentile 50.
Knowing a perfect normal distribution is not achieved we
also test the percentile 20, which indicates whether the most
statistically significant bias is dislocated from the average.

Finally, θBAO is the correction of the model-independent
θ f i t according to the bias of each with respect to the corre-
lation function if the binning was not applied:

θBAO(ze f f ) = θ f i t + α̃(θ f i t )θ f i t . (14)

α̃(θ f i t ) is the value of the function α̃ at the angle found from
the MCMC fitting results, both from sample covariance and
mock covariance. We used α̃20 and α̃50 in Eq. (14) and will
present the results for both.

We also tested α̃ in Eq. (14) as the normalized dispersion
between the whole set correlation function and the one for
the bin which contains ze f f . This bin is expected to be repre-
sentative of the whole sample as described in Sect. 2.3. We
can write it as

α̃e f f (θ) = we f f (θ) − wδz=0(θ)√∫ |we f f (θ) − wδz=0(θ)|2dθ

, (15)

4 Results

4.1 Covariance matrix

The correlation matrices of both mocks and data sets are
shown in Fig. 5. The top left panel shows the correlation
matrix of the BOSS1 sample, while the MultiDark Patchy
Mocks results are shown on the top right one. Both plots
show a higher correlation at smaller scales, from ∼ 1◦ to
∼ 5◦, and the data matrix is more noisy than the mocks, as
one could expect.

In the middle left panel, we can see that BOSS2 has more
low correlation patches when compared to BOSS1, possibly
due to the bigger number of objects and depth of this sample.
Its mock counterpart shows much less noise, as expected,
and similar over-correlated regions on both extremes of the
angular separation. Additionally, the BOSS2 sample shows

Fig. 2 Comparison between our method and a covariance matrix with-
out tomography

a high correlation between small and big scales that is not
visible in BOSS1 and the mocks.

Lastly, the results for eBOSS, the larger and deeper sam-
ple, are shown in the bottom panels of Fig. 5. The data cor-
relation matrix is clearly more noisy, and it does not show
regions of stronger or weaker correlation, except for the diag-
onal. The EZ mocks appear to have a similar pattern to that
of the other mocks, but there is a stronger correlation region
on larger scales, unlike the other mocks.

As a means of validation, we computed the angular corre-
lation function for each mock without our binning method.
This full covariance equation is described below:

Cov f ull
ml = n−1

e f f

N − 1

N=1000∑
k=1

[Wfull
k(θm) − W̄full(θm)]

× [Wfull
k(θl) − W̄full(θl)]. (16)

In Figs. 2, 3, and 4, we showCml−Cov f ull
ml . The difference

is of the order 10−7 for BOSS1 and eBOSS and 10−11 for
BOSS2. For all samples, the difference is negligible near the
BAO angular feature for the lower-z sample. However, this
difference is larger for eBOSS, but still a small difference.
This validates our method as a robust one (Fig. 5).

We performed the minimum likelihood estimation with
Cov f ull

ml , the results are in Table 7, the results show that they
agree in 1σ with the constraints from Cml .

4.2 Polynomial fit

After taking the steps described in the previous section, we
get the estimated correlation function, where the results of
the physical parameters of the fitting formula are compiled
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Fig. 3 Comparison between our method and a covariance matrix with-
out tomography

Fig. 4 Comparison between our method and a covariance matrix with-
out tomography

in Table 3. The comparison between mock and data fitting is
shown in Figs. 6, 7, and 8. The contour indicates the 68%,
95%, and 99.7% confidence level regions, from darker to
lighter colours.

We chose Gaussian priors for the physical parameters for
all samples. But instead of using traditional random walk-
ers, we used a mixture of moves in our code, in order to
improve the performance of the MCMC walkers. 80% of
the moves are a “differential evolution” algorithm Differ-
ential Evolution MCMC (DEMCMC) by [36], available in
emcee as DEMove. The other 20% of the moves are done
with KDEMove.

Fig. 5 Correlation matrices relative to ζml , left column, and Cml , right
column. Negative correlation in salmon, a positive correlation in blue,
and a zero correlation in white colour

Table 2 shows the priors chosen for all cases. For all results
shown in Figs. 6, 7 and 8, and Table 3, we used the real data
and changed the covariance as indicated. BOSS1 and BOSS2
results for the parameter C did not agree at ∼ 5σ when we
change the covariance from data to their respective mocks,
while eBOSS does not show such issue.

eBOSS agrees within 1σ compared to their respective
mocks for all parameters, as seen in Fig. 8, with the mocks
covariance presenting tighter constraints as expected due to
the lower noise. The posteriors are not close to a Gaussian
distribution, showing a long tail towards higher values of C .

BOSS1 did not show the same behaviour; the main rea-
son is the size of the sample. It is reasonable to expect that
the mocks do not include all possible nonlinear effects of the
real LSS. This should be particularly important for lower red-
shift samples, where such effects will be greater. The method
used here does not account for this depth dependence. These
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Table 3 Best-fit parameters

Sample C θ f i t (
◦) σ (◦)

BOSS1(ζml ) 0.010 ± 0.001 5.66 ± 0.02 0.15 ± 0.03

BOSS1(Cml ) 0.0047 ± 0.0001 5.79 ± 0.006 0.198 ± 0.005

BOSS2(ζml ) 0.002 ± 0.0001 4.24 ± 0.02 0.30 ± 0.01

BOSS2(Cml ) 0.02 ± 0.01 4.21 ± 0.02 0.030 ± 0.009

eBOSS(ζml ) 0.008 ± 0.002 2.72 ± 0.09 0.13 ± 0.05

eBOSS(Cml ) 0.009 ± 0.001 2.77 ± 0.04 0.12 ± 0.03

Fig. 6 Comparison between results for the BOSS1 using using ζml in
blue, and Cml in purple, using pygtc [11] for the parameters C , θ f i t ,
and σ

struggles with lower redshift and modelled solutions have
been discussed extensively in the literature, especially in the
3D power spectrum case as seen in [51,56].

We see in Fig. 6 that, despite the tension in the results, both
Cml and ζml show the BAO feature, with tighter 1σ CL for
Cml results. The first sample is affected by two peculiarities.
As a consequence, we expect that the precision of the angular
diameter distance will be affected.

BOSS2 presented better results based on ζml (Fig. 7),
while for Cml (Fig. 7) we obtained broader posteriors. This
again reflects that this method does not account for nonlinear
effects and that the mocks are not perfect idealizations of the
LSS.

4.3 θBAO results

The bias function from Eq. (12) can be visualized as a scatter
matrix between the redshift bins. Some bin distributions can
be found in Appendix A, in which we chose 10 bins close to

Fig. 7 Comparison between results for the BOSS2 using using ζml in
blue, and Cml in purple, using pygtc [11] for the parameters C , θ f i t ,
and σ

Fig. 8 Comparison between results for the eBOSS using using ζml in
blue, and Cml in purple, using pygtc [11] for the parameters C , θ f i t ,
and σ

the effective redshift to understand this bias relation. If the
bias function is close to zero, the difference between the CFs
of each bin and the whole set is supposed to be close to a
symmetric distribution with mean zero.

In Fig. 9, top panel, we show the θBAO results from
Eq. (14). The sample covariance results are shown in blue,
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Fig. 9 Top: θBAO as a function of redshift with α from Eq. (13) and
(15). Planck 18 [3] θBAO is shown as the black line and SH0ES [12]
as the dashed blue region. We kept the blue colour for the results with
ζml and salmon for Cml . The shaded regions are the CL of Planck 18
in grey and SH0ES in purple 68% CL. Bottom: Same result of the top
panel divided by the Planck 18 one (θBAO/θ Planck18

BAO )

while the mock covariance results are in salmon. The black
and red points represent the α̃e f f results of the sample covari-
ance and mock covariance respectively. The sea-green points
are results from [13,14].

As a means of comparison, we use two different cosmolog-
ical parameter references to check our results. The first is the
Planck 2018 Collaboration [3], shown in black with a gray-
shaded region. We considered the TT, TE, EE+lowE+lensing
constraints. The second model is based on the Pantheon+ &
SH0ES [12] Flat
CDM in light blue with a purple shaded
region. The cosmological parameters can be found in Table 4.
The shaded regions are the 68% (darker) and 95% (lighter)
confidence levels (CL) for the results (Tables 5, 6). The curves
are plotted using the following relation as a function of red-
shift:

θBAO = rs
(1 + z)DA(z)

, (17)

Table 4 Parameters for Flat
CDM cosmology for Planck 18 [3] and
Pantheon+ & SH0ES [12]

Parameters Planck 18 Pantheon+ & SH0ES

�m 0.3153 ± 0.0073 0.334 ± 0.018

�
 0.6847 ± 0.0073 0.666 ± 0.018

H0(km s−1 Mpc−1) 67.36 ± 0.54 73.6 ± 1.1

Table 5 θBAO

θBAO (◦)

BOSS1 with α̃50 5.79 ± 0.02

BOSS2 with α̃50 4.32 ± 0.02

eBOSS with α̃50 2.72 ± 0.12

BOSS1 mocks with α̃50 5.93 ± 0.01

BOSS2 mocks with α̃50 4.29 ± 0.03

eBOSS mocks with α̃50 2.79 ± 0.05

BOSS1 with α̃e f f 6.59 ± 0.09

BOSS2 with α̃e f f 5.00 ± 0.07

eBOSS with α̃e f f 3.03 ± 0.25

BOSS1 mocks with α̃e f f 6.75 ± 0.03

BOSS2 mocks with α̃e f f 4.97 ± 0.08

eBOSS mocks with α̃e f f 3.08 ± 0.11

where DA(z) is the angular diameter distance as a function
of redshift and rs = 147.090 ± 0.026 Mpc is the sound
horizon at drag epoch which is the Planck 18 [3] TT, TE,
EE, lowE, lensing result for the black region. For SH0ES
fiducial model, we chose [24] as the sound horizon, this gives
rs = 142.8 ± 3.7 Mpc. Figure 9, bottom panel, shows θBAO

normalised by Planck 18 cosmology θ Planck18
BAO , in order to

ease the comparison.
We see in Fig. 9, top panel, that the highest ze f f sample,

eBOSS, has the larger error bars, this is due to the incom-
pleteness of the sample. Since Eq. (6) weights the correlation
function of each bin according to its random catalog size, this
affects θ f i t and consequently θBAO , as the number of galax-
ies per bin decreases with redshift for eBOSS, so the nef f
is smaller compared to the other samples which increase the
error bars. For all samples, the mock results have smaller
error bars due to a larger number of galaxies per bin. Since
we chose the same bin size (δz = 0.002) for all samples this
results in fewer galaxies per bin for BOSS1 when compared
to BOSS2 which leads to greater error bars for BOSS1. A
summary of θBAO results is in Table 5

It is shown in Fig. 9, top panel, that when using α̃50,
BOSS1 and BOSS2 agree with Planck 18 in 2 σ and 1 σ

respectively, while eBOSS is in tension with Planck 18. Using
mocks covariance, the results for BOSS1 and BOSS2 both
agree with Planck 18 results, eBOSS constraints with Cml
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Table 6 The difference between the 20th percentile and the 50th per-
centile

θ20
BAO − θ50

BAO θ20
BAO/θ50

BAO

BOSS1 −6.97 × 10−4 99.98%

BOSS2 −2.81 × 10−4 99.99%

eBOSS −7.22 × 10−3 99.73%

BOSS1 mocks −1.77 × 10−3 99.97%

BOSS2 mocks −6.98 × 10−3 99.98%

eBOSS mocks −7.22 × 10−3 99.73%

also show a tension with Planck 18. This shows a tendency
of the mocks’ results to “reach” Planck 18 results.

When using α̃e f f the results change significantly. First, the
error increases as a result of statistical loss, now we compare
a single bin with wδ=0. The θBAO now have higher values,
BOSS1 and BOSS2 (in black) agree with SH0ES results in 1σ

and 2σ , respectively. eBOSS match Planck 18 in 1σ . BOSS2
has the same ze f f as one of the bins from [13] that, now, they
agree in 1σ . We must stress that [13,14] show larger error
bars as a choice to avoid overlapping between bins.

The higher difference for the lower redshift samples can
be explained by non-linearity influence, especially when we
see the BOSS1 mocks’ results (in red). It is hard to model
all the necessary details of local galaxies clustering, as a
result, θBAO is not in agreement with the sample covariance
constraints.

Reference [33] used the same data set, but chose a differ-
ent approach from [32] and a different selection cut than ours.
Their method is based on [32] as well as the present study but
maintained the mocks as the only covariance matrix estima-
tor. We had a similar pattern of θBAO as a function of the red-
shift. Like our results, many of their bins did not agree with
Planck 18 cosmology. Moreover, their findings were capable
of extending to cosmological parameter inference because
we are just interested in the fiducial model-independent anal-
ysis itself.1

It has been discussed by [38] that 15 transversal BAO
measurements combined with Planck 18 alleviates the ten-
sion between Planck 18 and [43] Cepheid calibration. Ref-
erence [37] also showed that combining the same measure-
ments with Big Bang Nucleosynthesis (BBN) information [2]
and strongly lensed quasars from H0LiCOW [54], and BBN
and cosmic chronometers (CC) [34] agree in 1σ with SH0ES
[43] like our results using α̃e f f . Still concerning tensions with
Planck 18 cosmology, in [9], the authors showed that the com-
bination of Planck 18 and the 15 transversal measurements

1 In a recent draft of the Dark Energy Survey’s final release, [1], their
results show a larger discrepancy from Planck 18 cosmology compared
to their Y3 results (Fig. 6). Moreover, in Fig. 10, there is a considerable
shift in the BAO feature compared to Planck 18 results.

solves the H0 tension by pushing to higher values of the Hub-
ble parameter when considering an Interacting Dark Energy
(IDE) model. Moreover, a considerable mismatch between
Planck 18 cosmology and this study, [13,14,33] could be
explained by the influence of non-linearity is much higher in
the lower redshift samples as compared to CMB experiments.

5 Conclusions

We used BOSS and eBOSS LRG samples to obtain the angu-
lar feature of the BAO using thin bins to construct its covari-
ance matrix. Each sample BOSS1, BOSS2, and eBOSS had
50, 100, and 200 thin redshift bins with δz = 0.002 width.
We adapted [32,47] methodology and wrote an angular cor-
relation function estimator through those thin bins using a
weighting scheme based only on the random catalog. We
also performed the full analysis using both covariance matri-
ces from mocks and real data. We considered the random
binning as the reference to the weight of each bin according
to the number of galaxies Poisson distributed in the sky.

The comparison between mocks (Cml ) and sample covari-
ance (ζml ) best-fit showed that they agree at least for higher
redshift. BOSS1 and BOSS2 showed disagreement with the
physical parameters C and σ . We must remind ourselves that
the mocks are idealisations of the LSS and its non-linearity,
but they may not represent the exact structure of the data,
which could explain the disagreements in BOSS1 and BOSS2
results. We compared the method we proposed to traditional
mocks without binning the data, the maximum difference is
of the order 10−7 and is even smaller for the scale close to
the feature of interest.

Furthermore, our approach is purely statistical, the way we
divide the bins and the amount of galaxies for each bin also
changes the covariance matrix. Therefore, one must divide
the bins to hold statistical significance (many galaxies in one
bin) and good correlation significance (as many bins as pos-
sible to a robust mean to represent the whole sample).

Considering statistical analysis, eBOSS performed better
in our analysis, first, because it is a deeper sample. Second, it
has more thin bins than the other samples, a closer approxi-
mation to a redshift-space correlation function, but losing sta-
tistical significance. The results showed agreement between
the data and mock covariance estimation for all physical
parameters.

We provided a model-free approach to estimate θBAO

from θ f i t revisiting [13], we compute the correlation function
of the whole sample and then find a bias compared to each
bin correlation function. This is used to write a bias function
α̃ that shifts θ f i t closer to θBAO . Instead of averaging over
the bins, we get α̃(θ) through the 20th and 50th percentile.

The results were compared to the fiducial models of Planck
18 [3] and Pantheon+ & SH0ES [12] Flat
CDM with [24]
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rs . Regarding the percentile approach. our findings indicated
the samples with lower redshift agree at least in 2σ with
Planck 18 results. eBOSS, on the other hand, did not agree
with any of the fiducial cosmology described here.

When assuming α̃e f f , the results change, we see that
eBOSS matched Planck 18 results. BOSS1 and BOSS2 agree
at least in 2σ with Pantheon+ & SH0ES fiducial cosmology.
We also found agreement with the same sample as BOSS2
from [13] z=0.51 bin. This indicates that a loss of statistical
significance interferes with how the measurement behaves
provided that [13] chose to lose many bins to avoid overlap-
ping between them.

The mocks showed a tendency of getting θBAO closer to
Planck 18 results than the real data. The only exception was
BOSS1, the lower redshift sample which is more susceptible
to non-linearity effects, something known in the literature as
a challenging characteristic for obtaining survey mocks.

Next-generation surveys with large samples are suitable
for the method. DESI, for instance, promises 8 million LRGs
[61] with 0.4 < z < 1.0, ideal to reduce the nonlinear-
ity noise in our covariance matrix. These future samples
should allow us to use thinner bins without reducing the
number of galaxies per bin, which seems to be a key fea-
ture of this method. A further study is required to construct
a test for cosmological models from that methodology, this
would require a larger sample with higher redshift distri-
bution, something interesting to future photometric surveys.
This, however, also comes with the price of adding the photo-
metric redshift uncertainties and even probability distribution
functions of each object.
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Appendix A: Bias function scatter matrices

In Figs. 10, 11, and 12, we present the scatter matrix of the
bias function from Eq. (12) for 10 bins close to the ze f f for
the three samples we chose to analyse. It is clear that BOSS1
and BOSS2 (Figs. 10, 11) show a high bias between the bins
and whole set correlation function, in other words, they are
not a symmetric distribution with mean zero. eBOSS (Fig.
12), on the other hand, maintains symmetric distributions
even between bins distant from ze f f . This reflects the strong
correlation between bins for low-z samples due to nonlinear-
ities.
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Fig. 10 BOSS1 scatter matrix of the bias relation between 10 neigh-
bour bins. Both axes show the average z for each bin

Fig. 11 BOSS2 scatter matrix of the bias relation between 10 neigh-
bour bins. Both axes show the average z for each bin

Fig. 12 eBOSS scatter matrix of the bias relation between 10 neigh-
bour bins. Both axes show the average z for each bin

Appendix B: BOSS2 triangle plots

In Fig. 13a and b, there are constraints for the separated phys-
ical parameters. The Cml results did not perform as well as
the real data inference which agrees with the discussion of
Sect. 4.2. The mocks should be a good representation, but
this is more challenging for a shallower sample. The very
different results are a combination of nonlinear effects repre-

Fig. 13 BOSS2 results using pygtc [11]

sentation for the mocks and our method not being successful
in fixing such issues.

Appendix C: Comparing with full mocks

In Table 7, we show the constraints with the full mocks sam-
ples.
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Table 7 Best-fit parameters using Cov f ull
ml

Sample C θ f i t (
◦) σ (◦)

BOSS1 0.0065 ± 6 5.798 ± 2.0 2.7857 ± 2

×10−10 ×10−8 ×10−8

BOSS2 (9.11 ± 0.00005) 4.2 ± 15 1.83 × 10−1 ± 1

×10−4 ×10−7 ×10−7

eBOSS (8.090 ± 0.0001) 2.74 ± 6 (162.301 ± 0.004)

×10−3 ×10−5 ×10−3
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