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Multiparametric families of nonsupersymmetric EAdS4 flows as well as asymptotically EAdS4 solitons
and wormholes are constructed within the four-dimensional SO(8) gauged supergravity that describes the
compactification of M-theory on S7. More concretely, the solutions are found within the so-called STU
model that describes the Uð1Þ4 invariant sector of the theory. The on-shell action and gravitational free
energy are computed for the regular solutions, the latter being zero for the wormholes irrespective of
supersymmetry. There are special loci in parameter space yielding solutions with enhanced (super)
symmetry. Examples include a supersymmetric EAdS4 flow with SOð4Þ × SOð4Þ symmetry dual to a
specific real mass deformation of ABJM on S3 as well as a nonsupersymmetric wormhole with SUð3Þ ×
Uð1Þ2 symmetry. Uplift formulas for these and other examples to Euclidean solutions of 11-dimensional
supergravity are presented and their complex nature discussed.
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I. INTRODUCTION

General relativity in Euclidean signature has played a
central role in understanding thermodynamical aspects of
gravitational systems, the most prominent example being
the black hole thermodynamics [1]. In the more modern
context of the gauge/gravity correspondence [2], Euclidean
solutions of supergravity theories have been utilized to
explore thermodynamical aspects of strongly coupled field
theories in the planar limit. An example is the holographic
evaluation of (the finite part of) the free energy of a three-
dimensional conformal field theory (CFT) placed on S3,
which has been proposed as a measure of the number of its
degrees of freedom. In analogy with the c theorem [3], this
free energy is conjectured to obey a monotonicity property
under the renormalisation group (RG) flow, namely, it
obeys an F theorem [4,5].
This paper is framed within the specific context of the

AdS4=CFT3 correspondence. On the gravity side, our

playground is the four-dimensional (Euclideanized) N ¼
2 STU model of [6], which describes the Uð1Þ4 invariant
sector of the maximal SO(8) gauged supergravity [7]. The
latter describes the consistent truncation of 11-dimensional
(11D) supergravity on S7 to its zero mass sector [8]. On the
field theory side, the CFT3 of relevance is the ABJM theory
describing the world volume dynamics of a stack of N
planar M2-branes in flat space [9]. Placing the theory on S3

and turning onN ¼ 2 real mass parameters, which modify
the assignment of Uð1ÞR R charges and break conformality,
turns out to induce RG flows. Within the STU model, such
RG flows were holographically constructed in [10] as a
three-parameter family of N ¼ 2 Euclidean solutions that
preserve the isometries of the S3 in the bulk and have an S3

boundary. Building upon these results, we will construct
various new classes of Euclidean solutions within the STU
model: nonbackreacted EAdS4 flows with nontrivial scalar
fields in the bulk, as well as backreacted solutions describ-
ing singular solitons and regular wormholes.
Examples of Euclidean four-dimensional solutions with

a nonbackreacted EAdS4 geometry and nontrivial matter
fields have previously been constructed in [11] and uplifted
to M-theory in [12]. These examples involve nontrivial
vector fields in the bulk and describe a nontrivial end point
of the RG flow induced by topologically twisted (scalar)
deformations, which preserve the scale invariance but not
the conformal invariance of the CFT3 in the UV. Here, we
will present two different three-parameter families—one
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singular and one regular—of nonbackreacted EAdS4 flows
with running scalars (instead of vectors), which are
generically nonsupersymmetric. For a specific choice of
parameters, both the singular and the regular flows become
supersymmetric, and we present their uplift to 11D super-
gravity. The supersymmetric and regular EAdS4 flow lies
within the class constructed in [10]. We will review its
holographic realization as a specific real mass deformation
of ABJM on S3.
In addition to the nonbackreacted flows, we also present

multiparametric families of soliton and wormhole solutions
of the (Euclideanized) STU model with running scalars in
the bulk. While the solitons are always singular, fully
regular wormholes are shown to exist upon judicious
choice of the free parameters. The construction of regular
Euclidean wormholes in string/M-theoretic scenarios has
proven a challenging task. Some constructions for flat-
space wormholes have been put forward in the context of
(super)gravity coupled to proper scalars and pseudoscalars
(also known as axions) [13–16], as well as for AdS
wormholes in the presence of a cosmological constant or
a scalar potential [17–21]. In all these constructions, the
analytic continuation from Lorentzian to Euclidean signa-
ture becomes subtle as far as the axions are concerned.
Fortunately, a full-fledged construction of the Euclidean
STU model was done in [10] and shown to require, among
other modifications, a doubling of the scalar degrees of
freedom: The three complex scalars zi of the STU model
and their would-be conjugates z̃i should be treated as
independent fields. This additional freedom in the
Euclidean theory is precisely what allows us to construct
regular wormholes for which z̃i ≠ z�i . When uplifted to 11-
dimensional supergravity, both the 11Dmetric and the four-
form flux become complex valued with nontrivial real and
imaginary parts. Although this is in principle allowed in a
classical theory of supergravity, it remains to be seen what
the ultimate fate of these Euclidean wormholes will be in a
path integral formulation of quantum gravity.

II. EUCLIDEAN SUPERGRAVITY

The STU model of [6] describes the Uð1Þ4-invariant
sector of the SO(8)-gauged maximal supergravity [7]. Its
Euclidean version, which is the relevant one for this work,
has been discussed in full detail in [10]. In the absence of
vector fields, this supergravity describes an Einstein-scalar
model involving a set of complex scalars zi and z̃i with
i ¼ 1, 2, 3. The bulk Euclidean (bosonic) action is given by

Sbulk ¼
1

2κ2

Z
d4xe

�
−
R
2
þ
X3
i¼1

∂ρzi∂ρz̃i
ð1 − ziz̃iÞ2

þ V

�
; ð1Þ

with 2κ2 ¼ 8πG4 and G4 being the four-dimensional
Newton constant. The bulk action (1) includes a nontrivial
scalar potential

Vðzi; z̃iÞ ¼ g2
�
3 −

X
i

2

1 − ziz̃i

�
; ð2Þ

where g is the four-dimensional gauge coupling that is
related to the (inverse) radius of the seven-sphere.
Importantly, as emphasized in [10], the scalars zi and z̃i
are complex and independent in the Euclidean theory and
must separately parametrize the Poincaré unit disk, namely,
jzij; jz̃ij < 1 ∀ i. The spacetime metric should also be
allowed to be complex in the Euclidean theory, although
we are only considering real metrics in this work.
The bulk action, as specified by (1) and (2), possesses

three global symmetries Ci acting as constant scalings of
the form zi → λizi and z̃i → λ−1i z̃i with λi ∈C. However,
different four-dimensional solutions related by these sym-
metries give rise to physically inequivalent backgrounds
when uplifted to 11 dimensions (see the uplift formulas
collected in Appendix and also [22,23] for a discussion of
this issue in the Lorentzian realm). A proper understanding
of global symmetries in the bulk would also require the
inclusion of the vector fields in the STU model as they
couple to the scalars through kinetic and topological terms.
The Ci symmetries would act linearly on the vector fields
changing their boundary values and, therefore, also chang-
ing the dual field theory on the boundary. However, we are
not considering vector fields in this work and set them
to zero.
We will construct nonconformal flow solutions in the

Euclidean STU model that involve nonconstant scalars.
Moreover, we will demand that the spacetime geometry has
an S3 boundary and that the flows preserve the SOð4Þ ∼
SUð2Þl × SUð2Þr isometry group of S3 in the bulk. The
Euclidean metric (in the Fefferman-Graham gauge) is then
of the form

ds24 ¼ dμ2 þ g−2e2AðμÞdΣ2
S3 ; ð3Þ

where μ∈R is the radial (holographic) coordinate, and
dΣ2

S3 is the line element of a three-sphere S3. As a result, the
geometry is specified by the metric function AðμÞ, which
we take to be real valued. Moreover, in order to preserve the
S3 isometries, the scalars can only depend on the radial
coordinate, namely, zi ¼ ziðμÞ and z̃i ¼ z̃iðμÞ. With this
ansatz, the second-order equations of motion that follow
from the bulk action (1) are given by

A00 þ g2e−2A þ
X3
i¼1

z0iz̃
0
i

ð1 − ziz̃iÞ2
¼ 0;

z00i þ 3A0z0i þ 2
z̃iðz0iÞ2
1 − ziz̃i

þ 2g2zi ¼ 0;

z̃00i þ 3A0z̃0i þ 2
ziðz̃0iÞ2
1 − ziz̃i

þ 2g2z̃i ¼ 0; ð4Þ
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and are obviously invariant under the Ci scaling sym-
metries of the bulk action.
The Euclidean STU model admits anN ¼ 1 rewriting in

terms of a Kähler potential

K ¼ −
X3
i¼1

log ½1 − ziz̃i�; ð5Þ

and holomorphic superpotentials

WðziÞ ¼ gð1þ z1z2z3Þ; W̃ðz̃iÞ ¼ gð1þ z̃1z̃2z̃3Þ: ð6Þ

In this language, the bulk action (1) is constructed from K,
W, and W̃ using standard N ¼ 1 formulas adapted to
Euclidean signature (see Refs. [10,24]), and a set of first-
order BPS equations can be derived by requiring the
vanishing of the supersymmetry variations of the fermions
in the model. The BPS equations can be written as first-
order flow equations for the scalars ðzi; z̃iÞ and the metric
function A, with the N ¼ 1 gravitino mass m3=2 ∝
e
K
2ðWW̃Þ12 playing the role of a scalar superpotential.

Using K,W, and W̃ in (5) and (6), the set of BPS equations
reads

−1þ e2A

g2
ðA0Þ2 ¼ e2A

ð1þ z1z2z3Þð1þ z̃1z̃2z̃3ÞQ
3
i¼1ð1 − ziz̃iÞ

;

eA

g
ð1þ z̃1z̃2z̃3Þz0i

1 − ziz̃i
¼

�
�1 −

eA

g
A0
��

zi þ
z̃1z̃2z̃3
z̃i

�
;

eA

g
ð1þ z1z2z3Þz̃0i

1 − ziz̃i
¼

�
∓ 1 −

eA

g
A0
��

z̃i þ
z1z2z3
zi

�
; ð7Þ

where the upper (lower) choices of sign correspond to using
Killing spinors that are proportional to the left-invariant
(right-invariant) Killing spinors on the S3 [10]. Note that
both sign choices are related by the exchange zi ↔ z̃i. The
BPS equations (7) are generically not invariant under the Ci
global scaling symmetries of the bulk action unless two out
of the three scalars zi (equivalently for z̃i) are set to zero.
While the general flow solutions we will present in this note
are nonsupersymmetric, and therefore satisfy (4) without
satisfying (7), we will identify a particular case for which
the BPS equations (7) are additionally satisfied. This
supersymmetric case precisely turns off two out of the
three complex scalars, i.e., z2 ¼ z3 ¼ z̃2 ¼ z̃3 ¼ 0, so that
the remaining C1 scaling symmetry is also a symmetry of
the BPS equations in the bulk.
All the flow solutions we will construct asymptote to the

maximally (super) symmetric EAdS4 vacuum of the SO(8)
supergravity. This vacuum solution uplifts to the EAdS4 ×
S7 Freund–Rubin background of (Euclidean) 11-dimen-
sional supergravity with a round metric on the S7 [25] and
is dual to the superconformal ABJM theory [9] placed on
S3. This vacuum sits at the origin of field space, namely,

zi ¼ z̃i ¼ 0, and all our solutions will reach it at jμj → ∞
with a falloff for the scalars of the form

zi ¼ aie−gjμj þ bie−2gjμj þ…;

z̃i ¼ ãie−gjμj þ b̃ie−2gjμj þ…: ð8Þ

According to the AdS=CFT correspondence, the falloff
coefficients ðai; biÞ and ðãi; b̃iÞ in the expansions (8) are
related to sources and VEVs in the field theory dual to the
supergravity solution. However, the precise identification
turns out to be very subtle as the combination zi − z̃i should
be quantized using regular boundary conditions, whereas
alternate boundary conditions should be used for zi þ z̃i. A
careful analysis of the boundary limit of the bulk super-
symmetry performed in [10] yielded the following dic-
tionary. Sources in the dual field theory are identified with
the combinations

ai − ãi and

�
bi −

ã1ã2ã3
ãi

�
þ
�
b̃i −

a1a2a3
ai

�
; ð9Þ

whereas VEVs are given by

ai þ ãi and
�
bi −

ã1ã2ã3
ãi

�
−
�
b̃i −

a1a2a3
ai

�
: ð10Þ

This identification of conjugate variables (sources and
VEVs) is achieved by selecting a holographic renormali-
zation scheme compatible with supersymmetry. As stated
in [10], the counterterms of holographic renormalization
have a universal structure and must be valid for all solutions
of the classical field equations of a given bulk theory. We
will then follow the holographic renormalization prescrip-
tion in [10] to compute the on-shell action and gravitational
free energy of the supergravity solutions constructed in
this work.

III. EUCLIDEAN SOLUTIONS

The simplest solution to the system of second order
equations in (4) is given by a pure EAdS4 vacuum of the
form

EAdS4∶ e2A ¼ sinh2ðgμÞ and zi ¼ z̃i ¼ 0: ð11Þ

This solution is maximally supersymmetric within the full
N ¼ 8 supergravity of [7], so it satisfies the BPS equations
in (7). As mentioned before, it uplifts to the EAdS4 × S7

vacuum solution of (Euclidean) 11-dimensional supergrav-
ity with a round metric on the S7 [25] and is dual to the
superconformal ABJM theory [9] on S3.

A. Solutions with a nonbackreacted geometry

Let us start by presenting a class of solutions with a
nonbackreacted EAdS4 geometry and nontrivial profiles for
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the scalar fields. This is possible in a spacetime with
Euclidean signature because zi and z̃i are independent
fields, and only the products of zi and z̃i (and also of their
derivatives) couple to the metric A function in the Einstein
equation [first equation in (4)]. Therefore, nonbackreacted
solutions exist provided ziz̃i ¼ 0∀ i.
The simplest case involves just one nonzero scalar, zi or

z̃i, and the rest vanishing. For concreteness, let us consider
z1 or z̃1 being nonzero and z2 ¼ z3 ¼ z̃2 ¼ z̃3 ¼ 0. Within
this setup, there is a singular solution given by

e2A ¼ sinh2ðgμÞ; z1 ¼ 0; z̃1 ¼
c̃1

sinh2
�
1
2
gμ
� ; ð12Þ

and a regular solution given by

e2A ¼ sinh2ðgμÞ; z1 ¼
c1

cosh2
�
1
2
gμ
� ; z̃1 ¼ 0: ð13Þ

These solutions satisfy the second order equations in (4) as
well as the BPS equations (7) for the upper choice of sign
therein. Therefore, they are supersymmetric solutions.
Moreover, if we demand a nonbackreacted EAdS4 geom-
etry, these two solutions are the only BPS solutions of the
system with the two fields z1 and z̃1 and the upper sign
choice in (7).
Some comments about the solutions (12) and (13) are in

order. Firstly, the exchange z1 ↔ z̃1 in (12) and (13) is a
symmetry of the second order equations of motion (4) but
not of the BPS equations (7): The exchange z1 ↔ z̃1
amounts to a different sign choice in the BPS equations (7)
so that the preserved supersymmetries are constructed
using either left-invariant or right-invariant Killing spinors
on the S3. Secondly, solutions involving just one pair of
fields ðzi; z̃iÞ like, for example, the pair ðz1; z̃1Þ in the
solutions above, have an enhancement of symmetry from
the Uð1Þ4 generic symmetry of the STU model to an
SUð2Þ4∼SOð4Þ×SOð4Þ⊂SOð8Þ symmetry. This SOð4Þ×
SOð4Þ symmetry becomes manifest when the solutions are
uplifted to backgrounds of 11D supergravity using the
formulas in Appendix A 1. The internal geometry is of the
form S7 ¼ I × S31 × S32 with the two three-spheres S31;2
being responsible for the residual SOð4Þ × SOð4Þ sym-
metry of the solutions. Thirdly, from (A3)–(A6) and (A7)–
(A11), it becomes clear that c1 ∈R renders the 11D metric
real and the four-form flux purely imaginary. Also, the unit-
disk normalization condition along the flows requires
jz1ð0Þj ¼ jc1j < 1.
Since the bulk Lagrangian in (1) and (2) does not mix the

different scalars, the above solutions can be generalized to
the STU model. However, once generalized to the STU
model, they become solutions of the second order equa-
tions (4) but no longer of the BPS equations (7). Therefore,
they turn into nonsupersymmetric solutions. The singular

solution in (12) is straightforwardly generalized to the STU
model as

e2A ¼ sinh2ðgμÞ; zi ¼ 0; z̃i ¼
c̃i

sinh2
�
1
2
gμ
� ; ð14Þ

whereas the regular solution in (13) has a generalization of
the form

e2A ¼ sinh2ðgμÞ; zi ¼
ci

cosh2
�
1
2
gμ
� ; z̃i ¼ 0: ð15Þ

Wewill further study the regular solution (15) and compute
its gravitational on-shell action and free energy as a
function of the parameters ci ∈R. Note that the unit-disk
normalization condition along the scalars flow implies
jzið0Þj ¼ jcij < 1 ∀ i. The uplift of the regular solution
(15) to 11-dimensional supergravity requires one to gen-
eralize the Appendix A 1 to the full STU model as done in
[26]. This goes beyond the scope of this paper.

B. Solutions with a backreacted geometry

Inspired by the Janus solutions of [23], let us minimally
modify the EAdS4 geometry in (11) and present two new
classes of analytic and multiparametric Euclidean solutions
of the STU model. These two classes of solutions are
generically nonsupersymmetric, although, as we will see, a
supersymmetric limit can still be considered.

1. Soliton solutions

In the first class of solutions, the spacetime metric (3) is
specified by a function

e2A ¼ sinh2ðgμÞ
k2

; ð16Þ

with k2 > 0 so that the metric is real and Euclidean.
Whenever k2 ≠ 1, the spacetime metric possesses a singu-
larity at μ ¼ 0, as can be seen from the scalar curvature
R ¼ 6g2ðk2 − coshð2gμÞÞ=sinh2ðgμÞ. This restricts the
range of the solution to μ∈Rþ, so we will refer to these
solutions as solitons.
The metric function in (16) requires both zi and z̃i scalars

to flow simultaneously. The profiles for these fields are of
the form

zi ¼
λi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i − 1

p
ki þ coshðgμÞ ; z̃i ¼

λ−1i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i − 1

p
ki − coshðgμÞ ; ð17Þ

with arbitrary parameters λi and ki subject to the condition

X3
i¼1

k2i ¼ k2 þ 2: ð18Þ
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This class of solutions has a metric singularity at μ ¼ 0

together with a divergence of the scalars whenever k2i > 1.
However, such a scalar divergence can be eliminated by
taking k2i ≤ 1 with the constraint

P
k2i > 2 so that k2 > 0

in (18). The unit-disk normalization condition then fixes
jλij−2 ¼ 1−ki

1þki
for the scalar flows to reach the boundary of

the unit disk at μ ¼ 0, i.e., jzið0Þj ¼ jz̃ið0Þj ¼ 1. These
singular solutions are very much like the Lorentzian flows
to Hades in [23].
Interestingly, when two out of the three k2i in (17) are set

to unity, one is left with a singular but supersymmetric
solution with SOð4Þ × SOð4Þ ⊂ SOð8Þ residual symmetry.
For example, setting k22 ¼ k23 ¼ 1 reduces (18) to k21 ¼ k2

and yields

z1 ¼ eiβ
kþ 1

kþ coshðgμÞ ; z̃1 ¼ e−iβ
k− 1

k− coshðgμÞ ; ð19Þ

with arbitrary β∈R and 0 < k2 < 1. The solution (19)
satisfies the BPS equations (7). Unfortunately, when
uplifted to a background of 11D supergravity using the
formulas in Appendix A 1, the singularity at μ ¼ 0 persists
as it happened for the dual of the Coulomb branch flows
investigated in [23]. More concretely, the 11D Ricci scalar
goes as R̂ ∝ μ−4=3 around μ ¼ 0. It would be interesting to
further investigate the nature of this supersymmetric
singularity and its potential implications.

2. Wormhole solutions

The second class of solutions has a regular spacetime
metric (3) specified by the metric function

e2A ¼ cosh2ðgμÞ
k2

; ð20Þ

with k2 > 0 so that the metric is real and Euclidean, and
μ∈R. The radius of the S3 in the spacetime geometry (3)
reaches a minimum size ðgkÞ−1 at μ ¼ 0, and so we will
refer to this second class of solutions as wormholes.
The metric function in (20) requires both zi and z̃i to flow

with profiles

zi ¼
λi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þ 1

p
ki − sinhðgμÞ ; z̃i ¼

λ−1i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þ 1

p
ki þ sinhðgμÞ ; ð21Þ

with arbitrary parameters λi and ki subject to

X3
i¼1

k2i ¼ k2 − 2: ð22Þ

Importantly, when 0 < k2 < 2, the condition (22) has
solutions of the form ki ¼ iki with ki ∈R. The scalars
are nonsingular and necessarily complex in this case and
read

zi ¼
λi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

i

p
iki − sinhðgμÞ ; z̃i ¼

λ−1i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

i

p
iki þ sinhðgμÞ : ð23Þ

As a result, whenever the real vector k⃗≡ ðk1;k2;k3Þ (with
ki ≠ 0 ∀ i) specifies a point on a two-sphere of radius
ð2 − k2Þ > 0, the corresponding solution is fully regular.
However, the unit-disk parametrization of the scalars still
requires jzij; jz̃ij < 1 all along the scalar flow. Provided this
normalization condition holds, the solution describes an
Euclidean wormhole within the STU model in the SO(8)
gauged supergravity. Lastly, the supersymmetric limit of
setting two out of the three k2

i to unity in (23) is no longer
compatible with the condition (22), which reduces in this
case to −k2

1 ¼ k2.
Example: A simple class of regular Euclidean worm-

holes follows from the identification k2
i ¼ ð2 − k2Þ=3∀ i.

In this case, one has

jλij−2jziðμÞj2 ¼ jλij2jz̃iðμÞj2 ¼
2ð1þ k2Þ

ð1 − 2k2Þ þ 3 coshð2gμÞ :

ð24Þ
Since 0 < k2 < 2, the right-hand side of (24) is regular and
has a maximum at μ ¼ 0. Then the unit-disk normalization
condition requires

jzið0Þj2 ¼ jλij2
�

3

2 − k2
− 1

�
< 1;

jz̃ið0Þj2 ¼ jλij−2
�

3

2 − k2
− 1

�
< 1: ð25Þ

Setting for simplicity λi ¼ eiβ ∀ i, with arbitrary β∈R, the
scalars take the final form

zi ¼ −z̃�i ¼ eiβ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − k2

p
−

ffiffiffi
3

p
sinhðgμÞ

; ð26Þ

are regular, and satisfy z̃i ¼ −z�i ∈C. Moreover, they are
compatible with the unit-disk parametrization condition
whenever 0 < k2 < 1

2
. Note also that both the dilatonic zi þ

z̃i and axionic zi − z̃i combinations run nontrivially in this
example.
Finally, it is also worth mentioning that solutions with

z1 ¼ z2 ¼ z3 (same for z̃i), like the one in (26), feature an
enhancement of symmetry from the generic Uð1Þ4 symmetry
of the STUmodel to an SUð3Þ × Uð1Þ2 ⊂ SOð8Þ symmetry.
However, supersymmetry is not preserved in the bulk as the
BPS equations (7) are not satisfied. These solutions are
straightforwardly uplifted to Euclidean solutions of 11-
dimensional supergravity using the uplift formulas in
Appendix A 2: The result is a complex metric and a complex
(not purely imaginary) four-form flux in 11D.
The complex nature of Euclidean solutions should not be

surprising. Metrics with real and imaginary parts are
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already encountered in the Wick rotation of spinning black
holes. Also, the Wick rotation of the electrically charged
four-dimensional Reissner-Nordström-AdS black hole has
a purely imaginary gauge field that yields a complex metric
when uplifted to 11 dimensions. Lastly, black rings do not
even have everywhere regular real Euclidean sections [27].

IV. ON-SHELL ACTION AND GRAVITATIONAL
FREE ENERGY

The evaluation of the gravitational on-shell action gives
rise to divergences due to the infinitevolume in the integral of
the bulk action (1). Such divergences are cured by applying
the by now standard procedure of holographic renormaliza-
tion [28]. However, the holographic renormalization pro-
cedure comes along with an ambiguity: Local finite
counterterms can be added to the renormalized action.
This reflects the scheme dependence of the renormalization
procedure in quantum field theory (see Ref. [29] for the
identification of the supersymmetric scheme in a five-dimen-
sional gravitational context). As concluded in [10] after the
study of the projection of the bulk supersymmetry into the
boundary, the identification of sources andVEVs in (9)–(10)
requires one to include specific cubic counterterms in the
holographic renormalization procedure. The inclusion of
such cubic counterterms was shown to be crucial to have a
matching between the gravitational free energy of the
supergravity flows constructed in [10] and the free energy
of the dual ABJM theory on S3 deformed with supersym-
metric realmass terms computed using localizationmethods.
The multiparametric families of Euclidean solutions we

have constructed in the previous section belong to the same
bulk theory as the solutions constructed in [10]. Moreover,
the solutions here possess a supersymmetric limit whenever
two of the scalars zi (same for z̃i) can be smoothly set to
vanish upon tuning of the free parameters. This makes us
follow the same renormalization prescription of [10] and
include the same (finite) cubic counterterms when renorm-
alizing the on-shell action. The result is an on-shell action of
the form

2κ2Son-shell ¼ 2κ2Sbulk þ SGH þ Sa þ Sz; ð27Þ

with Sbulk given in (1), that contains a set of boundary terms

SGH ¼ −
Z
∂M

d3x
ffiffiffi
h

p
K;

Sa ¼
1

2g

Z
∂M

d3x
ffiffiffi
h

p
RðhÞ;

Sz ¼ 2

Z
∂M

d3x
ffiffiffi
h

p
½eKWW̃�12

¼ g
Z
∂M

d3x
ffiffiffi
h

p �
2þ

X
i

ziz̃iþ
Y
i

zi þ
Y
i

z̃i þ � � �
�
:

ð28Þ

The above boundary terms include the standard counterterms
that follow from the near-boundary analysis of a generic
supergravity solution [see e.g., [28]), the specific cubic
counterterm discussed in [10] [i.e., last line of (28)], and
additional terms—denoted by the ellipsis—which vanish at
the boundary when taking the limit jμj → ∞. The quantityK
entering SGH is the trace of the extrinsic curvature defined as
Kab ¼ ∇ðaNbÞ ¼ 1

2
LNhab ¼ � 1

2
h0ab.Here,Na ¼ �δμa is the

vector normal to the boundary ∂M, and hab ¼ gab − NaNb is
the induced metric [30]. The quantityRðhÞ entering Sa is the
Ricci scalar of thismetric. Finally, the functionsK,W, and W̃
are the Kähler potential and superpotentials given in (5) and
(6).Wenote in passing that the cubic counterterms z1z2z3 and
z̃1z̃2z̃3 in the last line of (28) break theCi scaling symmetries
of the bulk action (1).
Starting from the on-shell action (27), the computation of

the gravitational free energy, Jon−shell, requires a precise
identification of sources and VEVs from the scalar expan-
sions (8) around the boundary. The reason why is that a
Legendre transformation of Son-shell might be needed for
Jon−shell to depend on the particular combinations of leading
and subleading coefficients in (8) specifying the sources in
the dual field theory. With the identification of sources
given in (9), the gravitational free energy takes the form

Jon-shell ¼ Son-shell þ
1

2κ2
ΔS; ð29Þ

with

ΔS ¼ −
1

2

X
i

Z
S3
dx3ðai þ ãiÞ

�
δSon-shell
δai

þ δSon-shell
δãi

�
:

ð30Þ

It is precisely at this pointwhere the finite cubic counterterms
entering Sz in (28) play a crucial role as they guarantee
that δaiSon-shellþδãiSon-shell∝ðb̃i−a1a2a3=aiÞþðbi− ã1ã2×
ã3=ãiÞ, and, therefore, the gravitational free energy Jon−shell
is a function of the sources in (9).

A. Nonbackreacted EAdS4 solutions

Let us recall the nonbackreacted regular solution in (15),
namely,

e2A ¼ sinh2ðgμÞ; zi ¼
ci

cosh2
�
1
2
gμ
� ; z̃i ¼ 0: ð31Þ

When reaching the boundary at μ ¼ ∞, the scalar fields
feature the asymptotic expansions

zi ¼ −4ci
X∞
n¼1

ð−1Þnne−ngμ and z̃i ¼ 0: ð32Þ
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A direct comparison between (8)–(10) and (32) shows that

ai ∓ ãi ¼ 4ci;�
bi −

ã1ã2ã3
ãi

�
�
�
b̃i −

a1a2a3
ai

�
¼ −16

�
ci
2
� c1c2c3

ci

�
;

ð33Þ

and thus, the sources in (9) and VEVs in (10) are
generically activated if ci ≠ 0. The evaluation of the on-
shell action (27) on the solution (31) gives

Son-shelljnon-back ¼ SEAdS4on-shell

�
1þ 4

Y
i

ci

�
; ð34Þ

where

SEAdS4on-shell ¼
2π2

κ2g2
; ð35Þ

is the on-shell action of the EAdS4 solution in (11). The
first contribution to the rhs of (34) comes from the bulk
term in (27), whereas the second ci-dependent contribution
originates from the nonzero cubic counterterms in Sz of
(28). Without the cubic counterterms in the holographic
renormalization procedure, the on-shell action of the
solution (31) would be the same as that of EAdS4. Also,
from (34), it follows that the on-shell action of the non-
backreacted solution (31) is the same as that of EAdS4
whenever (at least) one of the scalars zi vanishes.
The gravitational free energy of the solution (31) is given

by (29) and (30) with

δSon-shell
δai

¼ −
ffiffiffiffiffi
g3

p
16g2κ2

�
b̃i −

a1a2a3
ai

�
;

δSon-shell
δãi

¼ −
ffiffiffiffiffi
g3

p
16g2κ2

�
bi −

ã1ã2ã3
ãi

�
; ð36Þ

where g3 is the determinant of the round metric on the
three-sphere S3 of unit radius. Substituting the ai, ãi, bi,
and b̃i coefficients that follow from direct comparison
between the general expansions in (8)–(10) and the ones in
(32), the resulting gravitational free energy is given by

Jon-shelljnon-back ¼ JEAdS4on-shell

�
1 −

X
i

Ci

�
; ð37Þ

where

Ci ¼ c2i þ
2

3
c1c2c3; ð38Þ

and

JEAdS4on-shell ¼
2π2

κ2g2
ð39Þ

is the universal gravitational free energy of the EAdS4
vacuum in (11). As a consequence of F-extremisation, the
gravitational free energy in (37) is maximized at the
conformal case, i.e. ci ¼ 0∀ i, so that

Jon-shelljnon-back < JEAdS4on-shell; ð40Þ

provided the unit-disk condition jcij < 1 holds.
Let us comment on the gravitational free energy we have

obtained. For generic values of the parameters ci, the
solution (31) is nonsupersymmetric and, in principle, one
could consider a renormalization scheme different from the
supersymmetric one. For example, if applying the minimal
subtraction scheme that follows from the near-boundary
analysis–so no finite cubic counterterms are included—the
gravitational free energy changes to JEAdS4on-shellð1 −

P
i c

2
i Þwith

no mixing between the zi’s. Positivity of this free energy
further restricts the range of the parameters ci to lie inside the
unit radius ci ball defined by the condition

P
i c

2
i < 1. In this

paper, and in order to make contact with [10] in the super-
symmetric case, we have applied the supersymmetric
scheme, and, therefore, the gravitational free energy in
(37) depends on the finite cubic counterterms in Sz of
(28): The cubic term in the rhs of (38) stems from such
finite counterterms. Positivity of (37) then requires the
parameters ci to lie inside a deformed ci ball with four
lumps defined by the cubic condition

P
i c

2
i þ 2c1c2c3 < 1.

1. Supersymmetric limit and holography

Setting two ci to zero in the solution (31), i.e.,
c2 ¼ c3 ¼ 0, reduces it to the supersymmetric and SOð4Þ ×
SOð4Þ ∼ SUð2Þ4 invariant solution in (13), namely,

e2A ¼ sinh2ðgμÞ; z1 ¼
c1

cosh2
�
1
2
gμ
� ; z̃1 ¼ 0: ð41Þ

The general gravitational free energy in (37) reduces in this
case to

Jon-shelljSOð4Þ×SOð4Þ ¼ JEAdS4on-shellð1 − c21Þ: ð42Þ

The solution in (41) lies precisely at the intersection
between the general class of nonsupersymmetric solutions
in (31) and the class of N ¼ 2 flows put forward in [10]
describing the holography of F maximization [31]. The
uplift of (41) to 11D supergravity was performed in [32]
and agrees with the general uplift formulas for the SOð4Þ ×
SOð4Þ invariant sector collected in Appendix A 1.
Following [10], let us look at the field theory dual of the

solution (41). This is the ABJM superconformal field
theory (SCFT) of [9] placed on (a unit radius) S3 and
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deformed with a specific supersymmetric real mass param-
eter δ1. In general, there are three such real mass parameters
δi (i ¼ 1, 2, 3) compatible withN ¼ 2 supersymmetry that
modify the assignment of Uð1ÞR R charges. The real mass
parameters δi break conformality and also the Uð1ÞR ×
SUð2Þ × SUð2Þ × Uð1Þb ⊂ SOð8ÞR symmetry manifest in
the N ¼ 2 superfield formulation of the (undeformed)
ABJM SCFT down to its Cartan subgroup Uð1ÞR×
Uð1Þ × Uð1Þ × Uð1Þb ⊂ SOð8ÞR.
In the N ¼ 2 formulation of [9], ABJM theory is a

SCFT with gauge group UðNÞ × UðNÞ and Chern–Simons
(CS) levels ðk;−kÞ—in our case, k ¼ 1, and the internal
space in the gravity side is the round S7. The theory consists
of two vectors multiplets ðA; σ; λ; DÞ and ðÃ; σ̃; λ̃; D̃Þ for
the UðNÞ × UðNÞ gauge group together with four chiral
matter multiplets ðZa; χa; FaÞ and ðWa; ηa; GaÞ, with
a ¼ 1, 2, transforming in the ðN̄;NÞ and ðN; N̄Þ represen-
tations of the gauge group. There is also a quartic super-
potential for the matter multiplets which has R charge 2 and
is invariant under the SUð2Þ × SUð2Þ × Uð1Þb flavor sym-
metry. It is given by

W ∝ TrðϵabϵcdZaWcZbWdÞ: ð43Þ

Particularizing the Lagrangian in [10] to describe, holo-
graphically, the solution in (41), one finds

L ¼ LSCFT þ δ1½O1
B − δ1OS� þ δ1O1

F; ð44Þ

where LSCFT is the ABJM SCFT Lagrangian, and δ1 is a
specific supersymmetric real mass parameter that turns on
bosonic and fermionic operators. In particular, it turns on
the bosonic O1

B and fermionic O1
F operators

O1
B ¼ tr½Z†

aZa −W†aWa�;
O1

F ¼ tr½χ†aχa − η†aηa� þ 2iðσ − σ̃ÞOS; ð45Þ

dual to the proper scalar z1 þ z̃1 and the pseudoscalar
z1 − z̃1 in the SO(8) supergravity, together with an addi-
tional Konishi-like bosonic operator

OS ¼ tr½Z†
aZa þW†aWa�; ð46Þ

which does not have an associated scalar in the SO(8)
supergravity [33]. Remarkably, among the operators with a
dual spinless field in the SO(8) supergravity, those in (45)
are the only two singlets under the SUð2Þ × SUð2Þ × Uð1Þb
flavor symmetry of the ABJM SCFT in the N ¼ 2
formulation: Under this symmetry, the chiral multiplets
ðZa; χa; FaÞ and ðWa; ηa; GaÞ transform in the ð2; 1Þ1 and
ð1; 2̄Þ−1 representations, respectively [34].
The parameter δ1 in (44) determines the assignment of

Uð1ÞR R charges for the scalar component of the chiral
superfields to be

R½Z1� ¼ R½Z2� ¼ 1

2
þ δ1; R½W1� ¼ R½W2� ¼

1

2
− δ1:

ð47Þ

On the other hand, the free energy of the ABJM theory on
S3 deformed with N ¼ 2 supersymmetric real mass terms
can be obtained as a function of a set of trial R charges
using localization methods [31,35]. To leading order in N
and for CS level k ¼ 1, the result is [4]

F ¼ F 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16R½Z1�R½Z2�R½W1�R½W2�

q
; ð48Þ

with F 0 ¼
ffiffiffi
2

p
πN3=2=3 and where the Rs are the trial

charges of the four chiral matter fields in the theory. The
superpotential of the undeformed ABJM SCFT theory (43)
is quartic on the matter fields and has R charge 2. This
implies that R½Z1� þ R½Z2� þ R½W1� þ R½W2� ¼ 2, a rule
that is obeyed by the R charges in (47). A direct substitution
of the R charges (47) into (48) yields

F SOð4Þ×SOð4Þ ¼ F 0ð1 − ð2δ1Þ2Þ; ð49Þ

which matches the gravitational free energy in (42) for the
supersymmetric SOð4Þ × SOð4Þ invariant solution (41)
provided

F 0 ¼ JEAdS4on-shell; ð50Þ

and the identification c1 ¼ 2δ1. The extremization of the
free energy in (49) fixes δ1 ¼ 0 and assigns canonical R
charges of 1

2
to the four chiral fields in (47). The free energy

in (49) then reduces to F 0, which, using the holographic
mapping between κ2 and N in the ABJM SCFT at CS level
k ¼ 1, matches the gravitational free energy of the EAdS4
vacuum in (39).

B. Backreacted wormhole solutions

Let us now investigate the backreacted solution in (20) and
(23). As we demonstrated with the example of Sec. III B 2,
the various parameters in the solution can be chosen such
that the solution is regular in the domain μ∈ ð−∞;∞Þ,
and the scalars stay within the unit disk all along the flow.
Having one of these regular and classically well-defined
solutions in mind, we will proceed an compute its on-shell
action.
The boundary of spacetime now consists of two pieces

located at μ ¼ �∞. The asymptotic expansions of the
scalars in (23) around μ ¼ �∞ yield

zi ¼ 2λi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

i

q
ð�e−gjμj − 2ikie−2gjμj þ � � �Þ;

z̃i ¼ 2λ−1i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

i

q
ð∓ e−gjμj − 2ikie−2gjμj þ � � �Þ; ð51Þ
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where the upper (lower) sign corresponds to the piece of the
boundary at μ ¼ þ∞ (μ ¼ −∞). Using the asymptotic
expansions in (51) to evaluate the boundary terms, the on-
shell action (27) for the wormholes takes the form

Son-shelljWH ¼ Scubicj∂Mþ þ Scubicj∂M−
¼ 0: ð52Þ

The finite contributions coming from the cubic counter-
terms in Sz of (28) at the two pieces ∂M� (respectively, at
μ ¼ �∞) of the boundary read

Scubicj∂M� ¼∓ 2π2

g2k3

�
Λ −

1

Λ

�Y
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

i

q
; ð53Þ

with Λ≡Q
j λj. Except for the finite contributions in (53),

all the other contributions to the on-shell action (27) cancel
separately on each piece of the boundary of the wormhole.
Using the boundary expansions for the scalar fields in

(51), one finds that

δSon-shell
δai

¼ −
ffiffiffiffiffi
g3

p
16g2κ2k3

�
b̃i −

a1a2a3
ai

�
;

δSon-shell
δãi

¼ −
ffiffiffiffiffi
g3

p
16g2κ2k3

�
bi −

ã1ã2ã3
ãi

�
; ð54Þ

and an explicit computation of (30) for the wormholes in
(20) and (23) yields ΔSj

∂Mþ ¼ −ΔSj
∂M−

. As a result, the
total gravitational free energy vanishes again due to an
exact cancellation between the two pieces of the wormhole
boundary. Namely,

Jon-shelljWH ¼ Jon-shellj∂Mþ þ Jon-shellj∂M−
¼ 0: ð55Þ

Importantly, this result is independent of the holographic
renormalization scheme, as any other choice of cubic
counterterms would have also resulted in a null contribution
to the gravitational free energy—and also to the on-shell
action—due to the antisymmetry of the scalar boundary
conditions (51) at μ ¼ �∞.

V. CONCLUSIONS

In this paper, we have constructed new classes of Uð1Þ4-
invariant Euclidean solutions in the four-dimensional STU
model (with vectors turned off) that arises upon compacti-
fication of 11D supergravity on S7. Together with some
potentially pathological examples featuring spacetime sin-
gularities—like the solitons in Sec. III B 1—we presented
two classes of fully regular multiparametric Euclidean
solutions.
The first class describes flows with running scalars zi

(i ¼ 1, 2, 3) but a nonbackreacted EAdS4 spacetime. This
is possible in Euclidean signature, where the scalars zi and
their would-be conjugates z̃i are independent fields so that a
nontrivial solution with ziz̃i ¼ 0∀ i has a vanishing

energy-momentum tensor. We constructed the three-param-
eter family of nonsupersymmetric solutions in (15) and
computed its on-shell action and gravitational free energy
employing holographic renormalization methods. For the
particular choice of parameters ci ≠ 0 and cj ¼ ck ¼ 0 in
(15), with i ≠ j ≠ k, the solution features an SOð4Þ ×
SOð4Þ symmetry enhancement, becomes supersymmetric,
and belongs to the class of flows put forward in [10]. In this
supersymmetric limit, the gravitational free energy was
shown to match that of ABJM placed on S3 and deformed
with a specific real mass term, which, in the N ¼ 2
formulation of the theory, preserves the full SUð2Þ ×
SUð2Þ × Uð1Þb flavor symmetry group. The embedding
of this supersymmetric solution into 11D supergravity
showed that, when the profile for the running scalar is
taken to be real, i.e., ci ∈R, the uplift to 11D produces a
real metric and a purely imaginary four-form flux. This
agrees with the standard statement that “axions” flip the
sign of their kinetic term in the Euclidean theory.
The second class describes regular wormholes with

scalar profiles satisfying ziz̃i ≠ 0 and supporting the worm-
hole geometry. We constructed the multiparametric family
of wormholes in (20) and (23) and showed that a super-
symmetric limit is not possible for these solutions. We also
computed the on-shell action and gravitational free energy
of the wormholes and found that the latter always vanishes
irrespectively of supersymmetry and the holographic
renormalization scheme. It would be interesting to under-
stand this result from a field-theoretic perspective.
However, the absence of supersymmetry makes a holo-
graphic test of the zero gravitational free energy difficult.
Unlike for the nonbackreacted flow solutions, the scalars

zi and z̃i are necessarily complex in the wormholes. In the
particular example with SUð3Þ × Uð1Þ2 symmetry pre-
sented in Sec. III B 2, it happens that z̃i ¼ −z�i ∈C (not
z̃i ¼ z�i ), but each pair ðzi; z̃iÞ still comprises two real
degrees of freedom. In addition, the a priori axionic
combination zi − z̃i has a nontrivial profile providing an
axionic charge to the wormhole. Upon uplift of this
example to 11 dimensions, both the 11D metric and the
four-form flux turn out to have nontrivial real and imagi-
nary parts.
It is also interesting to contrast the class of wormholes

presented in this note with the Maldacena–Maoz construc-
tion of Euclidean wormholes [36]. In the latter, the foliation
of EAdS space is additionally compactified in order to
generate the Euclidean wormhole. This compactification
procedure imposes identifications that break supersym-
metry even asymptotically. In our case, and despite being
nonsupersymmetric, the wormholes asymptote supersym-
metric EAdS vacua on both sides of the solution, thus
ensuring a theory with a stable ground state. It would be
interesting to further investigate the stability of the worm-
holes presented here as part of the swampland program and
to assess their allowability in light of the recent discussion
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in [37]. Also, their fate in semiclassical (super)gravity—as
an approximation to quantum gravity—deserves further
investigations.
Finally, the class of wormholes presented in this note was

inspired by (the Euclidean continuation of) the Lorentzian
Janus solutions put forward in [23]. Supersymmetric
Lorentzian Janus solutions with identifications that make
them wormholelike (e.g., with nontrivial first homotopy
group) have been constructed in [38,39] using vector fields
instead of scalars. Their generalization to include nontrivial
running scalars should be possible and could serve as a
starting point to construct analytic families of supersym-
metric Euclidean wormholes in M-theory. We hope to come
back to this and related issues in the future.
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APPENDIX: UPLIFTS TO 11D SUPERGRAVITY

The bosonic sector of 11-dimensional supergravity
consists of a metric field ĜMN and a three-form potential
Âð3Þ with field strength F̂ð4Þ ¼ dÂð3Þ. The Euclidean equa-
tions of motion read [12]

dð�11F̂ð4ÞÞ þ
i
2
F̂ð4Þ ∧ F̂ð4Þ ¼ 0;

R̂MN −
1

12

�
ðF̂ F̂ÞMN −

1

12
ðF̂ F̂ÞĜMN

�
¼ 0; ðA1Þ

where we have denoted ðF̂ F̂ÞMN ≡ F̂MPQRF̂N
PQR and

ðF̂ F̂Þ≡ F̂PQRSF̂
PQRS. In addition, the field strength F̂ð4Þ

satisfies the sourceless Bianchi identity

dF̂ð4Þ ¼ 0: ðA2Þ

In this appendix, we present the necessary formulas to
uplift the simplest four-dimensional solutions discussed in
the main text to Euclidean solutions of 11-dimensional
supergravity. More concretely, we present the embedding
of the SOð4Þ × SOð4Þ and SUð3Þ × Uð1Þ2 invariant sectors
of the maximal SO(8) gauged supergravity into 11D
supergravity.

1. SOð4Þ × SOð4Þ invariant sector
When only one pair of scalars ðzi; z̃iÞ is nonzero—we

will choose ðz; z̃Þ≡ ðz1; z̃1Þwithout loss of generality—the

corresponding solutions belong to the SOð4Þ × SOð4Þ
invariant sector of the maximal SO(8) supergravity. The
uplift of this sector to Lorentzian supergravity in 11
dimensions can be found in [40]. Here, we extend the
uplift formulas therein to Euclidean signature and adapt it
to the unit-disk parametrization of the scalar fields z and z̃
we are using in this work.
The 11D (warped) geometry is of the form M4 × S7

with S7 ¼ I × S31 × S32. The two three-spheres S31;2 in the
internal geometry are responsible for the residual SOð4Þ ×
SOð4Þ symmetry of the solutions. Denoting α∈ ½0; π

2
� the

coordinate along the interval I , the 11D metric is given by

ds211 ¼ Δ2

�
ds24 þ

4

g2

�
dα2 þ cos2α

f1
ds2S3

1

þ sin2α
f2

ds2S3
2

��
;

ðA3Þ
where the external spacetime metric ds24 is given in (3) and

ds2S3
1

¼ 1

4
ðσ21 þ σ22 þ σ23Þ; ds2S3

2

¼ 1

4
ðσ̂21 þ σ̂22 þ σ̂23Þ

ðA4Þ

denote the line elements on the two internal three-spheres.
The warping factor in (A3) takes the form

Δ2 ¼ f
1
3

1f
1
3

2; ðA5Þ

in terms of two functions

f1 ¼ cos2α
ð1þ zÞð1þ z̃Þ

1 − zz̃
þ sin2α;

f2 ¼ sin2α
ð1 − zÞð1 − z̃Þ

1 − zz̃
þ cos2α: ðA6Þ

The four-form field strength of 11D supergravity has
both a spacetime and an internal piece, namely,

F̂ð4Þ ¼ F̂st
ð4Þ þ F̂tr

ð4Þ: ðA7Þ

The spacetime part takes the form

F̂st
ð4Þ ¼ gh vol4 þ g−1 sinð2αÞh̃ð3Þ ∧ dα; ðA8Þ

in terms of a function h and a three-form h̃ð3Þ given by

h ¼ i
3 − zz̃þ ðzþ z̃Þ cosð2αÞ

ð1 − zz̃Þ ;

h̃ð3Þ ¼ i
ð1 − z2Þ �4 dz̃þ ð1 − z̃2Þ �4 dz

ð1 − zz̃Þ2 : ðA9Þ

In the above expression, �4 denotes the Hodge dual with
respect to the external spacetime metric (3). The internal
part is given by
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F̂tr
ð4Þ ¼ dÂtr

ð3Þ with Âtr
ð3Þ ¼ g−3h1 vol1 þ g−3h2 vol2;

ðA10Þ

in terms of the functions

h1 ¼ i 8
cos4α
f1

z − z̃
1 − zz̃

; h2 ¼ i 8
sin4α
f2

z − z̃
1 − zz̃

; ðA11Þ

and the volume forms on the two three-spheres vol1;2. Note
that F̂tr

ð4Þ is nonzero whenever the axionic combination
z − z̃ is nonzero.
Due to the consistency of the truncation, any solution in

the SOð4Þ × SOð4Þ invariant sector of the SO(8) gauged
supergravity is also a solution of the Euclidean equations of
motion in (A1) and satisfies the Bianchi identity (A2). Note
also that, under the exchange z → z̃, the 11D geometry in
(A3) remains invariant, whereas the four-form flux in (A7)
changes as F̂st

ð4Þ → F̂st
ð4Þ and F̂tr

ð4Þ → −F̂tr
ð4Þ.

2. SUð3Þ × Uð1Þ2 invariant sector

When the three pairs ðzi; z̃iÞ of scalar fields in the STU
model are identified, i.e., ðz; z̃Þ≡ ðzi; z̃iÞ ∀ i, the corre-
sponding solutions belong to the SUð3Þ × Uð1Þ2 invariant
sector of the maximal SO(8) supergravity. The uplift of this
sector to 11-dimensional supergravity has been worked out
in [41] (see also [42] whose conventions we closely follow)
in the case of Lorentzian signature. As before, we extend
the uplift formulas therein to Euclidean signature and adapt
it to the unit-disk parametrization of the scalar fields z and z̃
we have adopted.
The 11-dimensional (warped) geometry is of the form

M4 × S7 with S7 ¼ I × CP2 × S1τ × S1ψ . The CP2 and
S1τ × S1ψ factors in the internal geometry are responsible
for the SUð3Þ × Uð1Þ2 residual symmetry of the four-
dimensional solutions. Denoting α∈ ½0; π

2
� the coordinate

along the interval I , the 11D metric takes the form

dŝ211 ¼
1

2
f1ds24 þ 2g−2½f2dα2

þ cos2αðf3ds2CP2
þ sin2αf4ðdτ þ σÞ2Þ

þ f5ðdψ þ cos2αf6ðdτ þ σÞÞ2�; ðA12Þ

with τ;ψ ∈ ½0; 2π�. We have denoted σ the one-form onCP2

such that dσ ¼ 2J with J being the Kähler form on CP2.
The metric in (A12) is fully specified in terms of six
functions f1…6 given by

f1 ¼ ð1 − zz̃Þ−1L1
3H

2
3; f2 ¼ f−23 ¼ H

2
3L−2

3;

f4 ¼ ð1 − zz̃Þ2L−2
3H

2
3K−1; f5 ¼ H−4

3KL−2
3;

f6 ¼ ½LH þ ðz − z̃Þ2 cosð2αÞ�K−1; ðA13Þ

with

H ¼ 1þ zz̃ − ðzþ z̃Þ cosð2αÞ;
K ¼ 1þ ðzz̃Þ2 − 2zz̃ cosð4αÞ;
L ¼ ð1þ zÞð1þ z̃Þ: ðA14Þ

The four-form field strength of 11D supergravity con-
sists of a spacetime and an internal piece

F̂ð4Þ ¼ F̂st
ð4Þ þ F̂tr

ð4Þ: ðA15Þ

The spacetime part reads

F̂st
ð4Þ ¼ g h1 vol4 þ g−1 sinð2αÞ hð3Þ2 ∧ dα; ðA16Þ

in terms of a zero-form h1 and a three-form hð3Þ2 given by

h1 ¼ i
3ð1þ zz̃Þ þ ðzþ z̃Þð1 − 2 cosð2αÞÞ

2
ffiffiffi
2

p ð1 − zz̃Þ ;

hð3Þ2 ¼ i
ð1 − z2Þ �4 dz̃þ ð1 − z̃2Þ �4 dzffiffiffi

2
p ð1 − zz̃Þ2 : ðA17Þ

Again, �4 denotes the Hodge dual with respect to the
external spacetime metric (3). Lastly, the internal part is
given by

F̂tr
ð4Þ ¼ 2

ffiffiffi
2

p
g−3½sinð2αÞhð1Þ3 ∧ dα ∧ dψ ∧ ðdτ þ σÞ

þ cos4αhð1Þ4 ∧ ðdτ þ σÞ ∧ J

þ cos2α cosð2αÞhð1Þ5 ∧ dψ ∧ J

þ cos2α sinð2αÞh6dα ∧ dψ ∧ J þ cos4αh7 J ∧ J

þ cos2α sinð2αÞh8dα ∧ ðdτ þ σÞ ∧ J�; ðA18Þ

in terms of the one-forms

hð1Þ3 ¼ i
2

�
dz̃

ð1þ z̃Þ2 −
dz

ð1þ zÞ2
�
;

hð1Þ4 ¼ hð1Þ5 ¼ i
2H2

½ð1 − 2 cosð2αÞz̃þ z̃2Þdz
− ð1 − 2 cosð2αÞzþ z2Þdz̃�; ðA19Þ

and the zero-forms

h6 ¼ i2ð1þ zz̃Þ ðz̃ − zÞ
LH2

ð1þ zz̃þ ðzþ z̃Þsin2αÞ;

h7 ¼ −i
ðz̃ − zÞ
2H

;

h8 ¼ i
ðz̃ − zÞ
H2

ð1þ zz̃þ ðzþ z̃Þsin2αÞ: ðA20Þ
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Note that the purely internal part of F̂tr
ð4Þ is nonzero

whenever the axionic combination z − z̃ is nonzero.
By virtue of the consistency of the truncation, any

solution in the SUð3Þ × Uð1Þ2 invariant sector of the SO

(8) gauged supergravity is also a solution of the Euclidean
equations of motion in (A1) and satisfies the Bianchi
identity (A2).
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