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We argue that Lee–Wick’s complex ghost appearing in any higher deri vati v e theory is stable 
and its asymptotic field exists. It may be more appropriate to call it “anti-unstable”, in 

the sense that the more the ghost "decays" into lighter ordinary particles, the larger the 
probability that the ghost remains as itself becomes. This is explicitly shown by analyzing 
the two-point functions of the ghost Heisenberg field which is obtained as an exact result in 

the N → ∞ limit in a massi v e scalar ghost theory with light O ( N )-vector scalar matter. The 
anti-instability is a consequence of the fact that the poles of the complex ghost propagator 
are located on the physical sheet in the complex plane of four-momentum squared. This 
should be contrasted with the case of the ordinary unstable particle, whose propagator has 
no pole on the physical sheet. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Subject Index B30, B37, E05 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The negati v e metric ghost mode which is contained in higher deri vati v e quantum field the-
ory (QFT) always acquires a complex mass by radiative corrections, thus becoming a complex
ghost. Lee and Wick [ 1–3 ] claimed that such a complex ghost cannot be created by collisions
of positi v e metric physical particles (possessing real energies) because of energy conservation
law, and thus the unitarity of physical particles alone must hold. 
We recently pointed out in a previous paper [ 4 ], r eferr ed to as Paper I henceforth, that their

treatment of the delta function expressing energy conservation, 

1 
2 π

∫ ∞ 

−∞ 

dt exp 

(
it 

∑ 

i 

E i 

)
= δc 

(∑ 

i 

E i 

)
, (1) 

w hich a ppears at each v erte x in a Feynman diagram, is wrong when any of the particles i is
a complex ghost possessing complex energy E i . This function δc ( E ) is actually di v ergent when
the argument E is complex, but is well-defined as a distribution which was first introduced
and called a complex delta function by Nakanishi [ 5 , 6 ] when discussing unstable particles long
ago. Treating the complex delta function properly, we have shown that the complex ghost can
actually be created by collisions of physical particles, hence implying the violation of S-matrix
unitarity of physical particles alone, unfortunately. 
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License (https://creati v ecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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Ne v ertheless, some people still raise the question: “Even if the complex ghost is created by
a collision of physical particles, it can decay into lighter physical particles so that it e v entually
disappears after a sufficiently long time. Then, the unitarity of physical particles alone is again
r ecover ed, isn’t it?” (see e.g., Refs. [ 7–9 ]). 
To this concei vab le question, we have already given a brief but clear answer in Paper I. We

should note that there is a crucial difference between a complex ghost and an ordinary unstable
particle; the former has a negati v e norm while the latter has a positi v e norm. We hav e written
in Paper I as follows: 
“First of all, the ghost state created in the superposition ϕ + ϕ 

† (i.e., ghost + conjugate-
ghost) has a negati v e norm. Since the Dyson’s S-matrix of the present system is unitary, the
negati v e norm, say −1, of the initial ghost state must be conserv ed. So, whate v er final states
are pr oduced fr om the initial ghost state, the norms of all those final states sum up to the value
−1 of the initial ghost state’s norm. To realize this negati v e value, howe v er, ghost particles
must be contained among the final states. This implies that the ghosts can ne v er disappear by
completely ‘decaying out’ into lower mass physical particles.”
In contrast, an ordinary unstable particle has a positive norm. Its initial norm, say + 1, can

be conserved even if it completely decays into ordinary lighter particles and disa ppears, w hich
is indeed the case [ 10 ]. 
We think this explanation is enough to prove the stability of the complex ghost particle. How-

e v er, a skeptic might go on to sa y: “A variety of discussions ma y be possible for the complex
ghost in Lee’s model. Howe v er, does such an asymptotic field of complex ghost really exist in
the fourth-order derivative theory in the first place?”
We did not directly answer this objection in Paper I. This is because we there discussed

the problem solely in Lee’s complex ghost model [ 2 ] in which the ghost ϕ and conjugate-
ghost ϕ 

† fields ar e pr epar ed from the beginning. Their asymptotic fields were essentially as-
sumed to exist in Lee’s model in perturbation theory frame wor k. One may cast doubt on
the equivalence between Lee’s complex ghost model and the original fourth-order derivative 
theory; the ghost in the fourth-order derivative theory is a single real field while the com-
plex ghost in Lee’s model is actually described by two fields, ϕ and ϕ 

†. Is it possible at all
that two such complex conjugate fields emerge from a single real ghost field by radiati v e
corrections? 
The purpose of the present paper is to gi v e a clear af firma ti v e answer to this problem of 

existence of the complex (conjugate pair of) ghost asymptotic fields. The basic information
for asymptotic fields contained in a Heisenberg field � is gi v en by the two-point Green func-
tion (propagator) 〈 0 | T �( x ) �(0) | 0 〉 . We have the original fourth-or der deri vati v e field � as this
Heisenberg field � which can be decomposed into a positi v e metric lower-mass field A and
the negati v e metric massi v e ghost field φ; that is, � = A + φ. We have to analyze the sys-
tem in which the massi v e ghost φ can get a complex mass by a self-energy diagram consisting
of the loop of light physical particles ψ i . Howe v er, since the ghost interaction with ψ i oc-
curs only through the original fourth-order derivative field � = A + φ, the same self-energy
diagram of the ψ i loop also contributes to the A –φ transition as well as to A ’s self-energy.
For the present prob lem, howe v er, this mixing between A and φ fields is not essential and
merely introduces unnecessary complications. Thus we drop the A component field and re-
tain only the ghost field φ component in � in this paper. Also, since we would like to consider
a model in which our calculation for the ghost two-point function 〈 0 | T φ( x ) φ(0) | 0 〉 becomes
2/13 
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Fig. 1. Ghost self-energy diagram of ψ i -loop in the leading order in 1/ N expansion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exact in a certain limit, we elaborate an O ( N )-vector scalar matter field model gi v en shortly in
Section 2 . 
We easily compute the ghost two-point function in the leading order in 1/ N expansion. It

is merely a one-loop computation but is an exact result in the N → ∞ limit. Rewriting the
result into the form of the dispersion relation in Section 3 , and comparing it with the spectral
r epr esentation, we can find the asymptotic fields of the system. We also deri v e a sum rule for the
spectral function and wave-function renormalization factor from the spectral r epr esentation in
Section 4 . This sum rule (Eq. 38 ) may be called an anti-instability relation and will further
solidify the above-cited argument for the stability of the complex ghost in Paper I. Section 5 is
devoted to two additional remarks on a confusing point in the narrow resonance approximation
and on the reason why the ghost asymptotic fields appear in a pair of complex conjugate ghosts.
In the final section, Section 6 , we summarize the results and emphasize the general validity of 
our argument for the existence of asymptotic complex ghost states in any higher derivative
theories. 

2. The two-point vertex function �
(2) 
φ (p) 

We consider the following system of a heavy scalar field φ with mass m and a lighter O ( N )-
vector multiplet of scalar fields ψ i ( i = 1, 2, ···, N ) with mass μ ( < m ), which is described by the
following Lagrangian: 1 

L = −
N ∑ 

i=1 

1 
2 
(∂ μψ i ∂ 

μψ i + μ2 ψ 

2 
i ) − εg 

1 
2 
(∂ μφ∂ μφ + m 

2 
0 φ

2 ) + 

N ∑ 

i=1 

1 
2 

g √ 

N 

φψ i ψ i . (2) 

Note that we are adopting a space-favored metric ημν = diag( − 1, + 1, + 1, + 1), so that the
O ( N )-vector light fields ψ i are of positive metric. We ar e inter ested in the case where the heavier
field φ is a ghost, i.e., possessing negati v e metric εg = −1 , but, for comparison, we also consider
the εg = +1 case in which φ is an ordinary positive metric particle. 
In the leading order in 1/ N -expansion, the two-point vertex function 

(2) 
φ (p) of the heavy field

φ is gi v en by 


(2) 
φ (p) = −εg (p 2 + m 

2 
0 ) + �(p) , (3) 

where �( p ) stands for the self-energy diagram of the ψ i -loop in Fig. 1 , which reads 
1 Similar model Lagrangians to this Eq. ( 2 ) were considered in Refs. [ 7 , 11 ]. 
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�(p) = 

1 
2 
g 2 

∫ 

d n k 
i(2 π ) n 

1 
μ2 + k 2 

1 
μ2 + (p − k) 2 

= 

g 2 

32 π2 

∫ 1 

0 
dx 

[
ε̄ −1 − ln 

(
μ2 + x (1 − x ) p 2 

)]

= 

g 2 

32 π2 

[ 

ε̄ −1 + f (s ) 
] 

, 

f (s ) = 2 − ln μ2 − 2 

√ 

4 μ2 − s 
s 

Arctan 

√ 

s 
4 μ2 − s 

= 2 − ln μ2 + 

√ 

1 − 4 μ2 

s 
ln 

( √ 

1 − 4 μ2 /s − 1 √ 

1 − 4 μ2 /s + 1 

) 

(4) 

with 

s ≡ −p 2 , ε̄ −1 ≡ 2 
4 − n 

− γ + ln 4 π. (5) 

Here n is the space-time dimension to be e v entually set equal to 4. 
The function f( s ) in �( p ) has a branch point at s = 4 μ2 and we take the cut to be along the

real axis from s = 4 μ2 to ∞ . The imaginary part of f( s ) along the cut is gi v en by 

lim 

ε→ +0 
Im f (s ± iε) = ±π

√ 

1 − 4 μ2 

s 
for real s > 4 μ2 . (6) 

Note that the points s ± i ε ( ε > 0) here are taken on the physical sheet of the complex s plane.
If we take those points on the second sheet, the sign ± on the right-hand side (RHS) becomes
the opposite, ∓, since the upper and lower sides of the real s -axis for s > 4 μ2 on the physical
sheet smoothly continue to the lower and upper sides on the second sheet, respecti v ely. 
Depending on the magnitude of the bare mass squared parameter m 

2 
0 , the two-point function


(2) 
φ (p) has a zero at s = m 

2 on the real axis of s ( ≡ −p 2 ) below the threshold s < 4 μ2 , or
otherwise, has a complex conjugate pair of zeros at 

s = M 

2 = m 

2 + iγm and M 

∗2 = m 

2 − iγm (7) 

for the m 
2 > 4 μ2 case. That is, m 

2 is the squared mass of the stable particle, or the real part of the
complex squared mass of the ‘unstable’ particle. We renormalize the mass squared parameter
as m 

2 
0 = m 

2 + δm 
2 to realize 

−εg δm 

2 + Re �(p) 
∣∣
s = M 

2 = 0 (8) 

(implying M 
2 = m 

2 for the case m 
2 < 4 μ2 , as shown shortly), so that the renormalized two-point

v erte x function 
(2) 
φ (p) reads 


(2) 
φ (p) = εg (s −m 

2 ) + 

g 2 

32 π2 

(
f (s ) − Re f (M 

2 ) 
) =: F (s ) . (9) 

The imaginary part Im M 
2 = γm is determined by the r equir ement that M 

2 be the zero of the
two-point v erte x function 

(2) 
φ (p) : F ( M 

2 ) = 0, i.e., 

−εg ( M 

2 −m 

2 ) = 

g 2 

32 π2 

(
f ( M 

2 ) − Re f ( M 

2 ) 
) → −γm = εg 

g 2 

32 π2 
Im f (m 

2 + iγm ) . 

(10) 

If m 
2 < 4 μ2 , since f( s ) is real on the real axis of s below the threshold s < 4 μ2 , we see that γ =

0 satisfies Eq. ( 10 ) and hence −p 2 = m 
2 is the zero of the two-point v erte x function (2) ( p ) so

that m 
2 indeed r epr esents the r enormalized mass squar ed of the stable φ-particle, as announced
4/13 
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Fig. 2. Contour C = C 1 + C R + C 2 + C r on the physical sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

abov e. Howe v er, if m 
2 mov es abov e the threshold 4 μ2 , then f( s ) de v elops the imaginary part (Eq.

6 ) across the cut and hence the zero of (2) ( p ) splits into two zeros of a complex conjugate pair,
M 

2 and M 
∗2 , as written in Eq. ( 7 ). As already noted by Lee, Wick, and others [ 1–3 ], the direction

of this splitting is the opposite for the ordinary and ghost particle cases, εg = ±1 . This can be
seen explicitly in the present calculation. Eq. ( 6 ) implies that the quantity Im f (m 

2 + iγm ) on
the RHS of Eq. ( 10 ) has the same sign as γm when s = m 

2 + i γm is located on the physical
sheet, and has the opposite sign to γm when s = m 

2 + i γm is on the second sheet. This means
that the solutions M 

2 = m 
2 + i γm as well as M 

∗2 satisfying Eq. ( 10 ) exist on the physical sheet
only for the ghost case εg = −1 , while, for the ordinary particle case εg = +1 , they move to the
second sheet and disappear from the physical sheet. 
We can gi v e an approximate e xpression for the comple x ghost zero s = M 

2 on the upper half 
of the plane of the physical sheet for the case g / m � O (1); then, ( g / m ) 2 /32 π2 
 1 so that Eq. ( 10 )
implies γm 
 m 

2 → f( m 
2 + i γm ) � f( m 

2 ), and hence Eq. ( 6 ) leads to 

M 

2 � m 

2 + i 
g 2 

32 π

√ 

1 − 4 μ2 

m 
2 

. (11) 

3. Dispersion relation for the φ propagator 
Since we have understood the analyticity and singularity structure of the two-point function

(2) 
φ (p) , we can now deri v e a dispersion relation for the φ propagator 

D φ (s = −p 2 ) = 

i 


(2) 
φ (p) 

= 

i 
F (s ) 

(12) 

following the usual procedure. Consider the following contour integration 

I ≡ 1 
2 π i 

∫ 

C 
ds 

D φ (s ) /i 
s + p 2 

(13) 

(for a general complex value of −p 2 ) along the closed contour on the physical sheet, C = C 1 +
C R 

+ C 2 + C r , depicted in Fig. 2 . From the consideration above, we know that the propagator
D φ( s ) is the function of s which is real on the real axis except on a branch cut starting from
s = 4 μ2 to ∞ and analytic e v erywhere on the physical sheet (i.e., outside the cut) other than
the complex conjugate poles at s = M 

2 and M 
∗2 . Thus the integrand function D φ( s )/ i ( s + p 2 )
5/13 
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in Eq. ( 13 ) is also analytic e v erywhere inside the closed contour C except for the three poles at
s = M 

2 , M 
∗2 , and s = −p 2 . A ppl ying Cauchy’s residue theorem, we obtain 

I = 

D φ (−p 2 ) 
i 

+ 

εg Z 

M 
2 + p 2 

+ 

εg Z 
∗

M 
∗2 + p 2 

, (14) 

Z 

−1 ≡ εg 
∂F (s ) 

∂s 

∣∣∣
s = M 

2 
= lim 

s → M 
2 
εg 

F (s ) 
s −M 

2 . (15) 

On the other hand, since 

| D φ (s ) | → | s | −1 as | s | → ∞ , 

| D φ (s ) | < ∃ K on C r as r = | s − 4 μ2 | → 0 , (16) 

where K is a finite positi v e constant, the contribution to the integral (Eq. 13 ) along C comes
only from the discontinuity of the propagator across the cut: 

I = 

1 
π

∫ ∞ 

4 μ2 
ds 

−ρ(s ) 
s + p 2 

, (17) 

ρ(s ) = −Im 

(
lim 

ε→ +0 

D φ (s + iε) 
i 

)
= − 1 

2 i lim 

ε→ +0 

(
1 

F (s + iε) − 1 
F (s −iε) 

)
= lim 

ε→ +0 

Im F (s + iε) 
| F (s ) | 2 , 

(18) 

where F ( s ) is the two-point function 
(2) 
φ (p) as the function of s defined in Eq. ( 9 ). Equating

Eqs. ( 14 ) and ( 17 ), we obtain a dispersion relation for our φ propagator D φ( − p 2 ): 2 

D φ (−p 2 ) = 

iZ 

M 
2 + p 2 + 

iZ 
∗

M 
∗2 + p 2 

+ 

1 
iπ

∫ ∞ 

4 μ2 
ds 

ρ(s ) 
s + p 2 

for the complex ghost case; Re M 
2 = m 

2 > 4 μ2 and εg = −1 . (19) 

This Eq. ( 19 ) takes the form of Källen–Lehman’s spectral r epr esentation for the propagator,
so, if we recall the well-known method of its derivation by inserting the complete set of states
as intermediate states in the operator expression of the two-point function 

3 

〈 0 | T φ(x ) φ(0) | 0 〉 
(

= 

∫ 

C(p 0 ) 

d 4 p 
(2 π ) 4 

e ipx D φ (−p 2 ) 
)

, (20) 

we can understand the meaning of each term on the RHS of Eq. ( 19 ). The last ρ( s ) integral term
is understood, as usual, as coming from the discontinuity caused by the continuum spectrum
of two physical ψ i -particle intermedia te sta tes. Then, the first and second pole terms must be
understood as coming from the two discrete one-particle states possessing complex conjugate 
masses M 

2 and M 
∗2 . Note that the poles appearing on the physical sheet mean the existence of 

the corresponding one-particle asymptotic states in the complete set of states of the theory . 
Indeed, it is instructi v e to consider the same propagator D φ( − p 2 ) for the other parameter-

value cases in the present system ( 2 ). First consider the case m 
2 < 4 μ2 , for which D φ( s ) has only

a single pole term at s = m 
2 on the real axis, so that the dispersion relation ( 19 ) takes the form 

D φ (−p 2 ) = 

εg 

i 
Z 

m 
2 + p 2 

+ 

1 
iπ

∫ ∞ 

4 μ2 
ds 

ρ(s ) 
s + p 2 

for the m 

2 < 4 μ2 case . (21) 
2 Essentially the same expression as this Eq. ( 19 ) for the complex ghost propagator was also gi v en by 
Coleman [ 12 ] and Grinstein et.al. [ 7 ]. 
3 Here in Eq. ( 20 ), the p 0 -integration must be performed along a much-deformed contour C ( p 0 ) from 

the real axis on the complex p 0 plane while 3D p-integration is the usual Fourier transformation along 
the real axis of p, as will be explained at the end of this section. 
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This is the usual stab le par tic le case if εg = +1 : There is a one-particle pole in the propagator
D φ( s ), and the corresponding asymptotic field φas ( x ) exists satisfying ( � −m 

2 ) φas ( x ) = 0. Next
consider a more interesting case, m 

2 > 4 μ2 with εg = +1 (i.e., positi v e norm). This is the ordi-
nary unstab le par tic le case, for which the complex conjugate poles move into the second sheet
and disappear from the physical sheet, as explicitly shown above, so that the dispersion relation
( 19 ) takes the form 

D φ (−p 2 ) = + 

1 
iπ

∫ ∞ 

4 μ2 
ds 

ρ(s ) 
s + p 2 

for the m 

2 > 4 μ2 case with εg = +1 . (22) 

There is no one-particle pole term here, which agrees with the fact that there is no asymptotic
field corresponding to an unstable particle. As e v eryone kno ws, ho we v er small the decay prob-
ability (into two ψ i particle states here) is, any unstable particle decays out into lighter ordinary
particles and e v entuall y disa ppears in sufficientl y long time [ 10 ]. Thus the complete set of states
is spanned by stable particles alone. 
We thus conclude from the dispersion relation ( 19 ) for the φ propagator that the Heisenberg

field φ (massi v e regulator part of the fourth-or der deri vati v e Heisenberg field) has the conjugate
pair of asymptotic fields of a complex ghost, ϕ and ϕ 

†: 

φ(x ) −−−−−→ 

x 0 →∞ 

Z 

1 / 2 ϕ (x ) + Z 

∗1 / 2 ϕ 

† (x ) , (23) 

which satisfy the free field equations, ( � − M 
2 ) ϕ( x ) = 0 and its complex conjugate ( � −

M 
∗2 ) ϕ 

†( x ) = 0. 
The unfamiliar metric structure of these asymptotic complex fields can most easily be found

simply by canonical quantization of their unique free field Lagrangian: 4 

L = 

1 
2 

[ 

∂ μϕ ∂ μϕ + M 

2 ϕ 

2 + ∂ μϕ 

† ∂ μϕ 

† + M 

∗2 ϕ 

† 2 
] 

. (24) 

Howe v er, we note that this is essentially the same Lagrangian as gi v en by Nakanishi [ 13 ] for the
BC field sector of Lee’s complex ghost model [ 2 ] in which the complex ghost fields ϕ and ϕ 

†,
or equivalently, B = (ϕ + ϕ 

† ) / 

√ 

2 and C = i(ϕ − ϕ 
† ) / 

√ 

2 fields, are not the asymptotic fields
but the fields introduced in the model from the beginning. An ywa y, since the property of these
fields is uniquely specified by the Lagrangian ( 24 ), we can use Nakanishi’s results, which we
recapitulated in Paper I. The complex ghost field ϕ( x ) is expanded into plane waves as 

ϕ(x ) = 

∫ 

d 3 p √ 

(2 π ) 3 2 ω p 

(
α(p ) e i px −i ω p x 0 + β† (p ) e −i px + i ω p x 0 

)
, (25) 

where ω p is the complex energy ω p = 

√ 

p 2 + M 
2 and the creation and annihilation operators

satisfy the off-diagonal commutation relations: 

[ α( p) , β† ( q )] = [ β( p) , α† ( q )] = −δ3 (p − q ) , 

[ α(p) , α† (q )] = [ β(p) , β† (q )] = 0 . (26) 

Then, by using these, the Feynman propagator is immediately found to be gi v en as 

〈 0 | T ϕ (x ) ϕ (y ) | 0 〉 

= −
∫ 

d 3 p 
(2 π ) 3 2 ω p 

{ 

θ (x 

0 − y 0 ) e i p(x −y ) −i ω p (x 0 −y 0 ) + θ (y 0 − x 

0 ) e −i p(x −y )+ i ω p (x 0 −y 0 ) 
} 

. (27) 
4 The overall sign of this action is a convention which can be changed by redefining the asymptotic 
field ϕ to i ϕ. We use the same sign choice as in Pa per I, w hich is opposite to that used by Nakanishi in 

Ref. [ 13 ]. 
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Fig. 3. p 0 integration contour C ( p 0 ) in Eq. ( 28 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

This 3D momentum expression is rewritten into a 4D momentum expression by introducing p 0 

variable as 

= −
∫ 

C(p 0 ) 

d 3 p d p 0 

i(2 π ) 4 
e i p(x −y ) −i p 

0 (x 0 −y 0 ) 

M 
2 + p 2 

. (28) 

In order for this 4D expression to reproduce the 3D expression ( 27 ), the p 0 integration contour
C ( p 0 ) here has to be the deformed one from the real axis R = ( − ∞ , + ∞ ) such that it passes
below the left pole at p 0 = −ω p and above the right pole at p 0 = + ω p as shown in Fig. 3 . With
this understanding, we see that the asymptotic fields Z 

1 / 2 ϕ + Z 
∗ 1 / 2 ϕ 

† actually reproduce the
two complex conjugate poles in the φ-propagator ( 19 ) in 4D momentum r epr esentation. 

4. Spectr al r epr esentation f or the commutator 
Once a spectral r epr esentation is found for one type of two-point functions, we can immediately
write down those for other types of two-point functions by using the same spectral function.
We first note that the dispersion relation ( 19 ) is rewritten into the spectral representation for
the propagator in x space: 

〈 0 | T φ(x ) φ(0) | 0 〉 = −Z�F (x ;M 

2 ) − Z 

∗�F (x ;M 

∗2 ) + 

∫ ∞ 

4 μ2 
ds 

ρ(s ) 
π

�F (x ; s ) , (29) 

where �F ( x ; m 
2 ) denotes the Feynman propagator function for the free field with mass squared

m 
2 , including also the complex m 

2 case: 

�F (x ;m 

2 ) = 

∫ 

C(p 0 ) 

d 4 p 
i(2 π ) 4 

e ipx 

m 
2 + p 2 

. (30) 

Knowing this form, we can immediately write down, in particular, the vacuum expectation
value (VEV) of the commuta tion rela tion of the Heisenberg operator φ, in which we are now
interested: 

〈 0 | [ φ(x ) , φ(0)] | 0 〉 = −Zi�(x ;M 

2 ) − Z 

∗i�(x ;M 

∗2 ) + 

∫ ∞ 

4 μ2 
ds 

ρ(s ) 
π

i�(x ; s ) , (31) 

in terms of the commutator function i �( x ; m 
2 ) for the free field with (generally complex) mass

squared m 
2 [ 13 ]: 

�(x ;m 

2 ) = 

∫ 

d 3 p 
(2 π ) 3 E p 

sin [ p · x − E p x 

0 ] , E p = 

√ 

p 2 + m 
2 . (32) 

This Eq. ( 31 ) leads to a very inter esting r ela tion. Take a time deriva tive ∂ / ∂ x 
0 and set x 

0 

= 0 on both sides of this equation. Then, the left-hand side (LHS) is reduced to the equal
time commutator between the Heisenberg field operator φ(0) and its conjugate momentum 

operator π (x ) ≡ ∂ L /∂ ˙ φ(x ) at time x 
0 = 0, which yields a simple value thanks to the canonical
8/13 
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commuta tion rela tion (CCR): 

LHS = 〈 0 | [ ̇  φ( x , 0) , φ( 0)] | 0 〉 = 

〈
0 | [ εg π ( x , 0) , φ( 0)] | 0 〉 = −iεg δ3 ( x ) . (33) 

On the RHS also, since i �( x ; m 
2 ) is the free-field commutator function, the CCR gi v es the same

quantity; 

i ̇  �(x , 0 ;m 

2 ) = −iδ3 (x ) , (34) 

independently of the mass value m 
2 . Using this and dividing both sides by a common factor

−iδ3 (x ) , we obtain 

−1 = −(Z + Z 

∗) + 

∫ ∞ 

4 μ2 
ds 

ρ(s ) 
π

for the ghost field case . (35) 

Note that we have set εg = −1 on the LHS here since this relation is deri v ed from the dispersion
relation ( 19 ) valid for the ghost field case. If we a ppl y the same procedure to the dispersion
relations, Eqs. ( 21 ) and ( 22 ), for or dinary stab le and unstable particle cases, respectively, we
obtain 

+1 = Z + 

∫ ∞ 

4 μ2 ds 
ρ(s ) 
π

for the stable particle case with εg = +1 , (36) 

+1 = 

∫ ∞ 

4 μ2 ds 
ρ(s ) 
π

for the unstable particle case . (37) 

Eq. ( 36 ) is the well-known relation written in any field theory textbook, whose physical interpre-
tation following from the derivation of spectral r epr esentation is as follows: Z is the probability
that the state φ( x ) | 0 〉 (generated by acting the Heisenberg field φ( x ) on the vacuum | 0 〉 ) contains
the one-particle state 

∣∣p;m 
2 
〉
, while ∫ ∞ 

4 μ2 
ds 

ρ(s ) 
π

=: c > 0 

r epr esents the probability that the state φ( x ) | 0 〉 contains many-particle states (only two particle
states in this calculation). Thus Eq. ( 36 ) says that the total probability that φ( x ) | 0 〉 contains one-
particle and many-particle states adds up to 1. In the same way, Eq. ( 37 ) for the unstable particle
case shows that φ( x ) | 0 〉 contains no one-particle asymptotic state and the total probability is
sa tura ted only by the contribution c from the continuum many-particle states consisting of 
lighter particles produced by decays. 
Now comes the relation ( 35 ), in view of which we reach the following interpretation. First,

Z + Z 
∗ r epr esents the probability that φ( x ) | 0 〉 contains the complex ghost asymptotic one-

particle state, which is the superposition of ghost ϕ(x) | 0 〉 and conjugate ghost ϕ 
†( x ) | 0 〉 , as ex-

plained above. The state φ( x ) | 0 〉 also contains many-particle states which appear as the ‘decay
products’ of the original ghost φ. The probability of the many-particle states of ‘decay prod-
ucts’, 

∫ ∞ 

4 μ2 ds ρ(s ) /π = c > 0 , is the same as the previous two cases and hence positi v e. Then,
the relation ( 35 ) tells us a very interesting but counter-intuiti v e relation: 5 

Z + Z 

∗ = 1 + c . (38) 

Surprisingly, the probability Z + Z 
∗ that the ghost remains as itself becomes e v en larger

as c increases; that is, the more the ghost ‘decays’ into lighter ordinary particles, the larger
the probability that the ghost remains as itself becomes. Howe v er, this strange property of 
5 Exactly the same equation as this Eq. ( 38 ) was written in Eq. (72) in Coleman’s lecture [ 12 ], where 
he noted that it indicates the high- p 2 behavior of the original propagator in the fourth-order derivative 
theory remains as good as that at tree le v el, i.e., damps as ∼1/ p 4 . 

9/13 



PTEP 2024 , 053B01 J. Kubo and T. Kugo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ghost, which we call anti-instability , 6 was already pointed out in Paper I, as cited in the
Introduction. 
We thus have completely proved the existence of asymptotic fields of complex ghost, ϕ and

ϕ 
†, in Eq. ( 23 ). It is guaranteed by the anti-instability of the negati v e metric ghost. 

5. Two additional remarks 
Before closing this paper, we add two remarks. 
One is on a possibly confusing point concerning the narrow resonance approximation gi v en

by Grinstein et al. in Ref. [ 7 ]. Those authors also wrote down the same form of dispersion
relation as our Eq. ( 19 ) for the complex ghost field in a similar scalar field theory model. They
noticed that the spectral density ρ( s ) is a pproximatel y gi v en by 

ρ( s ) � 

mγ

( s −m 
2 ) 2 + m 

2 γ 2 
= 

1 
2 i 

[
1 

s −m 
2 − imγ

− 1 
s −m 

2 + imγ

]
(39) 

near the resonant energy s = m 
2 for the narrow resonance case γ 
 m . This is generally true,

since the condition γ / m 
 1 (implying ( g / m ) 2 /32 π 
 1 in our case) means the small coupling
constant so that Z � 1 and 1/ F ( s + i ε) � −Z /( s − M 

2 ) � −1/( s − M 
2 ) and 1/ F ( s − i ε) � −1/( s

− M 
∗2 ) near the energy s = m 

2 . Noting that ρ( s ) is strongly peaked at s = m 
2 , they extend the

s -integration in Eq. ( 19 ) over the whole real axis R of s . Then the s -integration can be done by
closing the integration contour in either the upper or lower half-plane and yields 

1 
iπ

∫ ∞ 

−∞ 

ds 
ρ(s ) 
s + p 2 

= − i 
M 

∗2 + p 2 
for Im (−p 2 ) > 0 (40) 

for the −p 2 = (p 0 ) 2 − p 2 variable on the upper half-plane . Then, if this is substituted into
the third continuum term in Eq. ( 19 ), it cancels(!) the second pole term iZ /( M 

∗2 + p 2 )
in this approximation with Z � 1, and Eq. ( 19 ) now gi v es the e xpression for the ghost
propagator: 

D φ (−p 2 ) � 

i 
M 

2 + p 2 
for Im (−p 2 ) > 0 . (41) 

In the same way, for −p 2 on the lower half-plane, we find 

D φ (−p 2 ) � 

i 
M 

∗2 + p 2 
for Im (−p 2 ) < 0 . (42) 

These are of course valid approximate results for −p 2 on the upper and lower half-planes, re-
specti v ely, but are ne v ertheless rather misleading expressions. It should ne v er be interpreted that
they imply the disappearance of the complex ghost pole at −p 2 = M 

2 or the complex conjugate
ghost pole at −p 2 = M 

∗2 . They are merely approximate results that are numerically valid only
near −p 2 = m 

2 above the cut Re (−p 2 ) ≥ 4 μ2 . For instance, for real −p 2 below the threshold
−p 2 < 4 μ2 , D φ( − p 2 ) is real (and has no cut) since both complex conjugate poles contribute
to it, but the approximate result, either Eq. ( 41 ) or Eq. ( 42 ), is complex, thus failing to reflect
the analytic structure of the propagator function D φ( − p 2 ). Eqs. ( 41 ) and ( 42 ) are two separate
functions and either expression, ( 41 ) or ( 42 ), does not know the existence of the pole at the
other half-plane. 
6 This word is inspired by Coleman’s lecture [ 12 ] in which he suggested that the complex ghosts be re- 
ferred to as “antistable particles”because of the radical difference of situations from the ordinary unstable 
particles. 

10/13 



PTEP 2024 , 053B01 J. Kubo and T. Kugo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another remark is on the reason why the asymptotic fields appear in a pair of complex con-
jugate ghosts, ϕ and ϕ 

†. One obvious reason is that the original Heisenberg field φ is a real
field. The asymptotic field of the hermitian Heisenberg field should be real as a whole, so the
combination 

Z 

1 / 2 ϕ(x ) + Z 

∗1 / 2 ϕ 

† (x ) ≡ | Z| 1 / 2 φas (x ) . (43) 

Another reason is to realize the non-vanishing and negati v e norm of the original Heisenberg
field φ. As is proved generally and easily, any complex energy eigenstate of a Hermitian Hamil-
tonian is of zero-norm and can have a non-vanishing inner product only with its conjugate
energy eigenstate. The superposition state created by the combination ( 43 ) of a conjugate pair
of asymptotic fields is just such a state that can carry a non-vanishing (negati v e) norm; indeed,
using the real asymptotic field φas in Eq. ( 43 ) and inserting the plane wave expansion ( 25 ) and
its complex conjugate for the asymptotic fields ϕ and ϕ 

† there, we have 

∣∣p; x 

0 〉 ≡
∫ 

d 3 x 

√ 

2 | ω p | 
(2 π ) 3 

e ipx φas (x ) | 0 〉 

= 

(
e i(θZ −θp ) / 2 β† ( p) e iω p x 0 + e −i(θZ −θp ) / 2 α† ( p) e iω 

∗
p x 

0 
)

| 0 〉 , (44) 

where θZ 
and θp are the phases of Z and ω p ; Z = | Z| e iθZ and ω p = | ω p | e iθp . The norm of this

superposition is calculated by using the commutation relations ( 26 ) as 〈
q ; x 

0 | p; x 

0 〉 = 〈 0 | [ α( q ) , β† ( p)] e i(2 θZ −θp −θq ) / 2 e i(ω p −ω q ) x 0 | 0 〉 
+ 〈 0 | [ β( q ) , α† ( p)] e −i(2 θZ −θp −θq ) / 2 e i(ω 

∗
p −ω 

∗
q ) x 

0 | 0 〉 
= −δ3 (q − p) 2 cos (θZ 

− θp ) . (45) 

This realizes the non-vanishing negati v e norm as announced above. 7 One should also note the
fact that this norm of the state | p; x 

0 〉 g ener ated by the real asymptotic field φas (x) is independent
of time x 

0 . This is remar kab le since the first and second states in Eq. ( 44 ) which ar e cr eated by
the complex asymptotic fields ϕ and ϕ 

†, respecti v ely, each has a terrible time dependence, e iω p x 0 

or e iω 
∗
p x 

0 
, exponentially divergent or damping as x 

0 → ±∞ . These time-dependent coefficients
are , actually, fake , since they are not relevant to the magnitude of the state β† (p) | 0 〉 nor α† (p) | 0 〉
because they are of zero norm. Those exponentially divergent and damping factors cancel each
other between β†( = ϕ) and α†( = ϕ 

†) states and realize an x 
0 -independent state. In this sense,

it is very important that the asymptotic fields of φ always appear in the real combination ( Eq.
43 ) which creates the superposition states ( Eq. 44 ). 

6. Conclusion 

We have shown in this paper that the complex conjugate pair of ghost fields ϕ and ϕ 
† are actually

contained as asymptotic fields in the ghost (regulator) Heisenberg field φ in the higher deri vati v e
theories. Those asymptotic complex conjugate ghost particles each have zero norm but always
appear in a superposition form of ghost and conjugate ghost, and carries negati v e norm. Owing
to the negati v e norm, they have a peculiar stability property called anti-instability; the more
they ‘decay’ into ordinary particles, the more the ghosts appear. This solidifies our previous
7 It can easily be proved at least for the case μ2 / m 
2 
 1 that the phase condition 0 < θZ − θp < π/ 2 

holds independently of the coupling strength g 2 / m 
2 , so that the norm ( 45 ) always remains negati v e. 
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conclusion that the unitarity of physical particles alone is necessarily violated as far as (negati v e
metric) ghost exists in the theory. 
This anti-instability is concisely expressed in the form of Eq. ( 38 ); Z + Z 

∗ = 1 + c , where Z +
Z 

∗ is the probability of complex ghost one-particle state and c the probability of many ordinary
particle states contained in the state φ( x ) | 0 〉 created by the ghost Heisenberg field φ( x ). It was
proved based on the dispersion relation Eq. ( 19 ) for the ghost propagator. The proof is very
robust and non-perturbati v e in the sense that the anti-instability relation of the form in Eq.
( 38 ) can always be derived as far as the analyticity of the ghost propagator is gi v en as shown
in Fig. 2 . We only needed the positivity of the discontinuity function ρ( s ) along the cut on the
real axis. 
We should, howe v er, also note the fact that the structure of the analyticity as shown in Fig. 2

is very special. Once the intermediate states contain the complex ghost particle, their energy P 
0 

takes values extending over a 2D region on the complex P 
0 plane, i.e., not restricted on the (1D)

real axis, and so the dispersion relation or the spectral representation would become a much
more complicated form whose precise expression has ne v er been gi v en (cf. Ref. [ 11 ]). 
Ne v ertheless, on the other hand, this also implies the robustness of our general conclusion

that the physical S -matrix unitarity is violated in higher deri vati v e theories. The fields in those
theories are always decomposed into second-order derivative fields among which some massive
fields are negati v e metric ghosts. Our discussions in this paper can apply to those ghost fields,
w hich necessaril y become comple x ghosts by the ‘decay’ to the or dinary lighter particles. As-
sume that the unitarity with ordinary positive metric particles alone could hold. Then, the total
state vector space must be spanned only with those ordinary particles. If so, we have the usual
form of spectral r epr esentation for the two-point functions of the ghost Heisenberg field φ,
which is gi v en by the integral along the real s -axis with positi v e definite spectral function ρ( s ).
In particular, from the spectral r epr esentation for the function 〈 0 | [ φ(x ) , φ(0)] | 0 〉 , we would get
the anti-instability relation ( 38 ) with no complex ghost asymptotic states, Z + Z 

∗ = 0, so that
1 + c = 0. Howe v er, this contradicts the positi vity assumption of ρ( s ), c = 

∫ 
ds ρ( s ) > 0. Thus

the original unitarity assumption is wrong. 
This implies that complex ghost states must exist in the total state vector space and those ghost

states are contained in the state φ( x ) | 0 〉 of the ghost Heisenberg field φ( x ). Thus we must admit
the fact that the complex ghosts are necessarily created via the ghost field φ( x ) contained in the
original higher-deri vati v e field. If we could hav e the physical unitarity despite this, ther efor e,
the only possibility would be to find (or construct) a special higher-deri vati v e theory possessing
a certain symmetry such as BRST symmetry in gauge theories which guarantees that the com-
plex ghosts always appear in zero-norm combinations in the physical subspace specified by the
charge of the symmetry. 
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