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Hanbury-Brown–Twiss signature for clustered substructures probing primordial
inhomogeneity in hot and dense QCD matter
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We propose a novel approach to probe primordial inhomogeneity in hot and dense matter which could be
realized in noncentral heavy-ion collisions. Although the Hanbury Brown and Twiss (HBT) interferometry
is commonly used to infer the system size, the cluster size should be detected if substructures emerge in
space. We demonstrate that a signal peak in the HBT two-particle correlation stands at the relative momentum
corresponding to the spatial scale of pseudo one-dimensional modulation. We assess detectability using the data
prepared by an event generator (AMPT model) with clustering implemented in the particle distribution.
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Introduction. It is an unsettled problem in nuclear physics
to explore the phases of matter out of quarks and gluons.
The underlying microscopic theory for nuclear dynamics has
been established in the form of non-Abelian gauge theory
called quantum chromodynamics (QCD). The boundaries of
QCD phases in a plane of the temperature T and the baryon
chemical potential μB constitute the QCD phase diagram; see
Refs. [1–4] for reviews. As long as μB/T � 2 is satisfied, the
numerical Monte Carlo simulation of lattice-discretized QCD
(i.e., lattice QCD) provides us with reliable predictions from
the first-principles approach [5]. For μB/T � 2, however, the
sign problem hinders the Monte Carlo algorithm and it still
remains a major challenge to unveil the QCD phase diagram
in cold and dense regions. There are a variety of specu-
lative scenarios including the QCD critical point, a family
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of color-superconducting states, quarkyonic matter [6], dual
chiral density waves [7], and inhomogeneous solitonic states
[8]. In particular, some states among them hint at a certain
shape of spatial modulation. We stress that such modulation
or inhomogeneity is not bizarre. The idea of inhomogeneous
nuclear matter can be traced back to the old speculation for
the p-wave pion condensation [9].

If such exotic scenarios are confirmed in nuclear exper-
iments, it would excite wide interest beyond the nuclear
community. It has been known, however, that inhomogeneous
phases in three spatial dimensions in the mean-field level are
fragile against fluctuations [10,11] and only one-dimensional
(1D) quasi-long-range order is expected [12,13]. It has been
suggested that the rotonlike dispersion relation appears as
a precursory phenomenon of quasi-long-range order at high
enough density (called the moat regime) and the characteristic
dispersion leads to a possible experimental signature [14]. We
note that a stronger argument against inhomogeneous states
was given in the mean-field level in a recent study [15]. It
is still an open question whether inhomogeneous states could
exist in cold and dense nuclear/quark matter. Nevertheless,
it is conceivable that clustered substructures may persist as a
remnant which we refer to as the primordial inhomogeneity
with the help of strong magnetic field that effectively reduces
the system to a pseudo-one-dimensional state in which the
genuine inhomogeneity rather than the quasi-long-range order
can develop.
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Now, a question is the experimental signature for the clus-
tered substructures. We show that the Hanbury Brown and
Twiss (HBT) interferometry [16] can resolve the length scale
in the particle distribution. For a HBT related idea in the
moat regime, see Ref. [17]. The HBT effect is widely known
as the quantum interference between identical particles. In
nuclear experiments, it is utilized to infer the source size of
particle emission via the measured particle correlation func-
tions including the expanding effects [18–21]. In the early
days in relativistic heavy-ion collision physics, enhanced pion
interferometry radii were discussed as a possible consequence
from a first-order phase transition from a quark-gluon plasma
to the hadronic phase [22–24]. The so-called “HBT puz-
zle,” a counterintuitive relation between the sideward and the
outward radii, with a naïve expectation with a finite time
duration of particle emission, has been intensively discussed
to be resolved [25]. Recently, the technique is also applied
to femtoscopic correlation measurements to extract hadronic
interactions [26,27]. It is important to note that, strictly speak-
ing, the length scale inferred from the HBT correlation is not
necessarily the size of the whole system and the cluster size
should be more relevant. This is usually taken as a caveat, but
for our purpose to seek for inhomogeneity, the cluster size is
exactly what we pursue.

Primordial inhomogeneity. The inhomogeneous state is not
robust in three spatial dimensions, but the dimensional reduc-
tion would justify the one-dimensional (1D) modulation. The
well-known example is the superconductivity for which the
phase-space integral is effectively 1D near the Fermi surface.
In the QCD context, the 1D nature at high baryon density has
been discussed in the large number of colors [28–31], and the
resulting inhomogeneous phase is called the quarkyonic chiral
spirals [30,31].

The dimensional reduction is further assisted by external
parameters. In the early stage in the heavy-ion collision, the
energy scale of the generated magnetic field,

√
eB, reaches a

scale greater than the typical QCD scale, �QCD (or the pion
mass mπ ), as simulated in Refs. [32,33], and the transverse
motion of quarks is frozen. Finite-density QCD matter under
strong B develops helical inhomogeneity [34], where the ex-
plicit breaking of rotational symmetry due to the magnetic
field overrides the realization of quasi-long-range order. In
general the lack of rotational symmetry may lead to inhomo-
geneous states.

More interestingly, the low-energy effective theory of QCD
under strong B can be mapped to a model for the chiral magnet
[35]. Therefore, the QCD phase structures can be quantita-
tively deduced from the phase diagram of the chiral magnet.
In this way, an analog of the chiral soliton lattice (CSL) is
expected for μBeB/(12π2 f 2

π mπ ) > 4/π [36–38]. The QCD
CSL state may exist in deep cores of the neutron star and
in transient matter created in the noncentral (realizing strong
B) heavy-ion collision at intermediate energy (realizing high
density). It is pointed out that the rotation velocity ω also
favors the QCD CSL state [39].

Let us discuss the primordial inhomogeneity. Figure 1 is a
schematic phase diagram with an additional axis of B or ω that
favors QCD CSL matter. In low-energy collisions the life time
of the magnetic field is significantly enhanced, and the system

Chiral Soliton Lattice

Quasi Long
Range Order

Primordial
Inhomogeneity

FIG. 1. Schematic illustration for realization of the primordial
inhomogeneity as an extension from the QCD CSL state.

may transiently undergo the CSL state. Then, the system ex-
pands, as indicated by the arrowed curve, toward a smaller-B
and dense regime where the quasi-long-range order is the true
ground state. Yet, if the system evolves sufficiently quickly, it
may well be trapped in a metastable CSL-like state, which is
a mechanism to realize the primordial inhomogeneity.

The discovery of the QCD CSL state would be an in-
triguing challenge that connects mathematical physics to
phenomenology. In dimensionally reduced QCD the vacuum
manifold is characterized by U (1)L × U (1)R/U (1)V, which
implies that the baryon number appears from the topological
winding from the fundamental homotopy group, π1(S1), while
the baryon number arises from the π3(S3) winding. This math-
ematical consideration gives feedback to phenomenology: the
1D layered sheets of the π0 condensate form the domain walls
and the baryon number must be localized on them. Therefore,
as illustrated in Fig. 2, we can expect CSL-like pseudo-1D
modulation along the y axis (which is perpendicular to the
reaction plane and parallel to B). Then, π0′s and baryons could
distribute in space with layered substructures. We note that
π± are completely suppressed in the infinitely strong-B limit.
In reality, however, the modulated π0 is always accompanied
by π± at the edges of the domain walls [38]. So, we focus
on the HBT measurement for the π+-π+ correlation which
is cleaner than the π0 measurement. We need to consider the
effect of the Coulomb interaction, but the Coulomb effect is
easily convoluted (or subtracted from the experimental data)
with the exact solution of the phase shift. Therefore, assuming
that the Coulomb effect is to be canceled, we present our
numerical results without any Coulomb interaction.

B

xy

z

FIG. 2. Collision geometry and the expected pseudo-1D modu-
lation along the magnetic direction in the noncentral collision.
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Gaussian analyses. We define the relative momentum and
the relative coordinate of two particles as q = p1 − p2 and
r = r1 − r2. With these variables the two-particle correlation
function can be represented as

C2(q) =
∫

d3r S(r)|ψrel(q, r)|2 = 1 + 〈cos(q · r)〉, (1)

where the relative wave function is ψrel(q, r) = (e−iq·r/2 +
eiq·r/2)/

√
2, so that its squared quantity is |ψrel(q, r)|2 = 1 +

cos(q · r), with the four vectors, q and r. Using the on-shell
condition, we see that q · r is nothing but −q · r in the pair
rest frame. In our convention S(r) is normalized to satisfy∫

d3r S(r) = 1 and 〈· · · 〉 represents the expectation value
weighted by S(r).

For motivating an ansatz for inhomogeneity in S(r), we see
a relation between S(r) and the source distribution function
s(r). Let us assume a simple source function with 1D spatial
modulation (which is along a unit vector n) parametrized by
s(r) ∝ e−r2/(2r2

0 )[1 + α̃ cos(2kn · r)] apart from the normaliza-
tion. The wave number k characterizes the typical length scale
of 1D modulation. Then, if we make only the back-to-back
pairs (or we neglect the Lorentz boost effect which turns out to
be small), the Gaussian form is simple enough for us to com-
plete the integration of S(r) = ∫

d3r1 d3r2 s(r1)s(r2) δ(3)(r −
r1 + r2) in an analytical way. The result leads us to the fol-
lowing ansatz for the modulated Gaussian:

S(r) = A(α, k, r0) e−r2/(4r2
0 )[1 + α cos(kn · r)] + O(α2). (2)

Here, α = 2α̃ e−k2r2
0 is the amplitude of modulation expressed

in terms of parameters in s(r). Parametrically, α is exponen-
tially suppressed for kr0 > 1. This suppression is not a robust
feature but a consequence from a simple choice of Gaussian
and cosine. Thus, we treat α as a free parameter to be de-
termined by experimental data. The normalization constant is
A(α, k, r0) = (4πr2

0 )−3/2(1 + α e−k2r2
0 )−1, with which we find

〈cos(q · r)〉 = 1 + α e−k2r2
0 cosh

(
2kqr2

0

)
1 + α e−k2r2

0

e−q2r2
0 (3)

for n ‖ q, which maximizes the modulation effect on the HBT
observable. Now that n ∼ ey, the optimal kinematic condition
for the modulation detection is qx = qz = 0 and we construct
C2(q) as a function of qy only.

Figure 3 shows the two-particle correlation for the param-
eter set r0 = 6 fm, α = 0.6, and k = 0.4 fm−1. It is evident
that a pronounced peak appears around k ≈ 0.08 GeV. We
note that the typical wave number in the massless CSL is
μBeB/(2π fπ )2 [36], where μB is the baryon chemical po-
tential. For eB comparable to (2π fπ )2, the wave number k
should be ∼μB. Indeed, an analogous 1D modulation, the
chiral spirals, predicts k ≈ 2μB/3. If we adopt the latter
relation, k = 0.4 fm−1 corresponds to μB ≈ 120 MeV, i.e.,√

sNN ≈ 30 GeV.
The analytical approach is quite useful for the phe-

nomenological implication. The numerical simulation is
time-consuming, but we can instantly check the parameter de-
pendence with the obtained analytical solution. For example,
it is practically impossible to identify the y axis precisely; in
other words, n may be slightly tilted as n · ey = cos θn 
= 1;

FIG. 3. Normalized two-particle correlation in the simple Gaus-
sian analyses. The system size is chosen to be r0 = 6 fm and the
modulation parameters are α = 0.6 and k = 0.4 fm−1 � 0.08 GeV.
The signal peak stands around qy ∼ k.

see the right-bottom corner in Fig. 2. The sensitivity to θn is
important in practice and, as shown in Fig. 3, the signal peak
has strong dependence on θn. Also, α might be smaller, but our
results imply that, if θn ≈ 30◦ is the experimental bound, only
modulations with α � 0.6 are detectable by about 5% excess
in the normalized two-particle correlation.

Phenomenological analyses. The analytical results from
the Gaussian formulation are suggestive, but we need to
relax the theoretical idealization. In analyzing experimental
data, the 1D limit along the y axis cannot be taken. Thus,
we must proceed to the model simulation to assess the fea-
sibility. For this purpose, we adopt the AMPT (a multiphase
transport) model [40] to simulate the phase-space distribution
of produced particles. More specifically, we generated 1000
events of Au-Au collisions at

√
sNN = 39 GeV. The range

of the impact parameter is 3.0 fm � b � 4.0 fm for which
clustered substructures along the y axis are expected from
the pseudo-1D nature. The modulation is introduced by hand,
and in this work, all the particles are equally modulated for
simplicity. For more systematic surveys, we should focus on
particles that couple the baryon number (such as the ω meson),
but the analysis simply goes in the same manner (with more
statistics required). The particle distribution,

ρ(p, r, t ) =
∑

n

δ(p − pn) δ(r − rn)δ(t − tn), (4)

with (pn, rn, tn) being the phase-space point of the nth parti-
cle emulated by AMPT, is shifted as ρ[p, r − eya cos(ky), t]
in our simple ansatz to implement the 1D modulation. The
modulation parameter k has the same meaning as our Gaus-
sian approach, and let us choose k = 0.4 fm−1 again. The
amplitude a is not dimensionless and we set a = 5 fm in this
work. Roughly speaking, the Gaussian model parameter α

corresponds to a∂yρ/ρ, where ∂yρ/ρ ∼ R−1
y , with Ry being

the y length of the system. This parameter of a is the least
known part in the whole discussions and should be related
to the magnetic strength. In the future, we should proceed to
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FIG. 4. Two-particle correlation from the AMPT data with the
spatial modulation. The tilting angle is fixed as θn = 20◦. In the upper
panel, C (0)

2 is the reference, and the lower panel shows the correlation
normalized by C (0)

2 .

systematic investigations. It would be intriguing to determine
what a is the sensitivity bound for detectability.

We mention that we mix 1000 events to make pairs. Here,
we consider the π+-π+ pairs and there are 416 824 π+′s from
1000 events (with the preselection of pz < 1 GeV). Therefore,
one event produces ≈400 π+′s. If we make pairs within each
event, ≈8 × 107 pairs are possible from 1000 events. Since we
mix 1000 events, the number of possible pairs is ≈8 × 1010,
which effectively corresponds to 1 × 106 events.

For the evaluation of 〈cos(q · r)〉 in the transport model
calculation, S(r) is approximated into the decomposed form
of s(r1)s(r2). Then, we should make a large number of pairs,
i and j, and make q = pi − p j and r = ri − r j to take the
average of cos(q · r). We note that the boost effect to the
rest frame is included but is negligibly small. The momentum
filter is

√
q2

x + q2
z � �q. (5)

First, we consider the 1D limit of the analyses. We emulate
the 1D limit by computing 〈cos(qyry)〉 instead of 〈cos(q · r)〉
setting qx = qz = 0. Then, we see a broad bump around
0.08 GeV in Fig. 4, for which we fix θn = 20◦. For reference,
the upper panel of Fig. 4 shows C2 for �q = 0.3 GeV, which
is denoted by C(0)

2 .

The lower panel of Fig. 4 is the ratio to C(0)
2 , and this

quantity serves as a clearer experimental signature. The peak
in raw C2(�q) is washed out for large �q, but the bump
in the ratio remains visible by a few percent (which is
experimentally distinguishable) even for �q = 50 MeV. In
Fig. 4, we present the results for both �q = 30 MeV and
�q = 50 MeV to quantify the dependence on �q. We have
numerically constructed 5 × 105 pairs from 416 824 π+′s that
satisfy Eq. (5) and taken the average with the 2-MeV bin in
terms of Qinv =

√
|q2|. Because qx and qz are much smaller

than qy and the boost effect to the pair rest frame is also small,
the plots are hardly changed if the horizontal axis is replaced
from Qinv to qy as in Fig. 3. In Fig. 4, the smoothed curves
over 20 data points (corresponding to the 40-MeV bin) are
overlaid. In this way, we can conclude that the modulation
with a ≈ 5 MeV is well detectable if the experimental accu-
racy of θn ≈ 20◦ is fulfilled. It should be mentioned that we
computed C2 for θn = 30◦ and the detectability is marginal. In
this way we can make systematic assessment of detectability
for a wide variation of parameters, and the present work is the
first step along these lines.

Conclusion. We discussed a possibility of clustered sub-
structures in hot and dense matter along the axis parallel to
the magnetic field. Even if the magnetic field is short-lived,
the pseudo-one-dimensional nature in the early dynamics can
induce an inhomogeneous density distribution and the in-
homogeneity could remain afterward as a metastable state,
which we call the primordial inhomogeneity. We proposed
a novel approach to probe the inhomogeneous state us-
ing the HBT measurement. Our analytical calculation in
the Gaussian formalism exhibits a pronounced peak at the
relative momentum corresponding to the wave number of
spatial modulation. To assess the feasibility we adopted the
phase-space distribution of particles generated by AMPT and
computed the two-particle correlation with the spatial sub-
structures of density distribution. We found that the signal
excess in the correlation ratio could be suppressed by the
alignment of the magnetic axis but still persist under the ap-
propriate momentum filter. Our results are promising enough
and the HBT correlations should deserve further systematic
investigations.
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