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Abstract We study the inclusive and exclusive cross sec-
tions of e+e− → hadrons for center-of-mass energies
between 3.70 and 3.83 GeV to infer the mass, width, and
couplings of the ψ(3770) resonance. By using a coupled-
channel K -matrix approach, we setup our analysis to respect
unitarity and the analyticity properties of the underlying scat-
tering amplitudes. We fit several models to the full dataset and
identify our nominal results through a statistical model com-
parison. We find that, accounting for the interplay between
the ψ(2S) and the ψ(3770), no further pole is required to
describe the ψ(3770) line shape. In particular we derive from
the pole location Mψ(3770) = 3778.8 ± 0.3 MeV and
Γψ(3770) = 25.0 ± 0.5 MeV. Moreover, we find the
decay to D+D− and D0 D̄0 to be consistent with isospin
symmetry and derive an upper bound on the branching ratio
B(ψ(3770) → non-DD̄) < 6% at 90% probability.

1 Introduction

The study of e+e− → hadrons processes has been use-
ful to improve our understanding of a variety of aspects
of particle physics in general and the strong interaction in
particular. These include the confirmation of three as the
number of strong charges (colours) [1], the discovery of
exotic states outside the established quark model (see Refs.
[2–7] for recent reviews), and the data-driven prediction of
hadronic contributions to the anomalous magnetic moment
of the muon [8].

In this analysis, we study e+e− → open charm pro-
cesses in the immediate vicinity of the D0 D̄0 and the D+D−
thresholds but below the DD̄∗ + h.c. threshold. Our study
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of e+e− → open charm data is motivated by the following
questions:

1. What is the nature of the ψ(3770) state? To that end, does
it decay sizeably into non-DD̄ final states, in contradic-
tion with being a pure cc̄ quarkonium state and in support
of alternative interpretations?

2. Are contemporary theoretical frameworks capable to
describe the now-available high-resolution measurements
of e+e− → open charm processes?

3. How many vector states are necessary to descibe the data
within the mass range studied?

4. Can we describe the e+e− → open charm spectrum well
enough to use it for data-driven predictions of non-local
contributions in b → s�+�− processes?

A previous study covering a large part of the e+e− →
open charm phase space has been carried out in Ref. [9];
it uses, amongst others, high resolution BES, BESII, and
BESIII data. That study uses a model consisting of a sum
of Breit–Wigner functions. This approach is known to vio-
late unitarity of the S-matrix in the description of broad
resonances close to their dominant decay threshold (see
Review Resonances in Ref. [10]), which clearly holds for the
ψ(3770). As a consequence, the line shape extracted from
e+e− → open charm data cannot be transferred to other
applications, such as data-driven predictions of b → s�+�−
decays, without incurring an unquantifiable model uncer-
tainty. To overcome this issue, we strive to model the relevant
scattering amplitudes with as few assumptions as possible
before fitting our models to the available data. Our choice of
phase space window implies the absence of dominant three-
hadron final states. This is a necessary prerequisite for the
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K -matrix framework, which we use in this study. A previous
K -matrix analysis of exclusive e+e− → open charm data
has been carried out in Ref. [11], exclusively using Belle
data. This data covers a much larger energy range than what
we study here but features a substantially lower resolution
than the BES data. It is therefore interesting to see if the
available high-resolution measurements by the BES, BESII,
and BESIII experiments can be described within the highly-
predictive K -matrix framework. Moreover, we allow for the
ψ(2S) to interfere with the ψ(3770), which appears neces-
sary to describe the data.

Conceptually our work seems similar to that of Ref. [12],
however, we deviate in a couple of crucial points: we allow
for non-DD̄ decays and for a contribution of the ψ(2S).
The most salient difference is that our framework does not
generate additional poles beyond those explicitly included
by construction. A more detailed comparison to the results
of Ref. [12] will be presented below.

The structure of this article is as follows. We discuss our
analysis setup in Sect. 2, including a brief overview of the K -
matrix framework, a description of the available experimen-
tal data, and the definition of our fit models. We present the
numerical results in Sect. 3. A summary and outlook follows
in Sect. 4. We describe a path toward data-driven predictions
of the non-local form factors in rare semileptonic b decays
in App. A.

2 Setup

2.1 Analysis framework

The K -matrix framework has first been proposed in Ref. [13]
to describe 2 → r → 2 scattering amplitudes and r → 2
decay amplitudes, where r denotes some hadronic resonance.
The framework allows straightforwardly for the inclusion of
two-body channels and automatically leads to unitary ampli-
tudes. Here, we apply the K -matrix framework in its modern,
Lorentz-invariant form; see Ref. [10] for a review and a col-
lection of the relevant formulae.

In the K -matrix framework, a scattering amplitude M is
modelled as

M = n [1 − KΣ]−1 K n. (1)

Here, columns and rows of M correspond to the initial and
final states of the processes under consideration, which are
commonly referred to as “channels”. The same holds for the
columns and rows of the underlying matrix K. Moreover,
to ensure unitarity of the S-matrix and to uphold symmetry
under time-reversal, K must be real-valued and symmetric,
respectively. The channels’ vertex structure is accounted for
by the diagonal matrix n = diag(na, nb, ...) with

nk = (qk/q0)
lk Flk (qk/q0) . (2)

In the above, lk is the orbital angular momentum in channel
k and

qk(s) = λ(s, M2
k1, M

2
k2)

1/2

2
√
s

(3)

is the break-up momentum, expressed in terms of the Källén
triangle function. The masses of the two hadrons of channel
k are denoted by Mk1 and Mk2, respectively. Their break-up
momentum is further used to define a channel’s phase space
function ρk = qk(s)/(8π

√
s) . Moreover, q0 is some fixed

momentum scale, conventionally chosen between 0.2 GeV
and 1 GeV [10,14], and Flk are the Blatt-Weisskopf form
factors [15]

F2
0 (z) = 1, F2

1 (z) = 1/(1 + z2).

The matrix Σ in Eq. (1) is a diagonal matrix Σ =
diag(Σa(s),Σb(s), ...), where the functions Σk(s) are chann
el-specific, modified Chew–Mandelstam functions. The lat-
ter functions are the proper analytic completions of the phase
space factors iρk(s)nk(s)2 by means of dispersion integrals,
which allow for the continuations of the amplitudes into the
complex plane. Here, we are only concerned with channels
for which Mk1 = Mk2, which is reflected in the formulas for
the modified Chew–Mandelstam functions. For an S-wave
channel (i.e., lk = 0), they read

Σk(s) = 1

8π2 Π0. (4)

For a P-wave channel (i.e., lk = 1) they read

Σk(s) = 1

8π2

s − sth

s0

(
F2

1 (qk(s)/q0)Π0(s) + Π1(s)
)

.

(5)

In the above we use

Π0 = −
√
sth − s√

s
arctan

√
s

sth − s
, (6)

Π1 = s3/2
0√

s0 − sth(s + s0 − sth)
atanh

√
1 − sth

s0
, (7)

where sth = 4 M2
k and s0 = 4 q2

0 . Note that the pole in Eq.
(7) cancels exactly the pole due to F2

1 , which makes both Σk

analytic functions of s in the whole complex plane, except
for a branch cut starting at s = sth. This branch cut connects
the two Riemann sheets of the Chew–Mandelstam functions.
The formulas above are suitable to evaluate them on their first
Riemann sheet only. To evaluate the function on their second
Riemann sheet, we use

Σ II
k (s) = Σk(s) + 2i

(
ρk(s

∗) n2
k(s

∗)
)∗

. (8)
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Following Ref. [10], we parametrize the K -matrix as fol-
lows:

Ki j (s) =
NR∑
r=1

gri g
r
j

m2
r − s

+ ci j . (9)

The first term describes the NR resonances included explic-
itly in the model, with bare massmr and gri for their coupling
to the channel i , all of them real valued. The second term is
the background constant that models non-resonant contri-
butions of, e.g., tails of resonances outside the phase space
window considered here.

Each resonance r gives rise to pairs of poles of the scat-
tering amplitudes Eq. (1) on the unphysical Riemann sheets.
For NC channels, this amounts to a total of 2NC Riemann
sheets. However, given the parametrisation employed here,
it is sufficient to continue the individual self-energies Σk to
their second sheet to reach those poles. We may label any
given sheet with a multi index, by denoting on which sheet
the respective self-energy for each channel is evaluated. In
this notation, the physical sheet is denoted as I ≡ {I, . . . , I}.
The resonance pole located closest to the physical axis is
commonly quoted as the resonance pole and parametrised as

√
sr = Mr − i

Γr

2
, (10)

which defines the resonance’s physical mass Mr and total
decay width Γr . To access these properties, one requires
the numerical evaluation of the scattering amplitudes on the
proper Riemann sheet. In our analysis, we are interested only
in the description of the ψ(3770) pole, which is located
above all modelled hadronic thresholds. To determine this
pole’s properties, it therefore suffices to consider the Rie-
mann sheet closest to the physical axis, which we denote as
II ≡ {II, . . . , II}.

This sheet can be reached by means of

MII = n
[
1 − KΣ II

]−1 K n , (11)

where Σ II denotes the self-energy matrix with all channel-
self-energies continued to their second sheet. To determine
the physical quantities, such as partial decay widths and
branching ratios, we require access to the renormalized cou-
plings Gr

k . We extract these couplings as residues of the diag-
onal elements in channel space of a partial-wave amplitude
on the proper Riemann sheet

(Gr
k)

2 = − 1

2π i

∮

C(sr )
dsMII

kk(s). (12)

Here C(sr ) describes a contour around the resonance’s pole
position, sr , on the proper Riemann sheet that avoids all other
singularities. The definition of the physical observables then

reads

Γr→a = |Gr
a |2

Mr
ρa(M

2
r ) and Br→a = Γr→a

Γr
(13)

where we employed the narrow width approximation for the
calculation of the partial width. Note that we do not impose
the identity Γr = ∑

a Γr→a . We discuss this type of relation
later on in Sect. 2.3. Finally, we compute the cross sections
from the scattering amplitudes as

σe+e−→k(s) = 1

16πs

ρk(s)

ρe+e−(s)

Nk

4

∣∣Me+e−,k

∣∣2
, (14)

where Nk = 2lk + 1 is a combinatorial factor and the factor
of 4 accounts for the number of spin configurations in the
initial state.
Resonances For this analysis, we study cross sections for
exclusive e+e− → open charm processes. All resonances
must share the same quantum numbers as the photon, i.e.,
all flavour quantum numbers must vanish and J PC = 1−−,
where J denotes the total angular momentum. The energy
range of interest here, 4M2

D0 < s < (MD + MD∗)2, sits
above the well-known narrow charmonium resonances J/ψ
and ψ(2S) and is dominated by effects of the broad ψ(3770)

resonance. We do not aim at modelling the shape of the J/ψ
and ψ(2S) resonances. Nevertheless, the interference effect
between the ψ(2S) and the ψ(3770) is found to play a major
role in the shape of the ψ(3770) in various works [9,11].
Hence, we include the ψ(2S) as the closest narrow charmo-
nium state in our model:

r ∈ {ψ(2S), ψ(3770)} and NR = 2 . (15)

Channels The energy range of interest overlaps with only a
small slice of the full phase space of open-charm production.
The dominant processes are therefore e+e− → non-DD̄,
e+e− → D+D−, and e+e− → D0 D̄0. A comment is due
on the hadronic non-DD̄ final states. Empirically, it is known
that various genuine non-two-body final states contribute
here [10] that cannot be straightforwardly expressed within
the K -matrix framework as applied here [10,13]. For our pur-
pose, this inclusive final state is expected to yield a numer-
ically dominant contribution only to the decay width of the
ψ(2S) resonance, i.e., well below the open charm threshold.
We therefore setup our model using the following assump-
tions:

– The effects of the ψ(2S) modify the line shape of the
ψ(3770) and a description of this modification is needed.
However, we are not interested in describing the line
shape of the ψ(2S). For the purpose of determining the
impact on the ψ(3770) line shape through interference,
we model this component as an effective P-wave two-
body channel effψ(2S) with threshold 4M2

π . Note that the
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results are insensitive to the concrete value chosen here as
long as it is located significantly below the energy range
considered.
Moreover, we allow for a non-vanishing non-DD̄ compo-
nent to the decay width of the ψ(3770). For the purpose of
determining the overall width of the ψ(3770) we model
this component as an effective P-wave two-body channel
effψ(3770) with threshold 4M2

π . We study two scenarios:
one in which effψ(3770) and effψ(2S) are assumed to be
distinct and hence non-interfering; and one in which the
channels are identical, effψ(3770) = effψ(2 S) = effψ .

– The cross sections in our phase space windows are dom-
inated by D+D− and D0 D̄0 final states. We model these
final states via two independent P-wave channels (i.e.,
lD+D− = lD0 D̄0 = 1).

– The coupling of the two resonances to e+e− enter all
cross sections discussed here. To keep our numerical
code as simple as possible, we define a K -matrix channel
with label e+e−. This approach leads to an inadvertent
accounting for hadronic open-charm contributions to the
e+e− vacuum polarisation, which is negligible in our
case. We have checked that our numerical code yields
virtually indistinguishable results compared to a (sim-
pler) code that uses a P-vector approach for the e+e−
channel. We model the e+e− initial state as an S-wave
channel (i.e., le+e− = 0).

This leaves us with the following sets of channels, depending
on the number of non-DD̄ channels included. Each channel
features an independent set of couplings. We thus have either
NC = 5 with

k ∈ {e+e−, D+D−, D0 D̄0, effψ(2S), effψ(3770)} , (16)

or NC = 4 with

k ∈ {e+e−, D+D−, D0 D̄0, effψ } . (17)

2.2 Experimental data

Experimental measurements of the e+e− → hadron cross
sections in the energy range of interest are available from
the BaBar [16], Belle [17], BES [18], BESII [19], BESIII
[20], and CLEO [21] experiments. These measurements vary
strongly in the underlying approaches to measure the cross
sections, which can roughly be divided into two categories:

energy scan The BES, BESII, BESIII, and CLEO exper-
iments take data at a variety of different center-of-mass
energies,

√
s, of the e+e− collisions. This enables them

to obtain measurements of the exclusive cross sections at
different values of

√
s. The resolution of these data points

is � 10 MeV, yielding high-resolution measurements

of the spectra. In the context of this analysis, we treat
energy-scan measurements as single-points with vanish-
ing bin width.
initial-state radiation The BaBar and Belle experiments
work at fixed center-of-mass energies,

√
s ∼ 10 GeV,

far above the energy range of interest. Nevertheless, they
can access lower energies by means of initial-state radia-
tion (ISR), i.e., radiation of an energetic photon off either
of the initial-state leptons. This approach does not per-
mit a high-resolution energy scan of the pertinent cross
section. Instead, those results are presented as integrated
cross sections in relatively coarse bins of the center-of-
mass energy.

For this analysis, we use only the measurements by the BES,
BESII, and BESIII experiments. Our reasoning is as follows:

– The BES, BESII, and BESIII measurements are based
on much larger data sets than the CLEO measurements.
Consequently, the latter are not competitive with the for-
mer within our analysis on account of larger statistical
uncertainties.

– The BES, BESII, and BESIII measurements provide a
high-resolution access to the energy dependence of the
exclusive cross sections. The BaBar and Belle results can-
not compete with these BES results due the limitations
of the ISR method.

We refer to the data sets on the ratio R = σ(e+e− →
hadrons)/σ (e+e− → μ+μ−) as inclusive data and to the
data sets on e+e− → D0 D̄0 and e+e− → D+D− as the
exclusive data. Taking the exclusive data into account allows
our fit to be sensitive to isospin symmetry violation. We only
use data points with center-of-mass energy

√
s ≤ 3.83 GeV,

to limit the experimental pollution of the ψ(4040) resonance.
This leaves us with the following combined dataset that is
used throughout our analyses:

inclusive We use 12 and 60 + 1 experimental mea-
surements from the analyses by BES [18] and BESII
[19,22], denoted as BES 2002, BESII 2006A and
BESII 2006B, respectively, in the rest of this paper;
exclusive We use 26 and 27 experimental measure-
ments from a preliminary BESIII analysis [23] that we
will denote as BESIII 2017 in the following. We do
not account for small systematic correlations between the
D+D− and D0 D̄0 final states. The observed cross sec-
tion σ obs still needs to be converted to the Born cross
section σB. This is achieved by [24]

σB(E) = σ obs(E)
|1 − Π(E)|2

1 + δ(E)
,

123



Eur. Phys. J. C (2024) 84 :483 Page 5 of 12 483

where Π(E) is the vacuum polarization and δ(E) is the
radiative correction that accounts for initial-state radia-
tion. This is done to ensure consistency of our analysis
with respect to the inclusive cross section measurements.

This corresponds to a total of 126 observations. As they
are measured during different experimental runs, all these
measurements are statistically independent. The systematic
uncertainties are provided in the experimental publication.
They permit us to reconstruct the full correlation matrices
by separating the energy-independent uncertainties from the
other systematic uncertainties.

We fix the value of the R ratio below the open-charm
threshold to the value Ruds = 2.171 [25]. To ensure the con-
vergence of the fits and the physical meaning of the models,
we furthermore consider two additional constraints:

– The bare partial width of the ψ(2S) resonance to e+e− is
constrained to Γψ(2S)→e+e− = (2.33 ± 0.04) keV. This
constraint has a limited impact on the fit and is just used
to ensure convergence.

– The value of the R ratio far above the open-charm thresh-
old should not exceed the value Rudsc = 3.55 [25]. To
implement this constraint, in the fit we impose a penalty
function

− 2 log P ⊇ (r − 3.55)2

σ 2 θ(r − 3.55), (18)

where r = R(
√
s = 9 GeV) corresponds to the four-

flavour R ratio evaluated below the first bb̄ resonance and
θ is the Heaviside function. We use σ = 10% to account
for the theory uncertainty of the R ratio prediction. Here
again, the fit is not sensitive to these exact values, but
using this prior ensures that the model remains physical.

2.3 Analysis

To confront our physical model with the available data, we
perform a Bayesian analysis. Central to this type of analysis
is the posterior probability density function (PDF) of our fit
parameters ϑ ,

P(ϑ | D, M) = P(D, M | ϑ) P0(ϑ | M)

Z(D, M)
. (19)

In the above, P(D, M | ϑ) is known as the (experimental)
likelihood, P0 is the prior PDF of our parameters, and the
evidence Z(D, M) ensures the normalization of the posterior
PDF. The label D refers to the dataset used in the fit (see
Sect. 2.2) and the label M refers to the fit model (discussed
below).

Our fit parameters can be classified as follows:

masses We fix the bare mass of theψ(2S) to the physical
world average Mψ(2S) = 3.6861 GeV [10]. We fit the
bare mass parameter of the ψ(3770). This amounts to
one fit parameter.
couplings We fit the bare couplings of all resonances
r listed in Eq. (15) to the channels listed in Eqs. (16) or
(17), depending on the fit model. In the former setting
the ψ(2S) does not couple to the channel effψ(3770) and
vice versa. In the latter both vector resonances couple
to the same channel. In both cases this amounts to eight
parameters describing the bare couplings.
background terms We fit the background terms intro-
duced in Eq. (9). In our analysis, only background terms
for the processes e+e− → {D0 D̄0,

D+D−} are considered. Symmetry of the K -matrix
implies that we must use the same background terms for
the time-reversed processes. This amounts to two inde-
pendent fit parameters.
effective momentum We fit the effective momentum q0

entering Eq. (2). Although this quantity is a-priori chan-
nel dependent, we use a common value for q0 across all
channels. This amounts to one fit parameter.

By construction, all fit parameters are real-valued parameters
as demanded by the properties of K; see Sect. 2.1. We find
that the likelihood (and hence the posterior PDF) exhibits
several symmetries with respect to the above parameters that
help in reducing the prior ranges of our analysis:

– If the effective channels are specific to a single resonance
only and we do not impose a background term for them,
the posterior PDF is insensitive to the signs of the effec-
tive couplings. In that case, we can choose both couplings
to be positive. If, on the other hand, the effective chan-
nels are allowed to interfere, the relative sign between
both couplings becomes observable. Hence, we choose
the coupling to the ψ(3770) to be positive.

– The posterior PDF is insensitive to the overall sign of
the full set of bare couplings to a common resonance r ,
since each observable contains the product of two reso-
nance couplings. Put differently, we can change the sign
of all bare couplings grk for a fixed r without changes to
the posterior PDF. This enables us to choose the sign of
one bare coupling per (fixed) resonance. We choose the
couplings gre+e− to be positive.

– The posterior PDF is insensitive to the overall sign of the
full set of couplings to a common single channel k. Put
differently, we can change the sign of all bare couplings
grk for a fixed k without changes to the posterior PDF.
This enables us to choose the sign of one bare coupling
per (fixed) channel k. We choose the coupling gψ(3770)

k
to be positive.

123



483 Page 6 of 12 Eur. Phys. J. C (2024) 84 :483

We use as the prior PDF a product of uniform PDFs for each
fit parameter.

We define the following fit models that are investigated as
part of our analysis:

minimal We fit the ψ(3770) bare mass parameter and
seven bare coupling parameters for the channels dis-
cussed above, fixing the coupling of the non-DD̄ compo-
nent of the ψ(3770) (modelled by the effψ(3770) channel)
to zero. (8 parameters)
nobackground Same as the “minimal” model. We
additionally fit the effective effψ(3770) channel. (9 param-
eters)

background Same as the “no background” model. We
additionally fit the constant background parameter in the
off-diagonal K -matrix entries for the e+e− → D0 D̄0

and e+e− → D+D− processes. Since our framework
is constructed to produce a symmetric K -matrix, these
background terms also contribute to the time-reversed
processes D0 D̄0 → e+e− and D+D− → e+e−. (11
parameters)
q0variation Same as the “background” model. We
additionally fit the effective scale q0, assuming, as stated
above, that this parameter is the same for all the channels.
(12 parameters)
inter f erence We fit the ψ(3770) bare mass parame-
ter and the eight bare coupling parameters as discussed
above in the context of one joint effective channel with
couplings to both the ψ(2S) and the ψ(3770), see Eq.
(17). (11 parameters)

To carry out our analysis we use the EOS software [26]
in version 1.0.11 [27], which has been modified for this pur-
pose. Our analysis involves the optimisation of the posterior
to determine the best-fit point or points. Since all experimen-
tal measurements used here are represented by a Gaussian
likelihood, we compute the global χ2 value in the best-fit
point(s), providing a suitable test statistic for the fit.

We further produce importance samples of the model
parameters for each fit model. This enables us to produce
posterior-predictive distributions for dependent observables,
including those used in the likelihood but also observ-
ables that are as-of-yet unmeasured. We produce the impor-
tance samples by application of the dynamical nested sam-
pling algorithm [28]. To this end, EOS interfaces with the
dynesty software [29,30]. Usage of dynamical nested sam-
pling provides the additional benefit of estimating the evi-
dence Z(D, M) in parallel to sampling from the posterior
density. This enables us to carry out a Bayesian model com-
parison between two models M1 and M2 for a common

dataset D through computation of the Bayes factor

B(M2, M1) ≡ Z(D | M2)

Z(D | M1)
. (20)

A Bayes factor larger than unity favours model M2 over
model M1. Jeffreys provides a more detailed interpretation
of the Bayes factor [31].
Pole position To determine the position of the ψ(3770) pole
in the complex plane, we carry out a root finding procedure
for det

[
1 − KΣ II

]
. To determine the uncertainty on the pole

position, we repeat the procedure for each posterior sample.
Viability tests To test the accuracy of our numerical imple-
mentation, we perform three types of viability tests a-
posteriori.

– Since our setup respects the unitarity of the S-matrix, we
expect the sum of the partial decay widths to correspond
to the total decay width, within the uncertainties of the
fit.

– Since final state interaction is a long-distance effect, we
expect the short-distance dominated residues of the res-
onance poles to factorize:

− 1

2π i

∮

C(sr )
MII

ab(s) ds = Gr
a × Gr

b. (21)

We remind that we extract the physical couplings Gr
k

from their respective partial wave amplitudes MII
kk(s).

– The spectral function of the ψ(3770) defined as [32,
chapter 10.7]

spectψ(3770)(s) = − 1

π

×

[

1

s−m2
ψ(3770)+

∑(
gψ(3770)
k

)2
Σk(s)

]
, (22)

must be normalised, (i.e.) it must fulfill the property

∫ ∞

sth

spectψ(3770)(s) ds = 1, (23)

where sth is the first hadronic threshold.

Significant violation of either test would indicate potential
issues with the numerical implementation of our framework.
We apply these tests a-posteriori only, since the information
needed to perform the test is not readily accessible in the
course of the optimization of or the sampling from the poste-
rior density. A numerical implementation may violate these
tests due to loss of precision or use of functions outside their
domain. This is meant as a practical test of the implementa-
tion, not a test of the physics.
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Table 1 Summary of the analysis of each model. d.o.f. refers to the degrees of freedom, log(Z) to the Bayesian (natural-)log-evidence and Bnon-DD̄
stands for B(ψ(3770) → non-DD̄). In the last column, upper bounds are given at 90% probability

Model χ2 d.o.f. p-value [%] log(Z) Mψ(3770) [MeV] Γψ(3770) [MeV] Bnon-DD̄ [%]

Minimal 120 119 46.0 82.0 3779.0 ± 0.3 23.5 ± 0.4 –

No background 120 118 44.0 79.0 3778.9 ± 0.3 23.6 ± 0.4 < 6.1

Background 107 116 71.8 81.7 3778.8 ± 0.3 25.0 ± 0.5 < 5.8

q0 variation 106 115 71.8 69.3 3778.8 ± 0.3 24.6 ± 0.6 < 5.0

Interference 107 116 71.5 80.5 3778.8 ± 0.3 25.0 ± 0.5 < 6.1
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Fig. 1 Predictions of our minimal and nominal models (the “back-
ground” and “interference” models give indistinguishable shapes) for
a couple of observables in the region of the ψ(3770) resonance, com-
pared to the experimental measurement performed by the BES exper-
iment. Shaded areas are not used in the fit. Top left: Cross-section of
the e+e− → D+D− scattering. Top right: R-ratio. Bottom left: Ratio

of the cross-sections of e+e− → D+D− and e+e− → D0 D̄0. The
experimental points are given for illustrative purpose and neglect the
experimental correlations between the D+D− and D0 D̄0 final states.
Bottom right: Residuals of the fit of the R-ratio, the nominal “back-
ground” model is used for the subtraction and compared with the min-
imal model and experimental data

3 Results and interpretation

We perform a total of five analyses, using the dataset
described in Sect. 2.2 and the five fit models described in
Sect. 2.3. All five analyses yield satisfactory p-values larger

than our a-priori threshold of 3%. The χ2 and p-values are
collected in Table 1, alongside the evidence log(Z) and our
results for the ψ(3770) mass and width. The best-fit points
for all analyses pass the viability tests discussed in Sect. 2.3.
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Our minimal fit model provides an excellent descrip-
tion of the data, with a p-value of 46% percent. To study
model uncertainties for our fit parameters and derived quan-
tities, we continue to investigate the remaining fit mod-
els. We first compare the three models that use two dis-
tinct effective channels, i.e., the models “no background”,
“background” and “q0 variation”. Although the “no back-
ground” model features the same χ2 value as the “mini-
mal” model, it is strongly disfavoured with respect to the
latter according to Jeffreys’ interpretation of the Bayes factor
of B(no background, minimal) � 1/20. The “background”
model substantially improves the quality of the fit by decreas-
ing χ2 by 13 at the expense of 3 additional parameters. This
leads to a preference in terms of the likelihood-ratio test by
about 3σ while being as efficient in the description of the data
as the “minimal” model with a Bayes factor of ∼ 0.7. This
is contrast to the “q0 variation” model, which sees a similar
improvement to the χ2 value; however, it is disfavoured deci-
sively by a Bayes factor of 3 ·10−6 with respect to the “mini-
mal” fit model. We therefore consider the results obtained in
the “background” model as our nominal results in the case
of two distinct effective channels.

The model “interference” with its description of the data
with a single, interfering effective channel gives an equiva-
lent fit quality compared to the “background” model but it is
slightly less efficient in its description of the data: the Bayes
factor yields

B(background, interference) � 3.3,

which is “barely worth mentioning” according to Jeffreys’
interpretation of the Bayes factor.

We thus see that the “background” and the “interference”
models both provide an excellent description of the data
although the former is somewhat favoured. The distinction
of the two is that in the“background” model the two vec-
tor resonances included in the model cannot interfere via the
non-DD̄ channels while in the “interference” model they can.
In this sense, the two models provide two extreme scenar-
ios: one assumes that the decay channels of the resonances
are all distinct, the other that they are identical. We there-
fore expect the spread of our results in either model to cover
the true physical results. A further investigation of this issue
would mandate a fit to the respective set of physical exclusive
non-DD̄ modes.

The posterior samples for both models are available in
form of machine-readable files upon request. No sizable
departure from Gaussian distributions are found in the pos-
terior and all samples pass the viability tests discussed in
Sect. 2.3.

We present the predictions of both models in Fig. 1. In the
upper plots, the cross-section of e+e− → D+D− scattering
and the R-ratio are compared to the experimental data used
in the fit. The shaded regions indicate the data not used in the

fit. In the bottom right plot, we show the fit residuals for the
R-ratio. It is obtained by subtracting the R-ratio line shape
of our nominal best fit from both the experimental data and
the predictions in the “background” and “interference”. The
residual excess of the data around E = 3.765 GeV motivated
the interpretation of the ψ(3770) as a double pole [33]. Our
results show that the data can be fully explained by interfer-
ence effects between the ψ(3770) with the ψ(2S) resonance,
an effect not included in Ref. [33].1

Our results deviate from those of Ref. [12] in various
aspects: while in our case the parameter in the regulator func-
tions does not play a significant role as is expected, since the
line shape should be dominated by the resonance itself, in
that work it was determined with a 1% accuracy. This means
that in Ref. [12] the regulator plays a crucial role to shape
the resonance. Our fits only need the well established ψ(2S)

and ψ(3770) as poles of the amplitude, while the fits of Ref.
[12], where the ψ(2S) was omitted, dynamically generate
an additional pole. The authors stress that this emergence is
unavoidable, if one wants to get a good description of the data.
However, our analysis shows that high-accuracy descriptions
of the data are possible even in scenarios without that addi-
tional pole, as long as the ψ(2S) is included in the analysis.
Thus, we may conclude that the interplay of an additional
pole with that of the ψ(3770) is indeed necessary to under-
stand the line shape of the latter, however, this additional pole
can well be an established charmonium state.
Mass and width Within both of our nominal fit models, we
obtain for the physical mass and total decay width of the
ψ(3770) identical results:

Mψ(3770) = 3778.8 ± 0.3 MeV

Γψ(3770) = 25.0 ± 0.5 MeV.
(24)

These values are consistent with those extracted in Ref. [12]

M12
ψ(3770) = 3777.0 ± 1.0 MeV

Γ 12
ψ(3770) = 24.6 ± 1.0 MeV.

(25)

The stability of the pole location is very reassuring, given
that there are significant differences in the actual modelling
of the non-ψ(3770) physics between our work and Ref. [12],
as outlined above.

We remind that our results are obtained from a K -matrix
analysis. They are therefore not expected to reflect the param-
eters extracted from Breit–Wigner analyses, such as the one
of Ref. [9] or the world average quoted in the PDG review
[10]. Nevertheless, we provide these respective results here
for convenience

M9
ψ(3770) = 3779.8 ± 0.6 MeV

Γ 9
ψ(3770) = 25.8 ± 1.3 MeV,

(26)

1 It is not clear to us if the analysis presented in Ref. [33] uses further
experimental data that is not publicly available.
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−0.1 0.0 0.1 0.2 0.3
(ψ(3770) non-DD̄)

CLEO 2010

BESII 2008

BESII 2007

BESII 2006

Shamov et al. 2016

EOS v1.0.11

Fig. 2 Comparison of our upper bound on the branching ratio of the
ψ(3770) to non-DD̄ final states at 90% probability (grey band) with
results from the phenomenological literature [9] above the dotted line
and the experimental literature [34–37] below. Although they use dif-
ferent analysis techniques, the three results by the BESII experiment
are not statistically independent

and

M10
ψ(3770) = 3778.1 ± 0.7 MeV

Γ 10
ψ(3770) = 27.5 ± 0.9 MeV.

(27)

We find both the mass and the total decay width to be quite
compatible with the literature. Given the variety of theoret-
ical approaches to describe the data, we do not consider it
meaningful to quote a statistical significance for the devia-
tions.
Branching ratio of the ψ(3770) to non-DD̄ As already dis-
cussed in the literature [9,34–37], the combined analysis
of inclusive and exclusive measurements allows for a non-
vanishing coupling of the ψ(3770) to non-DD̄ channels, i.e.,
yielding B(ψ(3770) → non-DD̄) at the level of a few per-
cent. Our results for this branching ratio are presented in the
last row of Table 1. Finding good agreement between the
upper bounds in our two nominal fit models, we summarize
our finding as

B(ψ(3770)→non-DD̄) < 6% at 90% probability . (28)

We juxtapose this results with those quoted in the literature
in Fig. 2. We find that our result is systematically lower than
what is found in the literature, with the exception of the results
of Ref. [37]. We mention in passing that using the exclusive
observed cross section instead of the exclusive Born cross
section leads to an artificially enhanced non-DD̄ contribution
of the level of ∼ 20%.
Isospin symmetry at the ψ(3770) pole The ψ(3770) reso-
nance lies just above the D0 D̄0 threshold (

√
s ∼ 3.73 GeV)

and the D+D− threshold (
√
s ∼ 3.74 GeV). It is therefore

sensitive to the differences in phase space volume between
the two channels, leading to an apparent violation of isospin
symmetry in the ratio of the exclusive cross sections; see the

bottom left plot of Fig. 1 for an illustration. We prefer to probe
the degree of isospin symmetry violation at hand of a quan-
tity that is unaffected by these phase space effects. To this
end, we investigate the ratio of the bare couplings between
this resonance and either of the two channels. Unbroken
isospin symmetry would yield unity, with symmetry break-
ing corrections being naturally suppressed by powers of αe

and (mu − md)/ms .
We find the ratio of bare couplings to be

gψ(3770)

D0 D̄0 /gψ(3770)

D+D− = 0.99 ± 0.03, (29)

showing no sign of isospin symmetry violation in these
decays in either model. We therefore conclude that the struc-
ture shown in the bottom plot of Fig. 1 originates from the dif-
ference in the phase space volumes. Our finding is in tension
with findings in the literature [23,38], which are obtained by
fitting a Breit–Wigner-like line shape to the ψ(3770) spec-
trum, but in line with the findings of Ref. [12]. In addition,
we determine the isospin ratio of the bare DD̄ couplings to
the ψ(2S) resonance to be 1.02 ± 0.10, which is also com-
patible with unity with substantially larger uncertainties. The
larger uncertainty obtained in this ratio is likely due to the
fact that we are not fully modelling the ψ(2S) resonance, as
described in Sect. 2.1.

4 Summary and outlook

In this paper we have performed a coupled-channel analysis
of e+e− → open charm processes in a window around the
ψ(3770). Our analysis compares different models based on
the K -matrix framework. We find that the now available high-
resolution measurements by the BES, BESII, and BESIII
experiments can be described very well within our models.
We have found no indication for a sizable branching ratio to
non-DD̄ final states. Modelling these non-DD̄ channels with
a single effective P-wave channel, we set an upper bound

B(ψ(3770) → non-DD̄) < 6% at 90% probability.

Our result is compatible with but systematically smaller than
nearly all other determinations of this branching fraction. In
recent years, various vector states were identified as good
candidates for exotic states beyond the quark model—see
Refs. [2–7] for recent reviews. However, given our results
we see no reason to question a dominant c̄c nature of the
ψ(3770). Note that hadronic loops that drive e.g. the emer-
gence of hadronic molecules [5] are suppressed near thresh-
old since they appear in a P-wave.

In the course of our analysis, we have struggled at times
with the lack of statistical constraints on the electron cou-
plings gre+e− . For this coupling to the ψ(2S) we had to resort
to external determinations of the partial width Γ (ψ(2S) →
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e+e−). We would like to point out that this caveat could
be overcome by using measurements of the cross section
e+e− → μ+μ− in our phase space of interest, which are
currently not available at the level of precision we require.

We look forward to future work in this field, where we plan
to extend our analysis to larger values of

√
s and, accordingly,

to both additional channels and resonances. This extension
will be essential for an envisaged phenomenological applica-
tion: the transfer of the line shape information for the vector
charmonia from measurements of e+e− → hadrons cross
sections to theoretical predictions of exclusive b → s�+�−
decays. A sketch of this application is provided in the
appendix of this work. It is presently unclear if this appli-
cation can be achieved without non-public information on
the experimental measurements, and we hope that this work
reinvigorates interest amongst our experimental colleagues.
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A Relations to non-local form factors in b → s�+�−

Non-local hadronic matrix elements in exclusiveb → s�+�−
processes pose a major source of systematic uncertainty to
their theoretical predictions [39]. They have been the focus of

theoretical developments for the past decade [40–46]. Using
B̄ → K̄�+�− processes as an example for definiteness, a
common definition of the dominant (charm-induced) non-
local2 contributions reads

Hμ = i
∫

d4x eiq·x

〈K̄ (k)| T {
c̄γ μc(x),

∑
i

Ci Oi (0)
} |B̄(q + k)〉 . (A.1)

Here the Oi are a set of local operators in the weak effec-
tive theory of mass dimension six and with flavour quantum
numbers sbcc,

Oi = [
s̄Γi b

] [
c̄Γ̃i c

]
, (A.2)

with combined Dirac and colour structures Γi and Γ̃i ; the Ci

are their respective Wilson coefficients. It is convenient to
discuss this hadronic matrix element in terms of its scalar-
valued non-local form factors

H(λ)(q
2) = Pμ(λ)Hμ(q). (A.3)

Here λ = 0,±1 denotes a polarization state of the virtual
photon coupling to the vector current, and Pμ(λ) are suitable
projection operators; we refer to Ref. [46] for their definition.
We emphasize that the H(λ) are complex-valued functions
even below all thresholds in q2. This property emerges since
the B̄ meson can decay into an on-shell hadronic state by
virtue of the four-quark operators Oi ; see Ref. [40] for a
discussion on this topic.

A systematic approach to describing H(λ)(q2) for q2 <

4M2
D has been developed over the course of the last decade

[44–46]. Here, we instead focus on the open-charm region
q2 ≥ 4M2

D . Common approaches to estimate or describe
the non-local form factors in this region include an operator
product expansion (OPE) of the time-ordered product in Eq.
(A.1) [47,48], and a Breit–Wigner model of the broad char-
monium resonance therein [49–51]. We propose a different
approach based on the P-vector formalism that utilizes the
information obtained in the main part of this work. First, we
note that by crossing symmetry the scalar non-local form fac-
tors can be related to the scattering amplitude B̄K → e+e−

AB̄K ,e+e− ∼
∑
λ

LμP
∗μ

(λ)Hλ, (A.4)

where Lμ = ū�γμv� denotes the leptonic current. Similarly,
the P-wave amplitude for the processes B̄ → K̄ DD̄ can be
related to B̄K → DD̄ scattering amplitudes AB̄K ,DD̄ . Both
of these processes are induced only by the weak interaction.
As a consequence, their contributions to the overall width

2 Here and in the jargon of the rare b → s�+�− decays, “non-local”
refers to the fact that the operator in Eq. (A.1) has a non-trivial x depen-
dence, opposed to the local s̄ . . . b operators whose matrix elements
dominate the description of theses processes off-resonance.
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of the various vector charmonium resonances in the unita-
rization, for example through the K -matrix approach, are
negligible. In such cases, the P-vector formalism provides a
convenient approach to parametrize both of the amplitudes
mentioned above:

AB̄K ,a = na [1 − KΣ]−1 PB̄K (s). (A.5)

In the above PB̄K represents the source term,

PB̄K (s) =
NR∑
r

αr gr
B̄K

m2
r − s

+ bB̄K (A.6)

split into a sum of the same resonances accounted for by the
K -matrix and a background term bB̄K . As before, mr and gr
represent bare masses and couplings, and the mass param-
eters should match those used in the K -matrix analysis. In
contrast to the usual P-vector formalism, the couplings gr

B̄K
and the background term bB̄K are complex-valued quantities.
This can be readily understood from the fact that non-local
form factors (and hence the scattering amplitudes) feature
non-vanishing imaginary parts below all thresholds, as dis-
cussed above.
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