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Abstract By applying conformal transformations on the
action of scalar–tensor-Euler–Heisenberg theory, we obtain
the exact black hole (BH) solutions in its conformal related,
the well-known Einstein frame. Through imposing the con-
ditions of (a) vanishing the electric potential at large distance
from the source and (b) validity of the first law of BH ther-
modynamics, we obtain a set of three requirements which
are not consistent, mathematically. For solving this prob-
lem we assume that under conformal transformations the
nonlinearity parameter of Euler–Heisenberg (EH) electrody-
namics must transform as a → ae4αφ . Then, we obtain the
exact solutions of this theory, in both of Einstein and Jordan
frames, without any mathematical problems. After calculat-
ing thermodynamic quantities, we investigate validity of the
thermodynamical first law (TFL) and thermal stability of the
EH-BTZ BHs in both of Jordan and Einstein frames, sepa-
rately.

1 Introduction

Einstein’s gravity theory, is the most outstanding theory of
twentieth century which passed a large amount of classical
tests successfully. It explains dynamics of our solar system
with acceptable accuracy. Existence of BH and gravitational
waves, as the original predictions of this theory, have been
detected by collaborations of LIGO and Virgo [1–3]. Based
on the recent observational data it is confronted with some
challenges [4–6]. A natural way for addressing the related
failures is to extending this theory to the well-known alter-
native theories of gravity such as the quadratic curvature the-
ories [7–10], the Levelock gravity [11–14], the braneworld
scenario [15–17], the f (R) and f (T ) theories of gravity [18–
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22] and, the scalar–tensor (ST) theory [23–26]. Briefly, we
need to have an alternative theory of gravity to work as good
as general relativity in the Solar System and, to address its
shortcomings such as accelerated expansion of the Universe,
inflation, formation of the large scale structures, dark matter
and dark energy [27]. The ST modified gravity, in which the
gravity is coupled to a scalar field, has appeared successful
in the context of relativistic cosmology [28,29]. It is well-
known that dark energy and inflation are two outstanding
subjects in modern cosmology and, gravitational ST theo-
ries are often utilized for describing them [30,31]. Study of
ST theories is motivated based on the facts that in one hand
they can be viewed as the simplest extension of Einstein’s
theory of gravity and, on the other hand they are advantages
of quantum gravity theory in the low energy limit [32]. The
ST gravity appeared successful under the Solar System tests
and, its post-Newtonian limit is consistence with the general
relativity [33,34].

On the other hand, diverging the electric field and self
energy at the position of the point-like charged particles are
the famous challenges of Maxwell’s classical electrodynam-
ics. Various models of nonlinear electromagnetic theories,
as the natural extensions of Maxwell’s electrodynamics, are
proposed with the aim of solving the aforementioned prob-
lems. The Born–Infeld, logarithmic, exponential, power-law,
EH and other models of nonlinear electromagnetic theory
have been used frequently for study of charged BHs in various
spacetime dimensions [35–40]. Theories of nonlinear elec-
trodynamics, in addition to the first-order Maxwell invari-
ant F = FαβFαβ , include its higher powers. It is believed
that the additional therms are important when the electro-
magnetic fields are highly strength and, it is the case for the
BHs with a large amount of electric charge. Therefore, by
utilizing them, it is expected to get a more realistic descrip-
tion for the physical and thermodynamical properties of the
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BHs. Evidently, in the case of weak fields the higher order
therms are negligible and the Maxwell’s theory is recovered
[41,42]. The EH electromagnetic theory, which includes firs
and second powers of Maxwell invariant, is just the quan-
tum corrected effective Lagrangian of electrodynamics. This
theory is the advantage of quantum electrodynamics (QED)
by taking weak field and slowly varying limit of the com-
plete one-loop approximation [43–45]. Properties of the BTZ
and BTZ-like BHs, four-dimensional modified RN, Einstein–
Gauss–Bonnet AdS BHs and Gauss–Bonnet magnetic branes
have been investigated in the presence of EH electrodynam-
ics [43–47]. Through application of EH nonlinear electrody-
namics it has been shown that finite self-energy can produced
from a point like charged particle [48].

In the present work, I intend to pursue obtaining the new
nonlinearly charged exact solutions in three-dimensional ST
theory, studying thermodynamics and thermal stability of the
new BHs under the influence of EH non-linear electrody-
namics. This is motivated by the fact that lower dimensional
models are easier for understanding the BHs’ quantum prob-
lems [49,50]. Also, from the viewpoint of A(dS)/CFT duality,
in comparison with the two and higher-dimensional space-
times, the three-dimensional BHs are even more interesting
systems [51].

We outlined this paper as follows: in the next section,
by introducing the action of three-dimensional ST and EH
nonlinear electrodynamics, it has been shown that the field
equations of this theory cannot be solved directly because
they are coupled strongly. Then by using the conformal trans-
formations, we showed that the action of ST gravity can be
translated to that of Einstein-dilaton gravity where, under
some simple assumptions, the field equations are decoupled
and can be solved easily. In Sect. 3, through obtaining the
Einstein frame exact solutions and studying thermodynamic
properties, we noticed that, based on some physical argu-
ments, there are a set of relations which are mathematically
inconsistent. In Sect. 4, with the aim of resolving the incon-
sistency problem encountered in Sect. 3, we supposed that
through conformal transformation the nonlinearity parame-
ter of EH electrodynamics transforms as a → ae4αφ . By
adding this transformation relation, we obtained the exact
solutions which are free of any mathematical problem. Then,
we studied thermodynamic properties and explored thermal
stability of dilatonic EH BHs in Sect. 5. Section 6 is devoted
to obtaining the Jordan frame exact solutions by applying
the inverse transformations on the corresponding quantities
in the Einstein frame. Then thermodynamics and thermal
stability of three-dimensional ST BHs have been studied in
the framework of canonical ensemble method. In Sect. 7, we
summarized and discussed the results.

2 The general formalism

It is well-known that the ST gravity theory may be formu-
lated in the Jordan frame or in its conformally related frame,
known as the Einstein frame. Here, we start with the gen-
eral form of Jordan frame action in which the Ricci scalar is
multiplied by an arbitrary function of the scalar field. For a
three-dimensional theory, it can be written as [52–54]

I (ST ) = − 1

16π

∫ √−g̃d3x
[
X (ψ) R̃

−Y (ψ)g̃μν∇̃μψ∇̃νψ − Z(ψ) + L(F̃)
]
. (II.1)

Here, g̃μν and R̃ = g̃μνR̃μν are the metric and the Ricci
scalar, X (ψ), Y (ψ) and Z(ψ) are multiplicative coefficients
which are considered as functions of the scalar field ψ . The
covariant derivative compatible with g̃μν is denoted by ∇̃
and, the EH nonlinear electromagnetic lagrangian is [55–57]

L(F̃) = −F̃ + aF̃2 + O
(
a2

)
. (II.2)

It is considered as a function of F̃ = F̃αβ F̃αβ with F̃αβ =
∂αAβ − ∂β Aα , and F̃ρλ = g̃ρα g̃λβ F̃αβ . The coefficient a,
known as the nonlinearity parameter, has the dimension of
Length2.

Through variation of the action (II.1), the various equa-
tions of motion achieved as

∇̃α

(
L ′(F̃) F̃αβ

)
= 0, (II.3)

X (ψ)

(
R̃αβ − 1

2
R̃g̃αβ

)
−

(
∇̃α∇̃β − g̃αβ�̃

)
X (ψ)

= T (s)
αβ + T (em)

αβ , (II.4)

where, �̃ = ∇̃μ∇̃μ, T (s)
αβ and T (em)

αβ are the scalar and elec-
tromagnetic energy-momentum tensors, and

T (s)
αβ = Y (ψ)∇̃αψ∇̃βψ − 1

2

[
Z(ψ) + Y (ψ) (∇̃ψ)2

]
g̃αβ,

(II.5)

T (em)
αβ = 1

2
L(F̃) g̃αβ − 2L ′(F̃) F̃ανF̃ ν

β , (II.6)

2Y (ψ)�̃ψ = Z ′(ψ) − Y ′(ψ)(∇̃ψ)2

− X ′(ψ)

X (ψ)

[
4�̃X (ψ) + Y (ψ)(∇̃ψ)2 + 3Z(ψ)

−3L(F̃) + 4F̃L ′(F̃)
]
. (II.7)

The Jordan frame field equations are strongly coupled, such
that finding the exact solutions is not easy. We try to decou-
ple them by translating the action (II.1) to the well-known
Einstein frame where the theory is known as the Einstein-
dilaton gravity with the metric tensor gμν [58]. It can be
done by using the conformal transformations [59–62]. One
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can introduce the conformal transformations through [63]

g̃μν = �2gμν, (II.8)

together with F̃μν = Fμν and, � is assumed to be a well-
defined function of coordinates. Using the conformal trans-
formations (II.8) in the ST action (II.1) we obtain [64]

R̃ = �−2R − 4�−3�� + 2�−4(∇�)2, (II.9)

with the Einstein frame’s scalar field φ, by assuming ψ =
ψ(φ), satisfying the following differential equation
(
d ln �(ψ)

dψ

)2

+ Y (ψ)

2X (ψ)
= 2

(
dφ

dψ

)2

, (II.10)

and letting

V (φ) = Z(ψ)X−3(ψ), and �(ψ)X (ψ) = 1, (II.11)

L(F , φ) = X−3(φ)L
(
X4(φ)F

)
, (II.12)

we obtain

I = − 1

16π

∫ √−gd3x
[R − 2gμν∂μφ∂νφ − V (φ) + L(F , φ)

]
. (II.13)

Note that, the Ricci scalarR is defined as gμνRμν . The scalar
potential V (φ) is an unknown function of the scalar field φ.
The electromagnetic Lagrangian L(F , φ) is considered as a
function of F = FμνFμν and φ. Also, Fμν = ∂μAν − ∂ν Aμ

and Aμ is the electromagnetic potential. The action (II.13) is
just the three-dimensional action of Einstein-dilaton theory
and the scalar-coupled EH electrodynamics L(F , φ) must be
chosen as [65–67]

L(F , φ) = −Fe−2αφ + aF2e−10αφ + O
(
a2

)
. (II.14)

Here, α is the coupling constant between scalar and electro-
magnetic fields. Therefore, we have [68,69]

�(φ) = e2αφ. (II.15)

Note that (II.14) reduces to the scalar-coupled Maxwell
Lagrangian if one take a = 0 [70].

The unknown functions X (φ), Y (φ) and Z(φ) will be
identified after calculating gμν , φ and V (φ). These will be
done in the next sections.

3 Exact solutions and thermodynamics in the Einstein
frame

Variation of Eq. (II.13) with respect to gravitational, electro-
magnetic and scalar fields, leads to the related field equations
as

Rμν = V (φ)gμν + 2∇μφ∇νφ

−Fe−2αφ
(

1 − 3aFe−8αφ
)
gμν

−2e−2αφ
(

2aFe−8αφ − 1
)
FμαF

α
ν , (III.1)

∇μ

[(
2aFe−8αφ − 1

)
e−2αφFμν

]
= 0, (III.2)

4�φ = dV (φ)

dφ
− 2αFe−2αφ

(
1 − 5aFe−8αφ

)
,

φ = φ(r). (III.3)

We consider the following (2 + 1)-dimensional circularly
symmetric geometry for solving the field equations of this
theory

ds2 = gμνdx
μdxν = − f (r)dt2

+ 1

f (r)
dr2 + r2R2(r)dθ2, (III.4)

where, f (r) and R(r) are two unknown functions to be deter-
mined. It leads to the following differential equations

ett ≡ f ′′(r) +
(

1

r
+ R′(r)

R(r)

)
f ′(r)

+2
[
V (φ) + aF2e−10αφ

]
= 0, (III.5)

err ≡ ett + 2 f (r)

(
R′′(r)
R(r)

+2R′(r)
r R(r)

+ 2φ′2(r)
)

= 0, (III.6)

eθθ ≡ f ′(r)
r

+ R′′(r)
R(r)

f (r) + R′(r)
R(r)

(
f ′(r) + 2

r
f (r)

)

+V (φ) − Fe−2αφ + 3aF2e−10αφ = 0. (III.7)

Here, prime means derivative with respect to the argument.
Noting Eqs. (III.5) and (III.6) we obtain

R′′(r)
R(r)

+ 2

r

R′(r)
R(r)

+ 2φ′2(r) = 0. (III.8)

Now, we consider a power-law solution as R(r) =
(

r
r0

)σ

.

Replacing into Eq.(III.8), we have

φ(r) = λ ln

(
b

r

)
, with λ =

√
−σ(σ + 1)

2
. (III.9)

Evidently, b must be positive and, σ must be restricted to the
interval −1 < σ ≤ 0. Similar ansatz function has been used
frequently for solving the problem of mathematical inde-
terminacy [71–73]. The only non-vanishing component of
electromagnetic tensor Fμν is Ftr = −A′

t (r) and, one can
easily show that F = −2F2

tr = −2(A′
t (r))

2.
We return to the electromagnetic field equation (III.2).

Noting Eq. (III.4), we have

4ae−8αφF3
tr + Ftr − q

r R
e2αφ = 0, (III.10)
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which, in terms of an integration constant q, can be solved
to obtain Ftr in the following form

Ftr = q

r R
e2αφ − 4a

q3

r3R3 e
−2αφ + O

(
a2

)
, (III.11)

which recovers the corresponding quantity in the Einstein-
EH theory, as the dilaton field is turned off [57]. The temporal
component of electromagnetic four-potential can be obtained
easily as

At = −
∫

Ftrdr = q

σ + 2αλ

(r0

r

)σ
(
b

r

)2αλ

+ 4aq3

b2 (2αλ − 3σ − 2)

(r0

r

)3σ
(
b

r

)2−2αλ

, (III.12)

An important point to be noted is that in order to At (r) be
physically reasonable (i.e. zero at infinity) the following con-
ditions are required to be satisfied

2αλ + σ > 0, (III.13)

3σ + 2 − 2αλ > 0. (III.14)

By using (III.3) and (III.7) it is shown that f (r) and V (φ)

are governed by the following differential equations

f ′(r) + σ

r
f (r)

+ r

σ + 1

[
V (φ) + 2q2

b2

(r0

b

)2σ
(
b

r

)2(αλ+σ+1)

−4aq2

b4

(r0

b

)4σ
(
b

r

)2(−αλ+2σ+2)
]

= 0, (III.15)

dV (φ)

dφ
− 4λ

σ + 1
V (φ)

+4q2

b2

(
α − 2λ

σ + 1

) (r0

b

)2σ

Exp

[(
2α + 2λ

σ + 1

)
φ

]

+8aq4

b4

(
2λ

σ + 1
+ α

) (r0

b

)4σ

×Exp

[(
4λ

σ + 1
− 2α

)
φ

]
= 0. (III.16)

Since, in the absence of the dilaton field (e.i. φ = 0 = σ ) the
action (II.13) reduces to that of Einstein-�-EH theory, we
can fix the integration constant by use of V (φ = 0) = 2�.
Therefore

V (φ) = 2�Exp

(
4λφ

σ + 1

)

+2�1Exp

[(
2α + 2(σ + 1)

λ

)
φ

]

+2�2Exp

[(
4(σ + 1)

λ
− 2α

)
φ

]
, (III.17)

where

�1 = − q2(αλ + σ)

b2(αλ + 2σ + 1)

(r0

b

)2σ

, and

�2 = 2aq4(αλ − σ)

b4(αλ − 3σ − 2)

(r0

b

)4σ

. (III.18)

By substituting Eq. (III.17) into Eq. (III.15), the metric func-
tion f (r) can be calculated as

f (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− m
rσ − 2�b2

�

( r
b

)2σ+2 + 2q2

�1

( r0
b

)2σ ( b
r

)2(αλ+σ)

− 8aq4

b2�2

( r0
b

)4σ ( b
r

)2(−αλ+2σ+1)
, σ �= − 2

3 ,

−mr
2
3 − 6�(rb2)

2
3 ln

( r
L

)
+ 9q2

(α−1)2

(
b
r0

) 4
3 ( r

b

) 2
3 (2−α)

− 36aq4

b2α2

(
b
r0

) 8
3 ( r

b

) 2
3 (1+α)

, σ = − 2
3 ,

(III.19)

where, L is a dimensional constant, m is the constant of
integration and,

� = (σ + 1)(3σ + 2), and

�1 = (2αλ + σ)(αλ + 2σ + 1), and

�2 = (αλ − 3σ − 2)(2αλ − 3σ − 2). (III.20)

Now, with the aim of checking validity of the TFL, we
must calculate the related quantities through appropriate
approaches.

Entropy of the BHs, as an important thermodynamic quan-
tity, can be calculated by use of the Hawking-Bekenstein
entropy-area law [74–76]. In our case, the entropy can be
written as

S = π

2rσ
0
rσ+1+ , (III.21)

where, r+ is the BH horizon radius which is the real root(s)
of the relation f (r+) = 0. Note that Eq. (III.21) recovers its
standard form (i.e. S = πr+

2 ) when the dilaton field is turned
off by letting σ = 0 [35,36].

Now, we calculate the BH total charge Q, regarding the
electric flux at infinite distance (i.e. r → ∞) from the BH
[77–81]. By using the Gauss’s law one can write

Q = 1

4π

∫ [
1 + 4aF2

tr

( r
b

)4αλ
]
r

2αλ+σ+1
Ftrd�. (III.22)

Then, making use of Eq. (III.11) after some simple calcula-
tions we arrived at

Q = q

2
, (III.23)

which is compatible with the charge of BTZ BHs obtained
in the previous works [82,83].
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The BH total mass M , which is related to the mass
parameter m, is an important quantity. In the case of three-
dimensional BHs one can write [84–86]

M = σ + 1

8rσ
0

m. (III.24)

The horizon electric potential �, measured with respect
to a reference point, is determined by using the following
relation [87–89]

� = Aμχμ|reference − Aμχμ|r=r+ . (III.25)

Note that At is the temporal part of electromagnetic potential
Aμ and, χμ = Cδ

μ
t is the null generator of the horizon andC

is a constant coefficient to be fixed later. Noting Eqs. (III.12)
and (III.25), we have

�(r+) = Cq

σ + 2αλ

(
r0

r+

)σ (
b

r+

)2αλ

+ 4Caq3

b2 (2αλ − 3σ − 2)

(
r0

r+

)3σ (
b

r+

)2−2αλ

.

(III.26)

The BH temperature on the horizon, r = r+, is given
noting the definition of surface gravity κ [90]. That is

T = κ

2π
= f ′(r+)

4π
= −1

2π

[
�r+
σ + 1

(r+
b

)2σ

+ q2r+
b2(αλ + 2σ + 1)

(r0

b

)2σ
(

b

r+

)2(αλ+σ+1)

+ 4aq4r+
b4(αλ − 3σ − 2)

(r0

b

)4σ
(

b

r+

)2(−αλ+2σ+2)
]

,

−1 < σ ≤ 0. (III.27)

For checking validity of the TFL, we need to calculate
Smarr mass relation. Thus, by using the requirement f (r+) =
0 and, replacing m into Eq. (III.24), one obtains

M(r+, q) =

⎧⎪⎪⎨
⎪⎪⎩

−σ+1
4

(
b
r0

)σ
[

�b2

�

( r+
b

)2σ+2 − q2

�1

( r0
b

)2σ
(

b
r+

)2(αλ+σ) + 4aq4

b2�2

( r0
b

)4σ
(

b
r+

)2(2σ+1−αλ)
]

, σ �= − 2
3 ,

−6�(b)
4
3 ln

( r
L

) + 9q2r
− 2

3+
(α−1)2

(
b
r0

) 4
3 ( r+

b

) 2
3 (2−α) − 36aq4r

− 2
3+

b2α2

(
b
r0

) 8
3 ( r+

b

) 2
3 (1+α)

, σ = − 2
3 ,

(III.28)

Now, we calculate the intensive parameters T and �, conju-
gate to the BH entropy and charge, respectively. It is a matter
of calculation to show that

(
∂M

∂S

)
Q

= T, for σ = −2

3
, and σ �= −2

3
, (III.29)

(
∂M

∂Q

)
S

= q(σ + 1)(αλ + 2σ + 1)−1

2αλ + σ

(
r0

r+

)σ (
b

r+

)2αλ

−8aq3(σ + 1) (αλ − 3σ − 2)−1

r2+ (2αλ − 3σ − 2)

(
r0

r+

)3σ (r+
b

)2αλ

,

for σ = −2

3
, and σ �= −2

3
. (III.30)

Therefore, noting (III.26)(
∂M

∂Q

)
S

= �(r+), (III.31)

provided that

C = σ + 1

αλ + 2σ + 1
= − 2(σ + 1)

αλ − 3σ − 2
, (III.32)

is chosen. It means that the TFL is valid in the form of

dM(S, Q) = TdS + �dQ, (III.33)

if C is fixed to C = 3(σ+1)
5σ+3 , and the following relation is

fulfilled

3αλ + σ = 0. (III.34)

Note that combination of Eqs. (III.13) and (III.34) gives
σ > 0 which noting the allowed range of σ (i.e. −1 < σ ≤ 0)
is not acceptable. Also, the inequality (III.14) can be rewritten
as 2αλ + σ < 2(2σ + 1), in which, noting (III.13), the left-
hand side is positive while the right-hand side can be negative.
Therefore the set of three requirements (III.13), (III.14) and
(III.34) are mathematically inconsistent. In the next section,
we solve this problem by use of a proposal.

4 The corrected exact solutions and thermodynamic
quantities

In order to avoid mathematical inconsistency mentioned in
the last section, we assume that under conformal transforma-
tions, the nonlinearity parameter a transforms as a → ae4αφ .

It leads to some corrections in the quantities have been cal-
culated in the previous sections. Hereafter, we label the cor-
rected quantities by adding the superscript (c) for identifying
them from uncorrected ones. The corrected scalar-coupled
Lagrangian of EH electrodynamics is

L(c)(F , φ) = −Fe−2αφ + aF2e−6αφ + O
(
a2

)
, (IV.1)
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and the solution of electromagnetic field equation becomes

F (c)
tr = q

r R
e2αφ − 4a

q3

r3R3 e
2αφ + O

(
a2

)
. (IV.2)

Then, the temporal part of electromagnetic four-potential
takes the form of

A(c)
t = −

∫
Ftrdr = q

σ + 2αλ

(r0

r

)σ
(
b

r

)2αλ

− 4aq3

b2 (3σ + 2αλ + 2)

(r0

r

)3σ
(
b

r

)2+2αλ

, (IV.3)

and, in order to the electric potential vanish at infinity, we
must have

2αλ + σ > 0, (IV.4)

2αλ + 3σ + 2 > 0, (IV.5)

which are clearly consistent for both α and λ positive.
Also, V (φ) and f (r) get some modifications and the cor-

rected forms are as follows

V (c)(φ) = 2�Exp

(
4λφ

σ + 1

)
+ 2�1Exp

[(
2α + 2(σ + 1)

λ

)
φ

]

+2�
(c)
2 Exp

[(
2α + 4(σ + 1)

λ

)
φ

]
, (IV.6)

f (c)(r) =

⎧⎪⎨
⎪⎩

− m
rσ − 2�b2

�

( r
b

)2σ+2 + 2q2

�1

( r0
b

)2σ ( b
r

)2(αλ+σ) − 8aq4

b2�
(c)
2

( r0
b

)4σ ( b
r

)2(αλ+2σ+1)
, σ �= − 2

3 ,

−mr
2
3 − 6�(rb2)

2
3 ln

( r
L

) + 9q2

(α−1)2

(
b
r0

) 4
3 ( r

b

) 2
3 (2−α) − 36aq4

b2α2

(
b
r0

) 8
3 ( r

b

) 2
3 (1−α)

, σ = − 2
3 ,

(IV.7)

where,

�
(c)
2 = 2aq4(αλ + σ)

b4(αλ + 3σ + 2)

(r0

b

)4σ

, and

�
(c)
2 = (αλ + 3σ + 2)(2αλ + 3σ + 2). (IV.8)

Note thatV (c)(φ) and f (c)(r) recover their corresponds in the
Einstein-Maxwell-dilaton theory if we set a = 0 [70]. Also,
when the scalar field is absent the metric function (VI.7)
reduces to that of ref. [57]. Then, the corrected values of
electric potential and Hawking temperature are written as

�(c)(r+) = Cq

σ + 2αλ

(
r0

r+

)σ (
b

r+

)2αλ

− 4Caq3

b2 (2αλ + 3σ + 2)

(
r0

r+

)3σ (
b

r+

)2αλ+2
, −1 < σ ≤ 0,

(IV.9)

T (c) = κ

2π
= f (c)′(r+)

4π
= −1

2π

[
�r+
σ + 1

(r+
b

)2σ

+ q2r+
b2(αλ + 2σ + 1)

(r0

b

)2σ
(
b

r

)2(αλ+σ+1)

− 4aq4r+
b4(αλ + 3σ + 2)

(r0

b

)4σ
(

b

r+

)2(αλ+2σ+2)
]

,

−1 < σ ≤ 0, (IV.10)

which recover the electric potential and horizon temperature
of dilatonic Maxwell-BTZ BHs for the case a = 0 [70]. In
addition, for the case σ = 0 the BH temperature reduces to
that of Einstein-EH theory presented in Ref. [57].

Noting the fact that f (c)(r+) = 0 and replacing m(r+)

into Eq. (III.24), we have

M (c)(r+, q)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− σ+1
4

(
r+
r0

)σ
[

�b2

�

( r+
b

)2σ+2 − q2

�1

( r0
b

)2σ
(

b
r+

)2(αλ+σ)

+ 4aq4

b2�
(c)
2

( r0
b

)4σ
(

b
r+

)2(αλ+2σ+1)
]

, σ �= − 2
3 ,

− 1
8

(
r0
r+

) 2
3

[
2�(r+b2)

2
3 ln

( r+
L

) − 3q2

(α−1)2

(
b
r0

) 4
3 ( r+

b

) 2
3 (2−α)

+ 12aq4

b2α2

(
b
r0

) 8
3 ( r+

b

) 2
3 (1−α)

]
, σ = − 2

3 ,

(IV.11)

It is nothing but the Smarr mass relation, which regarding
Eqs. (III.21) and (III.23), presents M (c) as a function of S
and Q. After some algebraic calculations, we showed that

(
∂M (c)

∂S

)

Q

= T (c), for σ = −2

3
, and σ �= −2

3
,

(IV.12)

(
∂M (c)

∂Q

)

S

= q(σ + 1)(αλ + 2σ + 1)−1

2αλ + σ

(
r0

r+

)σ (
b

r+

)2αλ

−8aq3(σ + 1) (αλ + 3σ + 2)−1

b2 (2αλ + 3σ + 2)

(
r0

r+

)3σ (
b

r+

)2αλ+2

,

for σ = −2

3
, and σ �= −2

3
. (IV.13)

Therefore, noting (IV.9)
(

∂M (c)

∂Q

)

S

= �(c)(r+), (IV.14)

provided that

C = σ + 1

αλ + 2σ + 1
= 2(σ + 1)

αλ + 3σ + 2
, (IV.15)
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Fig. 1 f (c)(r) versus r for�= − 1, q=1, r0=3, b=2.2: Left:
m=11.4, σ=−0.33, a=0.055(black), 0.073(blue), 0.093(red), 0.105
(blue-dashed), 0.12(brown). Middle: a=0.05, σ=−0.33,m=10.8

(black), 11.49(blue), 12.3(red), 13(blue-dashed),13.6(brown). Right:
m=13, a=0.05, σ=−0.195(black),−0.205(blue),−0.22(red),
−0.245(blue-dashed),−0.285(brown)

Fig. 2 f (c)(r) versus r for � = −1, q = 1, r0 = 2, L = 0.8, σ = − 2
3 : Left: b = 2.2, m =

4, a = 0.03 (black), 0.057 (blue), 0.085 (red), 0.108 (blue-dashed), 0.125 (brown). Right: b = 1.5, a = 0.1, m =
0.5 (black), 1.4 (blue), 2.8(red), 4 (blue-dashed), 4.8 (brown)

is chosen. It mens that the following relation must be fulfilled

αλ + σ = 0. (IV.16)

The coefficientC is fixed toC = 1 and, Eq. (VI.16) gives α =
2 for the case σ = − 2

3 . Finally the TFL remains valid as it has
been presented in Eq. (III.33). Now the required conditions
presented in Eqs. (VI.4), (VI.5) and (VI.16) are compatible
and the mentioned problem of mathematical inconsistency
has been resolved.

The plots of f (c)(r) have been depicted in Figs. 1 and 2.
They show that our dilatonic solutions exhibit BHs with one,
two and three horizons. Also, they show that extreme BHs
with zero temperature can exist.

5 Stability properties

Here, we analyze thermal stability of our novel BHs, by use
of the canonical ensemble method. Thus, we have to calculate
the heat capacity by treating the BH charge as a constant. The
heat capacity is defined as [91,92]

CQ = T (c)
(

∂S

∂T (c)

)
Q

= T (c)

(
∂2M (c)

∂S2

)−1

Q

. (V.1)

Note that, Eq. (IV.12) has been used in the last step of
Eq. (V.1). In this method, a physically reasonable BH (i.e.
T (c) > 0) with positive CQ is locally stable. In other words,
simultaneous positivity of T (c) and

(
∂2 M (c)/∂S2

)
Q means

thermal stability. The unstable BHs will be stable through
experiencing phase transition. Real root(s) of T (c) = 0 are
the first-order phase transition points. Also, the real root(s)
of M (c)

SS = (
∂2 M (c)/∂S2

)
Q = 0, where the heat capac-

ity diverges, are the second-order phase transition points
[77,87,93–95]. Now, with these issues in mind, we analyze
thermal stability or phase transition of both of the new BH
solutions we just obtained here. At first, we calculate the
denominator of the BH heat capacity. The result is in the
following form

M (c)
SS = −1

π2(σ + 1)

(
r0

r+

)σ [
�(2σ + 1)

σ + 1

(r+
b

)2σ

−q2(2αλ + 2σ + 1)

b2(αλ + 2σ + 1)

(r0

b

)2σ
(

b

r+

)2(αλ+σ+1)

+4aq4(−2αλ + 4σ + 3)

b4(αλ + 3σ + 2)

(r0

b

)4σ
(

b

r+

)2(αλ+2σ+2)
]

,

−1 < σ ≤ 0. (V.2)

By use of the relation (VI.16), it can be reduced to
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Fig. 3 T (c)(r+) (dashed) and M (c)
SS (r+) (continues) for a = 0.8, � = −1, q = 1, b = 2.2, r0 = 3.4: Left: σ = −0.16. Right: σ =

−0.36, 10 M (c)
SS

Fig. 4 T (c)(r+) (dashed) and M (c)
SS (r+) (continues) for a = 0.8, � = −1, q = 1: Left: b = 2.5, r0 = 3.4, σ = −0.25. Right: b = 1, r0 =

3, σ = − 2
3 , 4 M (c)

SS

M (c)
SS = −1

π2(σ + 1)2

(
r0

r+

)σ
[
�(2σ + 1)

(r+
b

)2σ − q2

r2+

(r0

b

)2σ

+6aq4(2σ + 1)

b4

(r0

b

)4σ
(

b

r+

)2(σ+2)
]

, −1<σ ≤ 0.

(V.3)

The plots of T (c)(r+) and M (c)
SS (r+) are shown in Figs. 3

and 4. Noting Fig. 3-left, it is understood that the BH tem-
perature does not vanish and rext does not exist. Thus there
is no first-order phase transition point. There is a real root
for M (c)

SS (r+) = 0 which we label by r1, where the second-
order phase transition occurs. The BHs with horizon radii
greater than r1 are locally stable. The plots show that it is
possible that rext exist but r1 does not. In that case, M (c)

SS (r+)

is positive and no second-order phase transition occurs (Fig.
3-Right). A first-order phase transition occurs at r+ = rext ,
where the BH temperature vanishes. Therefore, the BHs with
the horizon radius greater than rext are locally stable.

The plots of Fig. 4-left show that there are two points of
firs-order phase transition which we label by r1ext and r2ext

and, one point of second-order phase transition exist which
we label by r1. The BHs with horizon radius greater than
r2ext are locally stable. Also, noting Fig. 4-Right, there is
only one point of first-order phase transition (i.e. r+ = rext )
and, there are two points of second-order phase transition (r1

r2, r1 < r2). The physically reasonable BHs with horizon
radii in the intervals rext < r+ < r1 and r+ > r2 are locally
stable.

6 Properties of the scalar–tensor black holes

With the BH solutions obtained in the Einstein frame, we
tend to pursue exact ST solutions and, thermal properties in
the Jordan frame. We consider the line element of ST gravity
in the following form [96,97]

ds̃2 = g̃μνdx
μdxν = −A(r)dt2 + 1

B(r)
dr2 + r2H2(r)dθ2.

(VI.1)
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Here, the metric coefficients A(r), B(r), and H(r) will be
fixed as functions of r . That is possible by imposing the
inverse transformations on the Einstein frame solutions with
the metric function f (c)(r) given by Eq. (IV.7). Regard-
ing Eqs. (II.5), (II.15), (III.9) and (IV.16), we have g̃μν =
gμν

( r
b

)4σ , which results in

A(r) =

⎧⎪⎪⎨
⎪⎪⎩

( r
b

)4σ
F1(r), σ �= − 2

3 ,

( b
r

) 8
3 F2(r), σ = − 2

3 ,

(VI.2)

B(r) =

⎧⎪⎪⎨
⎪⎪⎩

( b
r

)4σ
F1(r), σ �= − 2

3 ,

( r
b

) 8
3 F2(r), σ = − 2

3 ,

(VI.3)

where,

F1(r) = − m

rσ
− 2�b2

γ

( r
b

)2σ+2 + 2q2

γ1

(r0

b

)2σ

−8aq4

b2γ2

(r0

r

)4σ
(
b

r

)2(σ+1)

, (VI.4)

F2(r) = −mr
2
3 − 6�(rb2)

2
3 ln

( r

L

)
+ 9q2

(
b

r0

) 4
3

−9aq4

b2

(
r

r0

) 8
3
(
b

r

) 2
3

, (VI.5)

and γ = (σ + 1)(3σ + 2), γ1 = −σ(σ + 1), γ2 = 2(σ +
1)(σ + 2). Also,

H(r) =
( r
b

)2σ
(
r

r0

)σ

, −1 < σ ≤ 0. (VI.6)

Note that in obtaining metric functions A(r), B(r) and H(r),
Eq. (IV.16) and the condition a → ae−4αφ have been used.

We have depicted B(r) in Figs. 4 and 5 by choosing dif-
ferent values for the parameters. It is understood that the
scalar tensor BHs can occur with two horizons, without hori-
zons and with one horizon having zero temperature named
as extreme BH.

Now, regarding Eqs. (II.10), (II.11) and (II.15), one can
show that

ψ(φ) = 2
√

2α2 − 1

α
eαφ, α >

1√
2
, (VI.7)

Y (φ) = −e−4αφ, (VI.8)

Z(φ) = V (c)(φ)e−6αφ, (VI.9)

where, V (c)(φ) is given by Eq. (VI.6) with �1 = 0 = �
(c)
2

by applying the condition (VI.16). Thus the physical scalar
potential Z(φ), can be written in the following explicit form

Z(φ) = 2�Exp

[(
4λ

σ + 1
− 6α

)
φ

]
. (VI.10)

Also, noting (III.9) and (VI.7), it is understood that the phys-
ical scalar field ψ vanishes when r is chosen very large.

The radius of event horizon(s) are obtained via B(r+) = 0
or equivalently Fi (r+) = 0 with i = 1, 2. It leads

m(r+) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2rσ+
[

�b2

γ

( r+
b

)2σ+2 − q2

γ1

( r0
b

)2σ + 4aq4

b2γ2

(
r0
r+

)4σ (
b
r+

)2(σ+1)
]

, σ �= − 2
3 ,

−3r
− 2

3+
[

2�(r+b2)
2
3 ln

( r+
L

) − 3q2
(

b
r0

) 4
3 + 3aq4

b2

(
r+
r0

) 8
3
(

b
r+

) 2
3
]

, σ = − 2
3 ,

(VI.11)

which can be substituted in Eq. (III.24) to give the Smarr
mass formula. That is

M̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−σ+1
4

(
r+
r0

)σ
[

�b2

γ

( r+
b

)2σ+2 − q2

γ1

( r0
b

)2σ + 4aq4

b2γ2

(
r0
r+

)4σ (
b
r+

)2(σ+1)
]

, σ �= − 2
3 ,

− 1
8

(
r+
r0

)− 2
3
[

2�(r+b2)
2
3 ln

( r
L

) − 3q2
(

b
r0

) 4
3 + 3aq4

b2

(
r+
r0

) 8
3
(

b
r+

) 2
3
]

, σ = − 2
3 .

(VI.12)

It is well-known that the BH entropy is a thermodynamic
quantity which remains invariant under conformal transfor-
mation. Therefor, it is the same as that presented in Eq.
(III.21). That is

S̃ = πr+
2

(
r+
r0

)σ

, (VI.13)

with the r+ as the outer horizon radius of ST BHs. Also, the
electric charge as the other conformal-invariant quantity is
just the same as given in Eq. (III.23). That is Q̃ = q/2.
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Fig. 5 B(r) versus r for� = −1, q = 1, r0 = 3.4, b = 2.2: Left: m = 11.1, σ = −0.36, a = 0.1 (black), 0.48 (blue), 0.85 (red).
Middle: a = 0.5, σ = −0.36, m = 10.9 (black), 11.092 (blue), 11.25 (red). Right: a = 0.5, m = 11.2, σ =
−0.358 (black), −0.366 (blue), −0.375 (red)

Fig. 6 50B(r) versus r for σ = − 2
3 , � = −1, q = 1, r0 = 2, L = 0.8, a = 0.5: Left: m = 6.5, b = 2.35 (black), 2.412 (blue), 2.5 (red).

Right: b = 2.5, m = 6.4 (black), 6.82 (blue), 7.15 (red)

Now, the horizon temperature for the ST BHs can be cal-
culated by use of the surface gravity’s definition. That gives

T̃ = 1

4π

(√
B(r)

A(r)

d A(r)

dr

)

r=r+

= 1

4π

(
b

r+

)4σ d

dr

[(
b

r

)−4σ

Fi (r)

]

r=r+

= F ′
i (r+)

4π
, i = 1, 2.

(VI.14)

Note that r+ is the radius of outer event horizon and, in obtain-
ing (VI.14) we have used the condition Fi (r+) = 0. Thus,
the BH horizon temperature can be written explicitly as

T̃ = −1

2π(σ + 1)r+

[
�b2

(r+
b

)2σ+2 + q2
(r0

b

)2σ

−2aq4(5σ + 2)

b2(σ + 2)

(
r0

r+

)4σ (
b

r+

)2(σ+1)
]

, −1 < σ ≤ 0.

(VI.15)

At this stage by applying the transformation a → ae−4αφ on
the electric potential (IV.9), we have

�̃(r+) = − q

σ

(
r0

r+

)σ (r+
b

)2σ

− 4aq3

b2 (σ + 2)

(
r0

r+

)3σ (
b

r+

)2+2σ

, −1 < σ ≤ 0

(VI.16)

where, the condition (IV.16) and C = 1 have been used.
Therefore, one can show that

�̃ = ∂ M̃

∂ Q̃
, and T̃ = ∂ M̃

∂ S̃
. (VI.17)

It is understood from (VI.17) that the TFL is valid for our
novel ST BHs, which can be written as

d M̃ = T̃ d S̃ + �̃d Q̃. (VI.18)

Here, we calculate the heat capacity of the ST BHs by use
of the relation

C̃Q = T̃

(
∂ S̃

∂ T̃

)

Q̃

= T̃
(
M̃S̃S̃

)−1
. (VI.19)

Note that in the last step Eq. (VI.17) has been used. Now, by
doing some algebraic calculations, we have
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Fig. 7 T̃ (r+) (dashed) and M̃S̃S̃(r+) (continues) for a = 0.8, � = −1, q = 1, b = 2.2, r0 = 3.4: Left: σ = −0.16. Right: σ =
−0.36, 10M̃S̃S̃

Fig. 8 T̃ (r+) (dashed) and M̃S̃S̃(r+) (continues) for a = 0.8, � = −1, q = 1: Left: b = 1.2, r0 = 3.4, σ = −0.25, 2M̃S̃S̃ . Right:

b = 1, r0 = 2.8, σ = − 2
3 , 10M̃S̃S̃

M̃S̃ S̃ = −1

π2(σ + 1)2

(
r0

r+

)σ
[
�(2σ + 1)

( r+
b

)2σ − q2

r2+

(r0

b

)2σ

+6aq4(2σ + 1)

b4(σ + 2)

(
r0

r+

)4σ (
b

r+

)2(σ+2)
]

, (VI.20)

which is valid for −1 < σ ≤ 0. The plots of T̃ (r+) and
M̃S̃S̃(r+) are shown simultaneously in Figs. 7 and 8, for ana-
lyzing the BH temperature and characterizing the points of
first and second order phase transitions. The left panel of Fig.
7 shows that the BH temperature can be positive for all BH
radii and, no first-order phase transition can occur. The equa-
tion M̃S̃S̃(r+) = 0 has only one real root which is the position
of second-order phase transition. The BHs with horizon radii
greater than r1 are locally stable. As it can be seen in right
panel of Fig. 7, M̃S̃ S̃(r+) can be positive and, no second-order
phase transition takes place. The BH temperature vanishes
at r+ = rext and it is a first-order phase transition point.
The BHs with horizon radii greater than rext which have
positive temperature are physically reasonable. They have
also positive heat capacity and are locally stable. The left
panel of Fig. 8 shows that it is possible for the BH temper-

ature to have two real roots which we have labeled by r1ext

and r2ext . They are known as the points of first-order phase
transition. Also, M̃S̃S̃(r+) has only one vanishing point (i.e.
r+ = r1) at which the BH heat capacity diverges. Therefore,
the BH with horizon radius equal to r1 experiences second-
order phase transition and, the BHs with horizon radii greater
than r2ext are locally stable. The right panel of Fig. 8 shows
that there are two points of first-order phase transition which
have been shown by r1ext and r2ext . Also, there are two points
of second-order phase transition labeled by r1 and r2. The
BHs with horizon radii in the intervals r1ext < r+ < r1 and
r2 < r+ < r2ext are locally stable. It must be noted that sta-
bility properties of ST BHs are slightly different from those
of Einstein-dilaton ones. This is obvious through comparison
of right panels of Figs. 4 and 8. It is due to transformation
relation of the nonlinearity parameter a from one frame to
the other one.
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7 Conclusion

We explored charged ST BHs in the presence of EH non-
linear electrodynamics. The starting point was obtaining the
ST field equations by varying the related three-dimensional
action. They are strongly coupled such that one cannot solve
them directly. We showed that this problem can be resolved
by using a mathematical tool named as the conformal trans-
formation, which transforms the ST action to that of Einstein-
dilaton gravity theory which is written in the Einstein frame.
In this frame the field equations are decoupled and, the solu-
tions can be obtained easily. The thermodynamics and ther-
mal stability of the solutions have been studied in the Einstein
frame. We noticed that in order to (a) the electric potential
vanish at infinity and (b) the TFL remain valid, three require-
ments must be fulfilled which are not consistent, mathemati-
cally (see Eqs. (III.13), (III.14) and (III.34)). With the aim of
resolving the confronted problem, we assumed through con-
formal transformations the nonlinearity parameter of the EH
theory must obey the transformation relation a → ae4αφ .
Then we obtained the corrected exact solutions and stud-
ied thermodynamics and thermal stability properties which
are free of any theoretical and mathematical problems. In
addition they fulfill TFL in its standard form. As shown in
Figs. 1 and 2, the corrected Einstein-dilaton solutions can
produce multi-horizon BHs which is related to the quantum
anti-evaporation phenomena. In addition they show BHs with
one-horizon and extreme BHs too. The extreme BHs with two
horizon radii exist which is due to consideration of EH elec-
trodynamics. Thermal stability of the BHs have been stud-
ied by use of the canonical ensemble method. The results
show that these BHs can appear with positive temperature,
extreme BHs with one or two horizon radii. Also, the BHs
with negative temperature can occur which are not physically
reasonable. These BHs are stable in a wide range of horizon
radii (see Figs. 3 and 4).

We obtained three-dimensional ST-EH BHs by use of
inverse conformal transformation together witha → ae−4αφ .
Through drawing the plots, as shown in Figs. 5 and 6, we
found that in addition to the one-horizon and extreme BHs,
the two-horizon ST BHs can exist too. We calculated charge,
temperature, entropy, electric potential and mass of the ST
BHs by using the appropriate approaches. Existence of the
extreme BHs with two horizon radii is due to consideration
of EH electrodynamics. Then through a Smarr mass rela-
tion, which gives the BH mass as a function of charge and
entropy, we found that the standard form of the TFL is valid
for the ST BHs too. Thermal stability of the ST BHs has been
investigated by use of the canonical ensemble method. The
horizon radius of those BHs which experience first-order or
second-order phase transitions have been explored noting the
signature of the heat capacities. For a better interpretation,
we have depicted the plots of heat capacities versus r+ in

Figs. 7 and 8. Comparison of them with those of Figs. 3 and
4 show that stability properties of ST BHs is slightly differ-
ent from those of Einstein-dilaton ones. This is due to the
transformation property of the nonlinearity parameter a.
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