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sidering the virtual gluon massive. Carrying out a dispersive integral with a suitable kernel
over the gluon mass yields the desired two-loop result. On the other hand, the Mellin-Barnes
representation can be used to compute the expansion of Feynman integrals in powers of
a small parameter. In this article we show how to combine these two ideas to obtain the
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orders in a straightforward manner. Furthermore, the convergence radius of both expansions
can be shown to overlap, being each series rapidly convergent. The advantage of our method
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sections involving massless and massive jets, recovering known results and obtaining new
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the small- and large-mas expansions for the RG-evolved jet functions. In many cases, the
series can be summed up yielding closed expressions.
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1 Introduction

The precision of experimental measurements achieved by current particle-physics colliders,
together with the expected updated accuracy of upcoming facilities, makes equally precise
theoretical predictions mandatory. Lattice QCD simulations uncertainties are becoming
increasingly small [1] and one expects this tendency will continue in the near future. Therefore,
perturbative computations must keep up with the pace set by both experimental and lattice
results. In practice, since the strong coupling is larger than the electroweak one, and given that
the gluon is massless, better precision translates in computing higher-order QCD corrections.
While multi-loop computations for processes involving a single scale are showing tremendous
progress , most physical situations naturally involve several scales, making computations
beyond one-loop very involved, in particular when it comes to find analytic results. In the
situation of having only two scales, the result (up to overall factors) can only depend on their
(dimensionless) ratio, and one can rely on expansions if there is a clear hierarchy between
the scales. The Mellin-Barnes (MB for short) representation (see ref. [2] for a complete
review of the subject) can be used to obtain such expansion for an arbitrarily high order,
as was first noticed in ref. [3]. The idea is, for a given master integral, integrate all loop
momenta using Feynman parameters {xi}, apply the MB representation as many times as
necessary, and after carrying out the remaining integrals over {xi}, apply the inverse mapping
theorem to obtain the desired expansion.
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Quark masses are important parameters of the strong sector of the Standard Model and
play a key role in flavor physics and even in searches beyond the Standard Model. Knowing
them with high precision is then of utmost importance, and for such endeavor it is practical
having ready-to-use theoretical expressions that depend on them. Even if the process of
interest depends on a single scale at lowest order (e.g. because it only involves massless quarks
and gluons), at O(α2

s) one can produce massive quarks through the splitting of a virtual gluon
into a quark-antiquark virtual or real massive pair. Even though at very high energies quarks
can be considered approximately massless, at lower energies (or if aiming at high precision)
the effects of their mass cannot be ignored. Furthermore, such secondary contributions
may contribute in different ways for a given process depending on how the size of the mass
compares to the various energy scales involved, giving rise to a sequence of effective field
theories (EFTs for short) in which the massive quark may or may not be dynamic. This
is the core of the so-called ACOT scheme [4, 5], also known as the variable-flavor number
scheme [6, 7] when final-state jets are produced.

For virtual massive bubbles, or for the real radiation of secondary quarks in quantities
that only depend on the total momentum of the quark pair, the bulk of these corrections
can be computed with a dispersive integral over the “fake” mass of a (virtual or real) gluon,
see refs. [8–10]. The secondary virtual bubble contribution is simply an insertion of the
lowest-order massive vacuum polarization function Π(ℓ2) in the gluon propagator carrying
loop momentum ℓ, and the dispersive integral accounts for the contribution of this function in
the on-shell (OS for short) scheme, ΠOS(ℓ2) = Π(ℓ2)−Π(0), which is ultraviolet (UV) finite.
On top of the dispersive contribution, one needs to add a term proportional to the one-loop
result that accounts for the Π(0) contribution and strong coupling renormalization, which can
be combined in an MS renormalized Π(0), dubbed ΠMS

0 , free from UV divergences. While
this procedure is straightforward for quantities which do not carry anomalous dimensions,
and a clear separation of ultraviolet (UV for short) convergent (dispersive integral) and
divergent (proportional to ΠMS

0 ) pieces is achieved, obtaining analytic expressions in terms
of the secondary mass is in general complicated if at all possible. Closed expressions often
depend on polylogarithms, hypergeometric, or even less familiar functions which are not
friendly to code in high-level computer programs such as C++ or Fortran. In the worse case,
the integral can always be carried out numerically, although in limiting cases it might get
unstable. When the method is applied to EFTs one encounters that the term involving
ΠOS(ℓ2) contains UV divergences, and hence the dispersive integral cannot be computed
numerically “out of the box”: some strategy to subtract the divergent UV behavior must
be used. No matter if UV divergences pollute or not the dispersive integral, there is no
clear way of obtaining an expansion around large or small values of the secondary mass.
In this article we aim at filling this gap.

In the case of EFTs for jets, namely Soft-Collinear Effective Theory (SCET for short) [11–
13] or boosted heavy-quark effective theory (bHQET for short) [14, 15], some of the matrix
elements as the jet or soft functions, must be convolved with an evolution kernel to sum
up large logarithms. In the case of bHQET, if dealing with the unstable top quark, an
additional convolution with a Breit-Wigner becomes necessary. While these two convolutions
can be carried out analytically when all particles are massless, see e.g. refs. [16–19], even if
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the jet function with mass effects is known in a closed form, it is in general not possible to
obtain analytical expressions for the RG-evolved function. Numerical implementations of the
convolution are unpractical since, depending on the hierarchy among the scales involved in
the factorization theorem, analytical continuation though subtractions may be necessary. In
refs. [15, 20] the one loop jet function for a massive primary quark was computed in various
event-shape schemes, and its RG-evolved counterparts could be expressed in terms of 3F2
and 4F3 hypergeometric functions, which are difficult to code in high-level programming
languages. Likewise, it seems impossible to find the analytic Fourier or Laplace transform of
these primary or secondary massive jet functions, expressions that become useful in some
circumstances. In ref. [20], expansions for small and large masses to arbitrary order were
found for the RG-evolved SCET jet functions, and the MB representation played an important
role in deriving those for the small mass limit. On the other hand, even though secondary
mass corrections to the jet function for a massless primary quark were computed analytically
in ref. [7], it was not possible to obtain a closed form for its RG-evolved version. Likewise,
the correction to the massless jet function due to a massive vector boson1 was computed
analytically in ref. [6], but once again no closed form could be found for its RG-evolved
counterpart. Therefore, another purpose of this article is devising a general method to
obtain expansions for the corrections to the Fourier-space or RG-evolved jet functions due
to secondary massive quarks or massive vector bosons.

For processes with infrared (IR) or collinear singularities,2 which usually show up for the
first time at one loop, the result will depend on the regulator used to tame such divergences
(usual choices are dimensional regularization or off-shellness). Since a gluon mass can also
be used as a regulator, these singularities are obviously absent when considering a massive
vector boson. Likewise, the OS vacuum polarization function insertion also regulates IR
divergences, but one still has to choose a regulator for the term proportional to the one-loop
amplitude. On the other hand, when including massive vector bosons or secondary quarks in
SCET (and, as will be shown in a forthcoming publication, also bHQET), soft mass-mode bin
subtractions [21] need to be accounted for in order to cancel rapidity divergences appearing
in individual diagrams. This requires regulating intermediate steps using e.g. the ∆-regulator,
which involves additional energy scales complicating the computations.

As we shall show, the MB representation can be readily applied to the case of virtual
massive secondary bubbles or vector bosons. Our method will not follow the usual sequence of
steps, that is: a) expressing the result in terms of master integrals (MI for short), b) writing
down each MI in terms of Feynman-parameters, c) applying the MB transform at every MI
to pull the mass out of the integrations, d) using the converse mapping theorem. On the
contrary, our strategy uses the MB identity at a very early stage of the computation: after
expressing the massive vacuum polarization function in terms of an integral over a Feynman
parameter x — keeping the exact dependence on d = 4− 2ε— but before any other loop or
Feynman integration is carried out. After applying the MB representation, the integration

1Even though most of the time “massive vector boson” will actually refer to a “massive gluon”, for clarity
we use the latter expression to denote an infinitesimal gluon mass used as a regulator, whereas the former will
account for a finite (not necessarily small) gluon mass.

2For brevity, we often use IR to refer to both infrared and collinear singularities.
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over x can be performed trivially giving rise to gamma functions, and only a single loop
integral remains. Such loop computation involves a modified (massless) gluon propagator
which is exactly the same one employed in large-β0 computations (that is, the denominator
of the gluon propagator is raised to a non-integer power 1 − h), such that many existing
results can be recycled, see e.g. ref. [22] where renormalon calculus has been adapted to
SCET and bHQET. If need be, the exact dependence on ε can be retained at each order
of the large or small mass expansions. Furthermore, one can apply the converse mapping
theory after Fourier transforming or RG evolving the jet functions, such that easy-to-use
expansions are obtained. An additional nice feature of this methodology is the fact that one
does not really need to use any regulator since no rapidity divergence appears in any loop
integral. Indeed, the Mellin variable h in the modified gluon propagator effectively acts as an
analytic regulator [23] which does not involve any additional energy scale. Moreover, soft
mass-mode bin subtractions identically vanish. The downside of our method is that it cannot
be applied to quantities which need explicit regularization of IR singularities at one-loop,
such as e.g. the quark form factor, but it will turn out particularly good at computing
matching coefficients between dijet current operators in two EFTs, since those are IR-safe.3

Nevertheless, using consistency conditions we will be able to distinguish the QCD and EFT
pieces of the matching computations in all cases under study. Finally, extracting the UV
poles, taking m→ 0 or m→ ∞ limits, or figuring out the matching condition between two
consecutive EFTs is completely trivial in our method: these simply correspond to the residues
of some poles close to the origin in the complex h plane. There is also a nice connection to
the large-order behavior or, conversely, with non-perturbative physics. Since a pole located
at h = −1/2 implies a term proportional to the gluon mass, it signals linear sensitivity to
soft momenta: an O(ΛQCD) renormalon.

This article is organized as follows: in section 2 we review the computation of the one-loop
massive quark vacuum polarization function and write it in a form amenable to compute the
Mellin-Barnes transform. We present the small- and large-mass expansion for this quantity
using the inverse mapping theorem, along with the exact result in d = 4 dimensions. In
section 3 we apply the MB transform to one-loop computations with massive vector bosons
and set the stage for those computations that shall be carried out in the rest of this article. In
section 4 we exploit our d-dimensional expression for the massive vacuum polarization function
to write down the MB transform for the two-loop contribution coming from secondary massive
quarks. We discuss renormalization and explain how to match to a quantum field theory in
which the secondary quark has been integrated out. In section 5 we apply our formalism to
the relation between the pole and MS masses, a quantity without cusp anomalous dimension,
and recover known results. In section 6 the formalism is applied to computations in SCET:
the hard matching coefficient in section 6.1, and the jet function in section 6.2. From the
former computation, taking suitable limits we isolate the QCD and SCET form factors. In
this section we derive a series of constraints that renormalization factors must satisfy in order

3The method can be adapted to compute such IR-divergent quantities in a straightforward manner: one
simply needs to add an IR regulator, for instance, an off-shellness. After the computation, the regulator
can be set to zero to recover the IR-finite result. In some cases, this limit can be accomplished within the
Mellin-Barnes paradigm itself.
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p p
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p + ℓ

a, µ b, ν

Figure 1. Self-energy of an off-shell gluon due to a massive quark bubble. Here a and b denote the
color indices on both sides of the gluon propagator, µ and ν are Lorentz indices, and p and ℓ are the
gluon and loop momenta, respectively.

to render UV-finite anomalous dimensions, and make a thorough review of SCET factorization
and evolution, along with the scenarios introduced in ref. [7]. Computations in bHQET
are presented in section 7: the matching between SCET and bHQET (section 7.1) and the
bHQET jet function (section 7.2). From the former computation we obtain separately the
SCET and bHQET form factors, which serves to compute the contribution of a primary quark
massive bubble to the matching coefficient. In this section we also review the factorization of
the cross section in bHQET and streamline the scenarios that appear when secondary masses
are present. In sections 5 through 7 the method is applied to the case of a massive vector
boson and a secondary massive quark, including the computation of Z factors, anomalous
dimensions, and matching conditions for all matrix elements showing up when the secondary
quark is integrated out. Our conclusions are summarized in section 8.

2 Massive quark vacuum polarization function

In this section we compute the contribution of a massive quark bubble to an off-shell gluon’s
self-energy. Of course, this result is textbook material and known since long time ago, but
it is nevertheless instructive to review the computation as it will be necessary to keep the
full dependence on d = 4 − 2ε and p2. Our aim is to bring it to a form amenable to MB
transform. Along the way, we provide a derivation of the dispersive integral over a fake gluon
mass which does not rely on analytic properties of the vacuum polarization function. In
what follows, the secondary heavy quark mass is denoted by m.

The diagram we need to compute is shown in figure 1. Denoting the initial/final color
indices with the Roman characters a and b, the initial/final Lorentz indices with the Greek
letters µ, ν, and the off-shell gluon’s momenta with p, and considering nf = 1 heavy flavors,
one can show that the vacuum polarization function is diagonal in color space and, due to
gauge invariance, transverse in Lorentz space:

Πµν
ab (p,m, µ, ε) = δabΠµν(p,m, µ, ε) , (2.1)

Πµν(p,m, µ, ε) =Π(p2,m, µ, ε)(p2gµν − pµpν) .

The vacuum polarization function is analytic everywhere in the complex p2 plane except
for a cut running along the positive real axis, starting at p2 = 4m2. In particular, this
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implies that Π0(m,µ, ε) ≡ Π(0,m, µ, ε) is a finite distance away from the branch cut, hence
IR finite. Furthermore, Π0(m,µ, ε) contains all UV divergences of Π(p2,m, µ) if dimensional
regularization is used. After inserting the vacuum polarization function, assuming ℓ is the
loop momentum of the gluon internal line, the usual gluon propagator in the Feynman
gauge will be replaced by

−igµν

ℓ2
→ −igµα

ℓ2
Παβ(ℓ,m, µ, ε)gβν

ℓ2
= −iΠ(ℓ2,m, µ, ε)

ℓ2

(
gµν − ℓµℓν

ℓ2

)
. (2.2)

The term proportional to ℓµℓν will vanish after adding all Feynman diagrams due to gauge
invariance, hence it will be ignored in the following.

After a straightforward tensor decomposition of loop integrals, the transverse (or J = 1)
polarization function Π(p2,m, µ, ε) can be brought to the following form:

Π(p2,m, µ, ε) = −4TF g
2
s

3− 2ε

[(
1− ε+ 2m2

p2

)
B(p2,m, µ, ε)− 2(1− ε)

p2 A(m,µ, ε)
]
, (2.3)

B(p2,m, µ, ε) = −iµ̃2ε
∫ dℓ

(2π)d

1
(ℓ2 −m2)[(ℓ+ p)2 −m2] ,

A(m,µ, ε) = −iµ̃2ε
∫ dℓ

(2π)d

1
(ℓ2 −m2) = m2

(4π)2

(4πµ̃2

m2

)ε Γ(ε)
1− ε

,

where µ̃2 = µ2eγE/(4π) and A(m,µ, ε) and B(p2,m, µ, ε) are usually referred to as the tadpole
and bubble scalar loop integrals. The QCD color factors for Nc = 3 take the values TF = 1/2
and CF = 4/3. For our purposes, gs can be regarded as the renormalized quark-gluon
coupling. Even though individual coefficients diverge for p2 = 0, we shall see that Π(0,m2, ε)
is actually IR finite. For our purposes, it is convenient to write B(p2,m, µ, ε) as follows:

B(p2,m, µ, ε) = − 4m2

(4π)2

(
πµ̃2

m2

)ε Γ(1− ε)
Γ(2− 2ε)

∫ 1

0
dxx

−2+ε(1− x)
1
2−ε

p2 − 4m2

x

. (2.4)

To arrive at such expression one uses a Feynman parameter x and integrates over loop
momentum. After changing integration variables to x = (1− y)/2, the integral’s symmetry
under y → −y is used to map back to the unit segment. An additional change of variables
y2 = 1− z brings the integral into the canonical form of a hypergeometric function. Using the
symmetry of 2F1 under the exchange of its two first arguments and using again the integral
representation of the hypergeometric function yields the displayed result. Using partial fraction

2m2

p2
1

p2 − 4m2

x

= x

2

(
1

p2 − 4m2

x

− 1
p2

)
, (2.5)

one can write down

B(p2,m, µ, ε) = (1− ε)A(m,µ, ε)
m2 − 1

(4π)2

(
πµ̃2

m2

)ε Γ(1− ε)
Γ(2− 2ε)

∫ 1

0
dxx

−1+ε(1− x)
1
2−ε

1− 4m2

xp2

. (2.6)

The last relation can be used to write the vacuum polarization as a single integral which
is manifestly convergent for p2 = 0, and to check that the 1/ε divergence arising as ε → 0
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does not depend on m. In order to ease the upcoming discussion, we present results for
ΠOS(p2,m, µ, ε) = Π(p2,m, µ, ε) − Π0(m,µ, ε) and Π0(m,µ, ε):4

ΠOS(p2,m, µ, ε) = 2TFαs(µ)
π

(
πµ̃2

m2

)ε Γ(2− ε)
Γ(4− 2ε)

∫ 1

0
dx
(
1− ε+ x

2

)
x−1+ε(1− x)

1
2−ε

1− 4m2

xp2

,

Π0(m,µ, ε) = −TFαs(µ)Γ(ε)
3π

(
µ2eγE

m2

)ε
,

ΠMS
0 (m,µ, ε) = −TF

3
αs(µ)
π

[(
µ2eγE

m2

)ε
Γ(ε)− 1

ε

]
, (2.7)

where ΠMS
0 is the MS-renormalized version of Π0, finite as ε → 0. Changing variables to

x = 4m2/λ on the first line, being λ the squared of a fake gluon mass, reproduces the
“classical” dispersive integral. Using the MB identity

1
(1 +X)ν

=
∫ c+i∞

c−i∞

dh
2πi(X)−hΓ(h)Γ(ν − h)

Γ(ν) , (2.8)

where 0 ≤ c ≤ ν is the fundamental strip, on the first line of eq. (2.7) with ν = 1 and
X = −4m2/(xp2), after integration over x one arrives at the following representation for
the subtracted vacuum polarization function:

ΠOS(p2,m, µ, ε) = αs(µ)
π

TF

(
µ2eγE

m2

)ε ∫ c+i∞

c−i∞

dh
2πi

(
−m

2

p2

)−h

G(h, ε) , (2.9)

G(h, ε) = Γ(h)Γ(1− h)Γ(2 + h)Γ(h+ ε)
(3 + 2h)Γ(2h+ 2) .

Since, as already discussed in section 1, the method can only be applied to IR-finite quantities,
ε > 0 in order to regulate UV divergences, hence the fundamental strip is 0 < c < 1. From
eq. (2.9) one can read the form of the “effective” gluon propagator which will yield the
MB representation from a one-loop computation: the insertion of ΠOS(p2,m, µ)/(−p2) in
the MB representation modifies the denominator of the gluon propagator from (−p2) to
(−p2)1−h and adds an overall factor.

Our expansions will become useful to compute the matching between two consecutive
EFTs, one in which the secondary massive quarks are dynamic, another one in which they
are not. In order to compute the matching condition we need to relate the strong coupling in
the two EFTs. Such matching condition for αs(µ) is obtained from ΠMS

0 (m,µ, ε) and reads

α
(nf +1)
s (µ) = α

(nf )
s (µ)

[
1 + α

(nf )
s (µ)TF

3π log
(
µ2

m2

)]
+O(α3

s) ≡ α
(nf )
s (µ)

(
1 + δ

(nf )
α

)
. (2.10)

Indeed one has that

ΠMS
0 (m,µ, ε) + δα = −TF ε

6
αs(µ)
π

[
log2

(
µ2

m2

)
+ π2

6

]
+O(ε2) . (2.11)

4For p2 > 4m2 one needs to add a small imaginary part p2 → p2 + i0+ to pick the upper side of the branch
cut, as dictated by the iϵ prescription of Feynman propagators.
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Before discussing any further the computation of the two-loop massive bubble diagrams,
we apply the converse mapping theorem to ΠOS(p2,m, µ, 0), as it will serve as an illustration.
Since the on-shell vacuum polarization function is UV finite, we can set ε→ 0 in eq. (2.9).5

The inverse mapping theorem is nothing less than closing the contour towards the positive or
negative real axes and using the residue theorem. To see which side one must pick, Jordan’s
lemma must be applied, what implies expanding G(h, 0) for large h:

lim
h→∞

∣∣∣∣∣G(h, 0)
(
−m

2

p2

)−h
∣∣∣∣∣ = π3/2 csc(πh)

4h3/2

(4m2

|p2|

)−h

. (2.12)

It is clear that for |p2| < 4m2 (|p2| > 4m2) the contour must be closed towards the positive
(negative) real axis, resulting in an expansion for big (small) masses. This is exactly what
one could have guessed from the analytic behavior of Π(p2,m, µ, 0): the distance from the
origin of the p2 complex plane to the branch point, which sets the convergence radius, is
exactly |p2| = 4m2. For |p2| = 4m2 the contour can be closed on either side since the damping
factor h3/2 ensures Jordan’s lemma will be satisfied. When closing towards Re(h) > 0, simple
poles will be found at positive integer values of h = n, hence no non-analytic terms will
be present. This is expected, since for large m one is always below the branch cut of the
vacuum polarization function. Each pole generates a term in the power expansion for large
m, namely (−p2/m2)n with n ≥ 1 such that ΠOS(0,m, µ, ε) = 0. On the other hand, when
closing towards Re(h) < 0 one finds double poles at all negative integer values of h = −n,
except for h = −1 where the pole is simple. Logarithms are expected since, for small m
and positive p2, an imaginary part should appear. Each pole generates a term in the power
expansion for small m, namely (−m2/p2)n. Double poles generate a power of log(−p2/m2),
whereas simple poles do not. The expansions read

ΠOS
(
p2

m2 , µ, 0
)
= − αs(µ)

π
TF

∞∑
n=1

(n− 1)!(n+ 1)!
(2n+ 3)(2n+ 1)!

(
p2

m2

)n
(2.13)

=TFαs

π

∑
n=0

(
m2

p2

)n (2n)!
(2n− 3)(2n− 1)(n!)2

[
2(n− 1)(H2n −Hn)

− (n− 1) log
(
− p2

m2

)
− 4n2 − 8n+ 5

(2n− 3)(2n− 1)

]
,

where Hi =
∑i

n=1 n
−1 is the harmonic number. The first series can be summed up analytically

and we obtain the well-known result

ΠOS
(
p2

m2 , µ, 0
)
= αs(µ)

π

TFm
2

9p2

[
6
√
1− 4m2

p2

(
2 + p2

m2

)
log
(√

1− p2

4m2 +

√
− p2

4m2

)

− 12− 5p2

m2

]
. (2.14)

5If keeping a non-zero ε, the UV-finiteness is transparent when closing towards Re(h) → +∞. When
closing towards Re(h) → −∞ the poles at h = 0 and h = −ε generate 1/ε singularities which however cancel
when both terms are added up.
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Figure 2. On-shell subtracted vacuum polarization function for a massive quark measured in units
of αs(µ)TF /π in its exact form (dashed green), small- (blue) and large-mass (red) expansions for
ε = 0. Left panel: ΠOS at the boundary between the mass expansions p2 = −4m2, as a function of the
expansion order n of each series. Right panel: dependence of ΠOS(p2,m, µ, 0) with the ratio p2/m2

including 4 and 8 non-zero terms in the small- and large-mass expansions, respectively.

The vacuum polarization function diverges at p2 → +∞, which is nothing less than the
massless limit, not well defined due to the OS subtraction. We compare the exact form to
the two series expansions in figure 2 where it can be seen that both series can be used at
p2 = −4m2. We observe an oscillatory behavior of the large-mass expansion.

3 One-loop computations with a massive vector boson

Before we discuss in detail the two-loop contribution from a secondary massive quark bubble,
we pause to describe how the MB representation can be applied to generate large and small
mass expansions to one-loop computations involving a massive vector boson. For simplicity,
we consider a gluon with a non-zero mass mg, but the method can be generalized to other
massive mediators. In this case, one simply uses the MB identity eq. (2.8) directly to the
massive gluon propagator

1
−p2 +m2

g

= 1
−p2

∫ c+i∞

c−i∞

dh
2πi

(
−
m2

g

p2

)−h

Γ(h)Γ(1− h) , (3.1)

where the fundamental branch is 0 < c < 1. This result again implies that for obtaining the
Mellin representation one modifies the gluon propagator shifting the power of its denominator
in exactly the same way, (−p2) to (−p2)1−h, and multiplies by the factor Γ(h)Γ(1 − h) =
π csc(πh) which changes sign under h → −h. Let us assume that our matrix element is
dimensionless: then, the one-loop computation with a massless gluon whose propagator has
been “shifted”, and where d = 4− 2ε has been kept unexpanded, can be written as

M1(h,Q, µ, ε) =
g2

sCF

4π2 Q2h
(
µ2εγE

Q2

)ε
m1(h, ε) , (3.2)

where Q, with mass-dimension 1, is the only scale in the matrix element being computed
— necessary to render the one-loop result non-zero — and gs is the bare strong coupling
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constant. The function m1(h, ε) is dimensionless and does not depend on Q, while the
prefactor Q2h accounts for the overall dimension caused by the shifted gluon propagator. All
in all, the one-loop result with a massive vector boson takes the following form:

M1(mg,Q, µ, ε) =
αs(µ)
π

CFF1(mg,Q, µ, ε) , (3.3)

F1(mg,Q, µ, ε) =
(
µ2εγE

Q2

)ε∫ c+i∞

c−i∞

dh
2πiM1

(
h,
mg

Q
, ε

)
,

M1

(
h,
mg

Q
, ε

)
=
(Q2

m2
g

)h
Γ(h)Γ(1− h)m1(h, ε) ,

where, at this order, αs(µ) is already the renormalized strong coupling.
Let us discuss some generic features. The function m1(h, ε) can modify the fundamental

strip, and whenever the matrix element needs renormalization (that is, when the one-loop
computation with an unmodified gluon propagator generates 1/εn poles), it gets narrowed
down to 0 < c < ε. This is easy to understand: since the Mellin parameter h acts as a UV
regulator (it is well-known that large-β0 calculations can be carried out setting ε = 0), UV
poles manifest themselves as singularities of the type 1/(h− ε)n with n = 2 for quantities
carrying a cusp anomalous dimension, n = 1 otherwise.6 The massless result F1(0,Q, µ, ε)
is trivial to obtain: it corresponds to the h = 0 pole’s residue.7 Since the massless limit is
manifest, there will be no logarithms of mg/Q in this limit. The poles at h = 0 and h = ε

contain the same (mg-independent) UV poles, but have different finite terms. Since the
correction to the massless result ∆0F1(mg/Q) ≡ F1(mg,Q, µ, ε)− F1(0,Q, µ, ε) is UV finite

— and µ-independent as well — we can “move” the fundamental strip to −1/2 < Re(h) < 0
and set ε → 0 to obtain a closed form:8

∆0F1

(
mg

Q

)
=
∫ e+i∞

e−i∞

dh
2πi

(Q2

m2
g

)h
Γ(h)Γ(1− h)m1(h, 0) . (3.4)

The mg → ∞ limit corresponds to minus the residue of the h = ε pole, and since the
decoupling limit is not manifest in the MS scheme, it will contain powers of log(mg/Q). The
correction to this limit ∆∞F1(mg/Q) ≡ F1(mg,Q, µ, ε) − F1(mg → ∞,Q, µ, ε) is also UV
finite and µ-independent, and can be cast in the same way as eq. (3.4) (that is, with ε = 0)
moving the fundamental strip to 0 < Re(h) < 1. Finally, the difference of the mg → ∞ and
mg → 0 limits ∆∞

0 F1(mg/Q) ≡ F1(mg → ∞,Q, µ, ε)− F1(0,Q, µ, ε) is once more UV-finite
and µ-independent, and given by the contribution of the pole sitting at h = 0 obtained
if ε is set to zero prior to computing the residue. This increases the pole’s multiplicity,
generating the expected logs of mg/Q.

6It is not hard to deduce the poles’ form. Let us assume a generic scalar one-loop bubble containing
a regular and a modified gluon propagator. The d-dimensional integration measure after Wick rotation is
ddℓ = ℓ3−2εdΩdℓ, while the product of propagator denominators behaves as ℓ4−2h. When combined, one has
ℓ−1+2(h−ε)dΩdℓ, which upon integration diverges like 1/(h − ε).

7One trivially gets F1(0,Q, µ, ε) =
(

µ2εγE

Q2

)ε
m1(0, ε) from the converse mapping theorem or directly from

eq. (3.2).
8From renormalon calculus considerations one can convince oneself there are not singularities for

h ∈ (−1/2, 0). In most cases, there are no singularities between h = −1 and h = −1/2 either, but to
be general we stick to the smaller range.
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We will consider the matching between two EFTs: the high-energy one, containing
a massive and a massless gluon, and the low-energy one, with a massless gluon only. At
one-loop, the coupling in the two theories coincides, and since there are massless gluons in
both, such contributions cancel in the matching. Since the two theories should yield the same
answer in the mg → ∞ limit, the relevant quantity for the matching is

[F1(mg → ∞,Q, µ, ε)]fin = [F1(0,Q, µ, ε)]fin +∆∞
0 F1

(
mg

Q

)
, (3.5)

where, since the matching is performed using renormalized matrix elements, the subscript
“fin” has been added to signify the 1/εn poles have been stripped away.

4 Two-loop massive bubble computations

In this section we derive the general expression for the renormalized two-loop matrix element
due to the insertion of a massive bubble. On top of the dispersive integral, which we
have written as an inverse Mellin transform, one has to account for the contribution due
to Π0(m,µ, ε) and the strong coupling renormalization, which can be combined as a term
proportional to ΠMS

0 (m,µ, ε). When inserting the vacuum polarization into the gluon internal
line, the contribution from Π0 corresponds to the replacement 1/ℓ2 → Π0(m,µ, ε)/ℓ2 in
the gluon propagator. Since Π0(m,µ, ε) does not depend on the loop momentum ℓ, this
contribution is proportional to the one-loop result computed with a massless gluon propagator.
The two-loop result can be then written as

M2(m,Q, µ, ε) =
[
αs(µ)
π

]2
CFTFF2(m,Q, µ, ε) , (4.1)

F2(m,Q, µ, ε) = H2(m,Q, µ, ε)−
1
3F1(0,Q, µ, ε)

[(
µ2eγE

m2

)ε
Γ(ε)− 1

ε

]
,

H2(m,Q, µ, ε) =
(
µ2eγE

Q2

)ε(µ2eγE

m2

)ε ∫ c+i∞

c−i∞

dh
2πiM2

(
h,
mg

Q
, ε

)
,

M2

(
h,
mg

Q
, ε

)
=
(Q2

m2

)h
G(h, ε)m1(h, ε) .

where G(h, ε) has been given in the second line of eq. (2.9). The coupling constant αs(µ) is
already renormalized and runs with nf = nℓ + 1 active flavors, where nℓ is the number of
massless quarks. The function M2 [ same as M1 in eq. (3.3) ] is meromorphic in the complex
h plane. We will refer to the term H2 as the “dispersive contribution”.

Let us again discuss some generic features. As argued in section 3, m1(h, ε) narrows the
fundamental strip to 0 < h < ε since single or double singularities appear at h = ε. We denote
the second term in the second line of eq. (4.1) as “the Π0 contribution”. The UV singularities
are contained in the contribution from the pole at h = ε for the large m expansion, and in the
sum of residues of the poles located at h = 0 and h = −ε for the small m expansion, to which
one has to add the divergent terms coming from the Π0 insertion. Once again, the divergences
for the two expansions are m independent and coincide, but the finite remainders differ. The
massless result F2(0,Q, µ, ε) can be obtained as the sum of the residues of poles at h = 0 and
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h = −ε plus the Π0 contribution. Since the massless limit is manifest, no logs of m/Q arise.
The correction to the massless limit ∆0F2(m/Q) ≡ F2(m,Q, µ, ε)−F2(0,Q, µ, ε) is UV-finite,
µ-independent, and can be obtained moving the fundamental strip to −1/2 < Re(h) < 0:

∆0F2

(
m

Q

)
=
∫ e+i∞

e−i∞

dh
2πi

(Q2

m2

)h h(h+ 1)Γ3(h)Γ(1− h)
(3 + 2h)Γ(2h+ 2) m1(h, 0) . (4.2)

The m → ∞ limit is simply the Π0 contribution minus the residue at h = ε. Since the
decoupling limit is not manifest in the MS scheme, it will contain powers of log(m/Q). The
correction to the decoupling limit ∆∞F2(m/Q) ≡ F2(m,Q, µ, ε)−F2(m→ ∞,Q, µ, ε) is also
UV-finite and µ-independent, and can be written as in eq. (4.2) moving the fundamental
strip to 0 < Re(h) < 1. Subtracting the m → ∞ and m → 0 limits yields a UV-free and
µ-independent quantity ∆∞

0 F2(m/Q) ≡ F2(m→ ∞,Q, µ, ε)− F2(0,Q, µ, ε) which again can
be obtained as the contribution form the pole at h = 0 setting ε to zero before computing the
residue, what increases the multiplicity of the pole. This quantity is related to the matching
between two consecutive EFTs: one where the massive secondary quark is an active degree
of freedom, another one in which it is not.

Let us succinctly describe how such matching condition is computed. In the theory where
the massive quark is no longer active there are nℓ active flavors. To carry out the matching
it is convenient to express the renormalized matrix elements as a series in powers of α(nℓ)

s .
After the conversion, the renormalized two-loop term takes the form

F
(nℓ)
2,ren(m,Q, µ) =

{
H2(m,Q, µ, ε)−

F1(0,Q, µ, ε)
3

[(
µ2eγE

m2

)ε
Γ(ε)− 1

ε
− log

(
µ2

m2

)]}
fin
. (4.3)

Interestingly, if F1(0,Q, µ, ε) is UV-finite, the second term vanishes. Furthermore, in such
cases the decoupling limit is manifest H2(m → ∞,Q) = 0, and the matching condition is
trivial: the effects from massive quark bubbles are fully captured in the αs decoupling relation.
If one assumes F1(0,Q, µ, ε) has the following divergent structure:

F1(0,Q, µ, ε) =
m2
ε2 + m1

ε
+m0 +O(ε) , (4.4)

where m0 can potentially depend on an IR regulator, the relevant quantity for the matching
coefficient

F
(nℓ)
2,ren(m→ ∞,Q, µ) = −

{(
µ2eγE

Q2

)ε(µ2eγE

m2

)ε
Resh=ε

[
M2

(
h,
mg

Q
, ε

)]}
fin
− m2

18 log3
(
µ2

m2

)
− m1

6 log2
(
µ2

m2

)
− π2m2

36 log
(
µ2

m2

)
+ m2ζ3

9 − π2m1
36 , (4.5)

which can be rewritten as [F2(0,Q, µ, ε)]fin +∆∞
0 F2(m/Q) + 2[F1(0,Q, µ, ε)]fin log(µ/m)/3,

does not depend on m0.

5 Relation between the pole and MS masses

Our first application is to a quantity which does not have a cusp part in its anomalous
dimension: the perturbative relation between the pole and MS masses. Even though the
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Figure 3. Gluon mass correction to the relation between the pole and MS quark masses in its
exact form (dashed green), small- (blue) and large-mass (red) expansions. Left panel: ∆0F

MS
1 at

the boundary between the mass expansions ξg = 2, as a function of the expansion order n of each
expansion. Right panel: dependence of ∆0F

MS
1 (ξg) with the parameter ξg including 10 and 3 non-zero

terms in the small- and large-mass expansions, respectively.

results derived in this section are known, it is nevertheless worth re-deriving them within our
formalism as it will illustrate the method on a simple example. To avoid confusion, we denote
the primary quark mass (here and in the rest of the article) as M . We start by quoting the
result for

[
M(µ)−Mpole

]
/Mpole at one-loop using a modified gluon propagator, and identify

Q =Mpole, where UV-divergences must be removed through a Z factor in the MS scheme

m1(h, ε) = −3− 2ε
2

(1 + h− ε)Γ(ε− h)Γ(1 + 2h− 2ε)
Γ(3 + h− 2ε) , (5.1)

result that was recently computed in the form given above in ref. [22]. Before presenting the
1- and two-loop results, we define the MS mass anomalous dimension:

µ
dM(µ)

dµ = 2M(µ)
∑
n=1

γMS
n−1

[
αs(µ)
4π

]n

. (5.2)

5.1 Massive gluon

Multiplying the result in eq. (5.1) by the factor Γ(h)Γ(1− h) we obtain the corresponding
Mellin transform MMS

1
(
h, ξg, ε

)
. To figure out the convergence radius of both expansions, we

look at the large-h behavior of MMS
1 with ε = 0. Defining ξg = mg/Mpole we have

∣∣MMS
1
(
h, ξg, 0

)∣∣ −−−→
|h|≫1

3π3/2 csc2(πh)
2h3/2

(
ξg

2

)−2h

, (5.3)

from where we read that the small (large) gluon mass expansion works for ξg smaller (larger)
than 2, while at ξg = 2 both expansions are convergent, as can be seen in figure 3(a). After
setting ε = 0, if closing towards Re(h) > 0 there are double poles at all positive integer
values of h. When closing towards Re(h) < 0, one finds simple poles at all negative integers
and half-integer values of h, except for h = −2 where the pole is double. The residue at
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h = −1/2 yields a term linear in the gluon mass, which signals the O(ΛQCD) renormalon
ambiguity and fixes the residue of the u = 1/2 pole in the Borel plane. The UV divergences
of both expansions coincide:

FMS
1,div = − 3

4ε =
δZMS

1,1
ε

. (5.4)

This result correctly yields the well-known one-loop MS mass anomalous dimension, but
is removed after renormalization:

γMS
1 = 4CF δZ

MS
1,1 = −3CF = −4 . (5.5)

The massless limit is given by the pole at h = 0, and after renormalization takes the form

FMS
1,fin(0,Mpole, µ, ε) = −3

2 log
(

µ

Mpole

)
− 1 . (5.6)

At this point we can compute both series expansions for the corrections to the massless
gluon limit, obtaining

∆0F
MS
1 (ξg) = 3

∑
n=0

ξ−2n
g (2n)!

(n+ 2)(n!)2

[
log(ξg) +Hn −H2n + 1

2(n+ 2)

]
(5.7)

= −
ξ4

g

24[5− 6 log(ξg)] +
3
2

n ̸=4∑
n=1

(−ξg)nΓ2(n
2
)

(n− 4)Γ(n) .

The bottom line can be summed up, and we find9

∆0F
MS
1 (ξg) =

ξg

4

[(
2 + ξ2

g

)√
4− ξ2

g arccos
(
ξg

2

)
+ ξ3

g log(ξg)− ξg

]
. (5.9)

This agrees with a direct computation whose details will be given elsewhere. To the best of
our knowledge, this result has not been presented anywhere before. The large-mass expansion
has only same-sign even powers. The series for small gluon masses has odd and even powers
of ξg and is oscillatory, hence it converges slowly, as can be seen in both panels of figure 3.

Let us provide the matching coefficient between the MS masses defined in the full theory,
with massless gluons and a single massive vector boson M

(ng), and in an EFT containing
only massless gluons M (nℓ). The strategy to obtain the matching coefficient is through the
condition of having a universal pole mass in the limit where both theories should be valid:

Mpole =M
(ng)(µ)

{
1− αs(µ)

π
CF [2FMS

1 (0,Mpole) + ∆0F
MS
1 (ξg → ∞)]

}
fin

(5.10)

=M
(nℓ)(µ)

[
1− αs(µ)

π
CFF

MS
1 (0,Mpole)

]
fin
.

9For ξg > 2 one simply replaces√
4 − ξ2

g arccos
(

ξg

2

)
→ 1

2
√

ξ2
g − 4 log

[
ξg

2

(
ξg −

√
ξ2

g − 4
)

− 1
]

, (5.8)

to have every term manifestly real.
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Figure 4. Secondary mass correction to the relation between the pole and MS quark masses in its
exact form (dashed green), small- (blue) and large-mass (red) expansions. Left panel: ∆0F

MS
2 at the

boundary between the mass expansions ξ = 1, as a function of the expansion order n. Right panel:
percent deviation of the expansions compared to the exact result as a function of the parameter ξ,
using 4 and 3 non-zero terms in the small- and large-mass expansions, respectively.

Noting that ∆0F
MS
1 (ξg → ∞) = ∆∞

0 F
MS
1 (ξg) = 3/8 + 3/2 log(ξg), we easily obtain the

matching condition, which moreover is independent of Mpole:

M
(ng)(µ)

M
(nℓ)(µ)

= 1 + αs

π
CF [FMS

1,fin(0,Mpole, µ, ε) + ∆∞
0 F

MS
1 (ξg)] ≡ 1 + αs

π
CF δm

(ng→nℓ),

δM (ng→nℓ) = − 3
2 log

(
µ

mg

)
− 5

8 . (5.11)

5.2 Secondary massive quark

Multiplying eq. (5.1) by G(h, ε) we obtain MMS
2 (h, ξ, ε), and setting ε = 0 we can figure out

the convergence radius. Defining ξ = m/Mpole one has

MMS
2 (h, ξ, 0) = 3ξ−2h(h+ 1)Γ2(h)Γ2(1− h)

2(h+ 2)h(2h+ 3)(2h+ 1) −−−→
|h|≫1

3π2csc2(πh)
8h3 ξ−2h. (5.12)

It is clear that the small- and large-m expansions converge for m smaller and larger than Mpole,
respectively, and also for ξ = 1.10 The divergences of both expansions are m-independent
and coincide:

FMS
2,div = − 1

8ε2 + 5
48ε =

2∑
i=1

δZMS
2,i

εn
. (5.13)

This result correctly reproduces the nf color piece of the two-loop MS mass anomalous
dimension:

[γMS
2 ]nf

= 4CFTF

ε

(
8δZMS

2,2 + β
(nf )
0 δZMS

1,1

)
+ 32CFTF δZ

MS
2,1 = 10

3 CFTF = 20
9 , (5.14)

10We do not assume any hierarchy between m and M since our results are general and one could consider
e.g. the secondary virtual top correction to the bottom mass in QCD with six active flavors.

– 15 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
6

where β(nf )
0 = −4/3 is the nf piece of the QCD beta function. The term in round brack-

ets needs to cancel to yield a UV-finite anomalous dimension, and indeed the relation
8δZMS

2,2 + β
(nf )
0 δZMS

1,1 = 0 is verified. From the sum of residues corresponding to the poles
located at h = 0 and h = −ε and the Π0 contribution — after removing the UV diver-
gences — we reproduce the known two-loop massless result of ref. [24], which accounts for
the full µ dependence.

FMS
2,fin(0,Mpole, µ, ε) =

1
2 log2

(
µ

Mpole

)
+ 13

12 log
(

µ

Mpole

)
+ π2

12 + 71
96 . (5.15)

After setting ε = 0 double poles are found at all positive and negative integer values of
h, except for h = −1, and h = −2 for which the pole multiplicity is 1 and 3, respectively.
Furthermore, there are simple poles at h = −1/2 and h = −3/2. The difference of the
massless and m → ∞ limits is UV finite and µ-independent, but contains logarithms that
blow up in any of those two limits. It can be computed as minus the contribution of the
pole at h = 0 obtained setting ε = 0 before computing the residue

∆∞
0 F

MS
2 (ξ) = −1

2L
2
ξ −

13
12Lξ −

π2

12 − 151
144 , (5.16)

with Lξ = log(ξ). Since the factor containing all gamma functions in M2(h, ξ, 0) is symmetric
under h → −h, and given that gamma functions are the only structures with an infinite
number of poles, we expect that this symmetry will be manifest in the infinite sums of the ‘left’
and ‘right’ expansions. In fact this is what we find for the corrections to the massless limit:

∆0F
MS
2 (ξ) =∆∞

0 F
MS
2 + 3

2
∑
n=1

GMS
n (ξ) (5.17)

= − π2

4 ξ −
π2

4 ξ
3 + ξ4

(1
2L

2
ξ −

13
12Lξ +

π2

12 + 151
144

)
− 3

2

n ̸=2∑
n=1

GMS
−n(ξ) ,

GMS
n (ξ) = ξ−2n

n(n+ 2)(2n+ 1)(2n+ 3)

[ 2(3 + 10n+ 5n2)
n(2 + n)(1 + 2n)(3 + 2n) + 3 + 2(n+ 1)Lξ

]
.

For ξ = 1, that is, when it corresponds to the contribution of the heavy quark to its own self-
energy, we can sum up either series obtaining the known result ∆0F2(1) = (3− π2)/4. These
expressions can be summed up to all orders, fully reproducing the known result of ref. [24]:

∆0F
MS
2 (ξ) = 1

2(1− ξ)(1− ξ3)
[
Li2(1− ξ) + 1

2L
2
ξ +

π2

6

]
− π2

12 + ξ2

2

(
Lξ +

3
2

)
(5.18)

− 1
2(1 + ξ)(1 + ξ3)

[
Li2(−ξ)−

1
2L

2
ξ + log(1 + ξ)Lξ +

π2

6

]
− 1

2L
2
ξ .

The small- and large-mass expansions are shown in figure 4. We observe that the small-mass
expansion is badly convergent for the first orders. This pathological behavior can be blamed
on the presence of odd-power terms which are related to u = 1/2 and u = 3/2 renormalon
ambiguities, and to the fact that these do not include non-analytic behavior in ξ. After the
fourth power of ξ is included (which coincides with the first appearance of Lξ), the accuracy
improves drastically. The plots also reveal that the small- and large-mass expansions approach
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the exact result from above and below, respectively. Finally, the convergence of the small-mass
expansion is much better behaved than it is for the gluon mass case. This can be understood
since the gluon mass expansion contains an infinite number of odd-power corrections.

Let us compute the O(α2
s) matching condition between the MS masses with nf + 1 and

nf flavors, M (nf +1) and M
(nf ), respectively, following the same strategy as in the previous

section. Using eq. (4.5), or equivalently the relation underneath, we find

M
(nf +1)(µ)
M

(nf )(µ)
≡ 1 +

[
αs(µ)
π

]2
TFCF δM

(nf +1→nf ) , (5.19)

δM (nf +1→nf ) =F2(Mpole, 0, ε) + ∆0F2(ξ → ∞) + 2
3F1(Mpole, 0, ε) log

(
µ

m

)
= − 1

2 log2
(
µ

m

)
+ 5

12 log
(
µ

m

)
− 89

288 ,

independent of Mpole and in agreement with ref. [25]. At this order, αs in the previous
expression can be evaluated with either nf + 1 or nf flavors, as the difference is O(α3

s).

6 SCET computations

We turn our attention now to the computation of matrix elements which enter the factorization
theorem of event shape distributions for e+e− collisions, initiated by massless primary quarks:

1
σ0

dσ
de =Q2HQ(Q,µ)

∫
dℓJτ (Q2τ −Qℓ, µ)Se(ℓ, µ) , (6.1)

Jτ (s, µ) ≡
∫ s

0
ds′Jn(s− s′, µ)Jn(s′, µ) ,

where e = τ (thrust) and C (C-parameter), and where the hemisphere jet function appears
also in the heavy jet mass factorization theorem. The factorized expression involves the
product of the hard matching coefficient HQ(Q,µ) times the convolution of jet Jn(s, µ) and
soft Se(ℓ, µ) functions, whose natural scales will be denoted by µH , µJ and µS , respectively,
satisfying µH > µJ > µS . Since our formalism as it stands now solely applies to virtual
massive bubbles, we will be able to compute only the corrections to the hemisphere jet
function, which enters the factorized expressions for thrust, heavy jet mass and C-parameter
in the massive scheme, also known as C-jettiness, see refs. [20, 26] for a discussion of massive
schemes for heavy quarks, and refs. [27, 28] for their effects on soft hadronization. It turns out
that the hemisphere jet function can be computed as the discontinuity of a forward-scattering
matrix element in which the bubble is virtual. Even though both results have been already
computed in closed form, to the best of our knowledge, the small and large secondary mass
expansions are not known. Furthermore, the renormalization group (RG) evolved jet function
is not known in closed form, and in that respect our result in terms of expansions can be
regarded as a new analytic result.

6.1 Hard matching coefficient

In this section we compute the corrections to the Wilson coefficient appearing when matching
QCD onto SCET due to a massive vector boson or a secondary massive quark bubble.
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The relevant hard scale in this case is Q, the center-of-mass energy. To write expressions
as simple as possible, it will be useful to define the reduced masses for the vector boson
m̂2

g = m2
g/Q

2 and secondary quark m̂2 = m2/Q2, where we include the squares to avoid
making any assumption on the sign of Q2.

6.1.1 Review of QCD-SCET matching for massless quarks

Let us consider the QCD and SCET dijet currents, both defined in terms of bare fields,
that we schematically denote by OQCD and Obare

SCET, respectively. For simplicity we consider
only the vector current:

OQCD = q̄γµq , Obare
SCET = χ̄nY

†
nγ

µYn̄χn̄ , (6.2)

where Yn and Yn̄ are ultrasoft Wilson lines that appear after BPS field redefinition [13],
and χn and χn̄ are jet fields, involving a collinear quark field and a collinear Wilson line.
For simplicity, and since it plays no significant role, we ignore the Lorentz index in both
currents. For later use, we symbolically define the soft Obare

soft (ℓ) ∼ tr[Y ⊤
n̄ Ynδ(ℓ−Qê)Y †

nY
∗
n̄]/Nc

and collinear Obare
col (s) ∼ tr[n̄/ χnδ(s−Q2ê)χ̄n]/(4Nc) operators that appear when squaring

Obare
SCET, where the trace is over color (and also Dirac indices in the jet operator), s is the

invariant mass of the hemisphere, e the event-shape variable, and ê the operator that pulls
out its value when acting on a state. For now we do not specify the number of active
quark flavors (or, equivalently, the number of massive and massless gluons), although this
will become important later on. While QCD vector current conservation implies its UV
finiteness, the SCET operator needs renormalization, and the relation between bare and
renormalized currents defines the renormalization constant ZSCET (the renormalized current
is also expressed in terms of bare fields)11

Oren
SCET(µ) =ZSCET(µ)Obare

SCET , (6.3)

log
[
ZSCET(µ)

]
= δZSCET

nc + LµδZ
SCET
cusp =

∑
n=1

[
αs(µ)
4π

]n(
δZSCET

i,nc + LµδZ
SCET
i,cusp

)
,

δZSCET
i,cusp =

j=i∑
1

δZSCET
i,j,cusp
εj

,

δZSCET
i,nc =

j=i+1∑
1

δZSCET
i,j,nc
εj

,

where Lµ = log(−µ2/Q2). Unlike the bare operator, the renormalized one depends on
the renormalization scale µ. Its dependence on this scale is given by the renormaliza-
tion constant ZSCET(µ), from which one can compute the SCET anomalous dimension
as γSCET = −dlog(ZSCET)/dlog(µ) = γSCET

nc − LµΓcusp, which has cusp and non-cusp pieces.

11For simplicity we omit the dependence of ZSCET on Q along with convolutions over the field labels.
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For completeness, we also define the QCD β-function coefficients:

Γcusp(αs) =
∑
n=1

Γn−1

(
αs

4π

)n
, (6.4)

γSCET
nc (αs) =

∑
n=1

γSCET
n−1

(
αs

4π

)n
,

βQCD(αs) = − 2αs

∑
n=1

βn−1

(
αs

4π

)n
.

In order to have UV-finite cusp and non-cusp anomalous dimensions, the following constraints
must be satisfied:

δZSCET
j,i+1,cusp = − 1

j

j−1∑
n=i

nβj−n−1δZ
SCET
n,i,cusp , (6.5)

δZSCET
j,i+1,nc =

1
j

[
δZSCET

j,i,cusp −
j−1∑

n=max(1,i−1)
nβj−n−1δZ

SCET
n,i,nc

]
,

Once these are satisfied, the anomalous dimensions are obtained from the 1/ε terms:

Γn = −2(n+ 1)δZSCET
n+1,1,cusp , γSCET

n = 2(n+ 1)δZSCET
n+1,1,nc . (6.6)

One can use eq. (6.5) to obtain a simple closed from for the most divergent terms in the
Z factors which depend only on Γ0:

δZSCET
j,j,cusp = −(−β0)j−1Γ0

2j , δZSCET
j,j+1,nc = δZSCET

j,j,cuspHj . (6.7)

Solving the renormalization group evolution (RGE) equation one can relate renormal-
ized operators at different scales summing up potentially large logarithms of their ratio:
Oren

SCET(µ2) = USCET(Q,µ2, µ1)Oren
SCET(µ1). The renormalized matching coefficient is defined

on renormalized operators:

OQCD = Cren
SCET(µ)Oren

SCET(µ) = ZSCET(µ)Cren
SCET(µ)Obare

SCET ≡ Cbare
SCETObare

SCET , (6.8)

hence the bare matching coefficient Cbare
SCET = ZSCETC

ren
SCET relates OQCD to the bare SCET

operator. To avoid large logarithms it is convenient to match QCD and SCET at the scale
µH ∼ Q. From now on we drop the dependence of Oren

SCET and Cren
SCET on µ. To compute

CSCET we consider the simplest matrix element: the quark form factor denoted by ⟨O⟩. Since
ZSCET = ⟨OSCET⟩ = ⟨OQCD⟩ = 1 +O(αs), taking the natural logarithm is convenient:

log(Cbare
SCET) = log(ZSCET) + log(Cren

SCET) = log(⟨OQCD⟩)− log(⟨Obare
SCET⟩) . (6.9)

Hence log(ZSCET) = −[log(⟨Obare
SCET⟩)]div and, unless otherwise stated, we adopt the MS

scheme and absorb in log(ZSCET) only the 1/εn UV-poles. Finally, the renormalized matching
coefficient is computed as log(Cren

SCET) = [log(⟨OQCD⟩)− log(⟨Obare
SCET⟩)]fin. The hard function

appearing in the factorization theorem is simply H(Q,µ) = |Cren
SCET(Q,µ)|2 that evolves with

the renormalization scale with the anomalous dimension γH = γSCET+γ⋆
SCET, to which we can
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associate a renormalization factor ZH(µ) = |ZSCET(µ)|2 relating the bare and renormalized
hard functions Hbare

Q (Q) = ZH(µ)H(Q,µ). Note that the hard function’s evolution is reversed
as compared to that of the squared SCET operator since it is a matching coefficient, not
a matrix element.

For massless partons, the QCD and SCET form factors are IR divergent, hence a regulator
needs to be specified. However, the ratio (difference of logarithms) does not need any IR
regularization, as both full theory and EFT are equal in the infrared. For massless partons and
taking care of IR singularities with dimensional regularization (dimreg from now on), the SCET
form factor beyond tree-level involves only scaleless integrals that vanish, so ⟨Obare

SCET⟩ = 1
and log(⟨Oren

SCET⟩) = − log(ZSCET). Moreover, Cbare
SCET = ⟨OQCD⟩ provided that dimreg is also

chosen as IR regulator in the QCD form factor. Furthermore, log(ZSCET) = log(⟨OQCD⟩)div,
where the QCD divergences are of IR origin, and log(Cren

SCET) = log(⟨OQCD⟩)fin. This is by far
the simplest way to compute the Wilson coefficient, and was the strategy followed in ref. [22]
to carry out the one-loop computation with a modified massless gluon propagator.

The soft operator also needs renormalization, defining the soft renormalization factor
as Obare

soft = ZS(µ)Oren
soft(µ).12 The soft function is the vacuum matrix element of the soft

operator Sren
e (ℓ, µ) = ⟨Oren

soft(µ)⟩ = Sbare
e (ℓ)/ZS(µ), whose anomalous dimension γS is set

by ZS(µ). To avoid large logarithms in the soft function one must set its renormalization
scale to µS = Qe. The jet function is the vacuum expectation value of the jet operator
Jn(s, µ) ∼ ZSCET(µ)Z1/2

S (µ)⟨Obare
col ⟩ = Jbare

n (s)/ZJ(µ), whose anomalous dimension γJ is set
by ZJ (µ). One can also evolve Oren

col with γJ . To avoid large logarithms in the jet function its
renormalization scale must be set to µJ ∼ Q

√
e. From the relation ZH(µ)Z2

J(µ)ZS(µ) = 1
stems the consistency condition among the anomalous dimensions γH +2γJ + γS = 0. Having
discussed the running and matching in SCET, we can describe the structure of the factorization
theorem for event shapes: first one matches QCD onto SCET at the scale µH and evolves
Oren

SCET(µH) to some arbitrary µ < µH (equivalently, evolves the hard function from µ to
µH). After inserting the measurement delta functions, |Oren

SCET(µ)|2 is split into Oren
col (µ) and

Oren
soft(µ) which are evolved independently to µJ and µS , respectively. At these respective

scales, the jet and soft functions are computed. With this procedure, only small logs appear
in the matrix elements, and large logs of characteristic-scale ratios are summed up in the
evolution. Note that the soft and jet functions’ evolution is the same as their respective
operators, since they are matrix elements (not matching coefficients).

For contributions of either massive vector bosons or secondary massive bubbles, the
non-zero mass acts as an IR regulator and neither the QCD nor the SCET loop-level form
factors vanish any longer if dimreg is used — in fact, they are IR finite and no regulator
is needed.13 Furthermore, in either case the SCET form factors are finite only after soft
bin subtractions are included, requiring regulators in individual Feynman diagrams due to
rapidity divergences. With our computational strategy we bypass all problems at once: only
the QCD Feynman diagrams contribute, soft bin subtractions identically vanish and there

12We oversimplify the notation assuming multiplicative renormalization for the soft and collinear operators.
A full-fledged analysis would of course require convolutions. If Fourier transforms are taken, renormalization is
indeed multiplicative, but the renormalization factors depend on the Fourier variable through their cusp term.

13The computation with a massive vector boson is IR finite. For the massive bubble, the ΠOS insertion is
also IR finite, but that proportional to ΠMS

0 needs regularization.
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are no rapidity singularities. On the other hand, the calculation does not disentangle the
QCD and SCET IR-finite contributions. As we will see, consistency conditions can be used
to obtain these separately. For the one-loop computation with a shifted gluon propagator
we have Q2 = −Q2, and the following result was found in ref. [22]:

m1(h, ε) = −1
2
Γ2(h− ε)Γ(1− h+ ε)

Γ(3 + h− 2ε) {2− ε[3 + h2 + h(2− 3ε)− ε(3− 2ε)]} , (6.10)

from which we observe a double pole sits at h = ε.

6.1.2 Formal aspects of matching with secondary masses

When considering massive quarks or gluons, one has to specify the hierarchy between Q and the
mass, as this determines if the latter is a UV or an IR scale.14 For simplicity we restrict our dis-
cussion to secondary heavy quarks. If the mass is much smaller than Q [ panel (b) in figure 5 ],
then m is an IR scale that should appear both on the QCD(nf ) and SCET(nf ) sides of the
matching, and both theories will have this flavor as dynamic, hence using α(nf )

s with nf = nℓ+1
being nℓ the number of massless quarks. However, since Wilson coefficients are short-distance
corrections they cannot depend on an IR scale. Since QCD(nf ) and SCET(nf ) should coincide
in the limit Q → ∞, which is equivalent to the mass tending to zero, and given that in a
scheme in which the massive flavor is dynamic the massless limit is manifest, indeed the Wilson
coefficient C(nf )

SCET(0) = limm→0⟨O
(nf )
QCD⟩/⟨O

(nf )
SCET⟩ will not depend on the mass:15 it is simply

the well-known massless matching coefficient with nf = nℓ+1 active flavors. One can formally
maintain m̂-suppressed terms by simply not taking the m→ 0 limit in the ratio of QCD and
SCET form factors obtaining C(nf )

SCET(m̂2) = ⟨O(nf )
QCD⟩/⟨O

(nf )
SCET⟩ ≡ C

(nf )
SCET(0) + ∆0C

(nf )
SCET(m̂2).

Moreover, since in mass-independent renormalization schemes such as MS divergences do
not depend on IR scales, the anomalous dimension of C(nf )

SCET(m̂2) is the same as that of
C

(nf )
SCET(0). This mass-dependent Wilson coefficient is used in Scenarios II, III and IV of ref. [7]

characterized by the condition µm < µH , where µm ∼ m is the scale at which the secondary
mass is integrated out. The computation we carry out with the Mellin-Barnes expansion
gives access precisely to the quantity C(nf )

SCET(m̂2). If µm is larger than the jet or soft scales,
one needs to match SCET(nf ) onto SCET(nℓ), and the Wilson coefficient defined as

O(nf )
SCET(µ) = M(nf→nℓ)

SCET (µ)O(nℓ)
SCET(µ) , (6.11)

is computed as the ratio of renormalized form factors in the two theories. To avoid large
logarithms, it is convenient to match both operators at the scale µm, and there is no running
related to this matching condition. To carry out such computation we assume an IR regulator
∆ other than dimreg is used. Furthermore, the UV poles do not depend on ∆ and from
the well known one-loop result — or from the first line of eq. (6.20) — one can identify the
m1 and m2 pieces of eq. (4.4):

m2 = 1
2 , m1 = 3

4 − 1
2 log

(
−Q

2

µ2

)
. (6.12)

14We indicate the number of active flavors in QCD and SCET with a superscript. All operators in this
section are renormalized.

15To avoid cluttering, all SCET operators and Wilson coefficients in this section are renormalized even
though no superscript “ren” is shown.
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QCDnf

µH ∼ µm

SCETnℓ

C
nf→nℓ
SCET (m̂)

QCDnf

µH

µm

SCETnf

SCETnℓ

C
nf
SCET(m̂)

Mnf→nℓ
SCET

QCDnf

µm

µH

QCDnℓ

SCETnℓ

Mnf→nℓ
QCD

C
nℓ
SCET(0)

(a) (b) (c)

Figure 5. Different paths to match QCD with nf active flavors to SCET with nℓ active flavors. The
horizontal lines signal energy scales, as marked on its left, and delimit the regions of validity of the
various EFTs. We also show to the right of each line the matching coefficient necessary to relate
two consecutive EFTs. In panel (a) µm ≫ µH and hence the secondary quark mass is integrated out
already in QCD before matching to SCET(nℓ). In panel (b) µm ≪ µH , such that the secondary quark
is an IR scale in both QCD(nf ) and SCET(nf ). In panel (c) both scales are comparable, becoming
necessary a direct matching between QCD(nf ) and SCET(nℓ).

With this at hand, using eq. (4.5) we obtain the matching coefficient at two-loop order

M(nf→nℓ)
SCET (m,Q, µ) = ⟨O(nf )

SCET⟩
⟨O(nℓ)

SCET⟩
= 1 +

[
αs(µ)
π

]2
CFTFM(2)

SCET(m,Q, µ) , (6.13)

M(2)
SCET(m,Q, µ) =

[
HSCET

2 (m,Q, µ, ε)
]
fin
− 1

36 log3
(
µ2

m2

)
− π2

72 log
(
µ2

m2

)
+ ζ3

18 −
[3
4 − 1

2 log
(
−Q

2

µ2

)][1
6 log2

(
µ2

m2

)
+ π2

36

]
,

where HSCET
2 is the dispersive contribution of the SCET form factor, which is independent of

IR regulators and, at the order we are working, αs can be chosen with either nf or nℓ active
flavors. In the event-shape factorization one uses |M(nf→nℓ)

SCET |2. This matching condition is
used in ref. [7] if the renormalization scale is evolved to a scale smaller than µm. At this
point one can directly relate QCD(nf ) to SCET(nℓ) and, if keeping all m̂-suppressed terms,
the relation reads: O(nf )

QCD = C
(nf )
SCET(m̂)M(nf→nℓ)

SCET O(nℓ)
SCET.

If m ≫ Q (left panel in figure 5), one should integrate out the massive secondary
quark already in QCD(nf ) before matching to SCET(nℓ) (that is, one matches QCD(nf )

onto QCD(nℓ)). Since the QCD quark form factor carries no anomalous dimension, after
properly regulating the IR singularities in both theories it can be seen from eq. (4.3) that
this amounts to removing the heavy quark from the QCD Lagrangian and using α(nℓ)

s . The
running of the strong coupling with nℓ active flavors sums up large logarithms of m̂2. One
can effectively keep all m̂-suppressed terms considering the following matching coefficient:
O(nf )

QCD = M(nf→nℓ)
QCD O(nℓ)

QCD, that at two loops reads

M(nf→nℓ)
QCD (m̂, µ) =

⟨O(nf )
QCD⟩

⟨O(nℓ)
QCD⟩

= 1 +
[
αs(µ)
π

]2
CFTFH

QCD
2 (m̂2) , (6.14)

where HQCD
2 is the dispersive contribution to the QCD quark form factor and, at the

order we are working, αs can be chosen with either nf or nℓ active flavors. Given that
HQCD

2 (m̂2 → ∞) = 0, when strict hierarchies are considered the threshold condition is trivial.
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The matching coefficient between QCD(nℓ) and SCET(nℓ) is nothing less than the usual
SCET Wilson coefficient with nℓ active flavors: O(nℓ)

QCD = C
(nℓ)
SCET(0)O

(nℓ)
SCET. Hence, one can

directly relate QCD(nf ) to SCET(nℓ), and if keeping all m̂-suppressed terms the relation
reads: O(nf )

QCD = M(nf→nℓ)
QCD C

(nℓ)
SCET(0)O

(nℓ)
SCET.

A more interesting situation occurs when m̂ ≃ 1 (right panel in figure 5), that is, when
both m and Q are UV scales, but comparable in size. In this case one matches QCD(nf )

directly to SCET(nℓ) integrating out the hard scale and m simultaneously, such that the
Wilson coefficient, which we denote O(nf )

QCD = C
(nf→nℓ)
SCET (m̂2)O(nℓ)

SCET, depends on Q and m. In
this scenario, the mass appears on the QCD side, but not on the SCET one. The computation
can be organized in two equivalent ways as follows:

C
(nf→nℓ)
SCET (m̂2) =

⟨O(nf )
QCD⟩

⟨O(nℓ)
SCET⟩

=



⟨O(nf )
QCD⟩

⟨O(nf )
SCET⟩

⟨O(nf )
SCET⟩

⟨O(nℓ)
SCET⟩

= M(nf→nℓ)
SCET C

(nf )
SCET(m̂)

⟨O(nf )
QCD⟩

⟨O(nℓ)
QCD⟩

⟨O(nℓ)
QCD⟩

⟨O(nℓ)
SCET⟩

= M(nf→nℓ)
QCD C

(nℓ)
SCET(0)

, (6.15)

implying the following consistency condition M(nf→nℓ)
QCD C

(nℓ)
SCET(0) = M(nf→nℓ)

SCET C
(nf )
SCET(m̂).

Taking m̂2 → ∞ one simply has M(nf→nℓ)
SCET = C

(nℓ)
SCET(0)/C

(nf )
SCET(m̂2 → ∞), where we have used

the decoupling limit of M(nf→nℓ)
QCD . This gives a convenient way of computing C(nf→nℓ)

SCET (m̂2)

C
(nf→nℓ)
SCET (m̂2) = C

(nℓ)
SCET(0)

C
(nf )
SCET(m̂)

C
(nf )
SCET(m̂2 → ∞)

, (6.16)

making the decoupling limit manifest. The Wilson coefficient C
(nf→nℓ)
SCET (m̂2) is used in

Scenario I of ref. [7] characterized by the condition µm > µH .

6.1.3 Variable-flavor number scheme

The punchline of the previous section is that, as long as all subleading terms are kept,
the three paths to reach SCET(nℓ) from QCD(nf ) are equivalent and can be continuously
described with a single setup. One simply chooses between the first or second lines of
eq. (6.15) depending on the relative size of the hard scale and the mass. This was the basis
of the variable-flavor number scheme (VFNS) setup presented in ref. [7], which, with minimal
modifications, is sketched in figure 6. If µH > µJ > µS > µm (scenario IV), one stops the
matching sequence already at SCET(nf ) and computes the jet and soft functions with O(nf )

col
and O(nf )

soft . Hence, the secondary mass is an IR scale that enters those matrix elements, along
with the hard function. Provided the common renormalization scale µ is chosen above µm,
all RG evolution proceeds with nf flavors as exposed in section 6.1.1. The opposite situation
is Scenario I in which µm > µH > µJ > µS : the EFT operator is O(nℓ)

SCET, hence all matrix
elements, along with the hard function, are computed as massless. One needs to include
the |M(nf→nℓ)

QCD |2 matching coefficient, and provided µ < µm all RG evolution involves nℓ

flavors in the manner explained in section 6.1.1.
In scenario II, defined by µH > µm > µJ > µS , the matching coefficient must be

computed with mass effects H(Q2,m, µ) = |C(nf )
SCET(Q2,m, µ)|2. If the choice µm > µ > µJ is
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|Mnf→nℓ
QCD |2µm

µH

µ

µJ

µS

µm

µH

µS

µJ

|Mnf→nℓ
SCET |2

µ

Mnf→nℓ
soft

µH

µm

µ

µS

µJ

µ

µS

µm

µJ

µH

scenario IVscenario IIIscenario IIscenario I



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Figure 6. Different VFNS scenarios defined by the relative size of the mass-mode scale µm (red
horizontal line) and the SCET scales (hard, jet, and soft, solid black horizontal lines). The common
renormalization scale µ is shown as a dashed horizontal line, the matching conditions, when necessary,
appear as a cross, and the evolution from the characteristic scales to µ are indicated with vertical
arrows. The dotted vertical arrow signifies that there is no evolution in the nℓ-flavor QCD current.
We indicate with curly brackets the number of active flavors participating in the running of each
matrix element.

made, O(nf )
SCET is evolved with nf flavors from µH to µm where one has to add the additional

matching coefficient |M(nf→nℓ)
SCET |2, and keep evolving O(nℓ)

SCET with nℓ flavors from µm to µ. At
this scale, the jet and soft operators defined from fields in O(nℓ)

SCET individually evolve with nℓ

flavors from µ to µJ and µS , respectively, scales at which the jet and soft functions, with
nℓ massless quarks are computed. The last situation to discuss is scenario III, defined by
µH > µJ > µm > µS , that also involves the hard function |C(nf )

SCET(Q2,m, µ)|2, and where,
provided the common scale satisfies the condition µJ > µ > µm, the operator O(nf )

SCET is
evolved from µH to µ with nf active flavors. The jet operators are evolved with nf flavors
between µ and µJ . Since the jet function is computed with the collinear fields defined in
SCET(nf ), the secondary quark is still an active degree of freedom. Since µm > µS , to
avoid large logarithms it is convenient to integrate the secondary quark from the ultrasoft
Lagrangian. Since it is a copy of QCD, one only needs to use α(nℓ)

s . Finally, one needs to
match O(nf )

soft onto O(nℓ)
soft , relation that defines the soft matching coefficient:

O(nf )
soft = M(nf→nℓ)

soft O(nℓ)
soft . (6.17)

There is no running associated to the coefficient M(nf→nℓ)
soft , and it contains small logarithms

provided the matching is performed at the scale µm. Hence O(nf )
soft (µ) is evolved to µm with

nf flavors, and after matching, O(nℓ)
soft is evolved from µm to µS with nℓ flavors. The soft

function is computed with O(nℓ)
soft and hence is insensitive to this massive quark. All in all, the

factorization theorem will involve the hard and jet functions with nf flavors and mass effects,
a massless soft function with nℓ flavors and the soft matching condition M(nf→nℓ)

soft .
For other choices of the common renormalization scale µ we might also need to match

O(nf )
col onto O(nℓ)

col (the collinear Lagrangian is simply a boosted copy of the QCD one, so once
more the strong coupling is the only modification), defining the jet matching coefficient

O(nf )
col = M(nf→nℓ)

jet O(nℓ)
col . (6.18)
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Figure 7. Gluon mass correction to the massless SCET Wilson coefficient in its exact form (dashed
green), small- (blue) and large-mass (red) expansions. Left panel: ∆0F

H
1 at the boundary between

the mass expansions m̂2
g = −1, as a function of the expansion order n of each series. Right panel:

dependence of ∆0F
H
1 (m̂2

g) with the reduced gluon mass, including 3 and 2 non-zero terms in the small-
and large-mass expansions, respectively.

From eq. (6.11) one has the condition M(nf→nℓ)
soft (µ)|M(nf→nℓ)

jet (µ)|2 = |M(nf→nℓ)
SCET (µ)|2. The

jet matching coefficient can also be determined comparing the jet functions computed in
the nf and nℓ theories, approach followed in this article.

6.1.4 Massive vector boson

In this and the following section we label results with the superscript H, since from this
coefficient the hard factor can be obtained. The Mellin transform reads:

MH
1 (h, m̂2

g, 0) = − Γ2(h)Γ2(1− h)
h(h+ 1)(h+ 2)(−m̂

2
g)−h −−−→

|h|≫1
−π

2csc2(πh)
h3 (−m̂2

g)−h . (6.19)

From this result we can read off the convergence radius: m̂g smaller or larger than 1 call for
small- or large-mass expansions. This result can be confirmed using the Cauchy’s root test
on the general terms shown in eq. (6.22). In fact, we have used Cauchy’s root test in every
single series presented in this article, and confirmed that the convergence radius coincides
with that obtained inspecting the large h behavior of the Mellin transform. As shown in
figure 7(a), at the boundary one can use either expansion, and both series converge equally
fast. The rest of relevant results before showing the expansions are

δZSCET
1

(
Q2

µ2 , ε

)
= −CF

[ 2
ε2 + 1

ε

(
2Lµ + 3

)]
, (6.20)

FH
1,ren

(
0, Q

2

µ2

)
= −1

4L
2
µ − 3

4Lµ + π2

24 − 2 ,

∆∞
0 F

H
1 (m̂2

g) =
1
4log

2(−m̂2
g) +

3
4log(−m̂

2
g) +

π2

6 + 7
8 ,

where we have displayed the one-loop massless limit already renormalized, which agrees with
the well-known result of ref. [14]. The divergences shown in the second line make clear the
result does not correspond to the full-theory computation, since a massive vector boson
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yields a UV- and IR-finite result and does not need any regulator. From these we obtain
the one-loop cusp and non-cusp anomalous dimensions using eq. (6.6):

Γ0 = 4CF = 16
3 , γSCET

0 = −6CF = −8 . (6.21)

Furthermore, the condition δZSCET
1,1,cusp = δZSCET

1,2,nc = −Γ0/2 is verified. The two expansions for
the correction to the massless limit are computed easily noting that there are double poles at
all negative and positive integer values of h, except for h = −1 and h = −2 that are triple.
Once again, the factor containing all gamma functions in M1 is symmetric under reversing
the sign of h, thence a symmetry between the infinite sums will be manifest. We found

∆0F
H
1 (m̂2

g) =∆∞
0 F

H
1 −

∑
n=1

GH
n (m̂2

g) =
∑
n=3

GH
−n(m̂2

g)− m̂2
g

[1
2 log2(−m̂2

g) +
π2

3 + 1
]

− m̂4
g

[1
4 log2(−m̂2

g)−
3
4 log(−m̂2

g) +
π2

6 + 7
8

]
,

GH
n (m̂2

g) =
(−m̂2

g)−n

n(n+ 1)(n+ 2)

[
log(−m̂2

g) +
3n2 + 6n+ 2
n(n+ 1)(n+ 2)

]
. (6.22)

The infinite sum can be carried out analytically:

∆0F
H
1 (m̂2

g) =
π2

12 − 1
2
(
1 + m̂2

g

)2 Li2
(
1 + m̂2

g

)
−
m̂2

g

2
[
log(−m̂2

g) + 1
]

(6.23)

−
m̂2

g

12
(
2 + m̂2

g

)[
π2 + 3 log2(−m̂2

g)
]
.

For m̂g > 0 the expression above develops an imaginary term. To take the real part, relevant
to obtain the hard factor, one simply has to make the following replacements:

Li2
(
1 + m̂2

g

)
→ π2

6 − Li2
(
−m̂2

g

)
− log(1 + m̂2

g) log(m̂2
g) , (6.24)

logn(−m̂2
g) →Re

{[
log(m̂2

g) + iπ
]n}

.

The results for the exact result and expansions are shown in figure 7. The respective
approximations can be made arbitrarily precise adding more and more terms. Obtaining
expansions for the hard matching coefficient poses no difficulty, but to avoid cluttering we
do not show them.

At this point we can split the Wilson coefficient in the QCD and SCET terms. In order for
that, we use that the QCD form factor must vanish in the decoupling limit mg → ∞. Hence
FQCD

1 (m̂2
g) = ∆∞F

H
1 (m̂2

g) = ∆0F
H
1 (m̂2

g) − ∆∞
0 F

H
1 (m̂2

g), and using the result in eq. (6.23)
we find full agreement with refs. [8, 10, 29]. Note that the m̂2

g → 0 limit of FQCD
1 diverges,

signaling the need for an IR regulator. Finally, we can obtain the bare SCET form factor
which contains all UV divergences but is IR finite. It takes the following simple form
F SCET

1 = FQCD
1 − FH

1 = −∆∞
0 F

H
1 − FH

1 (0, Q, µ) = −FH
1 (m̂2

g → ∞, Q, µ), and corresponds
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to the contribution of the residue at h = ε:

F SCET
1

(
m̂2

g,
Q2

µ2 , ε

)
= Γ(ε)

2

(
µ2eγE

m2
g

)ε[
H1−ε + log

(
−m̂2

g

)
+ π cot(πε) + 1 + ε− ε2

(1− ε)(2− ε)

]

≡F SCET
1,ren

(
m̂2

g,
Q2

µ2

)
−
δZSCET

1

(
Q2

µ2 , ε
)

4CF
+O(ε) ,

F SCET
1,ren

(
m̂2

g,
Q2

µ2

)
= − 1

4log
2(−m̂2

g

)
− 3

4log
(
−m̂2

g

)
+ 1

4L
2
µ + 3

4Lµ − 5π2

24 + 9
8 , (6.25)

where the harmonic number with a non-integer argument can be expressed in terms of
the digamma function ψ(0) — the derivative of the logarithm of the gamma function — as
follows: H1−ε = ψ(0)(2− ε) + γE . One can also relate the cotangent to digamma functions:
π cot(πε) = ψ(0)(1 − ε) − ψ(0)(ε). Our unexpanded expression coincides with eq. (321) of
ref. [30], and our expanded result agrees with ref. [21].

We close the section computing the matching coefficient between QCD/SCET with
massive and massless gluons (operators labeled with a superscript ng) and QCD/SCET
with only massless gluons (operators labeled with a superscript nℓ), defined by the relation
O(ng)

th = M(ng→nℓ)
th O(nℓ)

th on renormalized operators, where th=QCD or SCET. Since the
contribution of massless gluons is the same in both theories, the matching coefficient is
simply the massive vector boson contribution to the QCD/SCET form factor (the latter
renormalized), since the strong coupling is the same in both theories at one-loop:

M(ng→nℓ)
QCD (m̂2

g, µ) = 1 + αs(µ)
π

CFF
QCD
1 (m̂2

g) , (6.26)

M(ng→nℓ)
SCET (mg, Q

2, µ) = 1 + αs(µ)
π

CFF
SCET
1,ren

(
m̂2

g,
Q2

µ2

)
,

where M(ng→nℓ)
SCET agrees with eq. (29) of ref. [6].

6.1.5 Secondary massive bubble

The relevant results for the QCD to SCET matching coefficient with massive corrections
are in this case

MH
2 (h, m̂2, 0) = −

(
−m̂2)−h 4(h+ 1)Γ2(1− h)Γ4(h)

Γ(2h+ 5) −−−→
|h|≫1

−π
5/2 csc2(πh)

4h9/2
(
−4m̂2)−h

,

δZSCET
2,nf

(
Q2

µ2 , ε

)
= −16CFTF

[ 1
8ε3 + 1

ε2

( 1
12Lµ + 1

18

)
− 1
ε

( 5
36Lµ + π2

48 + 65
432

)]
,

FH
2,ren

(
0, Q

2

µ2

)
= 1

36L
3
µ + 19

72L
2
µ +

(209
216 + π2

36

)
Lµ + ζ3

36 + 23π2

432 + 4085
2592 ,

∆∞
0 F

H
2 (m̂2) = − 1

36L
3
m − 19

72L
2
m −

(265
216 + π2

36

)
Lm + ζ3

3 − 19π2

216 − 3355
1296 . (6.27)

with Lm = log(−m̂2). Our results for the massless limit and the renormalization factor agree
with ref. [31]. The latter satisfies eqs. (6.5) and (6.7) with the substitution β0 → β

(nf )
0 . Using
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eq. (6.6) we obtain the two-loop anomalous dimension

Γ(nf )
1 = − 80

9 CFTF = −160
27 , (6.28)

γSCET
1,nf

=64CFTF

(
π2

48 + 65
432

)
= 520

81 + 8π2

9 .

From the first line of eq. (6.27) it becomes clear that the small- and big-mass expansions
converge for 4m2 ≤ |Q|2 and 4m2 ≥ |Q|2, respectively. Fast convergence at 4m2 = |Q|2 is
expected from any of the two expansions, as can be seen in figure 8(a). After removing the
massless limit one can set ε = 0 and examine the pole structure of the Mellin transform. On
the positive real axis there are double poles at all integer values of h. On the negative real
axis one has a quartic pole at h = −2 and triple poles at h = −n with n ̸= 2. We can use the
inverse mapping theorem to obtain the corresponding expansions for ∆0F2:

∆0F
H
2 (m̂2) =∆∞

0 F
H
2 (m̂2) + 4

∑
n=1

(n+ 1)[(n− 1)!]2

(2n+ 4)! (−m̂2)−n
[
2(Hn−1 −H2n+1) (6.29)

− Lm − 7 + 4n
(n+ 2)(2n+ 3)

]
= m̂4

(
L2

m − 1
6L

3
m − 33 + 2π2

12 Lm + 13
4 + π2

3 + 2ζ3

)

+ 2
n ̸=2∑
n=1

(2n− 2)!
(
−m̂2)n

(n− 2)(2n− 3)(n!)2

[ 2(4n− 7)
(n− 2)(2n− 3)

(
H2n−2 −Hn + 1

2Lm

)

− 2
(
H2n−2 −Hn + 1

2Lm

)2
+ 2H(2)

2n−2 −H(2)
n − π2

6 − 37− 42n+ 12n2

(n− 2)2(2n− 3)2

]
,

where H(2)
k =

∑k
i=1 n

−2 is the harmonic number of order 2. The infinite sum for the large-mass
expansion can be summed up and we obtain the following result:

∆0F
H
2 (m̂2) =

(23r2

72 + 5
24

)
r

[
Li2
(
r − 1
r + 1

)
− Li2

(
r + 1
r − 1

)]
+
(55r2

72 + 25
54

)
Lm (6.30)

+
( 5
48 − r4

16 + r2

8

)[
Li3
(
r − 1
r + 1

)
+ Li3

(
r + 1
r − 1

)
− 2ζ3

]
+ 119r2

72

− L3
m

36 − 19L2
m

72 −
(265
216 + π2

36

)
Lm + ζ3

3 − 19π2

216 − 119
72 ,

with r =
√
1 + 4m̂2, in agreement with ref. [29, 32]. In the equation above all terms are

manifestly real for 0 > m̂2 > −1/4. For m̂2 < −1/4 some terms develop imaginary parts,
but ∆0F

H
2 (m̂) is still real-valued. To have every term explicitly real in this case we simply

make the following substitutions:

r

[
Li2
(
r − 1
r + 1

)
− Li2

(
r + 1
r − 1

)]
→ − 2

√
−1− 4m̂2 Cl2

[
arccos

(
r2 + 1
r2 − 1

)]
, (6.31)

Li3
(
r − 1
r + 1

)
+ Li3

(
r + 1
r − 1

)
→ 2Cl3

[
arccos

(
r2 + 1
r2 − 1

)]
,
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Figure 8. Secondary mass correction to the massless SCET Wilson coefficient in its exact form
(dashed green), small- (blue) and large-mass (red) expansions. Left panel: ∆0F

H
2 at the boundary

between the mass expansions m̂2 = −1/4, as a function of the expansion order n of each series. Right
panel: dependence of ∆0F

H
2 (m̂2) with the reduced secondary quark mass, including 2 non-zero terms

in each expansion.

where the Clausen functions are defined as infinite sums: Cl2(α) =
∑

k=1 sin(kα)/k2 and
Cl3(α) =

∑
k=1 cos(kα)/k3. For m̂2 > 0 a genuine imaginary part is generated. To obtain

the real part (which is most relevant to compute the hard factor), one has to do the following
replacements:

Li2
(
r − 1
r + 1

)
− Li2

(
r + 1
r − 1

)
→ 2Li2

(
r − 1
r + 1

)
+ 1

2 log2
(
r − 1
r + 1

)
− π2

3 , (6.32)

Li3
(
r − 1
r + 1

)
+ Li3

(
r + 1
r − 1

)
→ 2Li3

(
r − 1
r + 1

)
− 1

6 log3
(
r + 1
r − 1

)
+ π2

3 log
(
r + 1
r − 1

)
,

along with Ln
m → Re[ log(m̂2) + iπ]n. Obtaining the expansions for the SCET hard factor

is trivial from the results quoted in this section and to avoid cluttering these will not be
explicitly shown.

A comparison of the small- and large-mass expansions to the summed-up result is shown
in figure 8, where one can observe that both expansions converge very fast, especially for
large masses, where including only two terms is enough to achieve sub-percent accuracy
everywhere the sum converges. The dispersive contribution to the two-loop QCD form
factor is IR-finite and given by HQCD

2 (m̂2) = FH
2 (m̂2) − FH

2 (m̂2 → ∞). The dispersive
contribution to the SCET form factor is also IR finite and obtained as the following limit:
F SCET

2,disp = −FH
2 (m̂2 → ∞), which is simply the pole at h = ε of the H2 contribution,

HSCET
2

(
m̂2,

Q2

µ2 ε

)
= 1

8ε3 + 1
ε2

(
Lµ

4 − Lm

6 + 1
18

)
+ 1
ε

[
L2

µ

4 + L2
m

12 + Lµ

(1
9 − Lm

3

)
(6.33)

− Lm

4 − π2

144 − 65
432

]
+
L3

µ

6 + Lµ

(
L2

m

6 − Lm

2 − π2

72 − 65
216

)
+ 7L2

m

18 + L2
µ

(1
9 − Lm

3

)
+ Lm

(121
216 + π2

36

)
−5ζ3

12 + π2

18 + 875
864 .
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Our result agrees with ref. [30]. We can obtain the matching SCET decoupling coefficient
introducing the finite part of the result above in eq. (6.13):

M(2)
SCET

(
m̂2,

Q2

µ2

)
=
L3

µ

18 + 1
36L

3
m + 19

72L
2
m − L2

µ

(
Lm

12 + 1
72

)
− Lµ

(
Lm

4 + 65
216 + π2

24

)
+
(121
216 + π2

24

)
Lm − 13ζ3

36 + 875
864 + 5π2

144 , (6.34)

in agreement with ref. [7] if setting µm = µH .

6.2 Jet function

In this section we present results for the SCET single-hemisphere jet function, which appears
in the factorization theorems for 2-jettiness and C-jettiness, modified versions of thrust and
C-parameter which are designed to enhance the sensitivity to quark masses. The momentum-
space jet function contains distributions: Dirac delta and plus functions. Some of these
might get obscured when expanding in big and small masses, therefore we compute the
cumulative jet function defined as

ΣJ
n(sc, µ) =

∫ sc

0
ds Jn(s, µ) , (6.35)

to obtain those, and provide the expansions for the non-distributional terms of the differential
jet function. For either secondary massive quarks or massive vector bosons, the jet function
has real and virtual radiation contributions. The virtual contains only distributions that
become singular at s = 0, while the real radiation has only non-distributional terms. The
virtual correction is easy to obtain since for large (gluon or secondary quark) masses one
cannot radiate a massive particle any more. Hence, the expansion for large masses will be
given by the residue of a single pole sitting at h = ε. The non-distributional terms (which
are proportional to a Heaviside theta function) are simply obtained as the sum of residues
on the real non-positive axis, from which one must subtract the radiative tails of the plus
distributions coming from the virtual diagrams.

The renormalization of the jet function takes place through the convolution of a Z factor,
which splits the bare result in its divergent part and the renormalized jet function:

Jbare
n (s) =

∫
ds′ZJ(s′ − s, µ)Jn(s′, µ) , (6.36)

ZJ(s, µ)
.= δ(s) + αs(µ)

π
CF δZ

J
1 +

[
αs(µ)
π

]2
CFTF δZ

J
2 ,

δZJ
i = δZJ

i,ncδ(s) +
δZJ

i,cusp
µ2

[
µ2

s

]
+
,

δZJ
i,cusp =

i∑
j=1

δZJ
i,j,cusp
εj

,

δZJ
i,nc =

i+1∑
j=1

δZJ
i,j,nc
εj

.
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The renormalized jet function obeys an RGE equation which takes the form of a convolution,
where the anomalous dimension is also a distribution:

µ
d
dµJn(s, µ) =

∫
ds′γJ(s− s′)Jn(s′, µ) , (6.37)

γJ(s, µ) =− 2Γcusp
µ2

[
µ2

s

]
+
+ γJ

ncδ(s) ,

γJ
nc =

∑
n=1

γJ
n

[
αs(µ)
4π

]n

.

To derive γJ (s, µ) from ZJ (s, µ) it should be noted that the derivative of the plus distribution
appearing in the third line of eq. (6.36) with respect to log(µ) equals −2δ(s). Assuming that
the cancellation of UV-divergent terms identical to those appearing in eq. (6.5) takes place,
the anomalous dimensions are proportional to the 1/ε terms in the Z factor:

Γ0 = − 4CF δZ
J
1,1,cusp , Γ(nf )

1 = −32CFTF δZ
J
2,1,cusp , (6.38)

γJ
0 =8CF δZ

J
1,1,nc , γJ

1,nf
= 64CFTF δZ

J
2,1,nc ,

For the one-loop computation of ΣJ
n with a shifted gluon propagator we have Q2 = sc,

and the following result was found in ref. [22]:

m1(h, ε) =
1
2

Γ(2− ε)
(h− ε)Γ(1− h)Γ(3 + h− 2ε)

[
5− ε+ 2(2− h)

h− ε

]
, (6.39)

from which we observe a double pole sits at h = ε. We label quantities related with the
differential and cumulative jet functions with J and ΣJ superscripts, respectively. The
(dimensionless) Fourier transform of the SCET jet function is defined as

J̃n(y, µ) =
∫ ∞

0
ds e−isyJn(s, µ) . (6.40)

6.2.1 Massive vector boson

To simplify the notation we define the dimensionless and positive-definite variable s̄g = s/m2
g,

which will be used in the differential and cumulative versions. The relevant results for
the jet function are:

MΣJ
1 (h, s̄g, 0) =

(3h+ 4)s̄h
g

2h3(2 + h)(1 + h) −−−→
|h|≫1

3s̄h
g

2h4 , (6.41)

δZ1
J(s, µ, ε) =

( 1
ε2 + 3

4ε

)
δ(s)− 1

ε

1
µ2

[
µ2

s

]
+
,

F J
1,ren(0, s, µ) =

1
µ2

[
µ2

s
log
(
s

µ2

)]
+
− 3

4
1
µ2

[
µ2

s

]
+
+
(7
4 − π2

4

)
δ(s) ,

m2
g∆∞

0 F
J
1 (s,mg) = −

[ log(s̄g)
s̄g

]
+
+ 3

4

[ 1
s̄g

]
+
− 5

8δ(s̄g) .

Using eq. (6.38) on the second line of the previous equation we recover the one-loop cusp
anomalous dimension shown in eq. (6.21), along with the non-cusp jet anomalous dimension
coefficient γJ

1 = 6CF = 8.
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The Mellin-Barnes transform for the differential jet function is trivially obtained applying
a derivative: MJ

1 (h, s̄g, 0) = hMΣJ
1 (h, s̄g, 0)/s. Interestingly, after setting ε = 0 there is a

finite number of poles on each side of the real axis. The virtual contribution is simply the
pole at h = ε, and prior to renormalization we find

F J,virt
1 = Γ(ε)

2

(
µ2eγE

m2
g

)ε{[
2π cot(πε)− 2 log

(
µ2

m2
g

)
+ 3− ε2

(2− ε)(1− ε)

]
δ(s)− 2

µ2

[
µ2

s

]
+

}
= δZ1

J(s, µ, ε) + F J,virt
1,ren (s,mg, µ) +O(ε) ,

F J,virt
1,ren = 1

8

[
6 log

(
µ2

m2
g

)
− 4 log2

(
µ2

m2
g

)
+ 9− 2π2

]
δ(s)− log

(
µ2

m2
g

) 1
µ2

[
µ2

s

]
+
. (6.42)

The unexpanded result agrees with eq. (365) of ref. [30]16 and F J,virt
1,ren in the expanded

expression reproduces eq. (33) of ref. [6] up to a global factor of 2 that accounts for the fact
that in that article the jet function accounts for the two hemispheres combined. The real-
radiation part is then obtained simply as the sum of residues of MJ

1 (h, s̄g, ε) to the left of the
origin minus the radiative tail of the virtual contribution. This can be computed as the sum
of the residues at h = 0 (double), −1 and −2 (simple) setting ε = 0 before computing them:

F J,real
1 (s̄g) =

1
s

[(1− s̄g)(1 + 3s̄g)
4s̄2

g

+ log(s̄g)
]
θ(s̄g − 1) , (6.43)

again in agreement with eq. (34) of ref. [6] (up to the factor of two already mentioned). The
one-loop correction to jet matching coefficient relating the jet functions in the theories with
and without massive vector bosons is given by F J,virt

1,ren , in agreement with eq. (37) of ref. [6]
(once again we account for the factor of two and the overall minus sign present due to the
difference in the definition of the matching coefficient)

J (ng)
n (s) =

∫ s

0
ds′M(ng→nℓ)

J (s− s′)J (nℓ)
n (s′) , (6.44)

M(ng→nℓ)
J = δ(s) + αs(µ)

π
CFF

J,virt
1,ren ,

The gluon mass correction to the massless jet function can be written as

∆0J1(s,m2
g) ≡

1
s
J̃1(s̄g) , (6.45)

From that, we define the following RG-evolved jet function, which is the relevant object to
carry out large-log resummation in differential and cumulative cross sections:

J̃ ω̃
1 (s̄g) =

∫ s̄g

0

ds′

s′

(
1− s′

s̄g

)−1−ω̃

J̃1(s′) =
∫ c+i∞

c−i∞

dh
2πi

(3h+ 4)Γ(h)s̄h
g

2h2(2 + h)(1 + h)(−ω)h
, (6.46)

with −1 < c < 0 and where (a)n = Γ(a+n)/Γ(a) is the Pochhammer symbol. The convergence
regions are identical as for the fixed-order case. Closing to the right one encounters only the

16There is indeed a typo in that equation: there should be a minus sign in front of H1−d/2.
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Figure 9. Gluon mass correction to the massless RG-evolved jet function in its exact form (dashed),
and expansions for small masses (solid lines) for three values of ω̃: −0.15 (blue), −0.2 (red), and −0.3
(green). Left panel: small mass expansion of J̃ ω̃

1 at threshold s̄g = 1 as a function of the expansion
order n. Right panel: dependence of J̃ ω̃

1 with s̄g, including 2 non-zero terms in the small-mass
expansion.

triple pole at h = 0. Closing to the left there are double poles at h = −1,−2 and simple
poles at h = −k with k ⩾ 3. All in all, we find

J̃ ω̃
1 (s̄g) =

1
2s̄g

[
Lg(ω̃ + 1) + 5ω̃ + 4

]
+ 1

2
∑
n=3

1
s̄n

g

(4− 3n)(ω̃ + 1)n

n2(n− 2)(n− 1)n! (6.47)

+ 1
8s̄2

g

[
Lg(ω̃ + 1)2 + 2ω̃(ω̃ + 2) + 1

]
= −

L2
g

2 + 3Lg

4 + ψ(1)(−ω̃)
2 − π2

12 − 5
8 ,

where Lg = log(s̄g)− γE − ψ(0)(−ω̃) and the trigamma function ψ(1) is the derivative of the
digamma ψ(0). The series can be summed up and we find a closed form for the RG-evolved
jet function:

J̃ ω̃
1 (s̄g) =

1
2s̄g

[
Lg(ω̃ + 1) + 5ω̃ + 4

]
+ 1

8s̄2
g

[
Lg(ω̃ + 1)2 + 2ω̃(ω̃ + 2) + 1

]
(6.48)

+ (ω̃ + 1)3
216s̄3

g

[
4 4F3

(
1, 1, 3, ω̃ + 4; 4, 4, 4; s̄−1

g

)
− 9 3F2

(
1, 1, ω̃ + 4; 4, 4; s̄−1

g

)]
.

Results for the exact result and the small-mass expansion are shown in figure 9. Nice
convergence is achieved for any value of s̄g (in particular, at threshold) for the various values
of the resummation parameter ω̃ we have tested.

For completeness, we present results for the Fourier transform of the mass corrections to
the massless one-loop jet function. To obtain the Mellin transform we use the following integral

∫ ∞

0

ds
s
e−isy

(
s

mg

)h
= Γ(h)(imgy)−h . (6.49)
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With this result one immediately finds the Fourier transform of ∆0J1(s,m2
g):

∆0J̃1(yg) =
∫ c+i∞

c−i∞

dh
2πi

(3h+ 4)Γ(h)(iyg)−h

2h2(2 + h)(1 + h) (6.50)

= iyg

(
Ly

2 − 5
2

)
+ y2

g

(
Ly

8 − 1
4

)
− 1

2
∑
n=3

(3n− 4)(−iyg)n

(n− 2)(n− 1)n2 n!

= 1
8e

−iyg(5− iyg)− iyg 3F3(1, 1, 1; 2, 2, 2;−iyg)−
(
y2

g

8 + iyg

2 + 3
4

)
Γ(0, iyg)

− 3
4Ly − 5

8 ,

with yg = mgy, −1 < c < 0, and Ly = log(iyg) + γE . In the resummed expression, on the
third line, Γ(0, iyg) is the incomplete gamma function, whose integral expression for a complex
second argument can be found in ref. [33]. Using Cauchy’s root test is simple to check that the
series converges in the entire complex yg plane. For large h, the Mellin transform appearing
in eq. (6.50) behaves as ∝ [−ih/(y e)]h/h7/2, hence the contour integral in the complex h

place can be closed only towards the negative real axis no matter what the value of y is. We
will encounter the same behavior in the rest of Fourier-transformed jet functions discussed in
the remainder of this article, but will not repeat the argument: only expansions for small
masses shall be presented, whose convergence radius will be the entire complex plane. In all
cases we have double checked with Cauchy’s root test that the converge radius is indeed ∞.

6.2.2 Secondary massive bubble

We proceed in the same way as in the previous section, switching between cumulative and
differential to identify distributions and virtual corrections. To simplify expressions as much
as possible, we define s̄ = s/m2. In this case we also compute the expansion for the differential
jet function prior to showing results for its RG evolution. The most relevant expressions
before we discuss any expansion are the following:

MΣJ
2 (h, s̄c, 0) =

2(3h+ 4)(h+ 1)Γ2(h)
h2Γ(2h+ 5) s̄h

c −−−→
|h|≫1

3
√
π

8
1

h11/2

(
s̄c

4

)h
, (6.51)

δZJ
2 (s, µ, ε) =

[ 1
4ε3 − 1

72ε2 − 1
ε

(
π2

72 + 121
432

)]
δ(s) +

( 5
18ε − 1

6ε2

) 1
µ2

[
µ2

s

]
+
,

F J
2,fin(0, s, µ, ε) =

(
ζ3
9 + 17π2

108 − 4057
2592

)
δ(s)−

(
π2

18 − 247
216

) 1
µ2

[
µ2

s

]
+

− 29
36

1
µ2

[
µ2

s
log
(
s

µ2

)]
+
+ 1

6
1
µ2

[
µ2

s
log2

(
s

µ2

)]
+
,

m2∆∞
0 F

J
2 (s̄,m) = − 1

6

[ log2(s̄)
s̄

]
+
+ 29

36

[ log(s̄)
s̄

]
+
−
(359
216 − π2

18

)[1
s̄

]
+

+
(4325
1296 − 2ζ3

3 − 29π2

216

)
δ(s̄) .

The jet anomalous dimension is obtained from the second line using eq. (6.38). We recover
the two-loop cusp anomalous dimension of eq. (6.28) and the corresponding non-cusp piece,
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and observe the cancellation of UV-divergent terms 1/εn:

γJ
1,nf

= −CFTF

(484
27 + 8π2

9

)
= −

(968
81 + 16π2

27

)
. (6.52)

From the first line of eq. (6.51) we see that the expansion for small masses converges if s̄ > 4,
that is, above threshold. Much as happened for the massive vector boson, below threshold
one only has the contribution from the virtual diagrams, captured by the residue of the
only pole with h > 0, sitting at h = ε [ after removing the massless limit and setting ε = 0,
the pole moves to h = 0, making it of multiplicity 4, and one is left with the last line of
eq. (6.51) ]. We can split the virtual and real-radiation contributions again, and compare to
known results. In fact, the virtual terms of the mass corrections to the two-loop massless
jet function are given by ∆∞

0 F
J
2 (s̄), in agreement with ref. [7].17 The non-distributional (or

real-radiation) part is the sum of poles on the negative real axis minus the radiative tail,
which is simply the sum of residues corresponding to all poles with h ⩽ 0 having set ε = 0.
The extra factor of h in MJ

2 (h, m̂, 0) makes the pole at h = 0 triple. The pole at h = −2
is double, while the rest of poles sitting at negative integer values of h are all simple. The
result quoted below is valid only for s̄ > 4, since otherwise it identically vanishes, and the
series is convergent in its whole domain of validity, as can be observed in figure 10(b):

sF J,real
2 = 359

216 − π2

18 + 1
6 log2(s̄)− 29

36 log(s̄)− log(s̄) + 1
2s̄2 +

n ̸=2∑
n=1

s̄−n(3n− 4)(2n− 2)!
(2n− 3)(n− 2)n(n!)2

= 359
216 − π2

18 + 1
6 log2(s̄)− 29

36 log(s̄)− 1
s̄
+ 1
s̄3

[
3F2

(
1, 1, 32; 3, 4;

4
s̄

)
− 7

9 3F2

(
1, 1, 32; 4, 4;

4
s̄

)
+ 4

27 4F3

(
1, 1, 32 , 3; 4, 4, 4;

4
s̄

)]
− log(s̄) + 1

2s̄2 , (6.53)

where to get to the last equality we have summed up the infinite series. This result is
equivalent to eq. (42) of ref. [7], which is expressed in terms of logarithms and a dilogarithm.
As can be seen in figure 10(a), indeed our result for ∆0F

J
2,real exactly vanishes at s̄ = 4. The

jet matching condition is obtained using eq. (4.3), and the result we have obtained

J
(nf )
n (s) =

∫ s

0
ds′M(nf→nℓ)

J (s− s′)J (nℓ)
n (s′) , (6.54)

M(nf→nℓ)
J = δ(s) +

[
αs(µ)
π

]2
TF CFM(2)

J (m, s, µ) ,

M(2)
J (m, s, µ) =

[29
72 log2

(
µ2

m2

)
− 1

18 log3
(
µ2

m2

)
−
(233
216 + π2

36

)
log
(
µ2

m2

)
− 5ζ3

9

+ 5π2

216 + 1531
864

]
δ(s) +

[5
9 log

(
µ2

m2

)
− 1

6 log2
(
µ2

m2

)
− 14

27

] 1
µ2

[
µ2

s

]
+
,

is in agreement with eq. (46) of ref. [7] if setting µm = µJ after reversing the sing and
accounting for the factor of 2 explained already. In the previous equation, the strong coupling
can be evaluated with either nf or nℓ active flavors.

17Despite appearances, eq. (41) of ref. [7] is µ-independent as it should: the dependence on the renormalization
scale is entirely contained in the massless jet function.
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Figure 10. Secondary mass corrections to the jet function: real radiation part. We show exact
results as green dashed lines, and the expansions for small masses as red solid lines. Left panel: small
mass expansion of 4m2F J,real

2 at threshold s̄ = 4 as a function of the expansion order n. Right panel:
dependence of sF J,real

2 with s̄, including 6 non-zero terms in the expansion.

We discuss next the RG-evolved hemisphere jet function, defined as in eqs. (6.45)
and (6.46), and considering once more only the evolution of the correction to the massless
result. From the inverse Mellin transform we find:

J̃ ω̃
2 (s̄) =

∫ s̄

0

ds̄′

s̄′

(
1− s̄′

s̄

)−1−ω̃

J̃2(s̄′) =
∫ c+i∞

c−i∞

dh
2πi

2(h+ 1)(3h+ 4)Γ3(h)s̄h

hΓ(2h+ 5)(−ω̃)h
, (6.55)

where the convergence radius does not depend on ω̃. Once again, closing to the right for
s̄ < 4 one picks only the multiplicity-4 pole at h = 0 corresponding to the virtual radiation
contribution. For s̄ > 4 one closes to the left, finding an infinite number of poles sitting at
integer negative values of h: double at h = −2, simple otherwise. Defining the logarithm
L = log(s̄) − γE − ψ(0)(−ω̃) we obtain the following results:

J̃ ω̃
2 (s̄) =

29L2

72 − L3

18 + L

216
[
36ψ(1)(−ω̃) + 6π2 − 359

]
(6.56)

+ 1
1296

[
72ψ(2)(−ω̃)− 522ψ(1)(−ω̃)− 720ζ3 − 87π2 + 4325

]
= − 1

8s̄2

{[
L2 − π2

6 − ψ(1)(−ω̃)
]
(ω̃ + 1)2 + L[ω̃(5ω̃ + 11) + 4] + ω̃(7ω̃ + 11) + 1

}

+
n ̸=2∑
n=1

(3n− 4)(2n− 2)!(ω̃ + 1)n

s̄nn(n− 2)(2n− 3)(n!)3

[
L+ 3Hn − 2H2n−2 + ψ(0)(−ω̃)− ψ(0)(−n− ω̃)

+ 12n3 − 45n2 + 56n− 24
n(n− 2)(2n− 3)(3n− 4)

]
.

The infinite sum can be carried out and one obtains an analytic expression in terms of
MeijerG functions. We find it more convenient to carry out the truncated sum, adding as
many terms as necessary to achieve the desired numerical accuracy. For efficient computer
implementations, it is convenient to express ψ(0)(−n− ω̃) in terms of ψ(0)(−ω̃) as follows:

ψ(0)(−n− ω̃) = ψ(0)(−ω̃) +
n∑

i=1

1
i+ ω̃

. (6.57)
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Figure 11. Secondary mass correction to the massless RG-evolved jet function in its exact form
(dashed), and expansions for small masses (solid lines) for three values of ω̃: −0.15 (blue), −0.2
(red), and −0.3 (green). Left panel: small mass expansion of J̃ ω̃

2 at threshold s̄ = 4 as a function of
the expansion order n. Right panel: dependence of J̃ ω̃

2 with s̄, including two non-zero terms in the
small-mass expansion.

In figure 11 we show the good convergence of the small-mass expansion, and how it agrees
with the single term corresponding to the virtual radiation contribution at s̄ = 4. The
agreement of the two series is a strong cross-check on our results.

Obtaining the expansion of the Fourier transform of the secondary-mass correction to
the two-loop jet function is straightforward, picking up the poles with negative values of
h, and we find for the Fourier transform of ∆0J2(s,m):

∆0J̃2(xm) =
∫ c+i∞

c−i∞

dh
2πi

2(h+ 1)(3h+ 4)Γ3(h)(ixm)−h

hΓ(2h+ 5) (6.58)

=x2
m

[
L2

x

8 − 5Lx

8 − π2

48 + 7
8

]
−

n ̸=2∑
n=1

(3n− 4)(2n− 2)!(−ixm)n

(n− 2)n(2n− 3)(n!)3

×
[
Lx + 2H2n−2 − 3Hn + 24− 12n3 + 45n2 − 56n

n(n− 2)(2n− 3)(3n− 4)

]
,

with xm = my, −1 < c < 0, and Lx = log(ixm) + γE .
Before closing the section on SCET computations, the following comment is in order. If

applying the strict EFT philosophy, when the secondary quark is no longer active (that is, if
µm > µJ), the secondary quark simply and plainly does not participate in the jet function.
The matching condition M(nf→nℓ)

J accounts for the discrepancy of the two EFTs in the UV.
Since the two theories are required to agree for m→ ∞, the matching condition takes into
account only the virtual radiation, as real emissions cannot occur in this limit. One can
however make the transition between the two scenarios smoother by including the mass-
suppressed real-radiation contribution not accounted for in M(nf→nℓ)

J , which will naturally
become increasingly small as s̄ decreases. This “improved” nℓ flavored jet function is simply:

J (nℓ)
n (s, µ,m) = J (nℓ)

n (s, µ, 0) +
[
α

(nℓ)
s (µ)
π

]2
CFTF∆∞Jn(s̄,m) , (6.59)
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that agrees with the EFT result J (nℓ)
n (s, µ, 0) in the limit m → ∞. In ref. [7], this mass-

modified jet function is obtained from the nf jet function computation using an OS renor-
malization factor ZOS

J . Even if different in spirit, the results are of course equivalent.

7 bHQET computations

We consider now the situation of jets produced by boosted massive primary quarks (the
most relevant scenario is for unstable tops) resulting from e+e− collisions. While for jets
whose invariant mass is larger than the quark mass (specifically, for m2

J −m2
t ∼ m2

t ) SCET
can be used to write down a factorized cross section in a way analogous to the case of
primary massless quarks, when the jet mass is very close to the heavy quark mass, that is for
m2

J −m2
t ∼ mtΓt ≪ m2

t , SCET must be matched onto a boosted version of HQET, dubbed
bHQET [14, 15]. In such situation, the relevant degrees of freedom on top of the heavy quarks
are ultracollinear particles, which are soft in the rest frame of the tops kµ

c,rest ∼ O(Γt) and
large-angle soft radiation which scales in the center-of-mass frame as kµ

s,CM ∼ O(mtΓt/Q), with
smaller virtuality than the ultracollinear radiation. When matching the SCET dijet operator
to the corresponding bHQET current, an additional matching coefficient Cm needs to be
taken into account. Furthermore, the heavy-quark fields, along with the ultracollinear Wilson
lines, define a new jet function, which will be referred to as the bHQET jet function Bn(ŝ, µ):

1
σ0

dσbHQET
de =Q2H(Q,µm)Hm

(
m,

Q

m
,µm, µ

)∫
dℓBτ

(
Q2τ −Qℓ

m
− 2m,µ

)
Se(ℓ, µ) , (7.1)

Bτ (ŝ, µ) =m

∫ ŝ

0
dŝ′Bn(ŝ− ŝ′, µ)Bn(ŝ′, µ) .

The jet function does not contain top loops, since the non-relativistic HQET propagators
have only a pole and such loops identically vanish. The soft function is identical to its SCET
counterpart, except for the fact that there is no soft field for the primary heavy quark left in the
bHQET Lagrangian, hence top quarks cannot be produced and do not appear in closed loops.

In this article we consider mass corrections from secondary quarks (say bottom quarks)
and massive vector bosons to the matching between SCET and bHQET (where the top quarks
are primarily produced) and the bHQET hemisphere jet function (for the top quark). In this
context, we also need a VFNS framework analogous to that developed in ref. [7] for SCET.
Even though the formal aspects of that setup will be discussed in a forthcoming publication,
we present in this section the results for the most relevant computations, carried out with
the Mellin-Barnes strategy which is the main focus of this article. This also includes the
hard mass matching condition defined as O(nf )

bHQET = M(nf→nℓ)
bHQET O(nℓ)

bHQET, being ObHQET dijet
current operators in bHQET, resulting from integrating the secondary massive bubble at
a scale smaller than the primary mass, along with the matching condition for the bHQET
jet function M(nf→nℓ)

B .

7.1 Hard matching coefficient

In first place we compute 1- and 2-loop quantum corrections to the Wilson coefficient relating
the dijet operators defined in SCET and bHQET caused by a massive vector boson or a
quark bubble of massive secondary quarks. The relevant hard scale is the mass M of the
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primary quark. In this section we use µM ∼ M to denote the scale of the primary mass
at which SCET is matched onto bHQET, and leave µm ∼ m as the scale associated to the
secondary mass. Likewise, M and m will denote the primary and secondary masses. Finally,
nf + 1 will be used to denote EFTs in which both primary and secondary massive quarks
are active, while nℓ = nf − 1 signifies that none of those is active any more. Operators
labeled with nf (nℓ + 1) have the primary (secondary) quark active while the secondary
(primary) has been integrated out.

For the one-loop computation with a shifted gluon propagator we have Q2 =M2, and
the following result was found in ref. [22]:

hh
1(h, ε) =

1
2
(1− h)Γ(1− h+ ε)Γ(1 + 2h− 2ε)

Γ(3 + h− 2ε)(h− ε)2 (7.2)

× {2 + h2(3− 2ε) + 4h(1− ε)2 − ε[5− (5− 2ε)ε]} ,

again depicting a double pole at h = ε

7.1.1 Review of SCET-bHQET matching for massless quarks

In this case we deal with the SCET and bHQET dijet currents, both defined in terms of
bare fields, schematically denoted by Obare

SCET and Obare
bHQET. Restricting ourselves to vector

currents only we have18

Obare
bHQET = h̄v+WnY

†
nγ

µYn̄W
†
n̄hv− , (7.3)

where Wn and Wn̄ are ultracollinear Wilson lines which are identical to those defined in
SCET. The soft Wilson lines have already been defined after eq. (6.2). The spin structure can
be simplified due to heavy-quark spin symmetry, but since it plays no role in our discussion
we do not show the simplified form. The SCET current was already shown in eq. (6.2).
The bHQET dijet current needs multiplicative renormalization through a Z-factor, defining
the renormalized operator

Oren
bHQET(µ) = ZbHQET(µ)Obare

bHQET . (7.4)

The renormalized bHQET operator depends on the renormalization scale µ at which it is
renormalized, and the dependence with this scale is set by the anomalous dimension γbHQET,
calculable through ZbHQET(µ) in the usual fashion. Such anomalous dimension is of regular
nature, meaning it does not contain a cusp part.

The matching condition between SCET and bHQET is defined on renormalized operators
and reads

O(nf ),ren
SCET (µ) =C

(nf→nℓ)
bHQET O(nℓ),ren

bHQET(µ) , O(nf ),bare
SCET = C

(nf→nℓ),bare
bHQET O(nℓ),bare

bHQET , (7.5)

C
(nf→nℓ),bare
bHQET = ZbHQET(µ)

ZSCET(µ)
C

(nf→nℓ)
bHQET ,

18For massless primary quarks, the vector and axial-vector form factors are identical up to O(α2
s) in QCD

or SCET, even in the presence of massive secondary quarks. For massive primary quarks the axial and vector
form factors differ in full QCD by mass-suppressed corrections, but are still identical in SCET and bHQET at
leading power. Hence, our discussion remains general.
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hence C(nf→nℓ),bare
bHQET relates the SCET and bHQET bare currents. To avoid large logarithms,

one must match both EFTs at the scale µM ∼ M .19 The simplest matrix element that
can be used to compute this Wilson coefficient is the quark form factor which we again
denote by ⟨O⟩. For simplicity, in the rest of this subsection we drop the number of flavors
along with the dependence on µ. Taking logarithms is once more convenient since all factors
involved equal 1 at lowest order. Hence

log(Cbare
bHQET) = log(ZbHQET)− log(ZSCET) + log(Cren

bHQET) (7.6)
= log(⟨Obare

SCET⟩)− log(⟨Obare
bHQET⟩) .

We can assume the SCET renormalization factor ZSCET is already known from previous
computations. Both matrix elements are IR divergent and a regulator has to be specified.
Since the infrared physics in both EFTs is identical, the matching coefficient is free from IR
singularities and the regulator choice does not affect the final result. Different choices, however,
might simplify or complicate the computations. If a regulator other than dimreg is chosen
one has log(ZbHQET) = −[ log(⟨Obare

bHQET⟩)]div, where again we adopt the MS prescription to
absorb UV singularities. Let us discuss in some detail the simplest choice to carry out the
computation: using dimreg to regulate IR divergences. In this situation, for massless secondary
quarks one has ⟨Obare

bHQET⟩ = 1 to all orders. Hence log(Cbare
bHQET) = log(⟨Obare

SCET⟩) where all
1/εn divergences are of UV origin, such that log(Cren

bHQET) = log(⟨OSCET⟩)fin. The downside
is that ZbHQET must be determined indirectly, but this is not complicated: log(ZbHQET) =
log(⟨Obare

SCET⟩)div + log(ZSCET). The divergent structure log(Zm) ≡ log(⟨Obare
SCET⟩)div resembles

that of a quantity with cusp anomalous dimension:

log(Zm) = δZm
cusp log

(
µ2

M2

)
+ δZm

nc , (7.7)

δZm
cusp =

∑
n=1

[
αs(µ)
4π

]n

δZm
n,cusp , δZm

nc =
∑
n=1

[
αs(µ)
4π

]n

δZm
n,nc ,

δZm
n,cusp =

n∑
i=1

δZm
n,i,cusp
εi

, δZm
n,nc =

n+1∑
i=1

δZm
n,i,nc
εi

,

where αs(µ) ≡ α
(nℓ)
s (µ), that is, the primary quark is not active. This applies to all series

appearing in this section unless otherwise stated. These coefficients also obey the consistency
conditions laid out in eq. (6.5). Since the bHQET current operator is free from cusp anomalous
dimensions, the sum log(ZbHQET) = log(Zm) + log(ZSCET) cannot contain a logarithm of µ.
This can only occur if δZm

cusp = −δZSCET
cusp . Moreover, that equality, along with eq. (6.5),

implies that δZm
n,n+1,nc = −δZSCET

n,i,nc . All in all, we have

log(ZbHQET) = δZSCET
cusp log(−M̂2) + δZbHQET

nc , (7.8)

δZbHQET
nc = δZm

nc + δZSCET
nc =

∑
n=1

[
αs(µ)
4π

]n

δZbHQET
n,nc ,

ZbHQET
n,nc =

n∑
i=1

δZm
n,i,nc + δZSCET

n,i,nc
εi

≡
n∑

i=1

δZbHQET
n,i,nc
εi

,

19We consider the primary quark mass in the pole scheme.
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where we have introduced the reduced mass M̂ = M/Q in the first line. Adding up the
relation in the second line of eq. (6.5) applied to δZm

n,i,nc and δZSCET
n,i,nc , and taking into account

that δZbHQET
i−1,i,nc = 0, it is found that the coefficients δZbHQET

n,i,nc obey the relation in the first
line of that equation, crucial to obtain a UV-finite bHQET anomalous dimension. We find:

γbHQET(αs) = − dZbHQET
d logµ = −Γcusp(αs) log(−M̂2) +

∑
n=1

γbHQET
n

(
αs

4π

)n
, (7.9)

γbHQET
n =2(n+ 1)δZbHQET

n,1,nc .

This result can be used to RG-evolve the bHQET dijet current operator. At this point, a
discussion along the lines of that presented at the end of section 6.1.1 could be added, but
we refrain doing so to avoid repetition.

7.1.2 Formal aspects of bHQET matching

A presentation analogous to that laid out in section 6.1 can be carried out for the effects of
secondary masses on the matching between SCET and bHQET. The same discussion applies
to the case of a massive vector boson, and to avoid repetition we focus on the secondary bubble
only. If µm ≫ µM ,20 one first integrates out the secondary quark by matching SCET(nf +1)

onto SCET(nf ) (both theories with a massive, active, primary quark, whose mass M is an
IR scale) obtaining the matching condition M(nf +1→nf )

SCET (M,m,Q, µ) = ⟨O(nf +1)
SCET ⟩/⟨O(nf )

SCET⟩.
Since IR dynamics is the same in both theories, its M → 0 limit is well defined and has
been already computed, see eq. (6.34). Subsequently, the hard shell of the primary massive
quark is integrated out by matching SCET(nf ) onto bHQET(nℓ) through the “ordinary”
massless Wilson coefficient C(nf→nℓ)

m (0, µ) = ⟨O(nf )
SCET⟩/⟨O

(nℓ)
bHQET⟩. On the other hand, if

µm ≪ µM , the secondary mass is an infrared scale both in SCET(nf +1) and bHQET(nℓ+1),
hence the matching coefficient relating both theories should not depend on it. In this
case, the hard shell of the primary quark is integrated out first by matching SCET(nf +1)

onto bHQET(nℓ+1), obtaining C(nf +1→nℓ+1)
m (0, µ) = limm→0⟨O

(nf +1)
SCET ⟩/⟨O(nℓ+1)

bHQET⟩. In a way
analogous to Scenario II in SCET, we can keep the formally power suppressed mass effects
in the matching condition simply not taking the limit of vanishing secondary quark mass:
C

(nf +1→nℓ+1)
m (m,µ) = ⟨O(nf +1)

SCET ⟩/⟨O(nℓ+1)
bHQET⟩. This is the IR-finite quantity that shall be

computed in this section. Finally, if the masses of the primary and secondary quarks are
comparable, both are UV scales that do not live in bHQET and one integrates the hard
scales µm and µM simultaneously, “jumping” two quark flavors at once:

C
(nf +1→nℓ)
m = ⟨O(nf +1)

SCET ⟩
⟨O(nℓ)

bHQET⟩
=



⟨O(nf +1)
SCET ⟩

⟨O(nℓ+1)
bHQET⟩

⟨O(nℓ+1)
bHQET⟩

⟨O(nℓ)
bHQET⟩

= M(nℓ+1→nℓ)
bHQET C

(nf +1→nℓ+1)
bHQET (m)

⟨O(nf +1)
SCET ⟩

⟨O(nf )
SCET⟩

⟨O(nf )
SCET⟩

⟨O(nℓ)
bHQET⟩

= M(nf +1→nf )
SCET (M)C(nf→nℓ)

bHQET (0)
, (7.10)

hence, we can obtain the bHQET matching condition as

M(nℓ+1→nℓ)
bHQET (M,Q,m, µ) = M(nf +1→nf )

SCET (0, Q,m, µ)
C

(nf→nℓ)
bHQET (M, 0, µ)

C
(nf +1→nℓ+1)
bHQET (M → 0,m, µ)

, (7.11)

20We assume in this section Q > µm.
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where we use the fact that M(nℓ+1→nℓ)
bHQET (M,Q,m, µ) depends on M through logarithms only,

and hence it coincides with its M → 0 expression. Furthermore, we can set M = 0 in
M(nf +1→nf )

SCET since the limit, as already argued, is smooth. Finally, we consider the expansion
C

(nℓ+1→nℓ)
bHQET (M → 0,m) since the limit of massless primary quark is not analytic and involves

logarithms. Since the non-logarithmic dependence is through ratios of masses, this limit
coincides with taking m → ∞. From the result above we can obtain

M(nf +1→nf )
SCET (M,Q,m, µ) = M(nf +1→nf )

SCET (0, Q,m, µ)
C

(nf +1→nℓ+1)
bHQET (M,m,µ)

C
(nf +1→nℓ+1)
bHQET (M,m→ ∞, µ)

. (7.12)

From this result it is clear that the dependence of M(nf +1→nf )
SCET (M,Q,m, µ) on µ is M

independent, and the M → 0 limit is trivially satisfied. These relations can be used to
isolate the SCET and bHQET matrix elements due to a massive vector boson, which are
well-defined by themselves (that is, there is no need to specify an IR regulator) since mg

regulates infrared and collinear divergences, or the dispersive contribution from a secondary
massive bubble, also IR finite.

7.1.3 Massive vector boson

In this section we use again the dimensionless variable ξg = mg/M defined in section 5.1. The
most relevant results to be presented before turning to the small- and large-mg expansions
are the following:

Mm
1 (h, 0, ξg) =

[2 + h(3h+ 4)]Γ2(2− h)Γ(2h)ξ−2h
g

h2(1− h2)(h+ 2) −−−→
|h|≫1

−3π
3
2 csc2(πh)
2
√
h

(
ξg

2

)−2h

,

δZm
1

(
0, M
µ
, ε

)
=CF

[ 2
ε2 + 1

ε

(
2LM + 1

)]
,

Fm
1,ren

(
0, M
µ

)
=1 + π2

24 + 1
4L

2
M + 1

4LM ,

∆∞
0 F

m
1 (ξg) =

1
8 − π2

4 − log2(ξg)−
1
2 log(ξg), (7.13)

with LM ≡ log(µ2/M2). The form of the 1/εn terms on the second line makes clear the
result cannot correspond to a SCET computation, since in this EFT the primary mass is
an infrared scale and UV divergences can only depend on UV physics. The result in the
second line agrees with the known one-loop result, computed for the first time in ref. [15], see
eq. (131) therein. The one-loop ZbHQET factor is obtained adding δZm

1 and δZSCET
1 , from

where we can also compute the one-loop anomalous dimension:

δZbHQET
1 = −2CF

ε

[
log(−M̂2) + 1

]
, γbHQET

1 = −4CF

[
log(−M̂2) + 1

]
, (7.14)

both in agreement with ref. [15], see eqs. (129) and (131) therein . The result in the last line
of eq. (7.13) comes from the triple pole at h = 0. From the first line of eq. (7.13) one can see
that the small and large gluon mass expansions will converge for mg smaller or larger that 2M ,
respectively. On the negative real axis there are double poles at h = −1 and −2, and simple
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poles at all other negative integer and half-integer values of h. On the positive real axis one
finds a triple pole at h = 1 and double poles at all other integer values of h. All in all, we find

∆0F
m
1 (ξg) = − ξ2

g

[
log(ξg) +

1
4

]
+ 3

16ξ
4
g

[
4 log(ξg)− 3

]
(7.15)

+
n ̸=2,n ̸=4∑

n=1

(
−ξg

)n (n+ 2)(3n2 − 8n+ 8)Γ2(n
2 + 1

)
(n− 4)(n− 2)n2 n!

=∆∞
0 F

m
1 + 3

2ξ
−2
g +

∑
n=2

ξ−2n
g

(2n− 1)!
[(n+ 2)!]2

{8 + 22n+ 20n2 + 9n3 − 2n4 − 3n5

n

− 2(n2 − 1)(n+ 2)(3n2 + 4n+ 2)
[
log(ξg) +Hn−1 −H2n−1

]}
.

The term linear in the gluon mass (caused by the pole at h = −1/2) is directly related to
the u = 1/2 renormalon found in ref. [22]. The expansion for small mg can be summed up
and we find the following analytic result:

∆0F
m
1 (ξg) =

10ξ2
g − 4− 3ξ4

g

4rg
ξg log

(
ξg + rg

2

)
− log2

(
ξg + rg

2

)
(7.16)

−
π2 + 3ξ2

g + ξ2
g(4− 3ξ2

g) log(ξg)
4 ,

with rg =
√
ξ2

g − 4. The expression above has all terms manifestly real for ξg ≥ 2. For
ξg < 2 the result is also real-valued, but to have all terms manifestly real one has to make
the following replacements:

rg → r̂g =
√
4− ξ2

g , (7.17)

log2
(
ξg + rg

2

)
→ − arctan2

(
r̂g

ξg

)
,

1
rg

log
(
ξg + rg

2

)
→ 1

r̂g
arctan

(
r̂g

ξg

)
.

At the limiting value ξg = 2 one gets of course a finite result, ∆0F
m
1 (2) = 8 log(2)− 6− π2/4.

In figure 12 we study the convergence of the small and large gluon mass series expansions.
The small mass expansion has an oscillatory behavior, possibly related to the u = 1/2
renormalon, and converges at a slower pace than its large-mass counterpart. We observe
that the latter needs many terms to approach the exact value at the limiting value ξg = 2,
hence it is also slowly convergent.

Next we compute the matching condition M(ng→nℓ)
bHQET at one loop, which coincides with

the bHQET massive vector boson form factor F bHQET
1 and is obtained from the mg → ∞

limit of the SCET to bHQET Wilson coefficient, see eq. (7.11):

M(ng→nℓ)
bHQET =1 + CF

αs(µ)
π

F bHQET
1

(
M̂,

mg

µ
, ε

)
, (7.18)

F bHQET
1

(
M̂,

mg

µ
, ε

)
=F SCET

1,ren (0, Q,mg, µ)− Fm
1,ren

(
0, M
µ

)
−∆∞

0 F
m
1 (ξg)−

δZbHQET
1
4CF

=
[ 1
2ε + log

( µ

mg

)][
log(−M̂2) + 1

]
.
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Figure 12. Gluon mass correction to the massless Wilson coefficient relating the dijet operators in
SCET and bHQET in its exact form (dashed green), small- (blue) and large-mass (red) expansions.
Left panel: ∆0F

m
1 at the boundary between the mass expansions ξg = 2, as a function of the expansion

order n of each series. Right panel: dependence of ∆0F
m
1 (ξg) with the reduced gluon mass, including

20 and 10 non-zero terms in the small- and large-mass expansions, respectively.

The presence of powers of log(µ/mg) makes clear that the gluon mass is acting as a regulator
for IR divergences. The µ dependence of the result above is consistent with the mg-independent
Z-factor depicted in eq. (7.14), in which cusp terms are absent. The dependence on the
renormalization scale also agrees with that of eq. (130) in ref. [15], where off-shellness was
used as a regulator. We finish this section by computing the primary-mass-corrected matching
condition M(ng→nℓ)

SCET at one loop using eq. (7.12), which coincides with the SCET form factor
for massive primary quarks and a massive virtual gluon:

M(ng→nℓ)
SCET =1 + CF

αs(µ)
π

F SCET
1 (M,Q,mg, µ) , (7.19)

F SCET
1 (M,Q,mg, µ) =F SCET

1,ren (0, Q,mg, µ) + ∆0F
m
1 (ξg)−∆∞

0 F
m
1 (ξg) .

Obviously, the result in the second line can also be computed adding F bHQET
1 and Fm

1,ren.

7.1.4 Secondary massive bubble

In this section we will write the relevant theoretical expressions in terms of the dimensionless
parameter ξ = m/M defined in section 5.2. The most relevant results prior to discussing
any expansions are

Mm
2 (h, ξ, 0) = (1− h)(3h2 + 4h+ 2)Γ2(1− h)Γ2(h)ξ−2h

2h2(h+ 2)(2h+ 1)(2h+ 3) −−−→
|h|≫1

−3π2 csc2(πh)
8h2 ξ−2h,

δZm
2,nf

(
0, M
µ
, ε

)
= 16CFTF

[ 1
8ε3 + 1

12ε2

(
LM − 1

3

)
− 1
ε

( 5
36LM + π2

48 + 5
432

)]
,

Fm
2,ren

(
0, M
µ

)
= − 1

36L
3
M − 13

72L
2
M − LM

(
π2

18 + 77
216

)
− 13ζ3

36 − 37π2

432 − 1541
2592 ,

∆∞
0 F

m
2 (ξ) = 2

9L
3
ξ +

13
18L

2
ξ +

(133
108 + π2

9

)
Lξ +

1747
1296 + 13π2

108 . (7.20)
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Figure 13. Secondary mass correction to the two-loop massless Wilson coefficient relating the dijet
operators in SCET and bHQET in its exact form (dashed green), small- (blue) and large-mass (red)
expansions. Left panel: ∆0F

m
2 at the boundary between the mass expansions ξ = 1, as a function of

the expansion order n of each series. Right panel: dependence of ∆0F
m
2 (ξ) with the secondary quark

mass, including 4 and 1 non-zero terms in the small- and large-mass expansions, respectively.

with Lξ = log(ξ). From the first line we see that the boundary between expansions is ξ = 1,
value at which both converge due to the h−2 overall dependence of Mm

2 (h, ξ, 0) for large
h. The divergent pieces and massless part agree with the results found in ref. [34]. From
the UV singularities we can obtain the nf piece of the two-loop bHQET renormalization
factor, simply adding δZm

2,nf
and δZSCET

2,nf
from eq. (6.27), and from that result obtaining

the corresponding anomalous dimension is trivial

δZbHQET
2,nf

=CFTF

[
log(−M̂2) + 1

](
−4
3
1
ε2 + 20

9
1
ε

)
, (7.21)

γ2,nf
= 80

9 CFTF

[
log(−M̂2) + 1

]
= 160

27
[
log(−M̂2) + 1

]
.

The Z factor agrees with eq. (3.6) of ref. [34] and the anomalous dimension reproduces the
corresponding piece in eq. (2.19) of the same reference.

Let us study now the different series for the mass corrections: there are double poles
at all integer values of h except for h = 1, which is simple, and h = −2 with multiplicity
equal to 3. Additionally, simple poles sit at h = −1/2, −3/2. Since the factor containing
gamma functions in Mm

2 (h, ξ, 0) is invariant under the replacement h → −h, one expects
some symmetry in the infinite sums appearing in the expansions for small and large mass.

– 45 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
6

Indeed, after applying the converse mapping theorem, we get the following expansions:

∆0F
m
2 (ξ) =∆∞

0 F
m
2 (ξ)−

∑
n=1

An(ξ) (7.22)

= 3π2ξ

8 − 55π2ξ3

72 + ξ4
(3
2L

2
ξ − 3Lξ +

π2

4 + 145
48

)
+

n ̸=2∑
n=1

A−n(Lξ) ,

An(ξ) =
ξ−2n

n2(n+ 2)(2n+ 1)(2n+ 3)

[
(2 + 4n+ 3n2)(n− 1)Lξ

+
3
(
8n6 + 20n5 − 45n3 − 68n2 − 42n− 8

)
2n(n+ 2)(2n+ 1)(2n+ 3)

]
.

For the limiting case ξ = 1 one finds ∆0F
m
2 (1) = ζ3/3 + 83/36 − π2/108. The series for

large ξ can be summed up and we find the following expression, in which all terms are
manifestly real for ξ > 1:

∆0F
m
2 = π2ξ4

8 − 55π2ξ3

108 + 83ξ2

36 + 13
18L

2
ξ +

(14ξ2

9 + π2

6

)
Lξ +

π2ξ

4 − 10
9 L

3
ξ +

13π2

216 (7.23)

+ 1
3

[
Li3
( 1
ξ2

)
+ 2L2

ξ log
(
ξ2 − 1

)]
+
(13
36 − 3ξ4

4 − Lξ

3

)
Li2
(
1− 1

ξ2

)
+
(3ξ

4 − 55ξ3

36

)[
Lξ log(ξ + 1)− 1

2 log2(ξ + 1) + Li2(1− ξ)− Li2
(

ξ

ξ + 1

)]
.

For ξ < 1 the expression is still real, but the individual pieces on the term in square brackets in
the second line become complex. To have each term manifestly real, the following substitution
should be implemented:

Li3
( 1
ξ2

)
+ 2L2

ξ log
(
ξ2 − 1

)
→ Li3

(
ξ2)+ 2L2

ξ log
(
1− ξ2)+ 4

3L
3
ξ −

2
3π

2Lξ . (7.24)

In figure 13, a comparison of the exact expression and both expansions is shown at various
orders. We see that at ξ = 1 both expansions converge very quickly, although the large-mass
one is accurate already at very low orders, and the small-mass series exhibits an oscillatory
behavior related to the poles at half-integer values: after the third power of ξ is included,
the sign alternating behavior disappears. Both expansions excel reproducing the exact result
in their respective convergence domains, but the large-mass expansion is particularly fast
at approaching the all-order result.

From these results we can compute the bHQET flavor matching condition, that is, the
Wilson coefficient relating bHQET dijet operators in two consecutive EFTs, the UV one
with an active secondary massive quark, the IR one where the secondary quark has been
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integrated out. Using eq. (7.11) we obtain

M(nℓ+1→nℓ)
bHQET (M̂,m, µ) = 1 +

[
αs(µ)
π

]2
CFTFM(2)

bHQET

(
M̂,

m

µ

)
, (7.25)

M(2)
bHQET

(
M̂,

m

µ

)
=M(2)

SCET(m,Q, µ)−
2
3F

m
1,ren

(
0, M
µ

)
log
(
µ

m

)
− Fm

2,ren

(
0, M
µ

)
−∆∞

0 F
m
2 (ξ)

= 1
3
[
log
(
−M̂2)+ 1

][
log2

(
µ

m

)
− 5

3 log
(
µ

m

)
+ 7

9

]
,

where at this order, αs can be used with either nℓ + 1 or nℓ running flavors. Using eq. (7.12)
we obtain the following result for the SCET flavor condition corrected for the effects of a
non-zero primary quark mass M , which is an active degree of freedom in both EFTs, but
where the secondary quark appears only in the SCET with nf + 1 active flavors

Mnf +1→nf

SCET (M,Q,m, µ) = 1 +
[
αs(µ)
π

]2
CFTFM(2)

SCET(M,m,Q, µ) , (7.26)

M(2)
SCET(M,m,Q, µ) =∆0F

m
2 (ξ) +M(2)

SCET(m,Q, µ)−∆∞
0 F

m
2 (ξ) ,

where at the order we are working, the strong coupling can be evolved with either nf + 1
or nf flavors. Next we compute the dispersive contribution to the SCET and bHQET form
factors separately. For bHQET we compute the finite and divergent parts of the dispersive
contribution, which can be combined in a concise form:

HbHQET
2

(
M̂,

m

µ
, ε

)
=M(2)

bHQET

(
M̂,

m

µ

)
+ δZbHQET

1
12CF

[(
µ2eγE

m2

)ε
Γ(ε)− 1

ε

]
−
δZbHQET

2,nf

16CFTF

=
[
log(−M̂2) + 1

]{ 1
12ε2 + 1

ε

[1
3 log

(
µ

m

)
− 5

36

]
+ 2

3 log2
(
µ

m

)
− 5

9 log
(
µ

m

)
+ π2

72 + 7
27

}
. (7.27)

We proceed in the same way for the SCET dispersive contribution with massive primary
and secondary quarks and find

HSCET
2

(
M̂,

m

µ
, ε

)
=M(2)

SCET(M,m,Q, µ) + δZSCET
1

12CF

[(
µ2eγE

m2

)ε
Γ(ε)− 1

ε

]
−
δZSCET

2,nf

16CFTF

=M(2)
SCET(M,m,Q, µ) + 1

8ε3 + 1
ε2

[ 1
12 log(−m̂2)− 1

6 log
(
µ

m

)
+ 1

18

]
− 1
ε

{[1
3 log(−m2) + 7

9

]
log
(
µ

m

)
+ 5

36 log(−m̂2) + log2
(
µ

m

)
+ 5π2

144 + 65
432

}
− π2

72 log(−m̂2)− 8
9 log3

(
µ

m

)
− π2

18 log
(
µ

m

)
+ ζ3

18 − π2

48 −
[1
3 log(−m̂2) + 1

2

]
log2

(
µ

m

)
. (7.28)
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We finish the section by, starting from our results, computing the contribution of a
secondary massive bubble to the SCET-bHQET Wilson coefficient, for the case in which
the particle running in the bubble is also the primary quark. This contribution does not
coincide with Fm

2 (M,M,µ, ε) since the massive bubble with a primary quark contributes to
the SCET part, but does not appear on the bHQET since in this EFT the mass M is not
an IR scale. The renormalized correction can be expressed as21

Fm
2,M (M) =

{
HSCET

2

(
M̂,

M

µ
, ε

)
− 1

3F
SCET
1

[(
µ2eγE

M2

)ε
Γ(ε)− 1

ε
− log

(
µ2

M2

)]}
fin

(7.29)

=Fm
2,ren(M,M,µ) +HbHQET

2,ren

(
M̂,

M

µ

)
+ 1

3F
m
1,renLM + ε

3
δZbHQET

1
4CF

(1
2L

2
M + π2

12

)
= 1

18L
3
M − 1

72L
2
M − LM

(
π2

24 + 65
216

)
− ζ3

36 − 41π2

432 + 5107
2592

+ log(−M̂2)
( 1
12L

2
M − 5

18LM + 7
27

)
.

To arrive to the second expression we have used that since the term in square brackets on
the first line is O(ε), one can replace F SCET

1 by −δZSCET
1 /(4CF ). After this replacement,

since only the finite part is taken, the logarithm within square brackets can be dropped.
Furthermore, we have written

HSCET
2,ren = Fm

2,ren +HbHQET
2 + 1

3

{(
Fm

1,ren + δZm
1

4CF

)[(
µ2eγE

M2

)ε
Γ(ε)− 1

ε

]}
fin
, (7.30)

grouped both Z factors and noted that δZm
1 + δZSCET

1 = δZbHQET
1 ∝ 1/ε. Since only finite

terms are kept and Fm
1,ren is already finite, we only need to consider the O(ε0) piece of the

expression within brackets that multiplies it (that is, LM ). Likewise, it suffices keeping only
the O(ε) piece of the term within square brackets [ that is, ε(L2

M/2 + π2/12) ] that multiplies
δZbHQET

1 . Our result is in complete agreement with eq. (4.30) of ref. [34], which is a highly
nontrivial check on many computations carried out in various sections of this article.

7.2 Jet function

The last set of computations that are discussed in this article correspond to the bHQET
hemisphere jet function, which can be used for 2-jettiness, heavy-jet-mass and C-jettiness.
The momentum-space jet function depends on the variable ŝ, which has dimensions of energy.
Most of the comments made for the SCET function apply here as well: distributions show up
in momentum space, but turn into regular functions for the cumulative jet function defined as

ΣB
n (ŝc, µ) =

∫ ŝc

0
dŝ Bn(ŝ, µ) . (7.31)

The virtual diagrams contain only distributions, while the real-radiation contribution is
composed entirely by regular functions. The former can be isolated from the residue of the
only pole on the positive real axis, that is, at h = ε, while the latter is the sum of poles for
h ≤ 0 obtained once ε has been set to zero. Although the jet function Bn has dimensions

21One-loop quantities refer to the physical case of a massless gluon, even if no argument is shown.
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of the inverse of an energy squared, it is proportional to the mass of the primary quark M ,
hence in this section we will show results for MBn, which has dimensions of the inverse
of an energy. In particular, the following relations concerning the renormalization of the
bHQET jet function must be observed:

Bbare
n (ŝ) =

∫
dŝ′ZB(ŝ− ŝ′, µ)Bn(ŝ′, µ) , (7.32)

ZB(ŝ, µ)
.= δ(ŝ) + αs(µ)

π
CF δZ

B
1 +

[
αs(µ)
π

]2
CFTF δZ

B
2 ,

δZB
i = δZB

i,ncδ(s) +
δZB

i,cusp
µ

[
µ

ŝ

]
+
,

δZB
i,cusp =

i∑
j=1

δZB
i,j,cusp
εj

, δZB
i,nc =

i+1∑
j=1

δZB
i,j,nc
εj

.

The evolution of the renormalized bHQET jet function involves a convolution with the
corresponding anomalous dimension, which consists on two distributions:

µ
d
dµBn(ŝ, µ) =

∫
dŝ′γB(ŝ− ŝ′)Bn(ŝ′, µ) , (7.33)

γB(ŝ, µ) =− 2Γcusp
µ

[
µ

ŝ

]
+
+ γB

ncδ(ŝ) ,

γB
nc =

∑
n=1

γB
n

[
αs(µ)
4π

]n

.

The anomalous dimensions are proportional to the 1/ε terms in the Z factor:

Γ0 = − 4CF δZ
B
1,1,cusp , Γ(nf )

1 = −32CFTF δZ
B
2,1,cusp , (7.34)

γB
0 =8CF δZ

B
1,1,nc , γB

1,nf
= 64CFTF δZ

B
2,1,nc ,

where we have assumed the expected cancellation between 1/εn terms with n > 1 takes place.
The master piece for our final analysis is the one-loop computation of MΣB

n with a modified
gluon propagator. In this case we identify Q = ŝc, and use the result computed in ref. [22]:

m1(h, ε) =
Γ(2 + h− ε)

2(h− ε)2Γ(1− h)Γ(2 + 2h− 2ε) , (7.35)

where a double pole is located at h = ε. We label quantities related with the differential and
cumulative bHQET jet functions with B and ΣB superscripts, respectively.

7.2.1 Massive vector boson

To simplify notation as much as possible, we define the dimensionless variable s̃g = ŝ/mg.
The most relevant results obtained after multiplying by the Γ(h)Γ(1− h) kernel necessary
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to compute the massive vector boson corrections are collected below:

MΣB
1 (h, 0, s̃g) =

(h+ 1)Γ2(h)s̃2h
g

2hΓ(2h+ 2) −−−→
|h|≫1

√
π

4h5/2

(
s̃g

2

)2h

, (7.36)

δZB
1 (ŝ, µ, ε) = 1

2

( 1
ε2 + 1

ε

)
δ(ŝ)− 1

ε

1
µ

(
µ

ŝ

)
+
,

FB
1,ren(0, ŝ, µ) =

(
1− π2

8

)
δ(ŝ)− 1

µ

[
µ

ŝ

]
+
+ 2
µ

[
µ

ŝ
log
(
ŝ

µ

)]
+
,

mg∆∞
0 F

B
1 (s̃g) =

(
π2

12 − 1
)
δ(s̃g) +

[ 1
s̃g

]
+
− 2

[ log(s̃g)
s̃g

]
+
,

where from the first line we determine that s̃g = 2 is the boundary between the large- and
small-mass expansions, where both will converge due to the overall h−5/2 suppression factor.
The results in the second and third lines agree with ref. [15]. Furthermore, the result for
the Z factor reproduces the one-loop cusp anomalous dimension and predicts the one-loop
non-cusp piece: γB

0 = 4CF = 16/3.
To obtain the Mellin-Barnes transform for the differential bHQET jet function we apply

a derivative with respect to ŝ and find MB
1 (h, s̃g, 0) = 2hMΣB

1 (h, s̃g, 0)/ŝ. Even after setting
ε = 0 there is infinite number of poles on the real negative axis. The virtual contribution
to the bare bHQET jet function is given by the pole at h = ε:

FB,virt
1 = Γ(ε)

2

(
eγEµ2

m2
g

)ε{[
1−Hε−1 − log

(
µ2

m2
g

)]
δ(ŝ)− 2

µ

(
µ

ŝ

)
+

}
(7.37)

= δZ1
B(ŝ, µ, ε) + FB,virt

1,ren (ŝ,mg, µ) +O(ε) ,

FB,virt
1,ren =

[
log
(
µ

mg

)
− log2

(
µ

mg

)
− π2

24

]
δ(ŝ)− 2 log

(
µ

mg

) 1
µ

(
µ

ŝ

)
+
.

To obtain the µ-independent and UV-finite real-radiation contribution we simply sum all
poles on the real axis for h ≤ 0, that is, the double pole at h = 0 and the simple poles at
all negative integer values of h ≤ −2. The resulting series can be summed up:

FB,real
1 = 1

ŝ

[
2 log(s̃g)− 1− 2

∑
n=2

(n− 1)(2n− 2)!
(n!)2 s̃2n

g

]
(7.38)

= 1
ŝ

{
2 log

[1
2

(√
s̃2

g − 4 + s̃g

)]
−
√
1− 4

s̃2
g

}
θ(s̃g − 2) ,

where in the second line every term is manifestly real for the function’s domain and the theta
has been obtained from the convergence radius of the series. It is not hard to see that, as
expected, the real-radiation contribution vanishes at s̃g = 2. In figure 14 we compare the
series expansion of the real-radiation contribution for small gluon masses with the exact
result. We observe an excellent convergence everywhere except for ŝg = 2 where convergence
is rather slow.

The one-loop correction to the bHQET jet matching coefficient relating the jet functions
in the theories with and without massive vector bosons is given by

B(ng)
n (ŝ) =

∫ ŝ

0
dŝ′M(ng→nℓ)

B (ŝ− ŝ′)B(nℓ)
n (ŝ′), M(ng→nℓ)

B = δ(ŝ) + αs(µ)
π

CFF
B,virt
1,ren .

(7.39)
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Figure 14. Real-radiation term of the one-loop massive vector boson bHQET jet function. We show
exact results as green dashed lines, and the expansions for small masses as red solid lines. Left panel:
small mass expansion of 2mgF

B,real
1 at threshold s̃g = 2 as a function of the expansion order n. Right

panel: dependence of ŝFB,real
1 with s̃g, including 6 non-zero terms in the expansion.

The gluon mass correction to the renormalized one-loop massless bHQET jet function can
be written as

M∆0B1(ŝ,mg) ≡
1
ŝ
B̃1(s̃g) , (7.40)

and the RG-evolved mass correction for the bHQET jet function is expressed in terms of
B̃1 as follows

B̃ω̃
1 (s̃g) =

∫ s̃g

0

dŝ′

ŝ′

(
1− ŝ′

s̃g

)−1−ω̃

B̃1(ŝ′) =
∫ c+i∞

c−i∞

dh
2πi

(h+ 1)Γ2(h)s̃2h
g

2h(2h+ 1)(−ω̃)2h
, (7.41)

where −1/2 < c < 0. Using the converse mapping theorem we find

B̃ω̃
1 (s̃g) = L̃g − L̃2

g + ψ(1)(−ω̃)− π2

12 − 1 (7.42)

= π(ω̃ + 1)
s̃g

−
∑
n=1

(ω̃ + 1)2ns̃
−2n
g

n(2n− 1)(n!)2

{
(n− 1)(L̃g +Hn) +

2n2 − 4n+ 1
2n(2n− 1)

+ (n− 1)
[
ψ(0)(ω̃ + 1)− ψ(0)(2n+ ω̃ + 1)

]}
,

with L̃g = log(s̃g)− γE − ψ(0)(−ω̃). The leading-mass correction comes from the simple pole
at h = −1/2, directly related to the u = 1/2 renormalon of the bHQET jet function. All poles
at negative integer values are double except for that at h = −1, which is simple. To obtain
the previous result we have used the following relation among digamma functions: ψ(0)(−2n−
ω̃) − ψ(0)(−ω̃) = ψ(0)(2n + ω̃ + 1) − ψ(0)(ω̃ + 1). For a better numerical implementation,
it is convenient to write

ψ(0)(ω̃ + 1)− ψ(0)(2n+ ω̃ + 1) = −
2n∑
i=1

1
ω̃ + i

. (7.43)
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Figure 15. Gluon mass correction to the massless RG-evolved bHQET jet function in its exact
form (dashed), and expansions for small masses (solid lines) for three values of ω̃: −0.15 (blue), −0.2
(red), and −0.3 (green). Left panel: small mass expansion for B̃ω̃

1 at threshold s̃g = 2 as a function of
the expansion order n. Right panel: dependence of B̃ω̃

1 with s̃g, including 6 non-zero terms in the
small-mass expansion.

We have not been able to sum up the series in eq. (7.42), therefore we consider “exact”
the sum of the first 140 terms. In figure 15 we study the convergence of the series for the
RG-evolved bHQET jet function for three values of the running parameter ω̃. We observe
that, analogously to our findings for the real-radiation bHQET jet function, convergence
is not great at s̃g = 2, although it becomes better for values of ω̃ further away from zero.
Likewise, the series converges rapidly for s̃g > 2, and the more negative ω̃ is, the faster
it converges. The Fourier transform of the bHQET jet function is defined in analogy to
eq. (6.40) replacing J →MB and s→ ŝ, such that the dimensions of the Fourier variable y
is of the inverse of an energy. Using the converse mapping theorem on the corresponding
Mellin transform, closing the contour integral towards the negative real axis we find for the
Fourier transform of M∆0B1(ŝ,mg) the following expression:

∆0B̃1(yg) =
∫ c+i∞

c−i∞

dh
2πi

(h+ 1)Γ2(h)(iyg)−2h

2h(2h+ 1) (7.44)

= − iπyg +
∑
n=1

(iyg)2n

n(2n− 1)(n!)2

[
(n− 1)(Ly −Hn) +

4n− 2n2 − 1
2n(2n− 1)

]
,

where −1/2 < c < 0, and yg and Ly were defined after eq. (6.50) and no analytic form could
be found since the infinite sum cannot be expressed in terms of standard functions.

7.2.2 Secondary massive bubble

The last application of the method introduced in this article, the computation of the con-
tribution from secondary massive quark bubbles to the bHQET jet function, will again
produce new results and confirm earlier computations. To write expressions as simple as
possible, we use the dimensionless variable s̃ = ŝ/m, which is used for both the differential
and cumulative versions of the bHQET jet function. A summary of the most relevant pieces
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Figure 16. Real-radiation contribution to the two-loop bHQET jet function due to a secondary
massive quark bubble. Exact results are shown as green dashed lines, and the expansions for small
masses as red solid lines. Left panel: small mass expansion of 4mFB,real

2 at threshold s̃ = 4 as a
function of the expansion order n. Right panel: dependence of ŝFB,real

2 with s̃, including a single
non-zero term in the expansion.

for the cumulative and differential bHQET jet functions follows:

MΣB
2 (h, s̃c, 0) =

(1 + h)2Γ4(h)s̃2h
c

2(2h+ 3)Γ2(2h+ 2) −−−→
|h|≫1

π

16h4

(
s̃c

4

)2h

, (7.45)

δZB
2 (ŝ, µ, ε) =

[ 1
8ε3 + 1

72ε2 + 1
ε

(
π2

144 − 29
108

)]
δ(ŝ) + 1

6

( 5
3ε − 1

ε2

) 1
µ

[
µ

ŝ

]
+
,

FB
2,ren(0, ŝ, µ, ε) =

(17ζ3
36 + 59π2

432 − 281
162

)
δ(ŝ) +

(47
27 − π2

9

) 1
µ

[
µ

ŝ

]
+

− 16
9

1
µ

[
µ

ŝ
log
(
ŝ

µ

)]
+
+ 2

3
1
µ

[
µ

ŝ
log2

(
ŝ

µ

)]
+
,

m∆∞
0 F

B
2 (s̃) = − 2

3

[ log2(s̃)
s̃

]
+
+ 16

9

[ log(s̃)
s̃

]
+
+
(
π2

9 − 61
27

)[1
s̃

]
+

+
(223

81 − 2ζ3
3 − 4π2

27

)
δ(s̃) .

The limit taken on the first line establishes the boundary between the two expansions at
s̃ = 4. The second and third lines agree with the massless result computed in ref. [35]. From
the divergent pieces we confirm the flavor piece of the two-loop cusp anomalous dimension,
and obtain the corresponding term for the non-cusp anomalous dimension:

γB
1,nf

= CFTF

(4π2

9 − 464
27

)
= 8π2

27 − 928
81 , (7.46)

in agreement with eq. (41) of ref. [35]. For s̃ < 4 only virtual diagrams contribute, given
by minus the residue of the pole at h = ε. After removing the massless limit (which also
removes the µ dependence and UV singularities), this contribution coincides with ∆∞

0 F
B
2 (s̃)

and can be obtained as the residue of the pole at h = 0 computed after setting ε = 0. The
real-radiation correction to the massless limit is obtained as the sum of the infinite poles for
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Figure 17. Secondary quark mass correction to the massless RG-evolved bHQET jet function in
its exact form (dashed), and expansions for small masses (solid lines) for three values of ω̃: −0.15
(blue), −0.23 (red), and −0.3 (green). Left panel: small mass expansion of B̃ω̃

2 at threshold s̃ = 4 as a
function of the expansion order n. Right panel: dependence of B̃ω̃

2 with s̃, including 3 (2) non-zero
terms in the small-mass expansion for ω̃ = −0.15 (other values).

h ≤ 0, that is, a triple pole sitting at h = 0 plus double poles at all integer negative values of
h < −1. For that, we use the MB transform of the differential bHQET jet function, and obtain

ŝ∆0F
B
2,real =

{61
27 − π2

9 − 16
9 log(s̃) + 2

3 log2(s̃) + 32
∞∑

n=2

(2n− 3)[(2n− 4)!]2s̃−2n

n3[(n− 2)!]4 (7.47)

×
[
log(s̃) + 2Hn − 2H2n−2 +

9n− 3− 4n2

2n(n− 1)(2n− 3)

]}
θ(s̃− 4) ,

where the Heaviside theta appears from the condition of the convergence of the sum. For
s̃ = 4 the series indeed sums to zero, as can be seen in figure 16(a), and this happens at a fast
pace, signaling the excellent convergence of the series. We have not been able to find a closed
form for the sum, but at the sight of its fast convergence, we assume that after summing up
160 terms the result can be regarded as “exact”. In figure 16(b) we show that including only
the zeroth order term, the approximation to the exact result is great.

The RG-evolved massive two-loop bHQET function is defined in complete analogy to
eq. (7.41), and can be easily cast in the form of a MB integral:

B̃ω̃
2 (s̃) =

∫ s̃

0

dŝ′

ŝ′

(
1− ŝ′

s̃

)−1−ω̃

B̃2(ŝ′) =
∫ c+i∞

c−i∞

dh
2πi

(h+ 1)2s2hΓ(h)4

4h(2h+ 1)2(2h+ 3)Γ(2h)(−ω̃)2h
, (7.48)

with −1/2 < c < 0. We can use the converse mapping theorem to obtain the series for large
and small masses. The former, as expected, has only one term, obtained from the quartic
pole sitting at h = 0, while the latter has simple poles at h = −1/2 and −1, and triple
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poles at all other negative integer values of h:

B̃ω̃
2 (s̃) =

8
9 L̃

2 − 2
9 L̃

3 + L̃

3

[
2ψ(1)(−ω̃)− 61

9

]
− 8

9ψ
(1)(−ω̃) + 2

9ψ
(2)(−ω̃) + 223

81 − 2ζ3
9

= − π2(ω̃ + 1)
2s̃ +

∑
n=1

(2n)!(ω̃ + 1)2ns̃
−2n

n(2n− 1)2(2n− 3)(n!)4

{
(n− 1)2{[L̃+Kn(ω̃)

]2 +H(2)
n

−H
(2)
2n + ψ(1)(2n+ ω̃ + 1)− ψ(1)(ω̃ + 1)− ψ(1)(−ω̃)

}
+ (n− 1)(8n3 − 22n2 + 19n− 3)

n(2n− 3)(2n− 1) [L̃+Kn(ω̃)]

+ 48n6 − 264n5 + 596n4 − 670n3 + 372n2 − 90n+ 9
2n2(2n− 3)2(2n− 1)2

}
,

Kn(ω̃) = 2Hn −H2n −
2n∑
i=1

1
ω̃ + i

, (7.49)

with L̃ = log(s̃) − γE − ψ(0)(−ω̃) and where, for numerical performance, it is convenient
to use the following identity:

ψ(1)(2n+ ω̃ + 1)− ψ(1)(ω̃ + 1) = −
2n∑
i=1

1
(ω̃ + i)2 . (7.50)

Since the infinite sum cannot be carried out, no analytic, all-order result for the RG-evolved
function is obtained. Given the excellent convergence of the series, for our numerical studies,
we consider summing the first 160 terms, for all practical purposes, as the “exact solution”.
The excellent convergence of the series is studied in figure 17, where one can see that at
the point where convergence should be slower, that is for s̃ = 4, for all values of ω̃ we
have explored, the sum quickly converges to the expected result (given by the large-mass
expression). At any other value of s̃, very good accuracy is already attained including 2
or 3 terms in the expansion.

The very last result we present in this article is the small-mass expansion of the Fourier
transform of M∆0B2(ŝ,m)

∆0B̃2(xm) =
∫ c+i∞

c−i∞

dh
2πi

(h+ 1)3(ixm)−2hΓ(h)4

(2h+ 1)Γ(2h+ 4) (7.51)

= 1
2 iπ

2xm + 2
∑
n=1

(2n− 2)!(ixm)2n

(2n− 3)(2n− 1)(n!)4

{
(n− 1)2[L̃2

x +H(2)
n −H

(2)
2n−2

]
− 2(n− 1)L̃x

(2n− 3)(2n− 1) +
12n2 − 24n+ 13

2(2n− 3)2(2n− 1)2

}
,

with Lx = log(ixm) + γE , −1/2 < c < 0, and L̃x = Lx +H2n−2 − 2Hn.

8 Conclusions

In this article we have presented a novel technique to compute quantum corrections due
to either massive vector bosons or secondary massive quark bubbles in the form of series
expansions for small and large (vector boson or secondary quark) masses, in both cases virtual.
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The method relies on the Mellin Barnes transform, and yields series to arbitrarily high orders
whose convergence radii exactly matches up. Each term in the expansion corresponds to a
pole along the positive (large-mass expansion) or negative (small mass series) real axis, and
depending on the pole’s multiplicity, logarithms of the mass might appear. In fact, at the
mass value which acts as a boundary between the two expansions, both series converge and
should agree: this has been extensively used as a sanity check of our results. In many cases,
it is possible to sum up the series to all orders, finding closed analytic expressions that, in
some cases, to the best of our knowledge are impossible to obtain with a direct computation.
The advantage of the method is that the MB transform is applied at a very early stage of
the computation: before computing the loop integral associated to the momentum running
along the gluon leg (either massive by itself, or containing the secondary mass bubble as
a sub-diagram). Therefore, the difficulty of the calculation is reduced to that of massless
one-loop diagrams with a modified gluon propagator. Furthermore, these exactly coincide
with the computations one has to carry out in the large-β0 expansion at leading order, hence
many known results can be recycled and physical connections between renormalons and
mass corrections can be easily made: for example, a u = 1/2 renormalon implies that the
expansion for small masses will involve a linear term. We have observed that for the case
of massive vector bosons, such renormalons seem to come in hand with oscillatory behavior
and slow convergence of the small-mass series, although this IR sensitivity does no affect the
convergence of the series associated to the secondary quark mass correction. Even though
the computations must be carried out in d = 4 − 2ε dimensions in order to recover the
m→ 0 limit, once the massless result is subtracted one can set ε→ 0 and use the converse
mapping theorem to obtain both expansions.

We have applied this new method to a plethora of examples, mostly confined to the
context of effective field theories for jets (SCET and bHQET), but as a warm-up exercise also
to the massive-quark vacuum polarization function and the relation between the pole and MS
masses. In all cases, we have recovered known results for the massless limit, Z factors and
anomalous dimensions. We have also reproduced known results for the Wilson coefficient and
jet function in SCET. For the case of the SCET and bHQET jet functions, it is very simple
to isolate the contributions from virtual and real radiation of massive particles: the large
mass expansion has a single term (the pole located at ε) which encompasses the entire virtual
contribution. Furthermore, we have also found expansions for the RG-evolved version of the
various jet functions, which seems to be the only possible approach to obtain analytic results.
Except for the cases laid out in the previous paragraph, we have found excellent convergence
in all cases under study, such that using the expansions is more practical than evaluating the
exact result (if it is known), and becomes especially relevant for numeric implementations.
We have coded all our results in Python [36], using the numpy [37] and scipy [38] modules,
to carry out all our numerical studies, which have been cross-checked against an independent
Mathematica code [39]. All plots have been generated using the matplotlib module [40].

The downside of the method is that it can only be applied to quantities which have
no infrared or collinear divergences at one-loop with massless gluons, but for the examples
we have worked out in this article, consistency conditions have been applied to circumvent
this difficulty, and the individual pieces entering the matching conditions between QCD and
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SCET, or SCET and bHQET, have been obtained. In case such conditions do not apply for
a particular method, one can use an IR regulator such as off-shellness to obtain the result.
After the MB transform is applied, the regulator can be safely set to zero. We have not
explored this possibility in detail in this article, but plan to do so in upcoming works.

The results we have obtained are highly relevant for the theoretical description of jet
cross sections involving massless or massive secondary quarks, and can be easily adapted to
other examples such as B-meson decays, Higgs cross sections, DIS, etc. The expansions we
have found will play an important role in future updates of the Monte Carlo top quark mass
calibration initiated in refs. [41, 42], and follow the efforts started in refs. [20, 26], where
fixed-order and resummed results where found for massive primary quarks. We have set the
basis for a variable flavor number scheme for e+e− → tt̄+X cross section in the peak, which
must be taken into account when the mass of the bottom quark is not neglected — this is
necessary when aiming at high precision. A thorough numerical analysis of these effects,
along with the computations of the necessary pieces using the dispersive framework, will be
presented in the near future. The ideas introduced in this article can be extended in a number
of ways: one can consider two massive bubbles inserted into a massless gluon line, either with
equal or different masses, or the insertion of a massive bubble followed by an arbitrary number
of massless quark bubbles. One could also try to adapt the method for the case in which the
secondary quarks are produced on-shell, which would be relevant for instance to compute
an expansion for the soft function. Finally, one could have both primary and secondary
quarks massive, and work out double expansions. The MB procedure can be modified to
write the convolution of shape functions with partonic cross sections as an expansion of
(inverse) powers of ΛQCD in the (peak) tail of the distribution. Since we have worked out all
the necessary pieces to compute the N3LL resummed singular cross section for the secondary
radiation of massive quarks, the next natural step would be providing the two-loop fixed-order
contribution to jet cross sections. These shall be presented in future publications.
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