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Abstract The Moller experiment and the P2 experiment
aim at measuring the weak mixing angle at low scales. The
Moller experiment uses e−e− → e−e−-scattering, the P2
experiment uses e−N → e−N -scattering. In both cases, two-
loop electroweak corrections have to be taken into account,
and here in particular diagrams which give rise to large log-
arithms. In this paper we compute a set of two-loop elec-
troweak Feynman integrals for point-like particles, which
are obtained from a box integral by the insertion of a light
fermion loop. By rationalising all occurring square roots
we show that these Feynman integrals can be expressed in
terms of multiple polylogarithms. We present the results in
a form, which makes the large logarithms manifest. We pro-
vide highly efficient numerical evaluation routines for these
integrals.

1 Introduction

The Moller experiment [1] at Jefferson Lab and the P2 exper-
iment [2] at the MESA accelerator at Mainz University will
measure the weak mixing angle at low scales. The process
studied at the Moller experiment is electron–electron scat-
tering, the process studied at the P2 experiment is electron-
nucleon scattering. In both cases, the experimental programs
require theory input in the form of precision calculations.

Of particular importance are diagrams, which give rise to
large logarithms. Neglecting the electron mass, we have for
both experiments the hierarchy of scales

− t � s ∼ m2
N � m2

W ∼ m2
Z , (1)

where s and t are the Mandelstam variables, mN the nucleon
mass (only relevant for the P2 experiment) and mW and mZ

the mass of the W -boson and Z -boson, respectively. Large

a e-mail: weinzierl@uni-mainz.de (corresponding author)

logarithms arise due to the smallness of (−t) and/or due to
the large mass of the heavy gauge bosons. In this paper we
consider a box diagram for point-like particles with the inser-
tion of a light fermion loop both for the Moller experiment
and the P2 experiment. This diagram is shown in Fig. 1. The
wavy lines in this diagram may either be photons (massless)
or heavy gauge bosons. In the case of Møller scattering the
green line in Fig. 1 is massless, for e−N → e−N -scattering
the green line in Fig. 1 is massive with mass mN . Depending
on the mass configuration we have to calculate in total eight
different cases, which we label topology A to topology H .
The case where all lines are massless is rather easy. This case
will be labelled as topology H . The opposite case, where all
wavy lines have the mass of a heavy gauge boson (say mZ )
and the green line has the mass mN is rather involved and
state-of-the-art in Feynman integral calculations. The com-
plication arises from four square roots, which are associated
with this topology. This latter case will be labelled as topol-
ogy A. We compute the master integrals for all topologies
A-H .

As a side remark we note that crossing the diagrams with a
massive green line gives diagrams relevant to two-loop elec-
troweak corrections and mixed two-loop QCD/electroweak
corrections to the production of a pair of heavy particles at
the LHC.

In this paper we perform an analytic calculation of these
Feynman integrals. We note that a subset of these integrals
together with other related integrals have been computed pre-
viously with numerical methods [3–7] or asymptotic approx-
imations [8,9].

We compute the Feynman integrals with the help of the
method of differential equations [10–12]: Using integration-
by-parts identities [13] we first derive a differential equation
for a pre-canonical basis of master integrals. This differen-
tial equation is in general not in an ε-factorised form. We
then construct a new basis, such that the differential equa-
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tion is transformed to an ε-factorised form [14]. In doing so,
we unavoidably need to introduce square roots. In total we
encounter five different square roots. It is advisable to treat
each topology separately, as not all five square roots occur
simultaneously in a given topology. The most complicated
case is topology Awith four occurring square roots. For every
topology we may simultaneously rationalise all occurring
square roots. This shows that the Feynman integrals can be
expressed in terms of multiple polylogarithms. Furthermore,
by choosing an appropriate boundary point and by isolating
trailing zeros in powers of single logarithms we may make
all large logarithms manifest. For all topologies we provide
a highly efficient numerical C++-program, which evaluates
the master integrals in the kinematic region of interest with
arbitrary precision.

For phenomenological applications our results can be used
as follows: Let us first consider the case of Møller scatter-
ing. It is well-known that all occurring Feynman integrals
in a scattering amplitude can be reduced to master inte-
grals. Standard integration-by-parts reduction programs like
FIRE/Litered [15–18], Reduze [19,20], Kira [21,22]
orFiniteFlow [23,24] facilitate this task. In general, these
programs reduce Feynman integrals to a pre-canonical basis
of master integrals. Our starting point is the default choice
of Kira for a pre-canonical basis of master integrals. The
integration-by-parts reduction programs can be used to con-
vert this basis to any other pre-canonical basis. The pre-
canonical basis is related by a rotation matrix to the basis of
uniform transcendental weight constructed in this paper. The
rotation matrix and its inverse are given in the supplementary
electronic file attached to the arxiv version of this article. The
master integrals of uniform transcendental weight are com-
puted with the provided C++-programs, again given in the
supplementary electronic file attached to the arxiv version of
this article.

The case of electron-nucleon scattering has additional
complications due to the hadronic nature of the nucleon. For
the details how calculations are done in this situation we
refer to Refs. [25–33]. The main interest is the coefficient of
the large logarithm related to the heavy boson mass and we
provide the master integrals to extract this coefficient. Let
us emphasise that although our calculation is with point-like
particles, the inclusion of form factors for the coupling of
a nucleon to a gauge boson is straightforward, as long as
the form factors are modelled by rational functions in the
momenta, which do not introduce new singularities. On the
other hand, the inclusion of a nucleon resonance introduces
another kinematic variable and leads to loop integrals beyond
the ones considered in this paper.

This paper is organised as follows: In Sect. 2 we show that
due to partial fractioning we only need to compute a reduced
graph. In Sect. 3 we introduce the notation for the Feynman
integrals. In Sect. 4 we present for all topologies a basis of

Fig. 1 The two-loop Feynman graph. Wavy lines are either photons
(massless) or heavy gauge bosons (massive). The mass of the green
line is either zero (this case corresponds to the Moller experiment) or
massive with mass mN (this case corresponds to the P2 experiment).
All other particles are assumed to be massless

master integrals of uniform transcendental weight. In Sect. 5
we give the differential equation for each topology and list
all differential one-forms appearing in the differential equa-
tions. The differential one-forms are dlog-forms with alge-
braic functions as argument. The algebraic part is given by
five square roots. In total we encounter five different square
roots. In Sect. 6 we show that for each topology all occurring
square roots can be rationalised. As a consequence, all Feyn-
man integrals can be expressed in terms of multiple polylog-
arithms. In order to solve the differential equations, we need
boundary values. These are given in Sect. 7. In Sect. 8 we
present numerical results and the leading large logarithms.
Finally, our conclusions are given in Sect. 9. In Appendix A
we show for all master integrals the corresponding diagrams.
In Appendix B we describe the content of the supplementary
electronic file attached to the arxiv version of this article.
In Appendix C we collect for convenience the correspond-
ing one-loop integrals in the same notation as used for the
two-loop integrals.

2 Preliminaries

We are interested in the Feynman graph shown in Fig. 1. The
green line could either be a massless fermion or a nucleon
(with non-zero mass mN ).

The wavy lines are either massless gauge bosons (photons)
or massive gauge bosons (Z -bosons or W -bosons). We are in
particular interested in the case, where at least one of the wavy
lines is a massive gauge boson. The case where all of them
are photons is significantly simpler and only included for
completeness. The black solid lines correspond to massless
fermions. For e−e− → e−e−-scattering we take the green
line to be massless, for e−N → e−N -scattering we take
the green line to be massive. It is sufficient to focus on the
case, where the heavy gauge boson is the Z -boson. As we
neglect the electron mass, electrons and neutrinos both have
zero mass. Furthermore we do not distinguish between the
proton and the neutron mass. With these approximations the
case with heavy W -bosons gives rise to exactly the same
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Fig. 2 The reduced Feynman graph

integrals. In the following we will denote the heavy gauge
boson mass by mZ .

We recall that any tensor integral can be reduced to scalar
integrals [34,35]. Therefore, although we are interested in
integrals with fermions and gauge bosons, what we have to
calculate are scalar integrals.

There is one immediate simplification: The momenta
flowing through the propagators labelled 4a and 4b in Fig. 1
are the same. The two propagators may have equal mass
(either m4a = m4b = 0 or m4a = m4b = mZ ) or unequal
mass (either m4a = 0,m4b = mZ or m4a = mZ ,m4b = 0).
In the latter case we may use partial fraction decomposition

1(
−q2 + m2

4a

) (
−q2 + m2

4b

)

= 1

m2
4b

− m2
4a

⎡
⎣ 1(

−q2 + m2
4a

) − 1(
−q2 + m2

4b

)
⎤
⎦ . (2)

We therefore have to consider only the reduced topology
shown in Fig. 2 with

m2,m4 ∈ {0,mZ } , m3 ∈ {0,mN } . (3)

The external momenta satisfy

p2
1 = p2

4 = 0, p2
2 = p2

3 = m2
3. (4)

We denote the Mandelstam variables by

s = (p1 + p2)
2 ,

t = (p2 + p3)
2 ,

u = (p1 + p3)
2 . (5)

3 Notation

We need to consider an auxiliary graph associated to the
reduced graph of Fig. 2, such that any scalar product involv-
ing at least one loop momentum can be expressed as a linear
combination of inverse propagators. With three independent
external momenta and two independent loop momenta this
associated graph must have nine internal propagators. We
therefore consider the family of integrals

Fig. 3 The auxiliary graph. Green lines correspond to a particle with
mass m3, orange lines correspond to a particle with mass m4 and red
lines correspond to a particle with mass m2

Iν1ν2ν3ν4ν5ν6ν7ν8ν9

= e2γEε
(
μ2
)ν−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

9∏
j=1

1

P
ν j
j

, (6)

where γE denotes the Euler–Mascheroni constant, D =
4 − 2ε is the number of space-time dimensions, μ is an arbi-
trary scale introduced to render the Feynman integral dimen-
sionless and the quantity ν is given by

ν =
9∑
j=1

ν j . (7)

We will further use the notation pi j = pi + p j , pi jk =
pi + p j + pk . The inverse propagators are given by

P1 = −k2
1, P2 = − (k1 − p1)

2 + m2
2,

P3 = − (k1 − p12)
2 + m2

3,

P4 = − (k1 − p123)
2 + m2

4, P5 = −k2
2,

P6 = − (k1 + k2 − p123)
2 ,

P7 = − (k1 + k2 + p12)
2 ,

P8 = − (k1 + k2 − p1)
2 ,

P9 = − (k1 + k2)
2 . (8)

The graph for this family is shown in Fig. 3.
We are interested in the sectors, for which we have

ν7, ν8, ν9 ≤ 0. (9)

We define a sector id (or topology id) by

id =
9∑
j=1

2 j−1�

(
ν j − 1

2

)
. (10)

Here, �(x) denotes the Heaviside step function. Since we
assume ν j ∈ Z, the shift by (−1/2) avoids any ambiguity in
the definition of �(0).

We have to consider eight cases, depending on whether the
masses (m2,m3,m4) are non-zero or zero. We define eight
topologies
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Table 1 The number of master integrals for a given topology

Topology Master integrals Topology Master integrals

A 15 E 10

B 11 F 7

C 8 G 5

D 5 H 3

Table 2 The various roots appearing in a given topology

Topology Roots Topology Roots

A r1, r2, r3, r5 E r2, r4

B r1, r3 F −
C r1, r3 G −
D r1 H −

A : (m2,m3,m4) = (mZ ,mN ,mZ ),

E : (m2,m3,m4) = (mZ , 0,mZ ),

B : (m2,m3,m4) = (0,mN ,mZ ),

F : (m2,m3,m4) = (0, 0,mZ ),

C : (m2,m3,m4) = (mZ ,mN , 0),

G : (m2,m3,m4) = (mZ , 0, 0),

D : (m2,m3,m4) = (0,mN , 0),

H : (m2,m3,m4) = (0, 0, 0). (11)

We write

I Xν1ν2ν3ν4ν5ν6ν7ν8ν9
, X ∈ {A, B,C, D, E, F,G, H} (12)

to denote the corresponding integrals.
The total number of master integrals for the various

topologies are shown in Table 1.
In defining master integrals of uniform transcendental

weight we will encounter five square roots.
These are given by

r1 =
√

−t
(
4m2

N − t
)
,

r2 =
√

−t
(
4m2

Z − t
)
,

r3 =
√

−m2
Z

(
4m2

N − m2
Z

)
,

r4 =
√
st
[
st − 4m2

Z

(
m2

Z + s
)]

.

r5 =
√

−t
[
−t
(
m2

N − s
)2 + 4m2

Z

(
m2

Z s + (m2
N − s

)2)]
.

(13)

We have chosen the arguments of the five square roots
such that in the region of interest (t < 0, s > 0, m2

Z �
m2

N , s, (−t)) the arguments of all five roots are positive. In
this region we chose the sign of the square roots such that all

five roots are positive. Table 2 shows for each topology the
roots appearing in this topology.

The first graph polynomial [36] for the auxiliary graph
shown in Fig. 3 reads

U (a1, a2, a3, a4, a5, a6, a7, a8, a9)

= (a1 + a2 + a3 + a4) (a6 + a7 + a8 + a9)

+a5 (a1 + a2 + a3 + a4 + a6 + a7 + a8 + a9) . (14)

We introduce an operator i+, which raises the power of the
propagator i by one and multiplies by νi , e.g.

1+ Iν1ν2ν3ν4ν5ν6ν7ν8ν9 = ν1 · I(ν1+1)ν2ν3ν4ν5ν6ν7ν8ν9 . (15)

The notation with an extra prefactor ν j follows Ref. [37]. In
addition we define the operator D−, which lowers the dimen-
sion of space-time by two units through

D− Iν1ν2ν3ν4ν5ν6ν7ν8ν9 (D) = Iν1ν2ν3ν4ν5ν6ν7ν8ν9 (D − 2). (16)

The dimensional shift relations read [34,35]

D− Iν1ν2ν3ν4ν5ν6ν7ν8ν9 (D)

= U
(
1+, 2+, 3+, 4+, 5+, 6+, 7+, 8+, 9+)

Iν1ν2ν3ν4ν5ν6ν7ν8ν9 (D). (17)

4 The master integrals

We will treat each topology separately. The main motiva-
tion is that this allows us to rationalise for each topology all
occurring square roots. This introduces a small redundancy,
as the same sub-sectors may occur in more than one topol-
ogy. This redundancy provides an additional cross-check, as
the sub-sectors are computed with different rationalisations
and different integration paths.

4.1 Pre-canonical master integrals

Standard integration-by-parts reduction programs like
FIRE/Litered [15–18], Reduze [19,20], Kira [21,22]
or FiniteFlow [23,24] are capable to express any relevant
scalar Feynman integral as a linear combination of master
integrals. The chosen master integrals depend on the order-
ing criteria in the Laporta algorithm [38]. In general, the
chosen master integrals are not of uniform weight. Possible
pre-canonical bases are:

I A =
(
I A010011000, I

A
(−1)10011000, I

A
001011000,

I A000111000, I
A

101011000, I
A

011011000, I
A
(−1)11011000,

I A010111000, I
A

001111000, I
A

111011000, I
A

111(−1)11000,

I A110111000, I
A

101111000, I
A

011111000, I
A

111111000

)T
,

I B =
(
I B010011000, I

B
001011000, I

B
000111000, I

B
101011000,

I B011011000, I
B
010111000, I

B
001111000, I

B
111011000,
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I B101111000, I
B
011111000, I

B
111111000

)T
,

I C =
(
I C010011000, I

C
(−1)10011000, I

C
001011000, I

C
101011000,

I C011011000, I
C
(−1)11011000, I

C
111011000, I

C
111(−1)11000

)T
,

I D =
(
I D010011000, I

D
001011000, I

D
101011000, I

D
011011000, I

D
111011000

)T
,

I E =
(
I E010011000, I

E
(−1)10011000, I

E
000111000, I

E
101011000, I

E
010111000,

I E111011000, I
E
111(−1)11000, I

E
110111000, I

E
101111000, I

E
111111000

)T
,

I F =
(
I F010011000, I

F
000111000, I

F
101011000, I

F
010111000,

I F111011000, I
F
101111000, I

F
111111000

)T
,

I G =
(
I G010011000, I

G
(−1)10011000, I

G
101011000,

I G111011000, I
G
111(−1)11000

)T
,

I H =
(
I H010011000, I

H
101011000, I

H
111011000

)T
. (18)

In the following, we will take these pre-canonical bases as
our starting point. Diagrams for all master sectors are shown
in Appendix A.

4.2 Master integrals of uniform transcendental weight

Below we present for all eight topologies master integrals
of uniform transcendental weight. They are related to the
pre-canonical basis by

J X = UX I X , X ∈ {A, B,C, D, E, F,G, H}. (19)

The dimension of the matrix UX is given by the number of
master integrals for topology X . The matrices UX are given
in an electronic file attached to the arxiv version of this arti-
cle. The master integrals of uniform transcendental weight
are constructed by analysing the maximal cut in the loop-
by-loop Baikov representation [37,39]. We have chosen the
master integrals such that they simplify in kinematic limits
(e.g. mN → 0 or mZ → 0) to the master integrals in the
simpler topologies.

4.2.1 Topology A

A possible choice of master integrals of uniform transcen-
dental weight for topology A is given by:

Sector 50: J A
1 = ε2

(
m2

Z − t

μ2

)
D− I A010011000,

J A
2 = ε2 D− I A010(−1)11000

− ε2

(
m2

Z

μ2

)
D− I A010011000,

Sector 52: J A
3 = ε (1 + 4ε)

(
m2

N

μ2

)
D− I A001011000,

Sector 56: J A
4 = ε2

(
m2

Z

μ2

)
D− I A000111000,

Sector 53: J A
5 = −4ε3

(
m2

N − s

μ2

)
I A101012000,

Sector 54: J A
6 = ε3

(
r1

μ2

)
I A011012000,

J A
7 = ε2

(
r3

μ2

)
D− I A011(−1)11000

− ε2
(
r3

μ2

)(
m2

Z

μ2

)
D− I A011011000,

Sector 58: J A
8 = ε2

(
r2

μ2

)(
m2

Z

μ2

)
D− I A010111000

− ε2
(
r2

μ2

)
D− I A010011000,

Sector 60: J A
9 = ε2

(
m2

Z

μ2

)(
r3

μ2

)
D− I A001111000

− ε2
(
r3

μ2

)
D− I A001011000,

Sector 55: J A
10 = ε3

(
m2

N − s

μ2

)(
m2

Z − t

μ2

)
I A111012000,

J A
11 = ε3

(
m2

N − s

μ2

)
I A111(−1)12000

− ε3

(
m2

N − s

μ2

)(
m2

Z

μ2

)
I A111012000,

Sector 59: J A
12 = ε3

(−t

μ2

)(
m2

Z

μ2

)
I A110112000,

Sector 61: J A
13 = ε3

(
m2

N − s

μ2

)(
m2

Z

μ2

)
I A101112000,

Sector 62: J A
14 = ε3

(
r1

μ2

)(
m2

Z

μ2

)
I A011112000,

Sector 63: J A
15 = ε3

(
r5

μ4

)(
m2

Z

μ2

)
I A111112000

− ε3
(
r5

μ4

)
I A111012000. (20)

4.2.2 Topology B

A possible choice of master integrals of uniform transcen-
dental weight for topology B is given by:
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Sector 50: J B
1 = ε2

(−t

μ2

)
I B010022000,

Sector 52: J B
2 = ε (1 + 4ε)

(
m2

N

μ2

)
D− I B001011000,

Sector 56: J B
3 = ε2

(
m2

Z

μ2

)
D− I B000111000,

Sector 53: J B
4 = −4ε3

(
m2

N − s

μ2

)
I B101012000,

Sector 54: J B
5 = ε3

(
r1

μ2

)
I B011012000,

Sector 58: J B
6 = ε2

(
m2

Z

μ2

)(
m2

Z − t

μ2

)
D− I B010111000

− ε2

(
m2

Z

μ2

)
D− I B010011000,

Sector 60: J B
7 = ε2

(
m2

Z

μ2

)(
r3

μ2

)
D− I B001111000

− ε2
(
r3

μ2

)
D− I B001011000,

Sector 55: J B
8 = ε3

(
m2

N − s

μ2

)(−t

μ2

)
I B111012000,

Sector 61: J B
9 = ε3

(
m2

N − s

μ2

)(
m2

Z

μ2

)
I B101112000,

Sector 62: J B
10 = ε3

(
r1

μ2

)(
m2

Z

μ2

)
I B011112000,

Sector 63: J B
11 = ε3

(
m2

N − s

μ2

)(
m2

Z − t

μ2

)(
m2

Z

μ2

)
I B111112000

− ε3

(
m2

N − s

μ2

)(
m2

Z

μ2

)
I B111012000. (21)

4.2.3 Topology C

A possible choice of master integrals of uniform transcen-
dental weight for topology C is given by:

Sector 50: JC1 = ε2

(
m2

Z − t

μ2

)
D− I C010011000,

JC2 = ε2 D− I C010(−1)11000,

Sector 52: JC3 = ε (1 + 4ε)

(
m2

N

μ2

)
D− I C001011000,

Sector 53: JC4 = −4ε3

(
m2

N − s

μ2

)
I C101012000,

Sector 54: JC5 = ε3
(
r1

μ2

)
I C011012000,

JC6 = ε2
(
r3

μ2

)
D− I C011(−1)11000,

Sector 55: JC7 = ε3

(
m2

N − s

μ2

)(
m2

Z − t

μ2

)
I C111012000,

JC8 = ε3

(
m2

N − s

μ2

)
I C111(−1)12000. (22)

4.2.4 Topology D

A possible choice of master integrals of uniform transcen-
dental weight for topology D is given by:

Sector 50: J D
1 = ε2

(−t

μ2

)
I D010022000,

Sector 52: J D
2 = ε (1 + 4ε)

(
m2

N

μ2

)
D− I D001011000,

Sector 53: J D
3 = −4ε3

(
m2

N − s

μ2

)
I D101012000,

Sector 54: J D
4 = ε3

(
r1

μ2

)
I D011012000,

Sector 55: J D
5 = ε3

(
m2

N − s

μ2

)(−t

μ2

)
I D111012000. (23)

4.2.5 Topology E

A possible choice of master integrals of uniform transcen-
dental weight for topology E is given by:

Sector 50: J E
1 = ε2

(
m2

Z − t

μ2

)
D− I E010011000,

J E
2 = ε2 D− I E010(−1)11000

− ε2

(
m2

Z

μ2

)
D− I E010011000,

Sector 56: J E
3 = ε2

(
m2

Z

μ2

)
D− I E000111000,

Sector 53: J E
4 = −4ε3

(−s

μ2

)
I E101012000,

Sector 58: J E
5 = ε2

(
r2

μ2

)(
m2

Z

μ2

)
D− I F010111000

− ε2
(
r2

μ2

)
D− I F010011000,

Sector 55: J E
6 = ε3

(−s

μ2

)(
m2

Z − t

μ2

)
I E111012000,

J E
7 = ε3

(−s

μ2

)
I E111(−1)12000

− ε3
(−s

μ2

)(
m2

Z

μ2

)
I E111012000,
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Sector 59: J E
8 = ε3

(−t

μ2

)(
m2

Z

μ2

)
I E110112000,

Sector 61: J E
9 = ε3

(−s

μ2

)(
m2

Z

μ2

)
I E101112000,

Sector 63: J E
10 = ε3

(
r4

μ4

)(
m2

Z

μ2

)
I E111112000

− ε3
(
r4

μ4

)
I E111012000. (24)

4.2.6 Topology F

A possible choice of master integrals of uniform transcen-
dental weight for topology F is given by:

Sector 50: J F
1 = ε2

(−t

μ2

)
I F010022000,

Sector 56: J F
2 = ε2

(
m2

Z

μ2

)
D− I F000111000,

Sector 53: J F
3 = −4ε3

(−s

μ2

)
I F101012000,

Sector 58: J F
4 = ε2

(
m2

Z

μ2

)(
m2

Z − t

μ2

)
D− I F010111000

− ε2

(
m2

Z

μ2

)
D− I F010011000,

Sector 55: J F
5 = ε3

(−s

μ2

)(−t

μ2

)
I F111012000,

Sector 61: J F
6 = ε3

(−s

μ2

)(
m2

Z

μ2

)
I F101112000,

Sector 63: J F
7 = ε3

(−s

μ2

)(
m2

Z − t

μ2

)(
m2

Z

μ2

)
I F111112000

− ε3
(−s

μ2

)(
m2

Z

μ2

)
I F111012000. (25)

4.2.7 Topology G

A possible choice of master integrals of uniform transcen-
dental weight for topology G is given by:

Sector 50: JG1 = ε2

(
m2

Z − t

μ2

)
D− I G010011000,

JG2 = ε2 D− I G010(−1)11000,

Sector 53: JG3 = −4ε3
(−s

μ2

)
I G101012000,

Sector 55: JG4 = ε3
(−s

μ2

)(
m2

Z − t

μ2

)
I G111012000,

JG5 = ε3
(−s

μ2

)
I G111(−1)12000. (26)

4.2.8 Topology H

A possible choice of master integrals of uniform transcen-
dental weight for topology H is given by:

Sector 50: J H
1 = ε2

(−t

μ2

)
I H010022000,

Sector 53: J H
2 = −4ε3

(−s

μ2

)
I H101012000,

Sector 55: J H
3 = ε3

(−s

μ2

)(−t

μ2

)
I H111012000. (27)

5 The differential equations

The master integrals J X satisfy a differential equation in ε-
factorised form

d J X = MX J X , X ∈ {A, B,C, D, E, F,G, H}, (28)

with MX of the form

MX = ε

N X
L∑

k=1

CX
k ωX

k . (29)

The differential equation is obtained as follows: Standard
integration-by-parts reduction programs allow us to obtain
the differential equation for the pre-canonical master inte-
grals I X :

d I X = AX I X . (30)

Integration-by-parts reduction allows us also to express any
master integral J X

i of uniform transcendental weight as
defined in Sect. 4.2 as a linear combination of the pre-
canonical master integrals I Xj . This defines the matrix UX in

Eq. (19). The matrix MX appearing in Eq. (28) is then given
by

MX = UX AX
(
UX
)−1 −UXd

(
UX
)−1

. (31)

TheCX
k ’s appearing in Eq. (29) are square matrices with con-

stant entries. The dimension of these matrices is given by the
number of master integrals for topology X . The differential
one-forms ωX

k are of the form

ωX
k = d log f Xk , (32)

where f Xk is an algebraic function of s, t,m2
Z ,m2

N and μ2.
The f Xk ’s are called letters and the set of all f Xk ’s is called
the alphabet A X . The alphabets are

A A = {e1, e2, e4, e6, e7, e9, e10, e11, e12, e13, e14, e15, e16,
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o1, o5, o6, o7, o8, o9, o10, o11, o12, o13, o14, o15, o16},
A B = {e1, e2, e4, e6, e9, e10, e11, e12, e13, e14, o5, o6, o7, o8, o9},
AC = {e1, e2, e4, e6, e9, e10, e11, e12, e13, e14, o5, o6, o7, o8, o9},
AD = {e1, e2, e9, e10, e11, e12, o5, o6},
A E = {e1, e2, e3, e4, e5, e6, e7, e8, o1, o2, o3, o4},
A F = {e1, e2, e3, e4, e5, e6},
AG = {e1, e2, e3, e4, e5, e6},
AH = {e1, e2, e3}. (33)

A specific letter may appear in more than one alphabet. We
divide the letters in rational (or even) letters and non-rational
(or odd) letters. The rational letters are

e1 = −s

μ2 , e7 = 4m2
Z − t

μ2 , e12 =
(
m2

N − s
)2 + st

μ4 ,

e2 = −t

μ2 , e8 = 4m2
Z

(
m2

Z + s
)− st

μ4 , e13 = 4m2
N − m2

Z

μ2 ,

e3 = −s − t

μ2 , e9 = m2
N

μ2 , e14 =
(
m2

N − s
)2 + sm2

Z

μ4 ,

e4 = m2
Z

μ2 , e10 = m2
N − s

μ2 , e15 = m2
N

(
4m2

Z − t
)− m4

Z

μ4 ,

e5 = m2
Z + s

μ2 , e11 = 4m2
N − t

μ2 ,

e16 =
(
4m2

Z − t
) (
m2

N − s
)2 + 4sm4

Z

μ6 .

e6 = m2
Z − t

μ2 , (34)

The non-rational letters are

o1 = 2m2
Z − t − r2

2m2
Z − t + r2

,

o2 = 2m2
Z

(
m2

Z + s
)− st − r4

2m2
Z

(
m2

Z + s
)− st + r4

,

o3 =
(
4m2

Z − t
)
st + 2m4

Z (t − s) − (2m2
Z − t

)
r4(

4m2
Z − t

)
st + 2m4

Z (t − s) + (2m2
Z − t

)
r4

,

o4 = 2m4
Z t + st

(
4m2

Z − t
)− r2r4

2m4
Z t + st

(
4m2

Z − t
)+ r2r4

,

o5 = 2m2
N − t − r1

2m2
N − t + r1

,

o6 = 2m2
N

(
m2

N − s
)2 − t

(
m4

N + s2
)− (m4

N − s2
)
r1

2m2
N

(
m2

N − s
)2 − t

(
m4

N + s2
)+ (m4

N − s2
)
r1

,

o7 = 2m2
N − m2

Z − r3

2m2
N − m2

Z + r3
,

o8 = 2m2
N

(
m2

Z + t
)− m2

Z t − r1r3

2m2
N

(
m2

Z + t
)− m2

Z t + r1r3
,

o9 = 2m2
N

(
m2

N − s
)2 − m2

Z

(
m4

N + s2
)− (m4

N − s2
)
r3

2m2
N

(
m2

N − s
)2 − m2

Z

(
m4

N + s2
)+ (m4

N − s2
)
r3

,

o10 = 2m2
Nm

2
Z

(
4m2

N −m2
Z

)+[2m4
N −m2

Z

(
4m2

N −m2
Z

)]
t−(2m2

N − m2
Z

)
r1r3

2m2
Nm

2
Z

(
4m2

N −m2
Z

)+[2m4
N −m2

Z

(
4m2

N −m2
Z

)]
t+(2m2

N − m2
Z

)
r1r3

,

o11 = −t
[
2m4

Z + (2m2
N − t

) (
4m2

Z − t
)]− (2m2

Z − t
)
r1r2

−t
[
2m4

Z + (2m2
N − t

) (
4m2

Z − t
)]+ (2m2

Z − t
)
r1r2

,

o12 =
(
m2

N − s
)2 (

2m2
Z − t

)+ 2sm4
Z − (m2

N − s
)
r5(

m2
N − s

)2 (
2m2

Z − t
)+ 2sm4

Z + (m2
N − s

)
r5

,

o13 =
(
m2

N − s
)2 (

2m4
z − 4m2

Z t + t2
)− 2m4

Z st − (m2
N − s

) (
2m2

Z − t
)
r5(

m2
N − s

)2 (
2m4

z − 4m2
Z t + t2

)− 2m4
Z st + (m2

N − s
) (

2m2
Z − t

)
r5

,

o14 = −t Q8 − (m2
N + s

) (
2m2

Z − t
)
r1r5

−t Q8 + (m2
N + s

) (
2m2

Z − t
)
r1r5

,

o15 = −t
(
m2

N + s
)
m2

Z − r3r5

−t
(
m2

N + s
)
m2

Z + r3r5
,

o16 = −t
[
2m4

Z − (m2
N − s

) (
4m2

Z − t
)]− r2r5

−t
[
2m4

Z − (m2
N − s

) (
4m2

Z − t
)]+ r2r5

, (35)

with

Q8 =
(

4m2
Z − t

) [
2m2

N

(
m2

N − s
)2 − t

(
m4

N + s2
)]

+2m4
Z

((
m2

N + s
)2 + s

(
4m2

N − t
))

. (36)

As an example let us write down the differential equation for
topology H :

d J H = MH J H ,

MH = ε

⎛
⎝

0 0 0
0 −2 0
0 − 3

4 −1

⎞
⎠ d log e1

+ε

⎛
⎝

−2 0 0
0 0 0

− 3
2 0 −2

⎞
⎠ d log e2

+ε

⎛
⎝

0 0 0
0 0 0
3
2

3
4 1

⎞
⎠ d log e3. (37)

The differential equations for the other topologies are of a
similar form. The matrices MX for all topologies are given
in an electronic file attached to the arxiv version of this article.

6 Rationalisation of the square roots

The topologies A-E contain square roots. For each topology
all occurring square roots can be rationalised simultaneously.
This implies that all integrals can be expressed in terms of
multiple polylogarithms. For the rationalisation of the square
roots we use the algorithms of [40,41].
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6.1 The square root r1

Topology D involves only the square root r1. The standard
rationalisation of the square root r1 is given by

t = − (1 − y)2

y
m2

N , r1 = 1 − y2

y
m2

N , (38)

with the inverse transformation given by

y = 1

2

(
2 − t

m2
N

− r1

m2
N

)
. (39)

It is convenient to use instead of y the variable ȳ = 1 − y.
This has the advantage that t = 0 corresponds to ȳ = 0. In
integrating the differential equation we will choose t = 0 as
boundary. In terms of ȳ we have

t = − ȳ2

1 − ȳ
m2

N , r1 = ȳ (2 − ȳ)

1 − ȳ
m2

N . (40)

The inverse transformation is given by

ȳ = t + r1

2m2
N

. (41)

6.2 The square roots r1 and r3

Topologies B and C involve the square roots r1 and r3. The
square root r1 is rationalised as above, the square root r3 is
rationalised by

m2
Z = (1 + z)2

z
m2

N , r3 = 1 − z2

z
m2

N . (42)

The inverse transformation is given by

z = −1

2

(
2 − m2

Z

m2
N

+ r3

m2
N

)
. (43)

6.3 The square roots r2 and r4

Topology E involves the square roots r2 and r4. The square
root r2 is rationalised by

t = − ỹ2

1 − ỹ
m2

Z , r2 = ỹ (2 − ỹ)

1 − ỹ
m2

Z . (44)

The inverse transformation is given by

ỹ = t + r2

2m2
Z

. (45)

The square root r4 is rationalised by

m2
Z = (1 − 2z̃)

4z̃2

(2 − ỹ)2

(1 − ỹ)
s,

r4 = (1 − z̃) (1 − 2z̃)

4z̃3

ỹ (2 − ỹ)3

(1 − ỹ)2 s2. (46)

The inverse transformation is given by

z̃ = −
(
4m2

Z − t
)

4m2
Z

(
s

m2
Z

− r4

m2
Zr2

)
. (47)

6.4 The square roots r1, r2, r3 and r5

Topology A involves the square roots r1, r2 r3 and r5. The
square roots r1 and r2 are rationalised by

t = −
(
ŷ2m2

Z − m2
N

)2
ŷ
(
1 + ŷ

) (
m2

N + ŷm2
Z

) ,

r1 =
(
ŷ2m2

Z − m2
N

) ((
1 + 2 ŷ

)
m2

N + ŷ2m2
Z

)

ŷ
(
1 + ŷ

) (
m2

N + ŷm2
Z

) ,

r2 =
(
ŷ2m2

Z − m2
N

) (
m2

N + ŷ
(
2 + ŷ

)
m2

Z

)

ŷ
(
1 + ŷ

) (
m2

N + ŷm2
Z

) . (48)

The inverse transformation is given by

ŷ = − t2 − t (r1 + r2) + r1r2

4m2
Z t

. (49)

The root r3 is rationalised as in Sect. 6.2:

m2
Z = (1 + z)2

z
m2

N , r3 = 1 − z2

z
m2

N . (50)

The inverse transformation is given by

z = −1

2

(
2 − m2

Z

m2
N

+ r3

m2
N

)
. (51)

Finally, the root r5 is rationalised by

s = x̂(
1 + x̂

)
(
m2

N + x̂
m4

Z

4m2
Z − t

)
,

r5 = −t(
1 + x̂

)
r2

[
m2

N

(
4m2

Z − t
)

+ x̂
(
2 + x̂

)
m4

Z

]
. (52)

The occurrence of r2 on the right-hand side is unproblematic,
as r2 is rationalised by Eq. (48). The inverse transformation
is given by

x̂ = − 1

2m4
Z

[(
m2

N − s
) (

4m2
Z − t

)
+ r2r5

t

]
. (53)

7 Boundary values

In order to solve the differential equation, we need boundary
values. As boundary point we choose

t = 0, m2
N = 0, m2

Z = ∞. (54)
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There are four master integrals with a trivial kinematic depen-
dence. These integrals are easily calculated with the help of
the Feynman parametrisation. We find

J H
1 = e2εγE

(−t

μ2

)−2ε
� (1 + 2ε) � (1 − ε)3

� (1 − 3ε)
,

J H
2 = e2εγE

(−s

μ2

)−2ε
� (1+2ε) � (1+ε) � (1−2ε) � (1−ε)2

� (1−3ε)
,

J F
2 = e2εγE

(
m2

Z

μ2

)−2ε

� (1 + 2ε) � (1 + ε) � (1 − ε) ,

J D
2 = 3

2
e2εγE

(
m2

N

μ2

)−2ε

� (1 + 2ε) � (1 + ε) � (1 − ε)2 � (1 − 4ε)

� (1 − 2ε) � (1 − 3ε)
. (55)

The boundary values of the master integrals of intermediate
complexity we compute with the help of the Mellin–Barnes
representation. We illustrate this for the example of the mas-
ter integral J F

6 . For this integral we obtain the Mellin–Barnes
representation

J F
6 = −e2εγEε2 � (1 + ε) � (1 − ε)2

� (1 − 2ε)

(
m2

Z

μ2

)−2ε

× 1

2π i

∫
dσ

(
−s

m2
Z

)σ+1

×� (−σ) � (−σ −1−2ε) � (σ + 1)2 � (σ + 2+2ε)

� (σ +2−ε)
.

(56)

The integration contour runs from −i∞ to +i∞ and sep-
arates the poles of �(−σ) and �(−σ − 1 − 2ε) from the
poles of �(σ + 1) and �(σ + 2 + 2ε). For |s| < m2

Z we
may close the integration contour to the right and sum up the
residues of �(−σ) and �(−σ − 1 − 2ε). For the boundary
value we are only interested in the leading term in an expan-
sion in 1/m2

Z . The leading term is given by the first residue
of �(−σ − 1 − 2ε) located at

σ = −1 − 2ε. (57)

We therefore obtain

J F
6 = −1

4
e2εγE

� (1 + 2ε) � (1 + ε) � (1 − ε)2 � (1 − 2ε)

� (1 − 3ε)

×
(−s

μ2

)−2ε

+ O

(
−s

m2
Z

)
. (58)

The boundary values of the more complicated integrals we
obtain from regularity conditions. For example, the boundary
values for J H

3 are determined from the condition that this
integral is regular at e3 = 0, this corresponds to the condition
that there is no singularity whenever the Mandelstam variable

u vanishes. This follows from physics: As the master integral
is a planar integral, there is no singularity in the crossed u-
channel.

8 Results

We set μ2 = s. The values of the Feynman integrals at
another scale μ2

1 are easily obtained through

J
(
μ2

1

)
= e2εL J

(
μ2
)

with L = ln

(
μ2

1

μ2

)
. (59)

8.1 Integrating the differential equation

As already mentioned in Sect. 7, we use

t = 0, m2
N = 0, m2

Z = ∞ (60)

as boundary point. After setting μ2 = s the Feynman inte-
grals depend only on dimensionless kinematic variables,
which we may take as

xt = −t

s
, xm2

N
= m2

N

s
, x−1

m2
Z

= s

m2
Z

. (61)

Our chosen boundary point corresponds to
(
xt , xm2

N
, x−1

m2
Z

)
= (0, 0, 0) . (62)

The rationalisation of square roots will introduce a change
of variables. By a suitable definition of the new variables we
may ensure that the boundary point in the new variables is
still (0, 0, 0). Let us now assume that our integration variables
are (x1, x2, x3). We then fix an integration path γ : We first
integrate along x1 at x2 = x3 = 0, followed by an integration
along x2 at x1 = const and x3 = 0 and finally an integration
along x3 at x1 = const and x2 = const.

8.1.1 Integration for topologies B-H

In Table 3 we show for topologies B-H the dimensionless
kinematic variables and the integration order.

For topologies B and C we use the variable ȳ from
Sect. 6.1 and the variable z from Sect. 6.2. The variable ȳ
from Sect. 6.1 is also used for topology D. For topology E we
use the variables ỹ and z̃ from Sect. 6.3. The rationalisation of
the square roots turns the arguments of the dlog-forms given
in Eq. (32) into rational functions. This implies that all iter-
ated integrals from the integration of the differential equation
can be expressed in terms of multiple polylogarithms. Mul-
tiple polylogarithms are defined as follows: One first defines
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Table 3 The dimensionless kinematic variables and the integration
order for topologies B-H

Topologies Variables and integration order

B, C
(
xm2

N
, z, ȳ

)

D
(
xm2

N
, ȳ
)

E (z̃, ỹ)

F , G

(
x−1
m2

Z
, xt

)

H (xt )

G(0, . . . , 0; y) with k zeros to be

G(0, . . . , 0; y) = 1

k! (ln y)k . (63)

This includes the trivial case G(; y) = 1. Multiple polylog-
arithms are then defined recursively by

G(z1, z2, . . . , zk; y) =
y∫

0

dy1

y1 − z1
G(z2, . . . , zk; y1). (64)

A multiple polylogarithm G(z1, . . . , zk; y) is said to have a
trailing zero if zk = 0. Using the shuffle product, we may
isolate trailing zeros in powers of

G(0; y) = ln y. (65)

An example is given by

G(z, 0; y) = ln y · G(z; y) − G(0, z; y). (66)

For multiple polylogarithms without a trailing zero we have
the scaling identity

G(z1, . . . , zk; y) = G(
z1

y
, . . . ,

zk
y

; 1) (67)

A multiple polylogarithm G(z1, . . . , zk; 1) has a convergent
power series expansion if z1 	= 1 and
∣∣z j
∣∣ ≥ 1 for all j ∈ {1, . . . , k}. (68)

The kinematic variables and the integration order for topolo-
gies B-H have been chosen such that after isolating all trail-
ing zeros in powers of logarithms, the remaining multiple
polylogarithms have convergent power series expansions in
the kinematic region of interest. This ensures a highly effi-
cient numerical evaluation. Furthermore, since we have for
small values of (−t)

− t ∼ ȳ2 ∼ ỹ2 (69)

and since we have for large values of m2
Z

m2
Z ∼ z−1 ∼ z̃−2 (70)

this procedure also makes the large logarithms

ln

(−t

s

)
and ln

(
s

m2
Z

)
(71)

manifest. As an example one finds

J F
7 = −5

4
+
(

2Lt − 1

2
iπ

)
ε +

(
−L2

t + 2iπLt + 15

4
ζ2

)
ε2

+
(

−2iπL2
t − 12ζ2Lt + 89

6
ζ3 − 1

12
iπ3
)

ε3

+
[

1

3
L4
t + 4

3
iπL3

t + 11ζ2L
2
t −

(
70

3
ζ3 + 1

3
iπ3
)
Lt

+ 493

16
ζ4 + 19

3
iπζ3

]
ε4

+O
(
x−1
m2

Z

)
+ O (xt ) + O

(
ε5
)

, (72)

with Lt = ln(−t/s).

8.1.2 Integration for topology A

For topologies B-H we were in the lucky situation that with
our choice of variables all multiple polylogarithms had con-
vergent power series expansions in the kinematic region of
interest. This is no longer straightforward for topology A.

The variables x̂, ŷ, z from Sect. 6.4 rationalise all square
roots for topology A. This allows us to conclude that all inte-
grals from topology A can be expressed in terms of multiple
polylogarithms and that all master integrals from topology A
are of uniform weight. The latter statement uses the fact that
the boundary constants are of uniform weight as well [42].
As the master integrals J A

1 -J A
13 appear also in other topolo-

gies, the new information is the statement that the master
integrals J A

14 and J A
15 can be expressed in term of multiple

polylogarithms and are of uniform weight.
The polynomials appearing in the dlog-forms after ratio-

nalisation suggest the integration order
(
z, ŷ, x̂

)
. (73)

This integration order has the property that for each integra-
tion we encounter at most quadratic polynomials in the inte-
gration variable. However, the resulting expression in terms
of multiple polylogarithms involves multiple polylogarithms
which do not have convergent power series expansions in
the kinematic region of interest. This is not a fundamental
problem, as we may transform these multiple polylogarithms
such that they do have a convergent power series expansion.
However, these transformations are rather slow.

Choosing other integration orders will result in polyno-
mials of higher degree in the integration variables. While we
may determine the roots of these polynomials numerically,
there is a second drawback: Factorising these polynomials
into linear factors will significantly increase the number of

123



495 Page 12 of 22 Eur. Phys. J. C (2024) 84 :495

terms. To give an example: Consider an iterated integral of
depth w, where each dlog-form has as argument a polynomial
of degree N in the integration variable. A single iterated inte-
gral of this type will lead to Nw terms. This growth prevents
an efficient numerical evaluation.

An efficient numerical evaluation routine for the kinematic
region of interest is achieved as follows: We introduce the
variable

v = √
xt (74)

and integrate the differential equation with the integration
order

(xm2
N
, z, v). (75)

The first two integrations are done at t = 0 and give multi-
ple polylogarithms. From the definition of the square roots
in Eq. (13) we see that at t = 0 only the square root r3 is
non-zero. The square root r3 is rationalised by the change of
variables from m2

Z to z given in Eq. (42). There is one sub-
tlety: The (t → 0)-limit of the letters o11, o14 and o16 is not
a rational function of xm2

N
and z. However, in the differential

equation these letters always multiply the integrals J A
6 , J A

8
and J A

14. These integrals vanish at t = 0 and as a consequence
the letters o11, o14 and o16 do not appear in the result for the
master integrals at t = 0.

For the last integration in v we have the integration kernels

{e2, e6, e7, e11, e12, e15, e16, o1, o5, o6, o8, o10,

o11, o12, o13, o14, o15, o16} . (76)

d ln(e2) has a simple pole at v = 0, all others have Taylor
expansions in v. The Taylor expansions are convergent for

|t | < min

⎧⎨
⎩4m2

N ,m2
Z ,

∣∣∣∣∣
m2

Z

(
4m2

N − m2
Z

)

m2
N

∣∣∣∣∣ ,
∣∣∣∣∣
(
m2

N − s
)2

s

∣∣∣∣∣ ,

×
∣∣∣∣∣∣
4m2

Z

[(
m2

N − s
)2 + sm2

Z

]

(
m2

N − s
)2

∣∣∣∣∣∣

⎫⎬
⎭ . (77)

This includes the kinematic region of the P2 experiment. For
large m2

Z , the most stringent condition is

|t | <

∣∣∣∣∣
(
m2

N − s
)2

s

∣∣∣∣∣ . (78)

This is nothing else than the condition on the physical region
[43].

8.2 Numerical results

For the numerical evaluation we have written for each topol-
ogy a C++-program, which uses the GiNaC-library [44].
This allows numerical evaluations with arbitrary precision.

The algorithms for the numerical evaluation of multiple poly-
logarithms are based on [45], topology A uses in addition the
class user_defined_kernel from Ref. [46] for the last
integration over the variable v.

As a typical kinematical point we use

s = 1.18 GeV2, t = −4.5 · 10−3 GeV2,

m2
Z = 8.32 · 103 GeV2, m2

N = 0.867 GeV2. (79)

This corresponds to the kinematics of the P2 experiment
with an electron beam of Ebeam = 155 MeV and momentum
transfer of Q2 = −t = 4.5 · 10−3 GeV2. The Mandelstam
variable s is then given by

s = (Ebeam + mN )2 . (80)

We use

mN = 0.931 GeV, mZ = 91.2 GeV. (81)

The values of the master integrals for the first five terms of
the ε-expansion at the kinematic point specified by Eq. (79)
are given to 8 digits in Tables 4, 5, 6, 7, 8, 9, 10, and 11.
In addition, we compared our results to the results of the
program AMFlow [47–49] to 50 digits and found perfect
agreement. Our numerical evaluation routines are signifi-
cantly faster than AMFlow. For example, our program takes
about eight seconds to evaluate all master integrals of topol-
ogy A to 50 digits up to and including the ε4-term. The corre-
sponding evaluation with AMFlow takes about 21 minutes.
All calculations were done on a single core of a standard
desktop computer.

8.3 Large logarithms

In the kinematic region of interest (i.e. small (−t) and large
m2

Z )

ln

(−t

s

)
and ln

(
s

m2
Z

)
(82)

are large logarithms. Below we list for all master integrals
the leading logarithms. At order ε j we can have at most j
powers of large logarithms. The leading logarithms are the
ones which occur to power j at order ε j . We remark that this
counting defines at order ε0 constants as leading logarithms.
In some topologies we use different variables. Since we have
for small values of (−t)

− t ∼ ȳ2 ∼ ỹ2 (83)

and since we have for large values of m2
Z

m2
Z ∼ z−1 ∼ z̃−2 (84)

the discussion carries over in a straightforward way to the
new variables. Let us stress that the following formulae are
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Table 4 Numerical results for the first five terms of the ε-expansion of the master integrals J A
1 -J A

15 for the kinematic point specified by Eq. (79)

ε0 ε1 ε2 ε3 ε4

J A
1 1 −17.721808 161.96604 −1018.2849 4958.5733

J A
2 −1 17.721806 −161.96601 1018.2846 −4958.5714

J A
3 1.5 0.92469222 12.622024 20.886482 133.48343

J A
4 1 −17.721806 161.96601 −1018.2846 4958.5715

J A
5 0.5 2.3459023 −20.695763 −152.3306 −545.47467

+6.2831853i +33.35282i +57.516544i −73.412472i

J A
6 0 0 −0.00015280111 0.00094650525 −0.0070979484

J A
7 0 −18.337851 153.5486 −1032.1747 4869.4159

J A
8 0 0.002941742 −0.052132982 0.47646222 −2.9955308

J A
9 0 18.337851 −153.54859 1032.1747 −4869.4155

J A
10 −0.125 −0.58647531 5.17355 38.08511 136.35187

−1.5707963i −8.3382329i −14.379368i +18.352165i

J A
11 0 0 0.00039275926 −0.0024636613 0.016696228

+3.1349531e − 05i +0.00026046032i +0.0010683564i

J A
12 0 2.7043262e − 07 −3.9812567e − 06 3.0234529e − 05 −0.00015754108

J A
13 −0.125 −0.58647558 5.1735479 38.085115 136.35197

−1.5707963i −8.3382363i −14.379397i +18.35205i

J A
14 0 0 −0.00013778848 0.00069534307 −0.0049161254

J A
15 0 0 0.00016537254 −0.00085429938 0.0052303379

+1.4597012e − 05i +0.00012127593i +0.00049744992i

Table 5 Numerical results for the first five terms of the ε-expansion of the master integrals J B
1 -J B

11 for the kinematic point specified by Eq. (79)

ε0 ε1 ε2 ε3 ε4

J B
1 1 11.138385 60.386872 199.16752 381.04712

J B
2 1.5 0.92469222 12.622024 20.886482 133.48343

J B
3 1 −17.721806 161.96601 −1018.2846 4958.5715

J B
4 0.5 2.3459023 −20.695763 −152.3306 −545.47467

+6.2831853i +33.35282i +57.516544i −73.412472i

J B
5 0 0 −9.3465893 −122.24172 −894.31476

J B
6 1 39.998578 −41.192268 1416.62 −4196.4777

J B
7 0 18.337851 −153.54859 1032.1747 −4869.4155

J B
8 −1.125 −10.113215 −34.840045 −15.424624 354.88999

−4.712389i −52.488401i −282.51753i −923.44496i

J B
9 −0.125 −0.58647558 5.1735479 38.085115 136.35197

−1.5707963i −8.3382363i −14.379397i +18.35205i

J B
10 0 0 −9.3464365 −122.24267 −894.30774

J B
11 −0.625 −6.1556684 −28.400251 −48.368222 100.24132

−1.5707963i −26.654035i −173.96566i −633.98226i
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Table 6 Numerical results for the first five terms of the ε-expansion of the master integrals JC1 -JC8 for the kinematic point specified by Eq. (79)

ε0 ε1 ε2 ε3 ε4

JC1 1 −17.721808 161.96604 −1018.2849 4958.5733

JC2 −1 17.721806 −161.96601 1018.2846 −4958.5714

JC3 1.5 0.92469222 12.622024 20.886482 133.48343

JC4 0.5 2.3459023 −20.695763 −152.3306 −545.47467

+6.2831853i +33.35282i +57.516544i −73.412472i

JC5 0 0 −0.00015280111 0.00094650525 −0.0070979484

JC6 0 −18.337851 153.5486 −1032.1747 4869.4159

JC7 −0.125 −0.58647531 5.17355 38.08511 136.35187

−1.5707963i −8.3382329i −14.379368i +18.352165i

JC8 0 0 0.00039275926 −0.0024636613 0.016696228

+3.1349531e − 05i +0.00026046032i +0.0010683564i

Table 7 Numerical results for the first five terms of the ε-expansion of the master integrals J D
1 -J D

5 for the kinematic point specified by Eq. (79)

ε0 ε1 ε2 ε3 ε4

J D
1 1 11.138385 60.386872 199.16752 381.04712

J D
2 1.5 0.92469222 12.622024 20.886482 133.48343

J D
3 0.5 2.3459023 −20.695763 −152.3306 −545.47467

+6.2831853i +33.35282i +57.516544i −73.412472i

J D
4 0 0 −9.3465893 −122.24172 −894.31476

J D
5 −1.125 −10.113215 −34.840045 −15.424624 354.88999

−4.712389i −52.488401i −282.51753i −923.44496i

Table 8 Numerical results for the first five terms of the ε-expansion of the master integrals J E
1 -J E

10 for the kinematic point specified by Eq. (79)

ε0 ε1 ε2 ε3 ε4

J E
1 1 −17.721808 161.96604 −1018.2849 4958.5733

J E
2 −1 17.721806 −161.96601 1018.2846 −4958.5714

J E
3 1 −17.721806 161.96601 −1018.2846 4958.5715

J E
4 1 6.2831853i −18.094275 −10.417826 21.375884

−31.006277i −65.457134i

J E
5 0 0.002941742 −0.052132982 0.47646222 −2.9955308

J E
6 −0.25 5.4086524e − 07 4.5221719 2.6153956 −5.4032243

−1.5707963i −0.00044213247i +7.7502428i +16.362486i

J E
7 0 0 0.0013984474 −0.01094393 0.059232976

+0.00044553083i +0.0013366082i +0.0018112415i

J E
8 0 2.7043262e − 07 −3.9812567e − 06 3.0234529e − 05 −0.00015754108

J E
9 −0.25 −1.5707963i 4.5221702 2.6154006 −5.4032039

−0.00044553083i +7.7502326i +16.362472i

J E
10 0 0 0.00015520336 −0.0010587544 0.004771572

+5.5026642e − 05i +0.00016508381i +0.00022371167i
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Table 9 Numerical results for the first five terms of the ε-expansion of the master integrals J F
1 -J F

7 for the kinematic point specified by Eq. (79)

ε0 ε1 ε2 ε3 ε4

J F
1 1 11.138385 60.386872 199.16752 381.04712

J F
2 1 −17.721806 161.96601 −1018.2846 4958.5715

J F
3 1 6.2831853i −18.094275 −10.417826 21.375884

−31.006277i −65.457134i

J F
4 1 39.998578 −41.192268 1416.62 −4196.4777

J F
5 −2.25 −16.707577 −30.485748 195.29664 1596.8385

−4.712389i −52.488401i −284.3299i −937.45111i

J F
6 −0.25 −1.5707963i 4.5221702 2.6154006 −5.4032039

−0.00044553083i +7.7502326i +16.362472i

J F
7 −1.25 −11.138386 −24.846011 127.58233 1069.9622

−1.5707963i −34.991825i −197.30353i −641.33006i

Table 10 Numerical results for the first five terms of the ε-expansion of the master integrals JG1 -JG5 for the kinematic point specified by Eq. (79)

ε0 ε1 ε2 ε3 ε4

JG1 1 −17.721808 161.96604 −1018.2849 4958.5733

JG2 −1 17.721806 −161.96601 1018.2846 −4958.5714

JG3 1 6.2831853i −18.094275 −10.417826 21.375884

−31.006277i −65.457134i

JG4 −0.25 5.4086524e − 07 4.5221719 2.6153956 −5.4032243

−1.5707963i −0.00044213247i +7.7502428i +16.362486i

JG5 0 0 0.0013984474 −0.01094393 0.059232976

+0.00044553083i +0.0013366082i +0.0018112415i

Table 11 Numerical results for the first five terms of the ε-expansion of the master integrals J H
1 -J H

3 for the kinematic point specified by Eq. (79)

ε0 ε1 ε2 ε3 ε4

J H
1 1 11.138385 60.386872 199.16752 381.04712

J H
2 1 6.2831853i −18.094275 −10.417826 21.375884

−31.006277i −65.457134i

J H
3 −2.25 −16.707577 −30.485748 195.29664 1596.8385

−4.712389i −52.488401i −284.3299i −937.45111i

provided only to quickly gauge the numerical importance of
all master integrals. The analytic results are exact and can be
used to extract not only the leading logarithms, but also all
sub-leading ones as well as the non-logarithmic part. We use
the following notation:

Lt = ln

(−t

s

)
, LZ = ln

(
s

m2
Z

)
,

L ȳ = ln (ȳ) , Lz = ln (z) , Lz̃ = ln (z̃) . (85)

Comparing the expressions for the leading logarithms with
the numerical results from Sect. 8.2 we see – as expected –
a correlation between large logarithms and large numerical
values.

8.3.1 Topology A

J A
1 = 1 + 2Lzε + 2L2

zε
2 + 4

3
L3
zε

3

+2

3
L4
zε

4 + subleading + O
(
ε5
)

,

J A
2 = −1 − 2Lzε − 2L2

zε
2 − 4

3
L3
zε

3

−2

3
L4
zε

4 + subleading + O
(
ε5
)

,

J A
3 = 3

2
+ subleading + O

(
ε5
)

,

J A
4 = 1 + 2Lzε + 2L2

zε
2 + 4

3
L3
zε

3 + 2

3
L4
zε

4
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+subleading + O
(
ε5
)

,

J A
5 = 1

2
+ subleading + O

(
ε5
)

,

J A
6 = 0 + subleading + O

(
ε5
)

,

J A
7 = 2Lzε + 2L2

zε
2 + 4

3
L3
zε

3

+2

3
L4
zε

4 + subleading + O
(
ε5
)

,

J A
8 = 0 + subleading + O

(
ε5
)

,

J A
9 = −2Lzε − 2L2

zε
2 − 4

3
L3
zε

3

−2

3
L4
zε

4 + subleading + O
(
ε5
)

,

J A
10 = −1

8
+ subleading + O

(
ε5
)

,

J A
11 = 0 + subleading + O

(
ε5
)

,

J A
12 = 0 + subleading + O

(
ε5
)

,

J A
13 = −1

8
+ subleading + O

(
ε5
)

,

J A
14 = 0 + subleading + O

(
ε5
)

,

J A
15 = 0 + subleading + O

(
ε5
)

. (86)

8.3.2 Topology B

J B
1 = 1 − 4L ȳε + 8L2

ȳε
2 − 32

3
L3
ȳε

3

+32

3
L4
ȳε

4 + subleading + O
(
ε5
)

,

J B
2 = 3

2
+ subleading + O

(
ε5
)

,

J B
3 = 1 + 2Lzε + 2L2

zε
2 + 4

3
L3
zε

3

+2

3
L4
zε

4 + subleading + O
(
ε5
)

,

J B
4 = 1

2
+ subleading + O

(
ε5
)

,

J B
5 = 0 + subleading + O

(
ε5
)

,

J B
6 = 1 − (2Lz + 8L ȳ

)
ε −

(
2L2

z − 16L2
ȳ

)
ε2

−
(

4

3
L3
z + 64

3
L3
ȳ

)
ε3 −

(
2

3
L4
z − 64

3
L4
ȳ

)
ε4

+subleading + O
(
ε5
)

,

J B
7 = −2Lzε − 2L2

zε
2 − 4

3
L3
zε

3

−2

3
L4
zε

4 + subleading + O
(
ε5
)

,

J B
8 = −9

8
+ 3L ȳε − 3L2

ȳε
2

+4L4
ȳε

4 + subleading + O
(
ε5
)

,

J B
9 = −1

8
+ subleading + O

(
ε5
)

,

J B
10 = 0 + subleading + O

(
ε5
)

,

J B
11 = −5

8
+ 2L ȳε − 2L2

ȳε
2

+8

3
L4
ȳε

4 + subleading + O
(
ε5
)

. (87)

8.3.3 Topology C

JC1 = 1 + 2Lzε + 2L2
zε

2 + 4

3
L3
zε

3

+2

3
L4
zε

4 + subleading + O
(
ε5
)

,

JC2 = −1 − 2Lzε − 2L2
zε

2 − 4

3
L3
zε

3

−2

3
L4
zε

4 + subleading + O
(
ε5
)

,

JC3 = 3

2
+ subleading + O

(
ε5
)

,

JC4 = 1

2
+ subleading + O

(
ε5
)

,

JC5 = 0 + subleading + O
(
ε5
)

,

JC6 = 2Lzε + 2L2
zε

3 + 4

3
L3
zε

3

+2

3
L4
zε

4 + subleading + O
(
ε5
)

,

JC7 = −1

8
+ subleading + O

(
ε5
)

,

JC8 = 0 + subleading + O
(
ε5
)

. (88)

8.3.4 Topology D

J D
1 = 1 − 4L ȳε + 8L2

ȳε
2 − 32

3
L3
ȳε

3

+32

3
L4
ȳε

4 + subleading + O
(
ε5
)

,

J D
2 = 3

2
+ subleading + O

(
ε5
)

,

J D
3 = 1

2
+ subleading + O

(
ε5
)

,

J D
4 = 0 + subleading + O

(
ε5
)

,

J D
5 = −9

8
+ 3L ȳε − 3L2

ȳε
2

+4L4
ȳε

4 + subleading + O
(
ε5
)

. (89)
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8.3.5 Topology E

J E
1 = 1 + 4Lz̃ε + 8L2

z̃ε
2 + 32

3
L3
z̃ε

3

+32

3
L4
z̃ε

4 + subleading + O
(
ε5
)

,

J E
2 = −1 − 4Lz̃ε − 8L2

z̃ε
2 − 32

3
L3
z̃ε

3

−32

3
L4
z̃ε

4 + subleading + O
(
ε5
)

,

J E
3 = 1 + 4Lz̃ε + 8L2

z̃ε
2 + 32

3
L3
z̃ε

3

+32

3
L4
z̃ε

4 + subleading + O
(
ε5
)

,

J E
4 = 1 + subleading + O

(
ε5
)

,

J E
5 = 0 + subleading + O

(
ε5
)

,

J E
6 = −1

4
+ subleading + O

(
ε5
)

,

J E
7 = 0 + subleading + O

(
ε5
)

,

J E
8 = 0 + subleading + O

(
ε5
)

,

J E
9 = −1

4
+ subleading + O

(
ε5
)

,

J E
10 = 0 + subleading + O

(
ε5
)

. (90)

8.3.6 Topology F

J F
1 = 1 − 2Ltε + 2L2

t ε
2 − 4

3
L3
t ε

3

+2

3
L4
t ε

4 + subleading + O
(
ε5
)

,

J F
2 = 1 + 2LZε + 2L2

Zε2 + 4

3
L3
Zε3

+2

3
L4
Zε4 + subleading + O

(
ε5
)

,

J F
3 = 1 + subleading + O

(
ε5
)

,

J F
4 = 1 − (2LZ + 4Lt ) ε −

(
2L2

Z − 4L2
t

)
ε2

−
(

4

3
L3
Z + 8

3
L3
t

)
ε3 −

(
2

3
L4
Z − 4

3
L4
t

)
ε4

+subleading + O
(
ε5
)

,

J F
5 = −9

4
+ 3Ltε − 3

2
L2
t ε

2

+1

2
L4
t ε

4 + subleading + O
(
ε5
)

,

J F
6 = −1

4
+ subleading + O

(
ε5
)

,

J F
7 = −5

4
+ 2Ltε − L2

t ε
2

+1

3
L4
t ε

4 + subleading + O
(
ε5
)

. (91)

8.3.7 Topology G

JG1 = 1 + 2LZε + 2L2
Zε2 + 4

3
L3
Zε3

+2

3
L4
Zε4 + subleading + O

(
ε5
)

,

JG2 = −1 − 2LZε − 2L2
Zε2 − 4

3
L3
Zε3

−2

3
L4
Zε4 + subleading + O

(
ε5
)

,

JG3 = 1 + subleading + O
(
ε5
)

,

JG4 = −1

4
+ subleading + O

(
ε5
)

,

JG5 = 0 + subleading + O
(
ε5
)

. (92)

8.3.8 Topology H

J H
1 = 1 − 2Ltε + 2L2

t ε
2 − 4

3
L3
t ε

3

+2

3
L4
t ε

4 + subleading + O
(
ε5
)

,

J H
2 = 1 + subleading + O

(
ε5
)

,

J H
3 = −9

4
+ 3Ltε − 3

2
L2
t ε

2

+1

2
L4
t ε

4 + subleading + O
(
ε5
)

. (93)

9 Conclusions

In this paper we computed a set of two-loop Feynman inte-
grals relevant to the Moller experiment and to the P2 experi-
ment. We considered Feynman integrals, which are obtained
from a box integral by the insertion of a light fermion loop.
The exchanged particles in the box integral are either pho-
tons or heavy electro-weak gauge bosons. We considered all
combinations. By rationalising all occurring square roots we
showed that all these Feynman integrals can be expressed in
terms of multiple polylogarithms. We organised our results
such that all large logarithms are manifest. Furthermore, we
provided highly efficient numerical evaluation routines for
all master integrals in the kinematic region of interest.

For the complete set of the two-loop electro-weak correc-
tions there are of course more diagrams to be considered.
In particular, this includes the planar and non-planar double
box integrals. Again, one has to consider all possible com-
binations of photon and heavy gauge boson exchanges. The
case of the exchange of three heavy gauge bosons is partic-
ularly interesting: We expect the planar double box integral
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with the exchange of three heavy gauge bosons to be asso-
ciated with a curve of genus one and the non-planar double
box integral with the exchange of three heavy gauge bosons
to be associated with a curve of genus two [50]. This is an
interesting project for the future.
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Appendix A: Master sectors

In this appendix we show in Figs. 4, 5 and 6 the diagrams of
all master sectors. The colour coding is as follows: A green
line indicates a particle of mass mN , a red line a particle of
mass mZ . Uncoloured lines are massless.

Appendix B: Supplementary material

Attached to the arxiv version of this article are for each topol-
ogy

X ∈ {A, B,C, D, E, F,G, H} (94)

the electronic files

topo_X_symbolic.mpl, topo_X_numeric.cc.

The first file is in Maple syntax and defines the transforma-
tion matrixUX appearing in eq. (19), its inverse (UX )−1 and
the matrix MX appearing in the differential equation (28).
These are denoted as

Fig. 4 Master sectors (part 1)

U_X, Uinv_X, M_X.

The second file topo_X_numeric.cc is a C++-program
and provides numerical evaluation routines for all master
integrals of a given topology. This C++-program requires
the GiNaC-library [44].

Appendix C: One-loop integrals

For convenience we also include the corresponding one-loop
integrals. At one-loop we consider the family of integrals

Iν1ν2ν3ν4 = eγEε
(
μ2
)ν− D

2
∫

dDk1

iπ
D
2

4∏
j=1

1

P
ν j
j

, (95)
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Fig. 5 Master sectors (part 2)

where the notation is as in Sect. 2. At one-loop, the topologies
B and C are related by symmetry, and so are the topologies
F and G. We therefore have to consider only the topologies
A, B, D, E , F and H . Possible pre-canonical bases are:

K A =
(
I A0100, I

A
0010, I

A
1010, I

A
0110, I

A
0101, I

A
1110 I

A
1101 I

A
0111, I

A
1111

)T
,

K B =
(
I B0010, I

B
0001, I

B
1010, I

B
0101, I

B
0011, I

B
1011 I

B
0111, I

B
1111

)T
,

K D =
(
I D0010, I

D
1010, I

D
0101, I

D
0111, I

D
1111

)T
,

K E =
(
I E0100, I

E
1010, I

E
0101, I

E
1110 I

E
1101, I

E
1111

)T
,

K F =
(
I F0001, I

F
1010, I

F
0101, I

F
1011 I

F
1111

)T
,

K H =
(
I H1010, I

H
0101, I

H
1111

)T
. (96)

Fig. 6 Master sectors (part 3)

Below we list a possible choice of master integrals of uniform
transcendental weight, together with the corresponding lead-
ing logarithms. For the logarithms we use the same notation
as in Sect. 8.3.

C.1 Topology A

Sector 2: L A
1 = ε D− I A0100

= 1 + Lzε + 1

2
L2
zε

2

+ subleading + O
(
ε3
)

,

Sector 4: LA
2 = ε D− I A0010

= 1 + subleading + O
(
ε3
)

,

123



495 Page 20 of 22 Eur. Phys. J. C (2024) 84 :495

Sector 5: L A
3 = ε

(
m2

N − s

μ2

)
D− I A1010

= −1 + subleading + O
(
ε3
)

,

Sector 6: LA
4 = ε

(
r3

μ2

)
D− I A0110

= −Lzε − 1

2
L2
zε

2

+ subleading + O
(
ε3
)

,

Sector 10: LA
5 = ε

(
r2

μ2

)
D− I A0101

= 0 + subleading + O
(
ε3
)

,

Sector 7: LA
6 = ε2

(
m2

N − s

μ2

)
I A1110

= 0 + subleading + O
(
ε3
)

,

Sector 11: LA
7 = ε2

(−t

μ2

)
I A1101

= 0 + subleading + O
(
ε3
)

,

Sector 14: LA
8 = ε2

(
r1

μ2

)
I A0111

= 0 + subleading + O
(
ε3
)

,

Sector 15: LA
9 = ε2

(
r5

μ4

)
I A1111

= 0 + subleading + O
(
ε3
)

. (97)

C.2 Topology B

Sector 4: LB
1 = ε D− I B0010

= 1 + subleading + O
(
ε3
)

,

Sector 8: LB
2 = ε D− I B0001

= 1 + Lzε + 1

2
L2
zε

2

+ subleading + O
(
ε3
)

,

Sector 5: LB
3 = ε

(
m2

N − s

μ2

)
D− I B1010

= −1 + subleading + O
(
ε3
)

,

Sector 10: LB
4 = ε

(
m2

Z − t

μ2

)
D− I B0101

= −1 − Lzε − 1

2
L2
zε

2

+ subleading + O
(
ε3
)

,

Sector 12: LB
5 = ε

(
r3

μ2

)
D− I B0011

= −Lzε − 1

2
L2
zε

2

+ subleading + O
(
ε3
)

,

Sector 13: LB
6 = ε2

(
m2

N − s

μ2

)
I B1011

= 0 + subleading + O
(
ε3
)

,

Sector 14: LB
7 = ε2

(
r1

μ2

)
I B0111

= 0 + subleading + O
(
ε3
)

,

Sector 15: LB
8 = ε2

(
m2

N − s

μ2

)(
m2

Z − t

μ2

)
I B1111

= 1

2
+ subleading + O

(
ε3
)

. (98)

C.3 Topology D

Sector 4: LD
1 = ε D− I D0010

= 1 + subleading + O
(
ε3
)

,

Sector 5: LD
2 = ε

(
m2

N − s

μ2

)
D− I D1010

= −1 + subleading + O
(
ε3
)

,

Sector 10: LD
3 = ε

(−t

μ2

)
D− I D0101

= −2 + 4L ȳε − 4L2
ȳε

2

+ subleading + O
(
ε3
)

,

Sector 14: LD
4 = ε2

(
r1

μ2

)
I D0111

= 0 + subleading + O
(
ε3
)

,

Sector 15: LD
5 = ε2

(
m2

N − s

μ2

)(−t

μ2

)
I D1111

= 2 − 2L ȳε + subleading + O
(
ε3
)

.

(99)

C.4 Topology E

Sector 2: LE
1 = ε D− I E0100

= 1 + 2Lz̃ε + 2L2
z̃ε

2

+ subleading + O
(
ε3
)

,

Sector 5: LE
2 = ε

(−s

μ2

)
D− I E1010
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= −2 + subleading + O
(
ε3
)

,

Sector 10: LE
3 = ε

(
r2

μ2

)
D− I E0101

= 0 + subleading + O
(
ε3
)

,

Sector 7: LE
4 = ε2

(−s

μ2

)
I E1110

= 0 + subleading + O
(
ε3
)

,

Sector 11: LE
5 = ε2

(−t

μ2

)
I E1101

= 0 + subleading + O
(
ε3
)

,

Sector 15: LE
6 = ε2

(
r4

μ4

)
I E1111

= 0 + subleading + O
(
ε3
)

. (100)

C.5 Topology F

Sector 8: LF
1 = ε D− I F0001

= 1 + LZε + 1

2
L2
Zε2

+ subleading + O
(
ε3
)

,

Sector 5: LF
2 = ε

(−s

μ2

)
D− I F1010

= −2 + subleading + O
(
ε3
)

,

Sector 10: LF
3 = ε

(
m2

Z − t

μ2

)
D− I F0101

= −1 − LZε − 1

2
L2
Zε2

+ subleading + O
(
ε3
)

,

Sector 13: LF
4 = ε2

(−s

μ2

)
I F1011

= 0 + subleading + O
(
ε3
)

,

Sector 15: LF
5 = ε2

(−s

μ2

)(
m2

Z − t

μ2

)
I F1111

= 1 + subleading + O
(
ε3
)

. (101)

C.6 Topology H

Sector 5: LH
1 = ε

(−s

μ2

)
D− I H1010

= −2 + subleading + O
(
ε3
)

,

Sector 10: LH
2 = ε

(−t

μ2

)
D− I H0101

= −2 + 2Ltε − L2
t ε

2

+ subleading + O
(
ε3
)

,

Sector 15: LH
3 = ε2

(−s

μ2

)(−t

μ2

)
I H1111

= 4 − 2Ltε + subleading + O
(
ε3
)

.

(102)
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