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Abstract The motion of water is governed by the Navier–
Stokes equations, which are complemented by the continuity
equation to ensure local mass conservation. In this work, we
construct the relativistic generalization of these equations
through a gradient expansion for a fluid with a conserved
charge in a curved d-dimensional spacetime. We adopt a
general hydrodynamic frame and introduce the irreducible-
structure (IS) algorithm, which is based on derivatives of the
expansion scalar and the shear and vorticity tensors. By this
method, we systematically generate all permissible gradients
up to a specified order and derive the most comprehensive
constitutive relations for a charged fluid, accurate to third-
order in the gradient expansion. These constitutive relations
are formulated to apply to ordinary (nonconformal) and con-
formally invariant charged fluids. Furthermore, we examine
the frame dependence of the transport coefficients for a non-
conformal charged fluid up to the third order in the gradient
expansion. The frame dependence of the scalar, vector, and
tensor parts of the constitutive relations is obtained in terms
of the (field redefinitions of the) fundamental hydrodynamic
variables. Managing the frame dependencies of the constitu-
tive relations is challenging due to their non-linear character.
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However, in the linear regime, the higher-order transforma-
tions become tractable, enabling the identification of a set
of frame-invariant coefficients. Subsequently, the equations
obtained in the linear regime are solved in momentum space,
yielding dispersion relations for shear, sound, and diffusive
modes for a non-conformal charged fluid, expressed in terms
of a set of frame-invariant transport coefficients.

1 Introduction

The modern understanding of electric charge incorporates
the principle of gauge invariance inherent in the equations
of motion for the electromagnetic field, which ensures that
the relativistic current density Jα = (ρ, �J ) is conserved, i.e.,
∂α Jα = 0. This means that the electric charge is locally con-
served and a change in its density at a local level can occur
only due to a current flow. Naturally, most macroscopic distri-
butions of matter exist in an electrically neutral, or uncharged,
state. However, when we examine the microscopic structure
of matter, at the quantum scale, particles are in fact repre-
sented by fermionic electrically charged fields. In the case of
hadronic matter, these fermionic fields are related to quarks
as per the quark model [1]. It has been observed that the total
baryon number, which is defined by a balance between the
total number of quarks and antiquarks, regardless of the fla-
vor charges, is locally conserved [2,3]. In the early stages
of the development of quantum chromodynamics (QCD),
this concept was termed heavy particle conservation [4,5]. A
fermionic field, represented by ψ , defines a conserved current
Jα = ψ̄γ αψ in such a way that J 0 is interpreted as a local
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charge density. The fact that electrons, as fermions, carry
electric charge blends the concepts of electric charge con-
servation and electron number conservation. Although these
two conservation laws are consistently observed in almost all
elementary particle processes,1 they are fundamentally dif-
ferent; the former pertains to the gauge symmetry of the elec-
tromagnetic field, while the latter is related to the fermionic
nature of electrons.

Our main objective here is to establish the equations of
motion for a fluid in the presence of conserved charges asso-
ciated with matter, typically referred to as charged fluids in
the literature of relativistic hydrodynamics. Specifically, we
focus on relativistic theories characterized by a conserved
energy-momentum tensor T αβ and by a global U (1) con-
served current Jα . In the hydrodynamics nomenclature, flu-
ids devoid of the corresponding U (1) current, such as those
arising from the φ4 field theory with a real scalar field φ or
from a SU (N ) Yang–Mills theory of pure glue, are termed
“uncharged fluids”, while the |φ4| field theory with a complex
scalar field φ or the quantum chromodynamics (QCD) field
theory result in “charged fluids”, where the relevant U (1)

charge for QCD is the baryon number [7].
The conservation of a matter current captures the essen-

tial physics of a diffusion process [8]. The relevance of finite
baryon density in the formation of a quark-gluon plasma
(QGP) during heavy-ion collisions, as well as the diffusion
of heavy quarks in this medium [9], provides experimental
reasons for investigating diffusion processes in the context of
relativistic hydrodynamics. Traditionally, diffusion has been
modeled through a constitutive phenomenological relation
for the current density, specifically by considering the dif-
fusive current as proportional to the concentration gradient,
as stipulated by Fick’s first law [10], and incorporating this
information into a continuity equation. Nowadays, the gra-
dient expansion approach of hydrodynamics enhances this
modeling method for diffusion by accounting for the influ-
ences of higher-order derivatives when characterizing the dif-
fusive current.

In nonrelativistic fluid mechanics, the principle of mat-
ter conservation finds its mathematical foundation in the
continuity equation, which is nonrelativistic in nature but
resembles the conservation equation for a relativistic vector
current density. When transitioning to the relativistic for-
mulation of fluid dynamics, the nonrelativistic continuity
equation governing matter density evolves into the zeroth
component of the conservation equation for the relativistic
energy-momentum tensor, which contains essential informa-
tion about the content of matter, energy, momentum, and

1 Our current understanding suggests that nature generally conserves
the total number of leptons. However, during a phenomenon known as
neutrino oscillations, variations in the quantities of specific types of
leptons, such as electrons, have been observed [6].

stress distributions in the fluid. In fact, the theory of rel-
ativity establishes a connection between mass and energy,
thereby significantly altering our understanding of hydrody-
namics. In a relativistic theory, one must adequately account
for the momentum and energy conveyed by pure radiation
that directly contributes to the energy-momentum tensor
T αβ . This tensor also represents the energy and momen-
tum carried by the matter content of the fluid. In addition
to the energy-momentum tensor, the transport of matter via
the flow of a conserved matter species, such as the total num-
ber of baryons, must also be considered. Information on the
flow of matter is encoded in a vector current Jα , which rep-
resents the diffusion of matter and has its own constitutive
relations. One of the purposes of the present study is to for-
mulate the gradient expansion of a relativistic charged fluid
by providing a precise recipe to derive the general class of
constitutive relations for both the energy-momentum tensor
and the conserved matter current.

In the gradient expansion approach to hydrodynamics, vis-
cosity phenomena are seen as consequences of corrections in
the constitutive relations of an ideal fluid by a finite number
of derivatives of its macroscopic degrees of freedom. The
idea of developing effective theories through a power series
of field derivatives has previously been utilized in various
contexts such as in the effective string theory [11,12], Love-
lock gravity [13,14], and in the Horndeski theory for dilaton-
gravity systems [15]. In these examples, the derivative expan-
sion is implemented at the action level. However, there is no
effective action principle for viscous fluid dynamics in gen-
eral. We then consider, in practice, series expansions of the
conserved currents T αβ and Jα . The procedure of defining
the theory of relativistic fluid mechanics through a gradient
expansion generalizes the Muller–Israel–Stewart (MIS) for-
malism [16–18]. The MIS formalism considers a construc-
tion of the entropy current density in a fluid by using up to
second-order gradients, and has motivated the establishment
of a second-order and, more recently, a third-order theory of
hydrodynamics in the gradient expansion scheme [19–22].
The introduction of second-order gradients in MIS theory has
been deemed necessary to resolve the causality problem that
arose in the first-order formulation. Fortunately, a new strat-
egy for formulating the theory of relativistic hydrodynamics
has emerged recently, which is capable of achieving a causal
and stable first-order hydrodynamic theory, known as gen-
eral frame hydrodynamics or Bemfica–Disconzi–Noronha–
Kovtun (BDNK) theory [7,23–26].

In the current discussion, we examine the third-order gra-
dient expansion of a charged fluid in light of the general frame
hydrodynamics approach. Conformal and nonconformal flu-
ids are analyzed, and the first- and second-order expansions
are also reviewed. The results we find for the number of inde-
pendent transport coefficients in the various cases considered
in the present work are summarized in Table 1.
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Table 1 The number of independent transport coefficients associated
to terms of first, second, and third order in the gradient expansion of a
(non)conformal (un)charged relativistic fluid

Order Nonconformal Conformal
Uncharged Charged Uncharged Charged

First 2 3 1 2

Second 15 30 5 12

Third 58 147 19 56

This work is structured as follows. In Sect. 2, we focus
on the general case of charged nonconformal fluids in d-
dimensional spacetimes. We employ a systematic approach
based on two computational algorithms to expand the energy-
momentum tensor and the current density up to the third order
in the gradient expansion. Within this context, we identify
the set of hydrodynamic frame-invariant coefficients that are
retained during the linearization process. In Sect. 3, we inves-
tigate charged conformal fluids, implementing the conformal
symmetry through minimal coupling. This approach enables
us to directly derive third-order conformal corrections. Sec-
tion 4 is dedicated to the study of linearized fluctuations of the
charged fluid, leading to the determination of the dispersion
relations in terms of a reduced set of hydrodynamic frame-
invariant transport coefficients for nonconformal fluids. Con-
clusions and final remarks are presented in Sect. 5. Supple-
mentary material is presented and discussed in Appendix A
and Appendix B. An alternative derivation of the dispersion
relations in a general hydrodynamic frame can be found in
Appendix C.

2 Nonconformal charges and gradient expansion

The interpretation of hydrodynamics as an effective theory
for describing the dynamics of low frequencies and long
wavelength modes in any given field theory forms the foun-
dation of the gradient expansion approach [27]. Fluid dynam-
ics is considered a macroscopic representation of a system
of many (quantum) interacting particles, and we expect the
underlying symmetries of particle interactions to be manifest
in macroscopic dynamics. The macroscopic manifestation of
such symmetries is incorporated in the gradient expansion
formulation, where the conservation of global currents sup-
plies the equations of motion for macroscopic quantities.

In Refs. [19,20], the hydrodynamic gradient expansion
has been explored in detail up to the third order for neutral
(uncharged) fluids, which means those fluids without any
conserved matter current, for both conformal and ordinary
(nonconformal) systems. Uncharged fluids exemplify a sys-
tem devoid of matter fields, which in any microscopic theory
signifies the absence of fermions in the fundamental rep-

resentation or the absence of quarks for particular cases of
QCD-like theories.

The standard model of particle physics includes six quark
flavors in a single conserved current, the baryon current. All
these quark flavors are produced during high-energy colli-
sions and play a role in the QGP droplet. Even at lower
energies, the presence of the three lighter quark flavors is
observed. In addition to quarks, there are leptons with an
associated conserved current. Hence, the potential existence
of a range of distinct conserved matter charges warrants con-
sideration of the gradient expansion of such systems.

For the sake of simplicity, throughout the majority of this
study, we will make the assumption that there is only one
conserved matter current, associated with a single chemical
potential. Discussions regarding the extension of our results
to encompass an arbitrary number of conserved charges are
addressed whenever appropriate.

2.1 Ideal fluids and the fundamental degrees of freedom

The dynamics of an ideal (perfect) fluid establishes the
zeroth-order theory for the gradient expansion and char-
acterizes the configurations of a fluid in thermodynamic
equilibrium. The relativistic equations governing an ideal
fluid are defined by the vanishing divergence of the energy-
momentum tensor and the vanishing divergence of its matter
current, namely,

∇βT
αβ

ideal = 0, ∇α J
α
ideal = 0. (1)

The energy–momentum tensor of a ideal fluid with a con-
served current is the same as that of a neutral (without con-
served currents) ideal fluid, given by

T αβ
ideal = εuαuβ + p
β, (2)

where ε and p are respectively the local energy density and
pressure, and 
αβ = gαβ + uαuβ is the projector onto the
hypersurface orthogonal to the vector field uα corresponding
to the flow velocity of a fluid element. The matter current
density is expressed as

Jα
ideal = nuα, (3)

with n representing the number density of the matter species.
From a quantum point of view, n = n(xα) is the expected
value of a number operator averaged over a small volume in
the vicinity of the point xα . The foregoing equations for ideal
fluids should be considered as approximations, since they
undergo corrections through higher-order derivative terms
and establish relationships between first-order derivatives of
the fundamental gradients. In practice, the ideal fluid equa-
tions allow us to eliminate the longitudinal derivatives of the
mechanical and thermodynamic degrees of freedom, what
may be achieved by the following process.
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The divergenceless condition of the energy–momentum
tensor, i.e., the first equation in (1), yields a vector equa-
tion that can be decomposed into longitudinal and transverse
components. The former components can be used to replace
the longitudinal derivative of the temperature (or the entropy)
by the divergence of the velocity uα , i.e., by the expansion
� = ∇αuα , which in turn equals the transverse divergence of
the velocity. The latter components allows us to replace the
longitudinal derivative of velocity with a transverse deriva-
tive of the temperature (or the entropy). Consequently, only
transverse derivatives of the temperature and of the velocity
account for the gradient expansion of the uncharged fluid.

In the presence of a global charge, there is an additional
scalar degree of freedom, namely the number density n or
equivalently, its chemical potential μ, along with an addi-
tional equation, the second equation in (1). Employing the
constitutive relation of the ideal fluid, as given by (3), we
obtain

Dn = −n�, (4)

where the longitudinal derivative operator D and the expan-
sion � are defined by D ≡ uα∇α and � ≡ ∇αuα , respec-
tively.

The longitudinal and transverse projections of the conser-
vation of the ideal energy-momentum tensor yield

Dε = −h�, Duα = − 1

h
∇α⊥ p, (5)

respectively. Here, h = ε + p denotes the enthalpy density
of the fluid, and ∇α⊥ ≡ 
αβ∇β represents the transverse
derivative operator.

The equations of motion for the ideal fluid given in Eqs. (4)
and (5) map the longitudinal derivatives of ε, n and uα into
the transverse derivatives of p and uα . Moreover, by tak-
ing into account that the energy density, the number density,
and the pressure depend on the temperature T and on the
chemical potential μ, i.e., ε = ε(T, μ), n = n(T, μ), and
p = p(T, μ), those equations effectively map the longitudi-
nal derivatives of T , μ, and uα into their respective transverse
derivatives (see Appendix A for further details). In the gra-
dient expansion framework, one has the freedom to select
any pair of thermodynamic variables that are not canonically
conjugated to each other. In most of this work, we use the
temperature T and the chemical potential μ.

The proposition demonstrated in [19] for neutral fluids
remains valid in the case of charged fluids, and it follows that
only transverse derivatives of T, μ, uα are present in the gra-
dient expansion. The generalization of this proposition for a
multicomponent fluid is straightforward and may be realized
as follows. For each additional density nk , there is an addi-
tional corresponding continuity equation Dnk = −nk�, and
once again, only transverse gradients of nk will be present
in the (on-shell) gradient expansion. Subsequently, we can

replace densities with chemical potentials employing an anal-
ogous procedure to that outlined in Appendix A, with the
exception that each new component increases the dimension
of the relevant linear system by one.

The possibility of eliminating the longitudinal derivatives
of all dynamical degrees of freedom, with the exception of
the geometric ones, considerably simplifies the construction
of the gradient expansion, as it will become evident in the
subsequent discussion. Here, we use the following set of
fundamental degrees of freedom: temperature T , chemical
potential μ, velocity uμ, and metric gμν . We confine our
analysis to torsion-free geometries, with a metric compatible
connection that is given by the Christoffel symbols and that
does not entail additional independent degrees of freedom.

A crucial aspect in constructing a gradient expansion in
fluid dynamics is to ensure that the symmetries of the sys-
tem are preserved. For a relativistic fluid in a d-dimensional
curved spacetime, only structures that are covariant under dif-
feomorphisms are permitted. The components of the gradient
of the scalars, ∇αT and ∇αμ, are not all independent, since
their longitudinal derivatives can be eliminated. To incor-
porate this into the present formulation, we decompose the
covariant derivative into longitudinal and transverse compo-
nents, ∇α = uαD + ∇⊥α . Consequently, only the transverse
derivatives ∇⊥αT , ∇⊥αμ, and ∇⊥αuβ appear in the gradi-
ent expansion. These transverse gradients vanish identically
upon contraction with the velocity field, rendering only con-
tractions with the metric relevant.

2.2 Hydrodynamic frames and on-shell equivalences

The construction of a relativistic theory for viscous fluids
in the presence of a conserved current is well discussed by
Landau and Lifshitz in their seminal book [8]. The gradient
expansion up to the nth order may be written in the form

T αβ = T αβ
ideal +

n∑

i=1


αβ
(i)

(
∂ i

)
, Jα = Jα

ideal +
n∑

i=1

ϒα
(i)

(
∂ i

)
,

(6)

where ∂ i represents any combination involving the i th-order
derivatives of the fundamental degrees of freedom.

For the progression of the work, it is instructive to intro-
duce the transverse, symmetric, and traceless (TST) part of
a general second-rank tensor Aαβ , denoted as A〈αβ〉. This is
defined through the projection operator 
αβ as follows:

A〈αβ〉 = 
αγ 
βδA(γ δ) − 1

d − 1

αβ
γδAγ δ, (7)

where the parentheses in A(γ δ) indicate the operation of sym-
metrization, A(γ δ) = (

Aγ δ + Aδγ

)
/2.

To implement the derivative expansion in practice, we
decompose the corrections to the energy–momentum tensor
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and to the matter current into their most general form,


αβ
(i) = E(i)u

αuβ + P(i)

αβ + Qα

(i)u
β + Qβ

(i)u
α + τ

αβ
(i) ,

ϒα
(i) = N(i)u

α + J α
(i), (8)

where E(i), P(i), N(i) are scalars, Qα
(i) and J α

(i) are vectors

transverse to the fluid velocity uα , and τ
αβ
(i) are TST tensors.

The general expressions for the conserved energy–mo-
mentum tensor and current can then be written as

T αβ = Euαuβ + P
αβ + Qαuβ + Qβuα + ταβ,

Jα = Nuα + J α, (9)

where

E = ε +
n∑

i=1

E(i), P = p +
n∑

i=1

P(i), Qα =
n∑

i=1

Qα
(i),

N = n +
n∑

i=1

N(i), J α =
n∑

i=1

J α
(i), τ αβ =

n∑

i=1

τ
αβ
(i) .

(10)

In the case of multicomponent fluids, there is an additional
scalar,Nk , and an additional vector current,J α

k , for each new
fundamental component with equilibrium number densitynk .

The corrections to the ideal fluid equations represent slight
deviations from thermodynamic equilibrium, altering the
notion of variables that parameterize the equilibrium state,
such as energy and number density. To precisely define the
equilibrium quantities, it is essential to select a hydrody-
namic frame. In the context of the gradient expansion, fixing
a hydrodynamic frame entails defining the thermodynamic
quantities (see, e.g., Ref. [7]), and this should not be confused
with the choice of a frame of reference in the spacetime.

In our previous work [20], the Landau(-Lifshitz) frame
was utilized to simplify the formulation of the third-order
gradient expansion for neutral (uncharged) fluids. For a char-
ged fluid, the Landau frame is characterized by the following
conditions:

uβαβ = 0, uαϒα = 0. (11)

These conditions imply that the projection of the energy–
momentum tensor along the fluid velocity defines the equi-
librium energy, while the projection of the current defines the
equilibrium baryon density. In this frame, all corrections are
transverse; consequently, there are neither heat flow correc-
tions in the energy–momentum tensor nor scalar corrections
to the baryon density in the matter current.

Another common choice in the context of charged fluids
is the Eckart frame [28], which was employed in [29] for the
second-order gradient expansion of a nonconformal charged
fluid. In the Eckart frame, the charge flow in the local rest
frame of the fluid is absent, which is represented as J α = 0.
The defining properties of this frame are complemented by
E = N = 0. With respect to the total number of transport

coefficients, the Landau frame proves to be equivalent to the
Eckart frame. This equivalence is supported by the observa-
tion that, in both frames, the gradient expansion includes one
set of scalars, one set of transverse vectors, and one set of
TST tensors for each conserved charge [30]. Recent studies
on relativistic local thermodynamic equilibrium (LTE) have
established the equivalence between the “energy states” asso-
ciated with the Landau frame and the “particle states” associ-
ated with the Eckart frame (see [31] and references therein).

A discussion of fluid dynamics in an arbitrary frame has
recently emerged as a means of addressing the long-standing
issue of stability in first-order relativistic hydrodynamics and
has been intensively developed since its inception [7,23–
26,32–35]. The basic idea of general frame hydrodynamics
(GFH) involves initially formulating the most comprehen-
sive energy–momentum tensor and gauge currents, and then
writing the equations of motion by taking into account all the
transport coefficients. The challenge of stability is assessed
within this extensive parameter space, where stable regions
can be identified, and only after this step does one select
a hydrodynamic frame, thereby constraining this large set
of transport coefficients to a more concise set of independent
ones. This discussion has implications for the construction of
the gradient expansion, which also needs to be firmly estab-
lished in the context of GFH.

To investigate the frame dependence of the coefficients in
(9), we extend the analysis of [7] from the first to the nth order
in the gradient expansion. Following Ref. [16], we consider
a generalized frame transformation (or redefinition) of the
thermodynamic degrees of freedom:

u′α = Auα + δ̄uα, T ′ = T + δ̄T, μ′ = μ + δ̄μ, (12)

where δ̄T = ∑n
i=1 δ̄T(i)

(
∂ i

)
, δ̄μ = ∑n

i=1 δ̄μ(i)

(
∂ i

)
and the

vector δ̄uα = ∑n
i=1 δ̄uα

(i)

(
∂ i

)
is orthogonal to uα , such that

uαδ̄uα
(i) = 0 for all values of i . In the equilibrium state, the

transformed quantities u′α , T ′, and μ′ coincide with the orig-
inal variables. Due to the normalization condition u′

αu
′α =

−1, the scalar function A is given by A = (
1 + δ̄2u

)1/2
, with

δ̄2u ≡ δ̄uαδ̄uα .
Both the energy–momentum tensor and the current remain

invariant under the transformation to the new (primed) vari-
ables [27], which means

T αβ
(
u′γ , T ′, μ′) = T αβ

(
uγ , T, μ

)
,

Jα
(
u′γ , T ′, μ′) = Jα

(
uγ , T, μ

)
. (13)

The transformed (primed) and original (unprimed) coeffi-
cients in the decomposition (9) are related as follows:

E ′ = E + B, P ′ = P + B

d − 1
, N ′ = AN − Jαδ̄uα,

(14)

Q′α = AQα − Hδ̄uα −
(
uαQβ + τα

β

)
δ̄uβ
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− B
(
Auα + δ̄uα

)
, (15)

J ′α = J α − δ̄uα
(
AN −J β δ̄uβ

)

+uα
(
AJ β − N δ̄uβ

)
δ̄uβ, (16)

τ ′αβ = ταβ + 2Q(αuβ) + Hδ̄uαδ̄uβ + τμν δ̄uμδ̄uν u
αuβ

−2
[
AQ(α − δ̄uμτμ(α

] (
Auβ) + δ̄uβ)

)

+2Qμδ̄uμu
(αδ̄uβ) − B


αβ

d − 1

−B
d − 2

d − 1

[
uαuβ − (

Auα + δ̄uα
) (

Auβ + δ̄uβ
)]

,

(17)

whereH ≡ E+P , B ≡ H δ̄2u−2AQαδ̄uα+ταβ δ̄uαδ̄uβ and
the above equations should be considered, order by order, in
the gradient expansion. As discussed in detail by Kovtun [7]
for first-order hydrodynamics, the most general field redefi-
nition is given by gradient expansions of δ̄T(i), δ̄uα

(i), and δ̄μ(i).
Denoting N (i)

S and N (i)
V as the number of independent scalar

and vector structures of the i th order, these expansions are
expressed as

δ̄T(i) =
N (i)
S∑

j=1

a(i)
j S

(i)
j ,

δ̄uα
(i) =

N (i)
V∑

j=1

b(i)
j

(
V (i)
j

)α

,

δ̄μ(i) =
N (i)
S∑

j=1

c(i)
j S

(i)
j , (18)

where the coefficients a(i)
j , b(i)

j , and c(i)
j are unspecified func-

tions of T and μ that are to be chosen during the frame-fixing
process.

Since our focus is on the gradient expansion up to the third
order, we expand the relations (14)–(17), retaining terms of
the third order and below:

E ′ = ε + E(1) +
[
E(2) − 2

(
Qα

(1)
− 1

2
hδ̄uα

(1)

)
δ̄u(1)α

]

+
[
E(3) − 2

(
Qα

(1)
− hδ̄uα

(1)

)
δ̄u(2)α

−2
(
Qα

(2)
− 1

2
H(1)δ̄u

α
(1)

− 1

2
τ

αβ
(1) δ̄u(1)β

)
δ̄u(1)α

]
, (19)

P ′ = p + P(1) +
[
P(2) − 2

d − 1

(
Qα

(1)
− 1

2
hδ̄uα

(1)

)
δ̄u(1)α

]

+
[
P(3) − 2

d − 1

{(
Qα

(1)
− hδ̄uα

(1)

)
δ̄u(2)α

+
(
Qα

(2)
− 1

2
H(1)δ̄u

α
(1)

− 1

2
τ

αβ
(1) δ̄u(1)β

)
δ̄u(1)α

}]
, (20)

N ′ = n + N(1) +
[
N(2) −

(
J α

(1)
− 1

2
nδ̄uα

(1)

)
δ̄u(1)α

]

+
[
N(3) − (

J α
(1)

− nδ̄uα
(1)

)
δ̄u(2)α

−
(
J α

(2)
− 1

2
N(1)δ̄u

α
(1)

)
δ̄u(1)α

]
, (21)

Q′α = (
Qα

(1)
− hδ̄uα

(1)

) + (
Qα

(2)
− hδ̄uα

(2)

) −
{
H(1)


αβ

+τ
αβ
(1) − uα

(
Qβ

(1) − hδ̄uβ
(1)

)}
δ̄u(1)β +

[(
Qα

(3)
− h δ̄uα

(3)

)

−
(
H(2)


αβ + τ
αβ
(2) − 1

2
Qα

(1)
δ̄uβ

(1)

)
δ̄u(1)β −

(
H(1)


αβ

+τ
αβ
(1)

)
δ̄u(2)β + 2δ̄uα

(1)

(
Qβ

(1) − 1

2
hδ̄uβ

(1)

)
δ̄u(1)β

−uα
(
B(3) + Qβ

(2)δ̄u(1)β + Qβ
(1)δ̄u(2)β

) ]
, (22)

J ′α = (
J α

(1)
− nδ̄uα

(1)

) + (
J α

(2)
− nδ̄uα

(2)

) −
[
N(1)


αβ

−uα
(
J β

(1) − nδ̄uβ
(1)

) ]
δ̄u(1)β +

[ (
J α

(3)
− nδ̄uα

(3)

)

−N(1)δ̄u
α
(2)

− N(2)δ̄u
α
(1)

+ δ̄uα
(1)

(
J β

(1) − 1

2
nδ̄uβ

(1)

)
δ̄u(1)β

+uα
{ (

J β
(2) − N(1)δ̄u

β
(1) − nδ̄uβ

(2)

)
δ̄u(1)β

+
(
J β

(1) − nδ̄uβ
(1)

)
δ̄u(2)β

}]
, (23)

τ ′αβ = τ
αβ
(1) + τ

αβ
(2) − 2

(
Q〈α

(1) − 1

2
hδ̄u〈α

(1)

)
δ̄uβ〉

(1)

+2δ̄u(1)μτ
μ(α
(1) uβ) + τ

αβ
(3) − 2

(
Q〈α

(1) − hδ̄u〈α
(1)

)
δ̄uβ〉

(2)

−2

[
δ̄2u(1)

(
Q(α

(1) − d − 2

d − 1
hδ̄u(α

(1)

)
− δ̄u(1)μτ

μ(α
(2)

−δ̄u(2)μτ
μ(α
(1) +

(
d − 3

d − 1

)
δ̄u(1)μQμ

(1)δ̄u
(α
(1)

]
uβ)

−2
[
Q〈α

(2) − 1

2
H(1)δ̄u

〈α
(1) − δ̄u(1)μτ

μ〈α
(1)

]
δ̄uβ〉

(1)

+
(
uαuβ + 
αβ

d − 1

)
δ̄u(1)μδ̄u(1)ντ

μν
(1) , (24)

where B(3) represents the third-order term in the gradient
expansion of B, given by

B(3) = 2
[
hδ̄uα

(1)
− Qα

(1)

]
δ̄u(2)α

+
[
H(1)δ̄u

α
(1)

+ τ
αβ
(1) δ̄u(1)β − 2Qα

(2)

]
δ̄u(1)α. (25)

These equations will be used later in this study to derive the
relationships between the transport coefficients of a general
frame gradient expansion and a set of transport coefficients
that remain invariant under field redefinition up to the nth
order in a derivative expansion. This process will play a piv-
otal role in simplifying the linear dispersion relations in a
general hydrodynamic frame.
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In addition to the constraints on the constitutive relations
imposed by hydrodynamic frame fixing, there are equiva-
lences when the equations of motion hold, known as on-
shell equivalences. In the recent literature of GFH, these
constraints on the constitutive relations are implemented
at the final stages, allowing the constitutive relations to be
expressed off-shell for the first time. On the other hand, when
dealing with higher-order gradient expansions, it is highly
favorable to implement constraints arising from the equa-
tions of motion as early as possible. The motivation behind
this is that, in higher orders, the number of corrections grows
exponentially, and any simplification that reduces this exten-
sive list is considered beneficial. Moreover, the concept of
gradient expansion arises when we formulate hydrodynam-
ics at the level of the dissipative equations of motion.

Gradient expansion represents an on-shell formulation of
fluid dynamics’ effective theory. Consequently, the valid-
ity of the equations of motion can be assumed at the out-
set of elaborating the gradient expansion. This viewpoint
was extensively detailed in Ref. [19]. Here, the conserva-
tion principle inherent in the equations of motion dictates
the substitution of time (longitudinal) derivatives with spa-
tial (transverse) derivatives within the gradient expansion. In
this work, we enforce on-shell equivalences from the onset
and replace time derivatives with spatial derivatives in the
constitutive relations.

It is important to note that the existence of on-shell equiv-
alences requires additional choices in the construction of
constitutive relations. This implies that frame fixing, accom-
plished by establishing out-of-equilibrium definitions of ther-
modynamic functions, does not uniquely define constitutive
relations. Instead, it results in an equivalence class of con-
stitutive relations. Stability conditions must remain indepen-
dent of the selected element within this equivalence class,
since they are defined on-shell. When assessing the disper-
sion relations derived from the gradient expansion, we limit
the equations of motion to linear perturbations. This reduces
the number of relevant transport coefficients involved, with-
out incorporating any new dynamical information. Thus,
even if the gradient expansion is expressed off-shell, any
additional information is ruled out in the linearized equa-
tions, as can be verified by analyzing the results of [25].

2.3 Algorithms to generate the tensorial structures

In Ref. [19], Grozdanov and Kaplis (GK) developed a sys-
tematic algorithm capable of producing a gradient expan-
sion for relativistic hydrodynamics up to any desired order.
The extension of the GK algorithm, as it will be referred to
henceforth, to charged systems involves generating dissipa-
tive corrections to the conserved currents, T αβ and Jα , by
applying the gradient operator to the fundamental degrees
of freedom {T, μ, uα, gαβ} in order to obtain all the rele-

vant ingredients for the construction of the expansion up to
a specific order. The resulting quantities are systematically
multiplied and contracted in every conceivable combination.
The equations of motion, along with other algebraic identities
and symmetries, are employed to eliminate redundancies.

In this study, we implement an extended version of the
methodology presented in Ref. [20], serving as an alterna-
tive approach to the one delineated in [19], for the con-
struction of higher-order corrections. Rather than adopting
the fundamental set of degrees of freedom as our starting
point, we turn to the lowest-order covariant tensors derived
from these fundamental quantities, specifically: {∇α⊥T , ∇α⊥μ,
∇α⊥uβ , Rαβσγ }. In this set, there are two first-order trans-
verse vectors, one first-order transverse rank-2 tensor, and
one second-order rank-4 tensor. The Riemann tensor distin-
guishes itself from the other structures due to several unique
aspects: it is not built with a linear covariant derivative but
with a non-linear combination of partial derivatives of the
metric; it is inherently second-order; and it figures on the
left-hand side of the Einstein equations.

A distinguishing feature of hydrodynamics is the sepa-
ration of velocity gradients into three structures via Weyl
decomposition, each having a distinct and well-defined phys-
ical interpretation. We thus have

∇αuβ = σαβ + �αβ + 1

d − 1
�
αβ. (26)

In the above equation, σαβ is the transverse, symmetric, and
traceless (TST) tensor that encodes shear information. Simul-
taneously, �αβ is an antisymmetric tensor that captures vor-
ticity information, and � is a scalar, or trace, that encapsu-
lates expansion information. It is thus beneficial to employ
σ,�,� as substitutes for ∇⊥u when formulating the gradi-
ent expansion. Furthermore, using σ,�,� brings both shear
and bulk viscosity into prominence within the set of first-
order transport coefficients. Consequently, our approach will
involve the use of the minimal set of fundamental gradients
{∇α⊥T , ∇α⊥μ, �, σαβ , �αβ , Rαβσγ }. This set encompasses
two first-order transverse vectors, one first-order scalar, one
first-order rank-2 TST tensor, one first-order rank-2 anti-
symmetric tensor, and the Riemann tensor, a second-order
rank-4 tensor with specific symmetry properties. The sys-
tematic construction of the hydrodynamic gradient expansion
using the irreducible structures (IS) as fundamental blocks is
hereby referred to as the IS algorithm.

To minimize potential errors and validate the final results
in an independent way, we have implemented the irreducible-
structure (IS) and Grozdanov–Kaplis (GK) algorithms in two
computational codes. These codes utilize the SymPy library,
a Python-written tool designed for symbolic mathematics.
Specifically, we employ the Tensor module within SymPy
and integrate the Butler–Portugal canonicalization method
[36–39] into the codes. This method is used for transform-
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ing the expression of every relevant tensor, which is given
in terms of the fundamental fields, into its canonical form
by properly manipulating tensor indexes, and is especially
advantageous for handling terms involving the Riemann ten-
sor.

Although the IS algorithm has the benefit of dealing with a
small number of combinations of physically motivated quan-
tities, it has the limitation that some equivalences between
the products of σ,�,� and their derivatives cannot, in prin-
ciple, be uncovered without recourse to their definitions in
terms of the transverse derivatives of uα , a feature inherent to
the GK algorithm. An observation that enables the automatic
identification of independent structures in the IS algorithm
is that all elements involving derivatives of � can be writ-
ten as combinations of elements that contain derivatives of
σ and/or �.

After making the necessary adjustments, both codes pro-
duce the same quantity of independent scalar, vector, and
tensor structures for the hydrodynamic gradient expansion
of a specified order. In fact, to evaluate the robustness of the
codes, we elected to extend one order higher in the expan-
sion, thus deriving the fourth-order structures for a charged
fluid in a flat (zero curvature) spacetime. We found perfect
agreement between the codes employing the two algorithms,
with the following numbers of independent structures: 106
scalars, 193 vectors, and 244 tensors.

2.4 First- and second-order constitutive relations

The gradient expansion of a charged fluid encompasses a
set of scalars, a set of TST tensors, and a set of transverse
vectors. Importantly, when compared to an uncharged fluid,
the presence of a conserved baryon charge, in addition to
introducing a new fundamental field (the chemical potential),
also augments the gradient expansion with a set of vectors
and a set of scalars.

In the lowest-order covariant list, three first-order gradi-
ents can be identified: ∇α⊥T , ∇α⊥μ, and ∇α⊥uβ . The first two
gradients are first-order transverse vectors and hence should
appear in ϒα

(1)
. The third gradient is a rank-two tensor that

contributes to independent structures by means of its trace,
� = ∇αuα , and its traceless part, σαβ = ∇〈α

⊥ uβ〉. By taking
these terms into account, the most general first-order correc-
tions to the conserved currents can be expressed as


αβ
(1) = E(1)u

αuβ + P(1)

αβ + 2Q(α

(1)u
β) + τ

αβ
(1) ,

ϒα
(1)

= N(1)u
α + J α

(1)
, (27)

where

E(1) = ε
(1)

1 �, Qα
(1)

= θ
(1)

1 ∇α⊥T + θ
(1)

2 ∇α⊥μ,

P(1) = π
(1)

1 �, J α
(1)

= κ
(1)

1 ∇α⊥T + κ
(1)

2 ∇α⊥μ,

N(1) = ν
(1)

1 �, τ
αβ
(1) = η

(1)

1 σαβ. (28)

The set of transport coefficients introduced here, {ε(1)

1 ,
π

(1)

1 , ν
(1)

1 , θ
(1)

1 , θ
(1)

2 , κ
(1)

1 , κ
(1)

2 , η
(1)

1 }, is closely related to tradi-
tional first-order coefficients {η, ζ, σ, χT}. To establish these
connections, we consider the one-derivative order terms in
relations (19)–(24):

E ′
(1)

(T ′, u′, μ′) + δ̄ε(1) = E(1)(T, u, μ),

P ′
(1)

(T ′, u′, μ′) + δ̄ p(1) = P(1)(T, u, μ),

N ′
(1)

(T ′, u′, μ′) + δ̄n(1) = N(1)(T, u, μ),

Q′α
(1)

(T ′, u′, μ′) = Qα
(1)

(T, u, μ) − hδ̄uα
(1)

,

J ′α
(1)

(T ′, u′, μ′) = J α
(1)

(T, u, μ) − nδ̄uα
(1)

,

τ
′αβ
(1) (T ′, u′, μ′) = τ

′αβ
(1) (T, u, μ), (29)

which can be rewritten in the form

E ′
(1)

(T, u, μ) = E(1)(T, u, μ) − ε,T δ̄T(1) − ε,μδ̄μ(1),

P ′
(1)

(T, u, μ) = P(1)(T, u, μ) − p,T δ̄T(1) − p,μδ̄μ(1),

N ′
(1)

(T, u, μ) = N(1)(T, u, μ) − n,T δ̄T(1) − n,μδ̄μ(1),

Q′α
(1)

(T, u, μ) = Qα
(1)

(T, u, μ) − hδ̄uα
(1)

,

J ′α
(1)

(T, u, μ) = J α
(1)

(T, u, μ) − nδ̄uα
(1)

,

τ
′αβ
(1) (T, u, μ) = τ

αβ
(1) (T, u, μ), (30)

where the comma subscript indicates the partial derivative in
relation to the parameter that follows, as in ε,T ≡ (∂ε/∂T )μ.

In the above equations, the dependence of a given variable
on the parameters (T ′, u′, μ′) implies an expansion of this
variable in terms of the gradients of (T ′, u′, μ′). For example,

E ′
(1)

(T ′, u′, μ′) = ε
′(1)

1 �′

= ε
′(1)

1 ∇α

(
Auα + δ̄uα

)

= ε
′(1)

1 � + O(∂2), (31)

whereas E ′
(1)

(T, u, μ) = ε
′(1)

1 � and E(1)(T, u, μ) = ε
(1)

1 �.
The substitution of the gradient expansions of the original
and primed variables into the relations given in Eq. (30),
together with the first-order versions of (18), leads to the
following relations among the transport coefficients:

ε
′(1)

1 = ε
(1)

1 − ε,T a
(1)

1 − ε,μc
(1)

1 , θ
′(1)

l = θ
(1)

l − hb(1)

l ,

π
′(1)

1 = π
(1)

1 − p,T a
(1)

1 − p,μc
(1)

1 , κ
′(1)

l = κ
(1)

l − nb(1)

l ,

ν
′(1)

1 = ν
(1)

1 − n,T a
(1)

1 − n,μc
(1)

1 , η
′(1)

1 = η
(1)

1 , (32)

where l = 1, 2. With the exception of η
(1)

1 , all the foregoing
coefficients are frame-dependent, but we can combine them
to obtain a set of frame-invariant coefficients, defined by [7]:

f (1)

1 ≡ π
(1)

1 − βεε
(1)

1 − βnν
(1)

1 , �
(1)

l ≡ κ
(1)

l − n

h
θ

(1)

l , (33)

where

βε ≡
(

∂p

∂ε

)

n
, βn ≡

(
∂p

∂n

)

ε

. (34)
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In terms of the traditional transport coefficients of first-
order hydrodynamics, the constitutive relations in a general
frame assume the form [27]

τ
αβ
(1) = −2ησαβ, f(1) = −ζ�,

�α
(1)

=
(
σ

μ

T
+ χT

)
∇α⊥T − σ∇α⊥μ. (35)

A direct comparison of the first relation in (35) with the
expression for τ

αβ
(1) provided in (28) yields

t (1)

1 ≡ η
(1)

1 = −2η 	⇒ η = −1

2
η

(1)

1 , (36)

where η denotes the shear viscosity. Furthermore, substitut-
ing (28) into (33) and comparing the resulting equations with
the latter two of Eq. (35), we derive

ζ = −π
(1)

1 + βεε
(1)

1 + βnν
(1)

1 ,

σ
μ

T
=

(
θ

(1)

1 − n

h
κ

(1)

1

)
− χT = −

(
θ

(1)

2 − n

h
κ

(1)

2

) μ

T
, (37)

where ζ and σ represent the bulk viscosity and the charge
conductivity, respectively.

The second law of thermodynamics mandates the posi-
tive divergence of the entropy current, which consequently
imposes constraints on the transport coefficients [27,40,41]:

η ≥ 0, ζ ≥ 0,

σ ≥ 0, χT = 0.
(38)

In connection with Eqs. (36) and (37), these constraints can
be reformulated in terms of our notation as

η
(1)

1 ≤ 0, θ
(1)

1 ≥ n

h
κ

(1)

1 ,

π
(1)

1 ≤ βεε
(1)

1 + βnν
(1)

1 , θ
(1)

2 ≤ n

h
κ

(1)

2 .
(39)

Thus, the combination of the flexibility in the choice of
hydrodynamic frames and the constraints stemming from
the second law of thermodynamics simplifies the constitu-
tive relations by eliminating five transport coefficients. Con-
sequently, only three transport coefficients remain in the first-
order theory.

To derive the subsequent corrections, we first note that the
complete list of scalars, vectors, and tensors of the dynamics
of a neutral fluid will also be present in the charged case.
This implies that by taking n, μ → 0, we should be able to
replicate previous results concerning the gradient expansion
of uncharged fluids [19,20,22]. Moreover, corrections that
involve at least one gradient of the chemical potential will
also be present.

To identify additional structures of the charged fluid, we
utilize the computational codes discussed in the preceding
subsection. The Grozdanov–Kaplis (GK) algorithm treats
the fundamental degrees of freedom, {T, μ, uα, gαβ}, as the
starting point. A notable advantage of this procedure lies in its

capacity to be implemented in a computational code that not
only generates all elements of the gradient expansion but also
eliminates redundancies within the list. In contrast, the irre-
ducible structure (IS) algorithm begins with the fundamen-
tal gradients {∇⊥αT,∇⊥αμ,�, σαβ,�αβ, Rαβσδ}. Recent
research indicates the irrelevance of the ordering of trans-
verse derivatives in gradient expansion [42], which is
directly correlated to the redundancy of ∇⊥α�βγ . There-
fore, ∇⊥α�βγ can be omitted from the gradient expansion,
an insight of considerable significance for the computational
implementation of the IS algorithm. A proof supporting this
claim is provided in Appendix B.

We observe that the gradient of the chemical potential
assumes a role analogous to that of the temperature (or
entropy) gradient, owing to their identical index structures.
All corrections stemming from the gradient of the chemical
potential can be acquired by sequentially replacing the linear
gradients of the temperature. The resulting list should main-
tain symmetry under exchange T ↔ μ. Indeed, two degrees
of freedom possessing the same tensor rank will play identi-
cal roles in the construction of their respective gradients. In
our specific case, this only occurs with the scalars, as there
are just one vector and one tensor present as zero-order fields.
We then find the following independent second-order scalars:

S (2)

1 = ∇2⊥T, S (2)

2 = ∇2⊥μ,

S (2)

3 = �2, S (2)

4 = σ 2,

S (2)

5 = �2, S (2)

6 = (∇⊥T )2,

S (2)

7 = (∇⊥μ)2, S (2)

8 = ∇⊥αT∇α⊥μ,

S (2)

9 = R, S (2)

10 = uαuβ Rαβ. (40)

In the above expressions and in the subsequent ones, differ-
ential operators act only on the immediate neighbor to the
right. Compared to the case of an uncharged fluid, there exist
three additional scalar quantities: S (2)

2 , S (2)

7 , and S (2)

8 . These
scalars vanish when the chemical potential μ is constant.

In our search for second-order tensors, we observe that,
despite the tensorial index structure, the presence of a bary-
onic charge plays the same role for tensors as it does for
scalars. All second-order tensors present in the uncharged
fluid will remain, accompanied by the additional tensors that
vanish for constant chemical potential. The additional tensors
involving gradients of the chemical potential are derived by
taking those with temperature gradients and then exchanging
them, one by one, for gradients of the chemical potential. This
is a direct consequence of using the systematic procedure of
Grozdanov-Kaplins while implementing the additional infor-
mation on the allowed gradients to appear in constitutive rela-
tions. We list below the independent second-order tensors,
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omitting the free indexes on the left-hand side:

T (2)

1 = ∇〈α
⊥ ∇β〉

⊥ T, T (2)

2 = ∇〈α
⊥ ∇β〉

⊥ μ,

T (2)

3 = �σαβ, T (2)

4 = σ 〈α
γ σβ〉γ ,

T (2)

5 = � 〈α
γ �β〉γ , T (2)

6 = σ 〈α
γ �β〉γ ,

T (2)

7 = ∇〈α
⊥ T∇β〉

⊥ T, T (2)

8 = ∇〈α
⊥ μ∇β〉

⊥ μ,

T (2)

9 = ∇〈α
⊥ T∇β〉

⊥ μ, T (2)

10 = R〈αβ〉,
T (2)

11 = uγ uδR
γ 〈αβ〉δ. (41)

Charged fluids also require vector corrections to the con-
stitutive relations. Whether working in a general frame or in
a specific one like the Eckart frame, these corrections mani-
fest in the energy-momentum tensor through a non-vanishing
heat current that contributes to the longitudinal projection
along the local velocity. In the Landau frame case, where it
is imposed Eqs. (11), vector corrections appear in the matter
current, including the effects of dissipation in the continuity
equations. In both frames, these corrections lead to the same
number of transport coefficients, since the frames are equiv-
alents. Second-order vectors have been first presented in [22]
and are also discussed in the appendix of [20] for uncharged
fluids:

V (2)

1 = ∇α⊥�, V (2)

2 = 
α
β∇⊥γ σ γβ,

V (2)

3 = �∇α⊥T, V (2)

4 = �∇α⊥μ,

V (2)

5 = σα
β∇β

⊥T, V (2)

6 = σα
β∇β

⊥μ,

V (2)

7 = �α
β∇β

⊥T, V (2)

8 = �α
β∇β

⊥μ,

V (2)

9 = 
αβuγ Rβγ . (42)

Finally, we identify 30 independent second-order tenso-
rial structures that establish the constitutive relations for a
fluid with a single global charge. Most of these second-order
corrections align with those presented by Lahiri in Ref. [29],
but there are exceptions. The tensor �σαβ is not present in
that list, resulting in our list having one additional tensor.
Concerning second-order vectors, we find three discrepan-
cies in Lahiri’s list: the vector �αβ∇⊥βT is missing; the
vector �∇α⊥μ appears twice, in N4 and N5; and the vec-
tor Rαβ∇⊥αμ is, in fact, a third-order vector. However, our
list of second-order scalars is in complete agreement with
that of [29].

The following constitutive relations are then obtained for
the dissipative parts of the energy-momentum tensor,


αβ
(2) =

10∑

j=1

ε
(2)

j S (2)

j uαuβ +
10∑

j=1

π
(2)

j S (2)

j 
αβ

+
9∑

j=1

θ
(2)

j (V (2)

j )(αuβ) +
11∑

j=1

η
(2)

j (T (2)

j )αβ,

(43)

and of the current

ϒα
(2)

=
10∑

j=1

ν
(2)

j S (2)

j uα +
9∑

j=1

κ
(2)

j (V (2)

j )α. (44)

Due to the flexibility in choosing the hydrodynamic frame
inherent in the relativistic description of a fluid, the 49 trans-
port coefficients present in the aforementioned constitutive
relations are not all independent. In fact, they can be com-
bined to form 30 frame-invariant quantities. In this work, we
limit ourselves to identifying the set of linear frame-invariant
coefficients in the flat spacetime case, as these are the quan-
tities that appear in the dispersion relations explored in the
final part of this paper. The term “linear” refers to tensorial
structures (and their associated coefficients) that are of the
first order in the amplitudes of the fundamental hydrody-
namic degrees of freedom T, μ, uα , regardless of their order
in the gradient expansion.

By retaining only the two derivative terms of linear order
in relations (19)–(24), we find the following:

E ′
(2)

(T, u, μ) + �1E ′
(1)

+ δ̄ε(2) = E(2)(T, u, μ),

P ′
(2)

(T, u, μ) + �1P ′
(1)

+ δ̄ p(2) = P(2)(T, u, μ),

N ′
(2)

(T, u, μ) + �1N ′
(1)

+ δ̄n(2) = N(2)(T, u, μ),

Q′α
(2)

(T, u, μ) + �1Q′α
(1)

= Qα
(2)

(T, u, μ) − hδ̄uα
(2)

,

J ′α
(2)

(T, u, μ) + �1J ′α
(1)

= J α
(2)

(T, u, μ) − nδ̄uα
(2)

,

τ
′αβ
(2) (T, u, μ) + �1τ

′αβ
(1) = τ

αβ
(2) (T, u, μ). (45)

In the above equations, �1E ′
(1)

, �1P ′
(1)

,…, �1τ
′αβ
(1) denote the

second-order terms obtained from the gradient expansions of
E ′

(1)
(T ′, u′, μ′), P ′

(1)
(T ′, u′, μ′),…, τ

′αβ
(1) (T ′, u′, μ′):

�1E ′
(1)

=ε
′(1)

1 �1
[∇′⊥α

(
uα + δ̄uα

(1)

)]

= ε
′(1)

1 (∇⊥α + Duα) δ̄uα
(1)

,

�1P ′
(1)

=π
′(1)

1 (∇⊥α + Duα) δ̄uα
(1)

,

�1N ′
(1)

=ν
′(1)

1 (∇⊥α + Duα) δ̄uα
(1)

,

�1Q′α
(1)

=θ
′(1)

1

(
∇α⊥δ̄T(1) + 2u

(α
δ̄uβ)

(1)∇βT
)

+ θ
′(1)

2

(
∇α⊥δ̄μ(1) + 2u

(α
δ̄uβ)

(1)∇βμ
)

,

�1J ′α
(1)

=κ
′(1)

1

(
∇α⊥δ̄T(1) + 2u

(α
δ̄uβ)

(1)∇βT
)

+ κ
′(1)

2

(
∇α⊥δ̄μ(1) + 2u

(α
δ̄uβ)

(1)∇βμ
)

,

�1τ
′αβ
(1) =η

′(1)

1

[(∇〈α
⊥ + Du〈α)

δ̄uβ〉
(1)

+ u(α δ̄uγ
(1)

(
∇⊥γ u

β) + ∇β)
⊥ uγ − 2

d − 1

β)

γ �

)]
. (46)

In the general case, � j�
′
(i)(T + δ̄T, Au + δ̄u, μ + δ̄μ) rep-

resents the (i + j)-th term of the expansion of a given coef-
ficient �′

(i)(T
′, u′, μ′) in terms of the transverse gradients of

the unprimed variables {T, μ, uα}.
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By truncating the terms in (46) to the linear order in the
amplitudes and using the resulting expressions in (45), we
obtain

E ′
(2)

(T, u, μ) = E(2)(T, u, μ) − ε,T δ̄T(2)

− ε,μδ̄μ(2) − ε
′(1)

1 ∇⊥αδ̄uα
(1)

,

P ′
(2)

(T, u, μ) = P(2)(T, u, μ) − p,T δ̄T(2)

− p,μδ̄μ(2) − π ′(1)∇⊥αδ̄uα
(1)

,

N ′
(2)

(T, u, μ) = N(2)(T, u, μ) − n,T δ̄T(2)

− n,μδ̄μ(2) − ν
′(1)

1 ∇⊥αδ̄uα
(1)

,

Q′α
(2)

(T, u, μ) = Qα
(2)

(T, u, μ) − hδ̄uα
(2)

− θ
′(1)

1 ∇α⊥δ̄T(1) − θ
′(1)

2 ∇α⊥δ̄μ(1),

J ′α
(2)

(T, u, μ) = J α
(2)

(T, u, μ) − nδ̄uα
(2)

− κ
′(1)

1 ∇α⊥δ̄T(1) − κ
′(1)

2 ∇α⊥δ̄μ(1),

τ
′αβ
(2) (T, u, μ) = τ

′αβ
(2) (T, u, μ) − η

′(1)

1 ∇〈α
⊥ δ̄uβ〉

(1). (47)

Substituting the gradient expansions of both the original and
primed variables into (47), together with the second-order
versions of (18), we establish the relations among the trans-
port coefficients that persist after the linearization process:

ε
′(2)

l = ε
(2)

l − ε,T a
(2)

l − ε,μc
(2)

l − ε
′(1)

1 b(1)

l ,

π
′(2)

l = π
(2)

l − p,T a
(2)

l − p,μc
(2)

l − π
′(1)

1 b(1)

l ,

ν
′(2)

l = ν
(2)

l − n,T a
(2)

l − n,μc
(2)

l − ν
′(1)

1 b(1)

l ,

θ
′(2)

l = θ
(2)

l − hb(2)

l − (θ
′(1)

1 a(1)

1 + θ
′(1)

2 c(1)

1 )δ1
l ,

κ
′(2)

l = κ
(2)

l − nb(2)

l − (κ
′(1)

1 a(1)

1 − κ
′(1)

2 c(1)

1 )δ1
l ,

η
′(2)

l = η
(2)

l − η
(1)

1 b(1)

l , (48)

where l = 1, 2 and δ
j
l represents the Kronecker delta.

The foregoing second-order coefficients depend on the
hydrodynamic frame chosen; however, they can be combined
in a manner analogous to that of the first-order case, thereby
yielding the subsequent equations:

π
′(2)

l − βεε
′(2)

l − βnν
′(2)

l = π
(2)

l − βεε
(2)

l − βnν
(2)

l − f (1)

1 b(1)

l ,

κ
′(2)

l − n

h
θ

′(2)

l = κ
(2)

l − n

h
θ

(2)

l − (
a(1)

1 �
(1)

1 + c(1)

1 �
(1)

2

)
δ1
l ,

η
′(2)

l = η
(2)

l − t (1)

1 b(1)

l . (49)

The exact functional forms of the coefficients a(1)

1 and c(1)

1
depend on the specific equations selected from (32). These
coefficients can be expressed in terms of one of the following
sets of transport coefficients, along with their primed coun-
terparts: {ε(1)

1 , π
(1)

1 }, {ε(1)

1 , ν
(1)

1 } or {π(1)

1 , ν
(1)

1 }. For example, it
is feasible to determine a(1)

1 and c(1)

1 in terms of {ε(1)

1 , π
(1)

1 }
and {ε′(1)

1 , π
′(1)

1 } using the subsequent system of equations:

ε,T a
(1)

1 + ε,μc
(1)

1 = ε
(1)

1 − ε
′(1)

1 ,

p,T a
(1)

1 + p,μc
(1)

1 = π
(1)

1 − π
′(1)

1 . (50)

Indeed, by solving the above equations for a(1)

1 and c(1)

1 , the
following expressions are obtained:

a(1)

1 = 1

βn(ε,μn,T − ε,T n,μ)

[
ε,μ

(
π

(1)

1 − π
′(1)

1

)

− (
βεε,μ + βnn,μ

)
ε

(1)

1 + (
βεε,μ + βnn,μ

)
ε
′(1)

1

]
,

(51)

c(1)

1 = 1

βn(ε,T n,μ − ε,μn,T )

[
ε,T

(
π

(1)

1 − π
′(1)

1

)

− (
βεε,T + βnn,T

)
ε

(1)

1 + (
βεε,T + βnn,T

)
ε
′(1)

1

]
. (52)

Similarly, b(1)

l can be obtained from θ
′(1)

l = θ
(1)

l − hb(1)

l or
κ

′(1)

l = κ
(1)

l − nb(1)

l , resulting in

b(1)

l = θ
(1)

l − θ
′(1)

l

h
or b(1)

l = κ
(1)

l − κ
′(1)

l

n
, (53)

where l = 1, 2 for all the above equations with the index l.
Substituting the expressions (51)–(52) and the first expres-
sion of (53) in equations (49), we obtain the following set of
frame-invariant coefficients:

f (2)

l ≡ π
(2)

l − βεε
(2)

l − βnν
(2)

l − f (1)

1 [b(1)

l ](θ),

�
(2)

l ≡ κ
(2)

l − n

h
θ

(2)

l − {[a(1)

1 ](ε,π) �
(1)

1 + [c(1)

1 ](ε,π) �
(1)

2

}
δ1
l ,

t (2)

l ≡ η
(2)

l − t (1)

1 [b(1)

l ](θ), (54)

where [a(1)

1 ](ε,π), [c(1)

1 ](ε,π) and [b(1)

l ](θ) refer to the respective
parts of a(1)

1 , c(1)

1 and b(1)

l that depend on (ε, π) and (θ). These
terms are given by

[
a(1)

1

]
(ε,π)

=
(

∂T

∂ε

)

p
ε

(1)

1 +
(

∂T

∂p

)

ε

π
(1)

1 ,

[
c(1)

1

]
(ε,π)

=
(

∂μ

∂ε

)

p
ε

(1)

1 +
(

∂μ

∂p

)

ε

π
(1)

1 ,

[
b(1)

l

]
(θ)

= 1

h
θ

(1)

l , for l = 1, 2, (55)

where the partial derivatives in the foregoing equations can
be expressed as

(
∂T

∂ε

)

p
=

(
∂T

∂ε

)

n
− βε

βn

(
∂T

∂n

)

ε

= βεε,μ + βnn,μ

βn(ε,T n,μ − ε,μn,T )
,

(
∂T

∂p

)

ε

= T,n

βn
= ε,μ

βn(ε,μn,T − ε,T n,μ)
,

(
∂μ

∂ε

)

p
=

(
∂μ

∂ε

)

n
− βε

βn

(
∂μ

∂n

)

ε

= βεε,T + βnn,T

βn(ε,μn,T − ε,T n,μ)
,
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(
∂μ

∂p

)

ε

= μ,n

βn
= ε,T

βn(ε,T n,μ − ε,μn,T )
. (56)

2.5 Third-order charged-fluid structures

Third-order gradients furnish the first corrections to even dis-
persion relations, exemplified by the shear channel in a static
flow. This corresponds to the lowest order in which a longi-
tudinal derivative consistently appears in the expansion, as
the Riemann tensor is not subjected to constraints imposed
by ideal fluid equations. In the case of a neutral (uncharged)
fluid, this has been rigorously established in [19], hereafter
referred to as GK, and further updated in [20]. Third-order
corrections have also been explored in the framework of
kinetic theory, and their results are consistent with the gradi-
ent expansion approach [43–46]. We present in the following
the results pertaining to independent third-order corrections
in the constitutive relations for a charged fluid.

Considering the third-order scalars, we get the following
list of structures for a fluid with one conserved charge:

S (3)

1 = ∇2⊥�, S (3)

2 = �∇2⊥T,

S (3)

3 = �∇2⊥μ, S (3)

4 = σαβ∇α⊥∇β
⊥T,

S (3)

5 = σαβ∇α⊥∇β
⊥μ, S (3)

6 = ∇α⊥T∇⊥α�,

S (3)

7 = ∇α⊥μ∇⊥α�, S (3)

8 = ∇α⊥T∇β
⊥σαβ,

S (3)

9 = ∇α⊥μ∇β
⊥σαβ, S (3)

10 = �3,

S (3)

11 = σαβσ γ
α σβγ , S (3)

12 = �σ 2,

S (3)

13 = ��2, S (3)

14 = σαβ� γ
α �βγ ,

S (3)

15 = �(∇⊥T )2, S (3)

16 = �(∇⊥μ)2,

S (3)

17 = �∇⊥αT∇α⊥μ, S (3)

18 = σαβ∇α⊥T∇β
⊥T,

S (3)

19 = σαβ∇α⊥μ∇β
⊥μ, S (3)

20 = σαβ∇α⊥T∇β
⊥μ,

S (3)

21 = �αβ∇α⊥T∇β
⊥μ, S (3)

22 = �R,

S (3)

23 = σαβ Rαβ, S (3)

24 = DR,

S (3)

25 = uα∇β
⊥T Rαβ, S (3)

26 = uα∇β
⊥μRαβ,

S (3)

27 = �uαuβ Rαβ, S (3)

28 = σαβuγ uδRαγβδ,

S (3)

29 = uαuβDRαβ. (57)

Notice that the scalars S (3)

15 and S (3)

18 incorporate products
of two temperature gradients. Each of these yields two novel
scalars for a charged fluid, corresponding to the two inde-
pendent substitutions that can be made by replacing the tem-
perature with the chemical potential. This shows the impor-
tance of working with irreducible representations; for each
irreducible product of temperature gradients, there exists a
unique and straightforward way for obtaining the correspond-
ing irreducible gradients of the chemical potential. Further-
more, the presence of two independent scalar gradients leads

to the emergence of terms such as S (3)

16 , which are absent in
the uncharged case where only a single scalar gradient exists.
Symmetry is another key point here: the product of gradients
from the same scalar field remains symmetric upon permu-
tation. Conversely, the direct product of gradients from two
distinct scalars does not possess a definite symmetry, thereby
allowing for a non-vanishing anti-symmetric part being real-
ized in the non-vanishing scalar S (3)

21 .
To derive the third-order tensors of a charged fluid, we

employ the same strategy that is based on prior knowledge
of the gradient expansion in uncharged fluids. The compre-
hensive list of tensors is obtained by considering all pos-
sible combinations of temperature and chemical potential
gradients for each third-order tensor present in the gradient
expansion of the uncharged fluid. The outcomes are ascer-
tained through the computational implementation of both the
Grozdanov–Kaplis (GK) and the irreducible-structure (IS)
algorithms. This approach yields the subsequent list of ten-
sors in the case of a system with one conserved charge:

T (3)

1 = ∇〈α
⊥ ∇β〉

⊥ �, T (3)

2 = ∇2⊥σαβ,

T (3)

3 = �∇〈α
⊥ ∇β〉

⊥ T, T (3)

4 = �∇〈α
⊥ ∇β〉

⊥ μ,

T (3)

5 = σαβ∇2⊥T, T (3)

6 = σαβ∇2⊥μ,

T (3)

7 = σ 〈α
γ ∇β〉

⊥ ∇γ
⊥T, T (3)

8 = σ 〈α
γ ∇β〉

⊥ ∇γ
⊥μ,

T (3)

9 = � 〈α
γ ∇β〉

⊥ ∇γ
⊥T, T (3)

10 = � 〈α
γ ∇β〉

⊥ ∇γ
⊥μ,

T (3)

11 = ∇〈α
⊥ T∇β〉

⊥ �, T (3)

12 = ∇〈α
⊥ μ∇β〉

⊥ �,

T (3)

13 = ∇γ
⊥T∇⊥γ σαβ, T (3)

14 = ∇γ
⊥μ∇⊥γ σαβ,

T (3)

15 = ∇γ
⊥σ 〈α

γ ∇β〉
⊥ T, T (3)

16 = ∇γ
⊥σ 〈α

γ ∇β〉
⊥ μ,

T (3)

17 = ∇γ
⊥T∇〈α

⊥ σβ〉
γ , T (3)

18 = ∇γ
⊥μ∇〈α

⊥ σβ〉
γ ,

T (3)

19 = �∇〈α
⊥ T∇β〉

⊥ T, T (3)

20 = �∇〈α
⊥ μ∇β〉

⊥ μ,

T (3)

21 = �∇〈α
⊥ T∇β〉

⊥ μ, T (3)

22 = σαβ(∇⊥T )2,

T (3)

23 = σαβ(∇⊥μ)2, T (3)

24 = σαβ∇γ
⊥μ∇⊥γ T,

T (3)

25 = σ 〈α
γ ∇β〉

⊥ T∇γ
⊥T, T (3)

26 = σ 〈α
γ ∇β〉

⊥ μ∇γ
⊥μ,

T (3)

27 = σ 〈α
γ ∇β〉

⊥ T∇γ
⊥μ, T (3)

28 = σ 〈α
γ ∇β〉

⊥ μ∇γ
⊥T,

T (3)

29 = � 〈α
γ ∇β〉

⊥ T∇γ
⊥T, T (3)

30 = � 〈α
γ ∇β〉

⊥ μ∇γ
⊥μ,

T (3)

31 = � 〈α
γ ∇β〉

⊥ T∇γ
⊥μ, T (3)

32 = � 〈α
γ ∇β〉

⊥ μ∇γ
⊥T,

T (3)

33 = σαβσ 2, T (3)

34 = σ 〈α
γ σβ〉δσ γ

δ ,

T (3)

35 = σαβ�2, T (3)

36 = σ 〈α
γ σβ〉γ �,

T (3)

37 = � 〈α
γ �β〉γ �, T (3)

38 = σ 〈α
γ �β〉δσ γ

δ ,

T (3)

39 = σαβ�2, T (3)

40 = σ 〈α
γ �β〉δ� γ

δ ,

T (3)

41 = � 〈α
γ �β〉δσ γ

δ , T (3)

42 = σ 〈α
γ �β〉γ �,

T (3)

43 = �R〈αβ〉, T (3)

44 = σαβ R,

T (3)

45 = σ 〈α
γ Rβ〉γ , T (3)

46 = � 〈α
γ Rβ〉γ ,
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T (3)

47 = σγ δR
γ 〈αβ〉δ, T (3)

48 = DR〈αβ〉,

T (3)

49 = uγ ∇〈α
⊥ Rβ〉γ , T (3)

50 = uγ ∇δR
γ 〈αβ〉δ,

T (3)

51 = uγ R
γ 〈α∇β〉

⊥ T, T (3)

52 = uγ R
γ 〈α∇β〉

⊥ μ,

T (3)

53 = uγ R
γ 〈αβ〉

δ ∇δ⊥T, T (3)

54 = uγ R
γ 〈αβ〉

δ ∇δ⊥μ,

T (3)

55 = uγ uδDRγ 〈αβ〉δ, T (3)

56 = �uγ uδR
γ 〈αβ〉δ,

T (3)

57 = σαβuγ uδR
γ δ, T (3)

58 = uγ uδσ
〈α

η Rβ〉γ δη,

T (3)

59 = uγ uδ�
〈α
η Rβ〉γ δη. (58)

If the Landau frame is chosen, no vector corrections
appear in the energy–momentum tensor. For a fluid with
one conserved charge, there are 88 new transport coeffi-
cients associated with third-order corrections in T αβ . This
substantial number of transport coefficients requires simpli-
fications to solve real-world problems; let us examine some
special cases. Imposing that spacetime is flat, i.e. ∇αgβγ = 0,
is of particular interest on the scales of elementary parti-
cle processes. In flat spacetime, 21 third-order scalars and
42 third-order tensors survive, requiring 63 transport coef-
ficients. Note that by construction, for a constant chemical
potential, we obtain the gradient expansion of the uncharged
fluid.

For a charged fluid in the Landau frame, higher-order cor-
rections appear in the conserved current in the form of trans-
verse vectors. Although there are no vector corrections in the
gradient expansion of a neutral fluid in the Landau frame,
the possible third-order transverse vectors that can be con-
structed for an uncharged fluid were obtained in [19] and
updated in [20]. We use this prior knowledge, together with
the computational implementation of both the GK and IS
algorithms, to compile the following list of third-order trans-
verse vectors for the charged fluid:

V (3)

1 = ∇α⊥∇2⊥T, V (3)

2 = ∇α⊥∇2⊥μ,

V (3)

3 = ∇α⊥�2, V (3)

4 = ∇α⊥σ 2,

V (3)

5 = �∇β
⊥σα

β, V (3)

6 = σα
β∇β

⊥�,

V (3)

7 = �α
β∇β

⊥�, V (3)

8 = σα
β∇γ

⊥σβ
γ ,

V (3)

9 = σβγ ∇β
⊥σαγ , V (3)

10 = �α
β∇γ

⊥σβ
γ ,

V (3)

11 = �βγ ∇β
⊥σαγ , V (3)

12 = ∇α⊥T∇2⊥T,

V (3)

13 = ∇α⊥μ∇2⊥μ, V (3)

14 = ∇α⊥T∇2⊥μ,

V (3)

15 = ∇α⊥μ∇2⊥T, V (3)

16 = ∇α⊥∇β
⊥T∇⊥βT,

V (3)

17 = ∇α⊥∇β
⊥μ∇⊥βμ, V (3)

18 = ∇α⊥∇β
⊥T∇⊥βμ,

V (3)

19 = ∇α⊥∇β
⊥μ∇⊥βT, V (3)

20 = �2∇α⊥T,

V (3)

21 = �2∇α⊥μ, V (3)

22 = σ 2∇α⊥T,

V (3)

23 = σ 2∇α⊥μ, V (3)

24 = �2∇α⊥T,

V (3)

25 = �2∇α⊥μ, V (3)

26 = �σα
β∇β

⊥T,

V (3)

27 = �σα
β∇β

⊥μ, V (3)

28 = ��α
β∇β

⊥T,

V (3)

29 = ��α
β∇β

⊥μ, V (3)

30 = σαβσβγ ∇γ
⊥T,

V (3)

31 = σαβσβγ ∇γ
⊥μ, V (3)

32 = �αβ�βγ ∇γ
⊥T,

V (3)

33 = �αβ�βγ ∇γ
⊥μ, V (3)

34 = σαβ�βγ ∇γ
⊥T,

V (3)

35 = σαβ�βγ ∇γ
⊥μ, V (3)

36 = �αβσβγ ∇γ
⊥T,

V (3)

37 = �αβσβγ ∇γ
⊥μ, V (3)

38 = ∇α⊥T (∇⊥T )2,

V (3)

39 = ∇α⊥μ(∇⊥μ)2, V (3)

40 = ∇α⊥T (∇⊥μ)2,

V (3)

41 = ∇α⊥μ(∇⊥T )2, V (3)

42 = ∇α⊥T∇⊥βT∇β
⊥μ,

V (3)

43 = ∇α⊥μ∇⊥βT∇β
⊥μ, V (3)

44 = ∇α⊥R,

V (3)

45 = R∇α⊥T, V (3)

46 = R∇α⊥μ,

V (3)

47 = 
αβ Rβγ ∇γ
⊥T, V (3)

48 = 
αβ Rβγ ∇γ
⊥μ,

V (3)

49 = �
αβuγ Rβγ , V (3)

50 = σαβuγ Rβγ ,

V (3)

51 = �αβuγ Rβγ , V (3)

52 = 
αβσγ δuηRβγ δη,

V (3)

53 = 
αβ�γδuηRβγ δη, V (3)

54 = 
αβuγ uδ∇ηRβγ δη,

V (3)

55 = uβuγ Rβγ ∇α⊥T, V (3)

56 = 
αβuγ uδRβγ δη∇η
⊥T,

V (3)

57 = uβuγ Rβγ ∇α⊥μ, V (3)

58 = 
αβuγ uδRβγ δη∇η
⊥μ,

V (3)

59 = uβuγ ∇α⊥Rβγ . (59)

Based on the foregoing tensorial structures, we obtain the
following constitutive relations for the energy–momentum
tensor


αβ
(3) =

29∑

j=1

ε
(3)

j S
(3)

j uαuβ +
29∑

i= j

π
(3)

j S (3)

j 
αβ

+
59∑

j=1

θ
(3)

j (V (3)

j )(αuβ) +
59∑

j=1

η
(3)

j (T (3)

j )αβ, (60)

and for the current

ϒα
(3)

=
29∑

j=1

ν
(3)

j S (3)

j uα +
59∑

j=1

κ
(3)

j (V (3)

j )α. (61)

Therefore, the most general third-order correction to the
energy–momentum tensor of a fluid with one conserved
charge involves 176 transport coefficients. Of these, 127 are
relevant in flat spacetime. The third-order correction to the
matter current contains 88 transport coefficients, with 64
being present in the flat spacetime case.

It is worth noting that not all of the coefficients of the con-
stitutive relations mentioned above are independent. Subse-
quently, we demonstrate that they can be combined in a set
of 147 frame-invariant quantities. Our primary focus is on
identifying the linear frame-invariant coefficients relevant in
flat space-time. These are the coefficients that manifest them-
selves in the dispersion relations of sound waves, diffusion,
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and shear modes. By solely considering the three derivative
terms of linear order in relations (19)–(24), we find the fol-
lowing constraints,

E ′
(3)

(T, u, μ) + �2E ′
(1)

+ �1E ′
(2)

+ δ̄ε(3) = E(3)(T, u, μ),

P ′
(3)

(T, u, μ) + �2P ′
(1)

+ �1P ′
(2)

+ δ̄ p(3) = P(3)(T, u, μ),

N ′
(3)

(T, u, μ) + �2N ′
(1)

+ �1N ′
(2)

+ δ̄n(3) = N(3)(T, u, μ),

Q′α
(3)

(T, u, μ) + �2Q′α
(1)

+ �1Q′α
(2)

= Qα
(3)

(T, u, μ) − hδ̄uα
(3)

,

J ′α
(3)

(T, u, μ) + �2J ′α
(1)

+ �1J ′α
(2)

= J α
(3)

(T, u, μ) − nδ̄uα
(3)

,

τ
′αβ
(3) (T, u, μ) + �2τ

′αβ
(1) + �1τ

′αβ
(2) = τ

′αβ
(3) (T, u, μ). (62)

In these equations, �2E ′
(1)

, �2P ′
(1)

,…, �2τ
′αβ
(1) denote the

third-order terms originated from the gradient expansions
of E ′

(1)
(T ′, u′, μ′), P ′

(1)
(T ′, u′, μ′),…, τ

′αβ
(1) (T ′, u′, μ′):

�2E ′
(1)

= ε
′(1)

1 ∇⊥αδ̄uα
(2)

+ · · · ,

�2P ′
(1)

= π
′(1)

1 ∇⊥αδ̄uα
(2)

+ · · · ,

�2N ′
(1)

= ν
′(1)

1 ∇⊥αδ̄uα
(1)

+ · · · ,

�2Q′α
(1)

= θ
′(1)

1 ∇α⊥δ̄T(2) + θ
′(1)

2 ∇α⊥δ̄μ(2) + · · · ,

�2J ′α
(1)

= κ
′(1)

1 ∇α⊥δ̄T(2) + κ
′(1)

2 ∇α⊥δ̄μ(2) + · · · ,

�2τ
′α
(1)

= η
′(1)

1 ∇〈α
⊥ δ̄uβ〉

(2) + · · · , (63)

where ellipses indicate omitted nonlinear terms in the ampli-
tudes.

In a similar way, �1E ′
(2)

, �1P ′
(2)

,…, �1τ
′αβ
(2) represent the

third-order terms obtained from the gradient expansions of
E ′

(2)
(T ′, u′, μ′), P ′

(2)
(T ′, u′, μ′),…, τ

′αβ
(2) (T ′, u′, μ′):

�1E ′
(2)

= ε
′(2)

1 ∇2⊥δ̄T(1) + ε
′(2)

2 ∇2⊥δ̄μ(1) + · · · ,

�2P ′
(1)

= π
′(2)

1 ∇2⊥δ̄T(1) + π
′(2)

2 ∇2⊥δ̄μ(1) + · · · ,

�2N ′
(1)

= ν
′(2)

1 ∇2⊥δ̄T(1) + ν
′(2)

2 ∇2⊥δ̄μ(1) + · · · ,

�2Q′α
(1)

= θ
′(2)

1 ∇α⊥∇⊥β δ̄uβ
(1)

+ θ
′(2)

2 
α
β∇⊥γ ∇〈γ

⊥ δ̄uβ〉
(1) + · · · ,

�2J ′α
(1)

= κ
′(2)

1 ∇α⊥∇⊥β δ̄uβ
(1)

+ κ
′(2)

2 
α
β∇⊥γ ∇〈γ

⊥ δ̄uβ〉
(1) + · · · ,

�2τ
′α
(1)

= η
′(2)

1 ∇〈α
⊥ ∇β〉

⊥ δ̄T(1) + η
′(2)

2 ∇〈α
⊥ ∇β〉

⊥ δ̄μ(1) + · · · , (64)

where, as above, the ellipses indicate omitted nonlinear terms
in the amplitudes. Since we are interested in the frame-
invariant coefficients that persist in the linear regime, such
nonlinear terms can be ignored. Thus, after substitution of
(63) and (64) into (62), the linearized resulting equations are
given by

E ′
(3)

(T, u, μ) = E(3)(T, u, μ) − ε,T δT(3)

− ε,μδμ(3) − ε
′(1)

1 ∇⊥αδuα
(2)

− ε
′(2)

1 ∇2⊥δT(1) − ε
′(2)

2 ∇2⊥δμ(1), (65)

P ′
(3)

(T, u, μ) = P(3)(T, u, μ) − p,T δT(3)

− p,μδμ(3) − π
′(1)

1 ∇⊥αδuα
(2)

− π
′(2)

1 ∇2⊥δT(1) − π
′(2)

2 ∇2⊥δμ(1), (66)

N ′
(3)

(T, u, μ) = N(3)(T, u, μ) − n,T δT(3)

− n,μδμ(3) − ν
′(1)

1 ∇⊥αδuα
(2)

− ν
′(2)

1 ∇2⊥δT(1) − ν
′(2)

2 ∇2⊥δμ(1), (67)

Q′α
(3)

(T, u, μ) = Qα
(3)

(T, u, μ) − hδuα
(3)

− θ
′(1)

1 ∇α⊥δT(2) − θ
′(1)

2 ∇α⊥δμ(2)

− θ
′(2)

1 ∇α⊥∇⊥βδuβ
(1) − θ

′(2)

2 
α
β∇⊥γ ∇〈γ

⊥ δuβ〉
(1),

(68)

J ′α
(3)

(T, u, μ) = J α
(3)

(T, u, μ) − nδuα
(3)

− κ
′(1)

1 ∇α⊥δT(2)

− κ
′(1)

2 ∇α⊥δμ(2) − κ
′(2)

1 ∇α⊥∇⊥βδuβ
(1)

− κ
′(2)

2 
α
β∇⊥γ ∇〈γ

⊥ δuβ〉
(1), (69)

τ
′αβ
(3) (T, u, μ) = τ

′αβ
(3) (T, u, μ) − η

′(1)

1 ∇〈α
⊥ δuβ〉

(2)

− η
′(2)

1 ∇〈α
⊥ ∇β〉

⊥ δT(1) − η
′(2)

2 ∇〈α
⊥ ∇β〉

⊥ δμ(1).

(70)

Substituting the gradient expansions of the original and pri-
med variables into the above equations, together with the
third-order versions of (18), we obtain the following relations
among the transport coefficients that survive the linearization
process:

ε
′(3)

1 = ε
(3)

1 − a(3)

1 ε,T − c(3)

1 ε,μ

−
(
b(2)

1 + d − 2

d − 1
b(2)

2

)
ε
′(1)

1 − a(1)

1 ε
′(2)

1 − c(1)

1 ε
′(2)

2 ,

π
′(3)

1 = π
(3)

1 − a(3)

1 p,T − c(3)

1 p,μ

−
(
b(2)

1 + d − 2

d − 1
b(2)

2

)
π

′(1)

1 − a(1)

1 ε
′(2)

1 − c(1)

1 ε
′(2)

2 ,

ν
′(3)

1 = ν
(3)

1 − a(3)

1 n,T − c(3)

1 n,μ

−
(
b(2)

1 + d − 2

d − 1
b(2)

2

)
ν

′(1)

1 − a(1)

1 ν
′(2)

1 − c(1)

1 ν
′(2)

2 ,

θ
′(3)

l = θ
(3)

l − hb(3)

l − a(2)

l θ
′(1)

1

− c(2)

l θ
′(1)

2 − b(1)

l

(
θ

′(2)

1 + d − 2

d − 1
θ

′(2)

2

)
,

κ
′(3)

l = κ
(3)

l − nb(3)

l − a(2)

l κ
′(1)

l
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− c(2)

l κ
′(1)

2 − b(1)

l

(
κ

′(2)

1 + d − 2

d − 1
κ

′(2)

2

)
,

η
′(3)

l = η
(3)

l −
[
a(1)

1 η
′(2)

1 + c(1)

1 η
′(2)

2

+
(
b(2)

1 + d − 3

2(d − 1)
b(2)

2

)
η

′(1)

1

]
δ1
l − 1

2
b(2)

2 η
′(1)

1 δ2
l ,

(71)

where l = 1, 2 and δ
j
l represents the Kronecker delta.

The foregoing third-order coefficients can now be com-
bined in a manner analogous to that of the first- and second-
order cases, which end to yielding the following equations:

f (3)

1 ≡ π
(3)

1 − βεε
(3)

1 − βnν
(3)

1 − ([a(1)

1 ](ε,π) f
(2)

1

+[c(1)

1 ](ε,π) f
(2)

2

) − f (1)

1

h

(
θ

(2)

1 + d − 2

d − 1
θ

(2)

2

)
,

�
(3)

l ≡ κ
(3)

l − n

h
θ

(3)

l − ([a(2)

l ](ε,π) �
(1)

1

+[c(2)

l ](ε,π) �
(1)

2

) − [b(1)

l ](θ)

(
�

(2)

1 + d − 2

d − 1
�

(2)

2

)
,

t (3)

l ≡ η
(3)

l −
{ [

a(1)

1

]
(ε,π)

t (2)

1 + [
c(1)

1

]
(ε,π)

t (2)

2

+ t (1)

1

h

(
θ

(2)

1 + d − 3

2(d − 1)
θ

(2)

2

)}
δ1
l − t (1)

1

2h
θ

(2)

2 δ2
l , (72)

where the terms [a(2)

l ](ε,π) and [c(2)

l ](ε,π) refer to the respec-
tive parts of a(2)

l and c(2)

l that depend on (ε, π), given by

[
a(2)

l

]
(ε,π)

=
(

∂T

∂ε

)

p
ε

(2)

l +
(

∂T

∂p

)

ε

π
(2)

l ,

[
c(2)

l

]
(ε,π)

=
(

∂μ

∂ε

)

p
ε

(2)

l +
(

∂μ

∂p

)

ε

π
(2)

l . (73)

The expressions for [a(1)

1 ](ε,π), [c(1)

1 ](ε,π), [b(1)

l ](θ), and for the
above partial derivatives are presented, respectively, in (55)
and (56).

3 Conformal-invariant charged fluids

A conformal field theory with massless fermions in the funda-
mental representation gives rise to conformal hydrodynam-
ics with conserved matter currents. Our aim here is to extend
the systematic approach of the previous section to this case,
where conformal symmetry holds. We refer to local confor-
mal symmetry, or Weyl invariance, as the invariance of the
theory under scaling transformations gαβ → g̃αβ = e2φgαβ .
In the context of hydrodynamics, the existence of a smooth
congruence characterizing the flow requires its tangent vec-
tor to transform according to uβ → ũβ = e−φuβ , keeping
its norm invariant.

Here, we are fundamentally interested in describing fluid
dynamics in a general curved spacetime. We treat the metric
tensor as a hydrodynamic degree of freedom, allowing the
metric derivatives to be translated into the Riemann tensor
within the gradient expansion. It is crucial to note that for a
Weyl-invariant fluid, one should a priori include these terms
in the gradient expansion since a local Weyl scaling can map a
flat space-time to a curved one. Additionally, we adhere to the
algebraic structure of Riemannian geometry, demanding the
energy–momentum tensor and the matter currents to be con-
travariant tensors with rank two and one, respectively, with
respect to diffeomorphism transformations. The possibility
of Weyl scaling introduces further constraints and requires
that both the energy–momentum tensor and the gauge cur-
rents be tensor densities. These transform under Weyl scaling
as

T αβ → e−wT T αβ, Jα → e−wJ Jα, (74)

where wT = d + 2 and wJ = d represent their respective
scaling dimensions.

Following the important lesson from [47], we use the Weyl
covariant derivative to identify the allowed terms in the gradi-
ent expansion. We implement the covariant derivative using
the minimal coupling prescription ∂μφ → (∂μ + wAμ)φ,
which requires a Weyl connection [48]. In this manner, we
ensure that all gradients we build transform as covariant
tensor densities under Weyl scaling, preserving the scaling
dimension of the zeroth-order degree of freedom. For each
correction in the derivative expansion, we can fit the appro-
priate scaling dimension by factoring powers of temperature
(or entropy).

We denote the Weyl-covariant derivative of an arbitrary
tensor with arbitrary rank ψ byDαψ . Let φ be a scalar density
of conformal weight wφ and lα be a vector density of confor-
mal weight wl . Their respective Weyl covariant derivatives
can be expressed as

Dαφ = ∂αφ + wφAαφ,

Dβl
α = ∇βl

α + wlAβl
α +

(
lαAβ + δα

β l
σAσ − lβAα

)
.

(75)

In the realm of hydrodynamics, the Weyl connection can be
ascertained either by ensuring that the covariant derivative of
the velocity field is transverse and traceless or by observing
that certain first-order derivative combinations transform as
a connection under Weyl scaling [47]. Both approaches lead
to the same Weyl connection for a fluid with a tangent vector
field uα:

Aα = uβ∇βuα − �

d − 1
uα. (76)

The concept of a Weyl connection, as defined in Ref. [49],
aligns perfectly with the result of employing the minimal
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coupling prescription [48,50] in the Christoffel symbol by
substituting ∂γ gαβ with ∂γ gαβ + 2Aγ gαβ . Here, we refer
to the Weyl connection as the vector field Aα . It is crucial
to emphasize that once a Weyl connection is established, the
Weyl covariant derivative is always precisely defined through
minimal coupling. By design, Weyl covariance is thus guar-
anteed for any gradient order. This step is pivotal in obtain-
ing the gradient expansion of a conformal fluid. Our ultimate
goal is to formulate both the energy–momentum tensor and
the matter current up to the third order in the gradient expan-
sion.

The program for formulating the gradient expansion in a
general frame has not been explicitly carried out using the
structure of a Weyl geometry (M, g,A). For a discussion on
Weyl geometry, see [51,52]. As we work in a general frame,
we include all scalar corrections in the gradient expansions of
the conformal charged fluid. The energy–momentum tensor
and vector current retain the general forms given in Eq. (9),
just as in the ordinary nonconformal case. Weyl symmetry
constrains the energy–momentum tensor by requiring it to be
traceless, and thus

P = E
d − 1

. (77)

The equilibrium equation of state for the conformal fluid is
the expected one, p = ε/(d − 1), and the transport coeffi-
cients of pressure corrections are proportional to the transport
coefficients for energy corrections. In the Landau frame, we
impose uβT αβ = −εuα , so that E = 0 and, consequently,
in the conformal case, P = 0. This leads to the energy–
momentum tensor of the conformal fluid:

T αβ
ideal = εuαuβ + ε

d − 1

αβ + ταβ. (78)

The dissipative corrections for an uncharged conformal fluid
in the Landau frame are restricted to be of the tensor type
only.

The matter current of an ideal conformal fluid matches the
ordinary one, given by Jα

ideal = nuα . It should be noted that
both the energy–momentum tensor and the matter current of
an ideal fluid possess the correct weight under Weyl scaling
of d + 2 and d, respectively.

The equations for the ideal conformal fluid are derived by
applying the Weyl covariant derivative to the divergence-free
energy–momentum tensor and the matter current:

DαT
αβ
ideal = 0, Dα J

α
ideal = 0. (79)

For this conformal scenario, we continue to consider the gra-
dient expansion on-shell. Using Eqs. (79), it follows that both
the longitudinal and transverse derivatives of the energy den-
sity are of higher order in gradients and thus vanish at zero
order. This excludes Dαε from the list of fundamental gradi-
ents allowed in the gradient expansion, or equivalently,DαT .
Within the gradient expansion of the conformal charged fluid,

Dαμ emerges as an additional fundamental derivative com-
pared to the uncharged case. As we will discuss later, this
addition significantly expands the full nonlinear second- and
third-order viscous corrections in the constitutive relations.

Curvature structures warrant special attention in our for-
mulation based on the Weyl covariant derivative. Within this
formulation, the Weyl covariant versions of the curvature ten-
sor incorporate gradients of the velocity field present in the
Weyl connection; the conformal Riemann tensor is defined
by the commutation of the Weyl covariant derivatives. It is
also important to note that the conformal Riemann tensor
encompasses linear gradients of the velocity field, which are
essential for describing propagating waves.

In addition to the geometric curvature, there is another
tensor that appears in the commutation of the Weyl covariant
derivatives. The gauge curvature, denotedF , is defined by the
exterior derivative of the Weyl connection: F = dA, Fαβ =
∂αAβ − ∂βAα .

In the gradient expansion, we encounter the conformal
Riemann tensor Rαβγ δ , as well as the gauge curvature for
the Weyl connection, Fαβ . It is worth noting that in a
Weyl covariant theory, one cannot disregard geometric cur-
vature, since a flat metric can be mapped into a curved one
through a Weyl scaling. The list of the lowest-order gradi-
ents compatible with conformal symmetry is thus represented
as {Dαμ, σαβ,�αβ,Fαβ,Rαβγ δ}. The chemical potential
introduces a first-order vector into the list of conformal gra-
dients, which is absent in the case of an uncharged conformal
fluid. Consequently, we cannot adopt the approach of substi-
tuting temperature with the chemical potential, as described
in the previous section for a nonconformal fluid; temperature
gradients are always of higher order and can be omitted in the
gradient expansion. In this work, we will exclude tempera-
ture gradients from the gradient expansion. We also note that
Dαμ ∼ Dα(μ/T ) at any gradient expansion level. Thus, we
can replace μ with α ≡ μ/T in the gradients.

3.1 First- and second-order constitutive relations

Conformal invariance imposes a traceless condition on the
energy-momentum tensor. When applying this to the con-
stitutive relation of the ideal fluid, the resulting equation of
state is p(ε) = ε/(d − 1). It is important to note that we
are working in a general hydrodynamic frame, which means
that scalar corrections for the energy-momentum tensor of
the conformal fluid are allowed. However, conformal sym-
metry ensures that the transport coefficients related to these
scalar corrections are zero. In this paper, we will not dive into
the topic of Weyl anomaly. As highlighted in [19], the Weyl
anomaly is proportional to R2, making it pertinent only for
corrections of the fourth order or beyond.

In our approach, since we are not limiting ourselves to
a specific hydrodynamic frame, the corrections to the ideal
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conformal fluid incorporate two unconstrained scalars, two
transverse vectors, and one TST tensor. Corrections of first
order are based solely on first-order gradients, which do not
involve any curvature tensor. It is noteworthy that there is
no first-order scalar in an on-shell description of a confor-
mal charged fluid. However, there is a first-order vector that
is transverse, represented as Dαμ. This is the only structure
that comes up in the constitutive relation for the matter cur-
rent. Similarly, there is also just one TST tensor: the shear
viscosity σαβ , which shows up in the constitutive relation
of the energy-momentum tensor. So we obtain the following
corrections to T αβ and Jα:


αβ
(1) = θ̃

(1)

1

[(
Dαμ

)
uβ + (

Dβμ
)
uα

] + η̃
(1)

1 σαβ,

ϒα
(1)

= κ̃
(1)

1 Dαμ. (80)

The second-order contributions to the constitutive rela-
tions are constructed using the systematic algorithm we pre-
viously outlined for ordinary (nonconformal) fluids. This
time, however, we employ a different set of fundamental gra-
dients. As expected, the constitutive relations for the confor-
mal charged fluid include all the transport coefficients found
in the uncharged fluid, in addition to those tied to the chem-
ical potential gradients. Accordingly, we organized the list
of corrections so that all gradients related to the chemical
potential are positioned at the end.

For the matter current, we obtain two vectors from the
chemical potential gradient: σαβDβμ and �αβDβμ. From
these we find the second-order contributions to the matter
current:

ϒα
(2)

=
6∑

j=1

ν̃
(2)

j S(2)

j u
α +

5∑

j=1

κ̃
(2)

j

(
U (2)

j

)α

, (81)

where

U (2)

1 = 
αβDγ σβγ , U (2)

2 = 
αβuγRβγ ,

U (2)

3 = uβFαβ, U (2)

4 = σαβDβμ,

U (2)

5 = �αβDβμ, (82)

and

S(2)

1 = σ 2, S(2)

2 = �2,

S(2)

3 = R, S(2)

4 = uαuβRαβ,

S(2)

5 = D2μ, S(2)

6 = DαμDαμ, (83)

where the free indices on the left-hand side of (82) have been
omitted. In Ref. [20], four vectors were presented, including
Dβ�αβ . We remove this vector from our list because we find
that it is equivalent to Dβσαβ , due to the irrelevance of the
order of Weyl covariant derivatives.

For the tensor structures, we have two new second-
order transport coefficients that arise from the chemical
potential gradients. These coefficients are associated with
D〈αDβ〉μ and D〈αμDβ〉μ. The complete list combines both
the existing tensors from the “uncharged-case list” and these
new additions. The general expression for the second-order
energy–momentum tensor corrections is given by


αβ
(2) =

6∑

j=1

ε̃
(2)

j S(2)

j u
αuβ +

6∑

j=1

π̃
(2)

j S(2)

j 
αβ

+
5∑

j=1

θ̃
(2)

j (U (2)

j )(αuβ) +
7∑

j=1

η̃
(2)

j (T(2)

j )αβ, (84)

where the second-order conformal TST gradients are

T(2)

1 = σ 〈α
γ σβ〉γ , T(2)

2 = σ 〈α
γ �β〉γ ,

T(2)

3 = � 〈α
γ �β〉γ , T(2)

4 = R〈αβ〉,
T(2)

5 = uγ uδRγ 〈αβ〉δ, T(2)

6 = D〈αμDβ〉μ,

T(2)

7 = D〈αDβ〉μ, (85)

and, again, the free indices on the left-hand side of (85) have
been omitted.

As a result of Eq. (77), we find that

π̃
(n)

j = ε̃
(n)

j

d − 1
, (86)

where n = 2, 3, . . . represents the order of the gradient
expansion. It is worth noting that uνDνσ

αβ is absent from
the previous list; it is equivalent to T(2)

5 . Since R represents
the conformal Riemann tensor, it carries information about
fluid flow and is retained in linearized equations that model
wave propagation. Conversely, the choice to omit longitudi-
nal derivatives of u, μ via equations of motion proves ben-
eficial for systematically developing the gradient expansion.
We opt to retain the conformal Ricci tensor over its equivalent
longitudinal velocity gradient for the sake of this systemati-
zation.

The list of second-order conformal tensors obtained here
aligns with the one found in appendix A of [53], except
for some redundancies that we have eliminated. However,
our lists of conformal vectors and scalars differ. The present
list of conformal vectors includes two additional structures,
while the list of conformal scalars includes one more struc-
ture. In Ref. [53], the conformal Ricci scalar is included, but
the projection of the conformal Ricci tensor onto the veloci-
ties is missing. Similarly, projections of the conformal Ricci
and Weyl gauge curvatures onto the velocity are absent in
[53]. The systematic procedure described in [19] proved to
be effective in identifying these missing second-order cor-
rections.
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3.2 Third-order corrections for conformal fluids

We go ahead to apply the procedure for obtaining higher-
order constitutive relations for a charged conformal fluid in
a general frame. In this context, we present a complete list
of third-order gradients and enumerate the total number of
transport coefficients.

To identify the third-order transverse vectors, it is help-
ful to rely on existing information from both lower-order
gradients of the charged fluid and third-order gradients of
the uncharged conformal fluid. We use the former to find
vectors related to gradients of the chemical potential, and
the latter to complete this list, ultimately yielding the full
set of third-order corrections. These third-order vectors are
constructed by multiplying a second-order scalar or by com-
bining a second-order tensor with the derivative term Dαμ.
The contributions to the matter current at the third order can
be expressed as

ϒα
(3)

=
13∑

j=1

ν̃
(3)

j S(3)

j u
α +

24∑

j=1

κ̃
(3)

j (U (3)

j )α. (87)

The complete list of third-order conformal vectors is pre-
sented as follows:

U (3)

1 = Dασ 2, U (3)

2 = σα
βDγ σβγ ,

U (3)

3 = �α
βDγ σβγ , U (3)

4 = 
α
βDγFβγ ,

U (3)

5 = 
α
βDγRβγ , U (3)

6 = σαβuγRβγ ,

U (3)

7 = �αβuγRβγ , U (3)

8 = 
αβσγ δuηRβγ δη,

U (3)

9 = 
αβ�γδuηRβγ δη, U (3)

10 = 
αβuγ uδDηRβγ δη,

U (3)

11 = σ 2 Dαμ, U (3)

12 = �2 Dαμ,

U (3)

13 = DαD2μ, U (3)

14 = σαβσβγDγ μ,

U (3)

15 = σαβ�βγDγ μ, U (3)

16 = �αβ�βγDγ μ,

U (3)

17 = DαμD2μ, U (3)

18 = DαDβμDβμ,

U (3)

19 = DαμDβμDβμ, U (3)

20 = RDαμ,

U (3)

21 = 
αβFβγDγ μ, U (3)

22 = 
αβRβγDγ μ,

U (3)

23 = uβuγRβγDαμ, U (3)

24 = 
αβuγ uδRβγ δηDημ.

(88)

Below, we enumerate the corresponding third-order confor-
mal scalars:

S(3)

1 = DαDβσαβ, S(3)

2 = σαβσβ
γ σ γα,

S(3)

3 = σαβ�β
γ �γα, S(3)

4 = uαDαR,

S(3)

5 = σαβRαβ, S(3)

6 = �αβFαβ,

S(3)

7 = uασβγ uδRαβγ δ, S(3)

8 = uαuβuγDαRβγ ,

S(3)

9 = σαβDαDβμ, S(3)

10 = DαμDβσαβ,

S(3)

11 = σαβDαμDβμ, S(3)

12 = FαβuαDβμ,

S(3)

13 = RαβuαDβμ. (89)

Of the 24 third-order vectors, 14 incorporate gradients
of the chemical potential, which constitute the majority of
the related transport coefficients. In fact, the presence of a
conserved charge gives rise to the 14 third-order tensorial
structures. Matter in the fundamental representation of the
underlying microscopic theory not only introduces an addi-
tional degree of freedom, the chemical potential, but also
requires the matter current to have its own gradient expan-
sion. It should be noted that the particular third-order vector
U (3)

4 = JA corresponds precisely to the charge current of the
Weyl connection [48].

We now consider the third-order TST conformal tensors
appearing in the gradient expansion. Extra tensors come from
combining a second-order vector with Dαμ and the Weyl
covariant derivative, as well as from multiplying second-
order scalars with σαβ . Although it might seem possible to
combine second-order tensors with first-order scalars, Weyl
symmetry does not allow for any first-order scalars. Note
also that even in a general hydrodynamic frame, our gradient
expansion is on-shell, meaning that we rule out the equiva-
lences that arise from the equations of motion of the ideal
fluid. The third-order correction to the tensor T αβ then takes
the form:


αβ
(3) =

13∑

j=1

ε̃
(3)

j S(3)

j u
αuβ +

13∑

j=1

π̃
(3)

j S(3)

j 
αβ

+
24∑

i=1

θ̃
(3)

j (U (3)

j )(αuβ) +
32∑

i=1

η̃
(3)

j (T(3)

j )αβ, (90)

where the above third-order tensor structures are defined as

T(3)

1 = D2σαβ, T(3)

2 = DγD〈ασβ〉γ ,

T(3)

3 = σ 2σαβ, T(3)

4 = �2σαβ,

T(3)

5 = σγ δσ
γ 〈ασβ〉δ, T(3)

6 = σγ δ�
γ 〈ασβ〉δ,

T(3)

7 = σγ δ�
γ 〈α�β〉δ, T(3)

8 = �γδσ
γ 〈α�β〉δ,

T(3)

9 = Rσαβ, T(3)

10 = F 〈α
γ σβ〉γ ,

T(3)

11 = R 〈α
γ σβ〉γ , T(3)

12 = F 〈α
γ �β〉γ ,

T(3)

13 = R 〈α
γ �β〉γ , T(3)

14 = σγ δRγ 〈αβ〉δ,
T(3)

15 = uγD〈αFβ〉γ , T(3)

16 = uγD〈αRβ〉γ ,

T(3)

17 = uγDδRγ 〈αβ〉δ, T(3)

18 = σαβuγ uδRγ δ,

T(3)

19 = uγ uδσ η〈αRβ〉
γ δη, T(3)

20 = uγ uδ�η〈αRβ〉
γ δη,

T(3)

21 = σαβD2μ, T(3)

22 = Dγ σαβDγ μ,

T(3)

23 = Dγ σ γ 〈αDβ〉μ, T(3)

24 = D〈ασβ〉γDγ μ,

T(3)

25 = σγ 〈αDβ〉Dγ μ, T(3)

26 = �γ 〈αDβ〉Dγ μ,

T(3)

27 = σαβDγ μDγ μ, T(3)

28 = σγ 〈αDβ〉μDγ μ,
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T(3)

29 = �γ 〈αDβ〉μDγ μ, T(3)

30 = uγFγ 〈αDβ〉μ,

T(3)

31 = uγRγ 〈αDβ〉μ, T(3)

32 = uγRγ 〈αβ〉δDδμ. (91)

The above list contains 32 third-order TST conformal ten-
sors. Of these, 20 are related to the transport coefficients of an
uncharged fluid, and 12 correspond to the variable chemical
potential associated with the conserved charge. It is important
to note that none of the 12 tensors associated with chemical
potential gradients remains after linearization, which means
that they do not influence wave propagation in the fluid.

4 Linearized dispersion relations

In order to determine the dispersion relations of the waves
propagating in a charged, nonconformal fluid, we initially
consider the decomposition of the energy–momentum tensor
and the current into an ideal part and a dissipative component:

T αβ = T αβ
ideal + αβ, (92)

Jα = Jα
ideal + ϒα, (93)

where T αβ
ideal and Jα

ideal are defined by Eqs. (2) and (3), respec-
tively. The dissipative terms under consideration extend up
to the third order in the gradient expansion for both αβ and
ϒα:

αβ = 
αβ
(1) + 

αβ
(2) + 

αβ
(3) , (94)

ϒα = ϒα
(1)

+ ϒα
(2)

+ ϒα
(3)

, (95)

where 
αβ
(i) and ϒα

(i) denote terms of i-th order in gradients.
The equations of motion are derived by taking the diver-

gence of T αβ and Jα , resulting in

∇αT
αβ = ∇αT

αβ
ideal + ∇ααβ = 0, (96)

∇α J
α = ∇α J

α
ideal + ∇αϒα = 0. (97)

Upon projecting Eq. (96) in the directions parallel and per-
pendicular to uμ and expanding the terms in Eq. (97), we
obtain:

uβ∇αT
αβ = −Dε − h� − αβ∇αuβ = 0, (98)


α
β∇γ T

γβ = hDuα + ∇α⊥ p + 
α
β∇γ γβ = 0, (99)

∇α J
α = Dn + n� + ∇αϒα = 0. (100)

In the Landau frame, there is no energy flow in the local
rest frame of the fluid, which means Qμ = 0. The defining
properties of this frame are complemented by E = N = 0.
By setting the various coefficients ε

(i)
j , θ

(i)
j , and ν

(i)
j to zero,

the linear dissipative terms present in Eqs. (98)–(100) are
reduced to

αβ =
[

αβ

(
π

(1)

1 + π
(3)

1 ∇2⊥
)

+ η
(3)

1 ∇〈α
⊥ ∇β〉

⊥
]
�

+ 
α
γ

(
η

(1)

1 + η
(3)

2 ∇2⊥
)

σγβ

+
(
π

(2)

1 
αβ∇2⊥ + η
(2)

1 ∇〈α
⊥ ∇β〉

⊥
)
T

+
(
π

(2)

2 
αβ∇2⊥ + η
(2)

2 ∇〈α
⊥ ∇β〉

⊥
)

μ, (101)

ϒα =
(
κ

(1)

1 + κ
(3)

1 ∇2⊥
)

∇α⊥T

+
(
κ

(1)

2 + κ
(3)

2 ∇2⊥
)

∇α⊥μ

+ κ
(2)

1 ∇α⊥� + κ
(2)

2 
α
β∇⊥γ σ γβ. (102)

Equations specific to a given hydrodynamic frame, such
as those presented above, can be expressed in terms of frame-
invariant coefficients. For example, using the Eqs. (33) and
(36), it is evident that

π
(1)

1 = f (1)

1 = −ζ, κ
(1)

1 = �
(1)

1 = σ
μ

T
,

κ
(1)

2 = �
(1)

2 = −σ, η
(1)

1 = t (1)

1 = −2η. (103)

Similarly, based on Eqs. (54) and (72), the following rela-
tions can be established for second- and third-order transport
coefficients (with l = 1, 2):

π
(2)

l = f (2)

l , η
(2)

l = t (2)

l ,

κ
(2)

l = �
(2)

l + 1

βn

(
T,n�

(1)

1 + μ,n�
(1)

2

)
f (1)

1 δ1
l ,

π
(3)

1 = f (3)

1 + 1

βn

(
T,n f

(2)

1 + μ,n f
(2)

2

)
f (1)

1 ,

κ
(3)

l = �
(3)

l + 1

βn

(
T,n�

(1)

1 + μ,n�
(1)

2

)
f (2)

l ,

η
(3)

l = t (3)

l + 1

βn

(
T,nt

(2)

1 + μ,nt
(2)

2

)
f (1)

1 δ1
l . (104)

For a flat d-dimensional spacetime, the metric is gαβ =
ηαβ = diag(−1,+1, . . . ,+1). In the linearized regime of
hydrodynamics, we define

∇⊥α = 
 β
α ∂β = uαu

β∂β + ∂α ≡ ∂⊥α (105)

and introduce the first-order perturbations in amplitude:

ε → ε + δε, T → T + δT,

p → p + δp, μ → μ + δμ,

n → n + δn. (106)

Consequently, Eqs. (98)–(100) reduce to

uα∂αδε + h∂⊥αδuα = 0, (107)

huβ∂βδuα + ∂α⊥δp + 
α
β∂γ δγβ = 0, (108)

uα∂αδn + n∂⊥αδuα + ∂δuα = 0. (109)
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Upon taking the Fourier transform of these perturbations as
δ� → δ�eikαxα

, we obtain

k‖δε + hk⊥αδuα = 0, (110)

hk‖δuα + kα⊥δp + 
α
βkγ δγβ = 0, (111)

k‖δn + nk⊥αδuα + kαδϒα = 0, (112)

where k‖ = uαkα and kα⊥ = 
αβkβ , and the perturbations in
αβ and ϒα take the form

δαβ =i

[

αβ

(
π

(1)

1 − η
(1)

1

d − 1

)
− η

(3)

1 kα⊥k
β
⊥

−
αβ

(
π

(3)

1 − η
(3)

1 + η
(3)

2

d − 1

)
k2⊥

]
k⊥γ δuγ

−
[

αβ

(
π

(2)

1 − η
(2)

1

d − 1

)
k2⊥ + η

(2)

1 kα⊥k
β
⊥

]
δT

−
[

αβ

(
π

(2)

2 − η
(2)

2

d − 1

)
k2⊥ + η

(2)

2 kα⊥k
β
⊥

]
δμ

+ i

2

(
η

(1)

1 − η
(3)

2 k2⊥
) (

kα⊥δuβ + kβ
⊥δuα

)
, (113)

δϒα =ikα⊥
(
κ

(1)

1 − κ
(3)

1 k2⊥
)

δT

+ ikα⊥
(
κ

(1)

2 − κ
(3)

2 k2⊥
)

δμ − 1

2
κ

(2)

2 k2⊥δuα

− kα⊥
(

κ
(2)

1 + d − 3

2(d − 1)
κ

(2)

2

)
k⊥γ δuγ . (114)

In these equations, we retain the original transport coeffi-
cients π

(i)
j , κ(i)

j , and η
(i)
j for simplicity. However, these coeffi-

cients should be regarded as functions of the frame-invariant
quantities f (i)

j , �
(i)
j , and t (i)j as given by Eqs. (103) and (104).

As usual in the literature, we will decompose δp, δT and
δμ in terms of the fluctuations of the densities, δε and δn,
which leads to

δp =
(

∂p

∂ε

)

n
δε +

(
∂p

∂n

)

ε

δn = βεδε + βnδn, (115)

δT =
(

∂T

∂ε

)

n
δε +

(
∂T

∂n

)

ε

δn = T,εδε + T,nδn, (116)

δμ =
(

∂μ

∂ε

)

n
δε +

(
∂μ

∂n

)

ε

δn = μ,εδε + μ,nδn. (117)

Substituting expressions (113)–(117) into Eqs. (111) and
(112), we find

[
2hk‖ + i(t (1)

1 − t (3)

2 k2⊥)k2⊥
]
δuα

+ 2kα⊥(βεδε + βnδn)

− 2kα⊥k2⊥
(
ψ(2)

ε δε + ψ(2)

n δn
)

− 2ihkα⊥
(
γ (1)

s + χ(3)

s k2⊥
)
k⊥βδuβ = 0, (118)

[
k‖ − ik2⊥

(
σα(1)

n + φ(3)

n k2⊥
)]

δn

− ik2⊥
(
σα(1)

ε + φ(3)

ε k2⊥
)

δε

+
(
n − hς(2)

s k2⊥
)
k⊥αδuα = 0, (119)

where the new quantities introduced above are defined by the
following expressions:

α(1)

a = − 1

σ

(
T,a�

(1)

1 + μ,a�
(1)

2

) = μ,a − μ

T
T,a,

γ (1)

s = − 1

h

(
f (1)

1 + d − 2

d − 1
t (1)

1

)
,

ψ(2)

a = T,a

(
f (2)

1 + d − 2

d − 1
t (2)

1

)
+ μ,a

(
f (2)

2 + d − 2

d − 1
t (2)

2

)
,

ς (2)

s = 1

h

(
�

(2)

1 − σ

βn
α(1)

n f (1)

1 + d − 2

d − 1
�

(2)

2

)
,

φ(3)

a = T,a

(
�

(3)

1 − σ

βn
α(1)

n f (2)

1

)
+ μ,a

(
�

(3)

2 − σ

βn
α(1)

n f (2)

2

)
,

χ(3)

s = 1

h

[
f (3)

1 + 1

βn

(
T,n f

(2)

1 + μ,n f
(2)

2

)
f (1)

1

+d − 2

d − 1

(
t (3)

1 + 1

βn

(
T,nt

(2)

1 + μ,nt
(2)

2

)
f (1)

1 + t (3)

2

)]
,

(120)

with a assuming the values ε and n.
Equations (110) and (119) comprise two scalar equations

that can be used to eliminate δε and δn, expressing them as
functions of the perturbations in fluid velocity. Upon substi-
tuting these expressions for the density fluctuations into the
vector Eq. (118) and projecting it along the direction trans-
verse to kα⊥, we obtain
[
2hk‖ + i(t (1)

1 − t (3)

2 k2⊥)k2⊥
]
δuα

T = 0, (121)

where

δuα
T =

(

α

β − kα⊥k⊥β

k2⊥

)
δuβ. (122)

A similar procedure, albeit with a projection along the direc-
tion longitudinal to kα⊥, yields an equation of the form

F (k‖, k2⊥)δuα
L = 0, (123)

where F (k‖, k2⊥) is a function of the wavenumber compo-
nents and the fluid transport coefficients. The longitudinal
projection of the fluid velocity perturbation is given by

δuα
L =

(
k⊥βδuβ

)

k2⊥
kα⊥. (124)
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From the vanishing of the term enclosed in square brack-
ets in Eq. (121), as well as that of the function F (k‖, k2⊥), we
deduce the equations governing the transverse and longitudi-
nal hydrodynamic modes, respectively. To find the dispersion
relations, we adopt the rest frame of the fluid, expressed as

uα = (1, �0), (125)

what implies in

k‖ = u0k0 ≡ −ω and k2⊥ = ki ki ≡ k2. (126)

Consequently, the algebraic equations characterizing the
hydrodynamic modes assume the forms

− 2hω + i(t (1)

1 − t (3)

2 k2)k2 = 0, (127)

ω3 − ωk2
[
v2
s − k2

(
ψ(2)

ε + n

h
ψ(2)

n − σα(1)

n γ (1)

s + βnς
(2)

s

)]

+iω2k2
[
γ (1)

s + σα(1)

n + k2 (
χ(3)

s + φ(3)

n

)]

−ik4σ
[
α(1)

n

(
βε − k2ψ(2)

ε

)

−α(1)

ε

(
βn − k2ψ(2)

n

)
− k2

σ

(
βnφ

(3)

ε − βεφ
(3)

n

) ]
= 0,

(128)

where the square of the speed of sound vs is defined as

v2
s ≡

(
∂p

∂ε

)

s/n
= βε + n

h
βn . (129)

The solution of Eq. (127) gives rise to the shear mode,
which is associated with the diffusion of transverse momen-
tum in the fluid. This mode is described by

ωshear(k) = i
t (1)

1

2h
k2 − i

t (3)

2

2h
k4. (130)

Meanwhile, the solutions of Eq. (128) yield the dispersion
relations for both the charge diffusion mode and the sound
wave mode, expressed as

ωdiffu(k) = −iDk2 + i

v2
s

(
Y − v2

s φ
(3)

n

)
k4, (131)

and

ω
(±)
sound(k) = ±vsk − i

2
�k2 ∓ 1

8vs

(
�2 − 4X

)
k3

− i

2v2
s

(
Y + v2

s χ
(3)

s

)
k4, (132)

where the quantities introduced in the foregoing relations are
given by

D = σ

v2
s
(α(1)

n βε − α(1)

ε βn), � = γ (1)

s + σβn

v2
s

[
α(1)

ε + n

h
α(1)

n

]
,

X = (D − γ (1)

s )(D − σα(1)

n ) −
[
ψ(2)

ε + n

h
ψ(2)

n

]
− βnς

(2)

s ,

Y = DX + σ(α(1)

n ψ(2)

ε − α(1)

ε ψ(2)

n ) + βn

[
φ(3)

ε + n

h
φ(3)

n

]
.

(133)

In order to obtain the transport coefficients that are pre-
served through the linearization process up to the third order
in the gradient expansion, one may compare the aforemen-
tioned dispersion relations with their corresponding equa-
tions derived from an underlying microscopic theory, such
as the strongly coupled conformal field theory (CFT), which
emerges as the dual theory in the AdS/CFT correspondence.
For the frame-invariant quantities t (1)

1 and t (3)

1 that appear in
the shear mode, the connection is direct: the coefficient of
k2 gives t (1)

1 , and that of k4 provides t (3)

2 . However, the analy-
sis becomes more intricate for the longitudinal modes asso-
ciated with charge diffusion and sound waves. In principle,
one could derive microscopic dispersion relations of the form
[54]

ωdiffu(k) = ic(0)

2 k2 + ic(0)

4 k4,

ω
(±)
sound(k) = c(±)

1 k + ic(±)

2 k2 + c(±)

3 k3 + ic(±)

4 k4, (134)

where the coefficients in the above series have been conve-
niently expressed such that all c’s are real numbers. Compar-
ing (134) with the dispersion relations (131) and (132), we
observe that coefficients c(±)

1 are related to the zeroth order
data, as they are determined by the speed of sound, which is
obtained from derivatives of the fluid equation of state. For
first-order hydrodynamics, the relation c(0)

2 = −D leads to
the conductivity σ , while the quantity c(±)

2 allows us to find
γs , which is a function of the bulk and shear viscosities, ζ

and η. In the second-order hydrodynamics, we additionally
have the following equation:

c(±)

3 = ∓ 1

8vs

(
�2 − 4X

)
	⇒ X = 1

4

(
�2 ± 8vsc

(±)

3

)
,

(135)

where the value of X can be employed to obtain the com-
bination ψ(2)

ε + (n/h)ψ
(2)
n + βnς

(2)
s , which depends on the

second-order frame-invariant quantities { f (2)

l , �
(2)

l , t (2)

l }, for
l = 1, 2. Finally, the coefficients of k4 in Eqs. (131), (132)
and (134) lead to

c(0)

4 = 1

v2
s

(
Y − v2

s φ
(3)

n

)
, c(±)

4 = − 1

2v2
s

(
Y + v2

s χ
(3)

s

)
.

(136)

These constitute two equations for φ(3)
ε , φ

(3)
n , and χ

(3)
s , which

in turn depend on the third-order frame-invariant quantities
{ f (3)

1 , �
(3)

1 , �
(3)

2 , t (2)

1 , t (3)

2 }, of which only t (3)

2 can be indepen-
dently determined from the shear mode.

It is pertinent to highlight here that the use of dispersion
relations for the determination of third-order coefficients,
as undertaken in Refs. [19,20] for a conformal-invariant
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uncharged fluid, has been criticized by some authors [55,56].
In particular, it is stated that “quartic order dispersion relies
upon getting the terms at order k4 correctly, but these are
related to hydrostatic data at the quartic order and undeter-
mined by cubic order transport data alone” [56]. According
to our interpretation, this statement claims that the trans-
port coefficients of a fourth-order gradient expansion may
be present in the dispersion relations of quartic order in k.
Although positing that an argument based on power counting
is sufficient to exclude the presence of fourth-order coeffi-
cients of the gradient expansion in dispersion relations up to
k4, we have conducted our calculations considering fourth-
order gradients in (101) and (102). In doing so, we have
explicitly confirmed that fourth-order transport coefficients
of the gradient expansion are not present in linearized dis-
persion relations up to the quartic power in k.

5 Final remarks and future perspectives

We extend the methodology of gradient expansion in rela-
tivistic hydrodynamics by employing the irreducible-struc-
ture (IS) algorithm, which is applied to obtain the constitu-
tive relations for a fluid with one conserved charge up to third
order in gradients in a general hydrodynamic frame. The IS
algorithm facilitates the formulation of the gradient expan-
sion in terms of tensors with well-defined symmetries under
index permutation, namely, tensors {�, σ,�}, each one of
them possessing a clear physical interpretation. The con-
sistency of the IS algorithm follows from theorems proven
in relativistic hydrodynamics [19,42] and has been explic-
itly verified by comparing the results with those obtained by
means of the Grozdanov–Kaplis (GK) algorithm.

Considering a nonconformal fluid with a single conserved
charge in a general hydrodynamic frame, we find 8 transport
coefficients at first order, 59 at second order, and 264 at third
order. Upon selecting a particular frame, these numbers are
reduced to 4 transport coefficients at first order (or 3, consid-
ering the 2nd law of thermodynamics), 30 at second order,
and 147 at third order. It should be noted that choosing a
specific frame is essential for specifying the fluid mechan-
ics of the system, once the relevant physical information is
encapsulated by the transport coefficients in that fixed hydro-
dynamic frame. An interesting extension of this framework
involves considering the presence of an external gauge field
and investigating the conductive properties of a fluid interact-
ing with the external field in the scope of gradient expansion.

Throughout the present analysis of the constitutive rela-
tions, we explored the frame dependence of the coefficients
{E , P , N , Qα , J α , ταβ} that appear in the decomposition
of the energy–momentum tensor T αβ and of the current Jα .
We explored also the consequent frame dependence of the
transport coefficients of a nonconformal fluid. In the first-

order hydrodynamics, the frame dependence of the funda-
mental hydrodynamic variables {T, μ, uα} and the transport
coefficients is limited to linear combinations of gradients.
In this specific context, the energy–momentum tensor and
the current can be straightforwardly expressed in terms of
a set of frame-invariant transport coefficients. However, this
simplification is not applicable to second- and third-order
hydrodynamics, where a plethora of nonlinear terms appear,
making the task of formulating complete expressions for the
conserved charges, using solely frame-invariant quantities,
notably challenging.

Fortuitously, in the linear regime, we successfully iden-
tify the frame dependence of the transport coefficients, and
thereby determine the relevant frame-invariant quantities.
The advantage of finding these coefficients is that the dis-
persion relations derived from the linear equations of motion
in the momentum space become independent of the choice
of the frame, allowing us to select a hydrodynamic frame at
our discretion. On the basis of this approach, we obtained the
linearized dispersion relations for a charged fluid in terms of
the frame-invariant coefficients. Thus, at least at the linear
level, our program for studying the gradient expansion of a
charged fluid in a general frame is successful. It allows us to
express the constitutive relations in a general frame, analyze
their frame dependence, identify observables (namely, the
transport coefficients) that are frame-invariant, and present
the dynamics (in the form of dispersion relations) in a frame-
invariant manner.

The challenge of expressing the full nonlinear, higher-
order constitutive relations solely in terms of frame-invariant
transport coefficients is as formidable as it is desirable to get
such expressions. Resolution to this problem would signify a
substantial enhancement to the gradient expansion approach
discussed in this work. In its current formulation, the notion
of nonlinear second- and third-order transport coefficients is
contingent on the choice of the hydrodynamic frame. This
issue is certainly one that we intend to address in future
research.

The case of a conformal fluid presents distinct challenges.
Employing the mathematical structure of a Weyl manifold to
establish the constitutive relations for a conformal-invariant
fluid is a natural strategy within the gradient expansion for-
mulation, which requires the use of covariant fields and
operators compatible with the symmetries of the system.
We observe that, in hydrodynamics, there exists an intri-
cate interplay between geometry and fluid flow, as estab-
lished by Eq. (76). This implies that the conformal Riemann
tensor and all its associate terms receive contributions from
velocity gradients. Consequently, in the set of third-order
conformal tensors, three distinct structures, represented by
T(3)

15, T(3)

16 and T(3)

17, survive the linearization process and cou-
ples to the expected linear gradients, namely T(3)

1 and T(3)

2 .
This intricate mixing is linked to the nuanced issue that in
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a conformal-invariant fluid, velocity fluctuations are related
to metric fluctuations. However, these metric fluctuations are
constrained to vanish when considering wave phenomena in
the fluid. In previous studies, such complexities were some-
what simplistically bypassed by merely “turning off” the cur-
vature tensors during discussions about wave propagation in
conformal fluids. Unfortunately, this strategy obscures con-
tributions arising from the transport coefficients associated
with curvature, thus masking the very information we seek to
understand. These intricacies, specifically related to the Weyl
structure within the realm of relativistic charged hydrody-
namics, undoubtedly necessitate further exploration, which
will be undertaken in subsequent research.

Note added: The calculations presented in this work were
performed using open source software. The tensorial struc-
tures in the gradient expansion were generated through the
SymPy library in Python 3, whereas supplementary compu-
tational tasks were accomplished using the codes of the Sage-
Manifolds project in SageMath 9.3. Regarding textual con-
tent, it was refined with the assistance of ChatGPT 4, which
conducted a review of style, coherence, and cohesion. The
model’s recommendations were implemented to improve the
quality of the text.
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