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1 Introduction

1.1 Stress tensor deformations of field theories

Recently, the study of deformations of quantum field theories involving operators constructed
from the energy-momentum tensor Tµν has received much attention. Several interesting new
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research directions have emerged, shedding new light on integrable quantum field theories,
conformal invariance, supersymmetry, holography, and string theory.

The most famous deformation driven by composite operators built out of the energy-
momentum tensor is the TT deformation of two-dimensional (2d) quantum field theories [1–3].
A remarkable property of TT is that, despite being an irrelevant operator, in the sense
of renormalisation group flows, it is quantum mechanically well-defined. As such, TT is
universal, in the sense that it can be used to deform any translation-invariant 2d QFT, and,
in particular, it is part of the spectrum of any 2d quantum field theory. Moreover, the
TT deformation has been shown to be solvable, meaning that quantities in the deformed
theory can often be computed in terms of corresponding quantities in the undeformed theory.
This was shown for the finite volume spectrum [2, 3], the S-matrix [4], the torus partition
function [5–7], and correlation functions [8, 9]. It has also been shown that the 2d TT
deformation preserves many symmetries and other desirable properties of a seed theory.
This includes integrability [2] and supersymmetry [10–17]. The TT deformation of 2d CFTs
leads to special classes of quantum field theories that, though not scale invariant due to
the presence of a dimensionful coupling, prove to be invariant under a deformation of the
Virasoro algebra [18–21], hence retaining an infinite dimensional set of symmetries. The
literature on the subject has been steadily growing since 2016, and we refer to [16, 22, 23]
and references therein for an introduction to the subject.

Considering the remarkable properties of TT in two space-time dimensions, it is natural
to ask whether similar deformations exist in d > 2. To date, it remains unclear whether
irrelevant local composite operators constructed out of the energy-momentum tensor can
have the same quantum mechanical properties as TT in d > 2 (a hope is that supersymmetry
might help to find an example). Despite that, various generalisations of TT flows have been
introduced in the literature [24, 25]. If one focuses even just on classical theories (or effective
field theories), one inspiring property of TT is that its Lagrangian flow equation (with Tµν

being the energy-momentum of a theory deformed by the parameter λ),

∂L(λ)

∂λ
= 1

4

(
TµνTµν −

(
Tµ

µ

)2
)
, (1.1)

takes free scalar fields in d = 2 into the theory of a gauge-fixed Nambu-Goto string [3]. A
similar classical flow equation in general space-time dimension,

∂L(λ)

∂λ
= OT T := 1

2d

(
TµνTµν − 1

d

(
Tµ

µ

)2
)
, (1.2)

once specialised to the d = 4 case, was proven to deform the free Maxwell Lagrangian,
L0 = −1

4FµνF
µν , into the Born-Infeld theory describing the effective gauge dynamics on a

brane [26]. It was successively shown that Born-Infeld theory in d = 3 satisfies a classical
TT -like flow connected to the free Maxwell theory [27]

∂L(λ)

∂λ
= 1

6T
µνTµν − 1

9
(
Tµ

µ

)2
+ 1

9
(
Tµ

µ

)
R , (1.3)

where R is given by the root-TT operator

R =
√

1
d
TµνTµν − 1

d2 (Tµ
µ )2

, (1.4)
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evaluated at d = 3. Other TT -like flows have then been identified. For instance, it has
been shown that a TT -like flow generates the Nambu-Goto action from a free scalar field in
any space-time dimension [27]. All these results have given hints that TT -like deformations
appear to be related to theories of strings and branes.1

The root-TT operator R mentioned above has been proven to have several remarkable
properties in various space-time dimensions. A key property is that R can be associated, at
least classically, with new classes of non-analytic marginal deformations of d-dimensional
conformal field theories. In fact, coming back to d = 4, it was shown [33, 34] that the
flow equation

∂L(γ)

∂γ
= 1√

d

√
TµνTµν − 1

d
(Tµ

µ )2
, d = 4 , (1.5)

with the free Maxwell Lagrangian density as the initial value at γ = 0, gives as the solution
the following one-parameter family of Lagrangians

LModMax = −1
4 cosh(γ)FµνFµν + 1

4 sinh(γ)
√

(FµνFµν)2 +
(
FµνF ∗

µν

)2
, (1.6)

which is the Modified Maxwell (or ModMax) theory introduced in [35]. ModMax has attracted
a wealth of attention in the last few years since it is the unique conformally invariant and
electromagnetic duality-invariant extension of Maxwell electrodynamics (in the assumption
that the Lagrangian does not contain derivatives of the field strength Fµν).2 By letting the
ModMax Lagrangian also flow under the deformation in equation (1.2), one obtains the
Lagrangian density of the so-called γ-Born-Infeld (or ModMax-Born-Infeld) theory [35, 37],

LγBI = 1
λ

{
1 −

√
1 + λ

2

[
cosh(γ)F 2 − sinh(γ)

√
(F 2)2 + (FF ∗)2

]
− λ2

16(FF ∗)2

}
. (1.7)

Interestingly, the above Lagrangian is an example which satisfies two commuting TT -like
flows with respect to the parameters3 λ and γ [33, 34]. Analogues of ModMax theories
and their flows have been studied in several works, including theories with supersymmetry,
sigma-models, and models in dimensions less than four [33, 34, 37–47].

Commenting more about the case of four-dimensional non-linear electrodynamics, it is
worth stressing one surprising result obtained in [48]. There, three of us have proven that all
(non-higher-derivative) duality invariant theories of non-linear electrodynamics are equivalent
to TT -like flows. More precisely, every such theory is a solution of a flow of the following type

∂L(λ)

∂λ
= f (Tµν , λ) , (1.8)

1Relations between T T and strings have been noticed in several contexts, see for example the single trace
T T deformation of [28–32].

2See [36] for an introduction to theories of non-linear electrodynamics, including ModMax.
3In the remainder of the paper, we will always use the symbol γ for dimensionless couplings associated

with marginal deformations. We use the symbol λ either for the dimensionful coupling in an irrelevant T T -like
deformation, or for a generic flow parameter in an arbitrary deformation.
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for some Lorentz scalar function of the energy-momentum tensor f (Tµν , λ).4 This result,
on the one hand, explains why various TT -like flows for non-linear electrodynamics have
been discovered in the last five years. On the other hand, the results of [48] provide a new
framework to construct duality-invariant theories of non-linear electrodynamics, for which
only a few explicit examples of Lagrangians are known in closed form. One of the main aims
of our work is to extend the boundaries of this framework and show that the majority of
these results can be extended to d = 6. In fact, to the best of our knowledge, our paper is
the first to provide examples of all-orders solutions of TT -like flows in d > 4.

Before moving to our main six-dimensional playground, it is worth mentioning some
further properties of the non-analytic field theories that arise by studying root-TT flows
in d = 2. Considering the importance played by 2d conformal field theories, it is natural
to ask what kind of quantum field theories are generated by flows driven by the root-TT
operator (1.4) and passing through a CFT2 seed theory. This question was asked in [44] where
it was shown that classical conformal symmetry is preserved along the flow, indicating that
root-TT is a classically marginal operator. Moreover, when evaluated on a CFT2, root-TT
precisely coincides with the square root of the determinant of the energy-momentum tensor in
d = 2, directly justifying its name. Independently, [49] showed that the dimensional reduction
of ModMax leads to a modified theory of scalars in 2d that is exactly a root-TT deformation
of a system of free real scalar fields. The same operator was also considered as an ingredient
to obtain ultra-relativistic limits of 2d CFTs, hence relating to the construction of BMS3
field theories [50–52]. It has also been established that 2d root-TT deformations preserve
classical integrability for certain 2d models [53]. Though it remains an open question whether
the 2d root-TT operator can be defined at the quantum level and whether it is exactly
marginal, interesting results have been obtained by employing a holographic approach [54]
that generalise those for TT [55, 56].

Returning to TT -like deformations in d > 2, one might wonder which other flows could
be identified with properties analogous to the ones described above. We have stressed how the
marginal γ-flow (1.5) and irrelevant λ-flow (1.2) play a central role in describing ModMax-
Born-Infeld theory in d = 4. As was found in [37], in six space-time dimensions there is a two
parameter family of theories of interacting chiral 2-form fields that share several similarities
with their 4d counterparts and reduce to the latter upon dimensional reduction. This is a
consequence of the fact that both in 4d and 6d, the (on-shell) functionals describing these
theories only depend upon two Lorentz invariant algebraic structures (details will be given
later). It is then natural to ask whether these 6d models obey the same type of TT -like flows
as their 4d cousins in eqs. (1.2) and (1.5). As we will prove in section 5 of this paper, the
answer is yes. Moreover, we will show that all the properties and theorems regarding stress-
energy flows of general duality invariant non-linear electrodynamics in d = 4 found in [48]
straightforwardly translate to generic self-interacting chiral 2-form theories in d = 6. As we
will see, the most natural formulation for the construction of the stress-tensor flows of the 6d
chiral two-form fields is the Hamiltonian one, or its space-time-covariant extension à la PST.
We will also address problems of TT -like flows in duality-invariant p-form theories in d > 6.

4Flows of the form (1.8) are precisely what we refer to in general as T T -like flows in d space-time dimensions.
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To this end we will revisit and elaborate on Hamiltonian and Lagrangian formulations
of d = 2(p + 1) chiral p-form gauge theories. These have a long history of developments
and applications on their own.

1.2 Chiral p-form gauge theories

Chiral 2n-form gauge fields appear as part of various theories, for instance, chiral scalars
in 2d theories and string theory, chiral 2-form gauge fields in 6d supergravities and on
the worldvolume of the M-theory 5-brane, and the chiral 4-form gauge field in type IIB
d = 10 supergravity.

A distinguishing feature of the chiral 2n-form gauge fields is that their (2n+ 1)-form field
strengths satisfy, on the mass shell, certain (in general non-linear) self-duality conditions which
are first-order in derivatives of the gauge fields. The problem of obtaining these self-duality
conditions with the use of an action principle turned out to be highly non-trivial (see e.g. [57]).
For the chiral 2n-forms obeying linear Hodge self-duality conditions in d = 2(2n + 1) this
problem was solved by Henneaux and Teitelboim [58, 59] in a Hamiltonian formulation in
which the space-time invariance of the theory is not manifest. The Henneaux-Teitelboim
formulation is the generalization to higher dimensions of the duality-symmetric Hamiltonian
formulation of Maxwell’s electrodynamics by Deser and Teitelboim [60] and the Floreanini-
Jackiw description of 2d chiral scalars [61]. In the context of a duality-symmetric formulation
of string worldsheet dynamics, chiral scalars were exploited in [62, 63]. See also [64] for the
Hamiltonian-like description of fields related by Hodge duality in d = 4 similar to [58, 59],
and [65] for a generalization of the Henneaux-Teitelboim-like formulation to the description
of the non-linear chiral two-form on the worldvolume of the M5-brane.

Since it is desirable to have a manifestly space-time covariant formulation of relativistic
field theories, in particular for its consistent coupling to gravity and other relativistic fields,
several approaches have been proposed for the construction of covariant duality-symmetric
actions for gauge fields in various space-time dimensions with the use of auxiliary fields [66–77].
Comparisons and relations between some of these approaches were discussed e.g. in [37, 78–80].
Among these approaches, the PST formulation [69, 70, 81] is the direct and most economical
covariantization of the constructions of [59–61, 64, 65, 82] with the use of a single Stueckelberg-
like auxiliary scalar field. Fully-fledged actions for the M-theory 5-brane [83, 84] and the type
IIA NS5-brane [85], d = 10 type IIB supergravity [86, 87], d = 6 supergravities [88–90], and
other theories involving chiral p-forms were first constructed with the use of this formulation.
In section 2, we will review several aspects of the PST formulation of interacting theories of
chiral two-form gauge theories in d = 6, and their relation to their Hamiltonian formulation,
that are necessary for the rest of our analyses.

We will see that the PST formulation is also the most economical one for the study of
TT -like flows in 6d chiral 2-form gauge theories and directly produces the corresponding
Hamiltonian flows in these theories.

To lay the background for this study, we elaborate on the relationship between different
Lagrangian formulations of duality-invariant p-form theories and corresponding TT -like
flows in various dimensions. To this end we propose a novel formulation which (i) is a
generalization of a four-dimensional formulation by Ivanov, Nurmagambetov and Zupnik
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(INZ) [74] and (ii) turns into the PST formulation upon integrating out an auxiliary self-
dual 3-form field. We elucidate space-time covariant properties of the PST formulation by
clarifying and making use of its relation to the INZ-type formulation and to a so-called
“clone” construction [79] of [76, 91–93].

Regarding [74], we would like to note that in that paper, for d = 4 duality-symmetric
non-linear electrodynamics, there was proposed a way of adding, to the free-field PST
Lagrangian, duality-invariant non-linear interaction terms that automatically respect local
PST symmetries. It is based on the earlier approach by Ivanov and Zupnik [94–96] to
formulate U(1) duality-invariant, 4d non-linear electrodynamics with the use of an auxiliary
antisymmetric 2-form tensor field. An important feature of this formulation is that the most
general duality-invariant interaction term in the action is a completely arbitrary function of
a single quartic invariant of components of the auxiliary antisymmetric tensor field.5 This
is in contrast to the conventional formulation à la Gaillard and Zumino [97] in which the
Lagrangian must satisfy a duality-invariance condition [98, 100, 107].

A more recent approach, which is conceptually similar and on-shell equivalent to that
of [74, 96], was developed for d = 4 non-linear duality-symmetric electrodynamics in [92]
and for p-form gauge fields in higher dimensions in [93].

In this paper we will generalize the INZ formulation [74] to six- (section 3) and higher-
dimensional (section 6) chiral form fields and elaborate on its relation to the PST formulation
and that of [93] described in section 4. We will derive and compare the energy-momentum
tensors of 6d chiral two-forms in these formulations and use them for the analysis of TT -
like flows in section 5. We will also show that the Lagrangian formulations of duality-
symmetric theories considered in [74, 92, 93, 96] do not include the Lagrangian descrip-
tion of the 4d conformal Bialynicki-Birula electrodynamics [108] and its six-dimensional
counterpart [37, 109, 110].

Yet another approach to the Lagrangian formulation of chiral p-form fields was proposed
by Sen [75, 111]. It was used for the description and study of theories with chiral p-forms e.g.
in [112–120]. A peculiar feature of this formulation is the presence of an additional dynamical
ghost-like self-dual field which however decouples from the physical chiral form field and from
other physical fields in the theory including gravity. The covariant generalization of Sen’s
approach with the use of a second metric was recently proposed in [118]. Because of this
peculiarity, which affects the structure of the energy-momentum tensor, we will not study
TT -like flows in this formulation, but only mention that in two-dimensional theories such
an analysis has been carried out in [113, 119, 120].

We have already discussed the content of sections 2–6. The rest of the paper is organised
as follows. In section 7 we give concluding comments. We also provide two appendices
that contain results related to the analysis of the main body of our paper. In particular,
in appendix A we discuss TT -like flows for self-interacting gauge (2n− 1)-forms in d = 4n
dimensions by using three approaches: the Gaillard-Zumino-Gibbons-Rasheed-type formalism

5The Ivanov-Zupnik approach is a reformulation of the Gaillard-Zumino-Gibbons-Rasheed (GZGR) for-
malism [97–101]. It has been extended to U(1) duality-invariant theories of gauge (2n − 1)-forms in d = 4n

dimensions in [102]. In the d = 4 case, it has been extended to N = 1 and N = 2 supersymmetric non-linear
electrodynamics [103, 104], to higher-spin conformal gauge fields on conformally flat backgrounds and some of
their N -extended superconformal cousins [105, 106].
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(section A.1); the Ivanov-Zupnik-type approach (section A.2); and a PST-type Lagrangian
description (section A.3). Appendix B contains a discussion of deformations of U(1) duality-
invariant supersymmetric theories in d = 4 based on the general formalism of [121–123] and
extension of TT -like flow results and ideas of [10–13, 15, 34, 40, 48, 124].

Notation and conventions. We use lower case Greek letters as d-dimensional space-time
indices µ, ν, . . . = (0, 1, . . . , d− 1), and lower case Latin letters as (d− 1)-dimensional spatial
indices i, j, . . . = (1, . . . , d − 1). The signature of the Minkowski metric is chosen to be
“mostly plus” i.e. (−,+,+, · · · ,+). The (anti)-symmetrization of indices is performed with
weight one, so that

X[µ1µ2...µp] = 1
p! (Xµ1µ2...µp −Xµ2µ1...µp + · · · ) ,

X(µ1µ2...µp) = 1
p! (Xµ1µ2...µp +Xµ2µ1...µp + · · · ) .

(1.9)

2 PST formulation

As has been mentioned in the Introduction, the PST approach to the construction of space-
time covariant Lagrangians for chiral p-form gauge fields [70, 81] is the most economical
prescription for the covariantization of the Hamiltonian formulation of these theories [58, 59]
and/or of a similar formulation by Perry and Schwarz [65] (see [37] for the details on the
relation between these formulations).

Let us overview the main features of the PST formulation for a chiral two-form gauge
field Aµν(x) in six-dimensional space-time.

2.1 Action, symmetries and equations of motion

On the mass shell the three-form field-strength Fµνρ = 3∂[µAνρ] of Aµν obeys a non-linear
self-duality condition which is obtained as the general solution of the equation of motion of
Aµν by varying the following action defined on a 6d manifold with metric gµν

SPST =
∫
d6xLPST =

∫
d6x

√
−g

(1
4E

µνBµν −H(s, p)
)
, (2.1)

where
Eµν = Fµνρvρ , Bµν = 1

2√−g
εµνρλσκ∂λAσκvρ = F ∗µνρvρ, (2.2)

are analogues of the electric and magnetic field of 4d electrodynamics, and the Levi-Civita
symbol εµνρλσκ is defined such that

ε012345 = −ε012345 = −1 .

Notice that by construction

Eµνv
ν = Bµνv

ν = 0 .

– 7 –
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The vector vµ is the normalized derivative ∂µa of an auxiliary scalar field a(x), such that
vµ is a unit time-like vector which in the mostly plus metric convention is

vµ = ∂µa√
−gνλ∂νa∂λa

, vµv
µ = −1 . (2.3)

Finally, H(s, p) is a function of two independent Lorentz invariants which one may construct
with the components of the anti-symmetric tensor Bµν ,

s = 1
4BµνB

µν , p =
√
pµpµ, pµ = − 1

8√−g
εµνρλσκBρλBσκvν . (2.4)

As we will explain in more detail in section 6.1, the presence of the nowhere vanishing time-like
vector vµ defined by (2.3) implies non-trivial conditions on the global causal structure of
space-time in which the theory is constructed. See also [125] for the study of the PST
formulation in topologically non-trivial backgrounds.

Examples of chiral 2-form theories.

i) The free chiral two-form theory, whose field strength is Hodge self-dual on the mass-shell

Fµνρ = F ∗
µνρ, (2.5)

is described by the Langrangian density (2.1) with

H = s = 1
4BµνB

µν . (2.6)

ii) The chiral form field on the worldvolume of the M5-brane has an interaction function
H(s, p) of a Born-Infeld-like form [65, 81],

HBI =
√
T 2 + 2Ts+ p2 − T , (2.7)

where T has the dimension of a 6d energy density and is associated with the M5-brane
tension.

iii) The tensionless limit (T → 0) of this theory is the 6d counterpart [109, 110] of the 4d
conformal electrodynamics of Bialynicki-Birula [108], which has

HBB = p . (2.8)

The conformal invariance of the theory requires that

sHs + pHp = H, (2.9)

which is satisfied by (2.6) and (2.8). Here and in what follows, Hs and Hp represent
the partial derivatives of H(s, p) with respect to s and p, respectively.

– 8 –
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iv) The only other example of a conformal 6d chiral two-form field theory is the 6d
counterpart of the 4d ModMax theory [35]. It has [37]

HMM = cosh(γ) s− sinh(γ)
√
s2 − p2 , (2.10)

where γ is a dimensionless parameter. Like the d = 4 case [35], this one-parameter
family of theories is the unique non-linear conformal extension of the free chiral 2-form
theory (2.6), to which it reduces at γ = 0.6 Note that s2 − p2 is always non-negative, as
can be easily shown by setting vµ = δ0

µ and choosing an SO(1, 5) basis in which Bµν has
only two independent non-zero components, e.g. B12 and B34. Then s = 1

2(B2
12 +B2

34),
p = |B12B34| and s2 − p2 = 1

4(B2
12 −B2

34)2.
The following comment is in order. In d = 4 the ModMax Hamiltonian density has a
form similar to (2.10), but with s = 1

2(D2 +B2) and p = |D×B|, where D is the electric
displacement vector and B is the magnetic field. As was explained in [35], for the theory
described by the Lagrangian density (1.6) to be causal, the parameter γ must be non-
negative. The Lagrangian density (1.6) is obtained by the involutive Legendre transform
of the Hamiltonian density if H is a convex function of D. This requires Hs ≥ 0, which
implies s ≥ p cosh γ and hence the lower bound on the Hamiltonian density H ≥ p.
Since the 4d ModMax Hamiltonian density is obtained by a straightforward dimensional
reduction of its 6d counterpart, in what follows we will assume that the 6d ModMax
Hamiltonian density is subject to the same conditions, i.e. γ ≥ 0 and Hs ≥ 0. For the
later TT analysis of section 5 let us also point out the relation

∂γH = −
√
s2 − p2 Hs , (2.11)

and hence ∂γH ≤ 0.

v) A chiral form theory which combines together the 6d counterparts of BI and Mod-
Max [37] has

HMMBI =
√
T 2 + 2THMM + p2 − T . (2.12)

In the general case, in addition to the conventional gauge invariance δAµν = 2∂[µλν], the
local symmetries of the PST action (2.1) are

δAµν = 2v[µΦν] , δa = 0, (2.13)

and
δa = φ(x), δAµν = − φ√

−∂µa∂µa
(Eµν −Hµν) , (2.14)

where Φν(x) and φ(x) are local symmetry parameters and

Hµν = 2 ∂H
∂Bµν

= (Hs + 2sp−1Hp)Bµν + p−1Hp(B3)µν , (2.15)

with Hs := ∂sH, Hp := ∂pH, and (B3)µν := BµρB
ρτBτν .

6This so far has only been proven for any action that is a function of Fµνρ through s and p, but no
higher-derivatives of the 3-form field strength.
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The action (2.1) is invariant under the local transformation (2.14) provided the following
relation holds

εµνρσκδvνHρσHκδ = εµνρσκδvνBρσBκδ . (2.16)

A similar condition for duality-invariant p-form theories in higher dimensions was obtained
in [126, 127].

Substituting the relation (2.15) into (2.16) one finds that the latter holds if and only if

H2
s + 2s

p
HsHp + H2

p = 1 . (2.17)

The local shifts (2.14) of the scalar a(x) can be used to impose the gauge ∂µa = δ0
µ . Then,

if for simplicity we consider the flat space-time case gµν = ηµν , Bµν defined in (2.2) reduces
to the antisymmetric tensor −Bij with spatial indices (i, j = 1, . . . , 5). In this case the
PST Lagrangian density reduces to one which is first-order in time derivatives, and which is
equivalent to the Hamiltonian formulation of a chiral two-form theory with the Hamiltonian
density H(s, p),

LH = 1
4Bij∂0A

ij −H(s, p) . (2.18)

Therefore, the Hamiltonian formulation of the chiral p-form fields is a gauge-fixed counterpart
of the PST formulation, and all the results obtained in the PST formulation straightforwardly
hold in the Hamiltonian formulation and vice versa. In the Hamiltonian formulation the
condition (2.17) ensures the relativistic invariance of the theory (see e.g. [37] for a review).

In a generic non-linear chiral 2-form theory the PST equations of motion of Aµν produce,
upon fixing the symmetry (2.13) (see [70, 81] for details), the non-linear self-duality condition

Eµν −Hµν(B) = 0 . (2.19)

In the gauge vµ = δ0
µ it reduces to the self-duality condition of the Hamiltonian formulation,

Eij = Ȧij − ∂iA0j + ∂jA0i = Hij . (2.20)

It is important to note that the equation of motion of the auxiliary field a(x) is not independent,
but is a square of the left-hand-side of (2.19). Namely,

δL
δa(x) ∼ εµνρκλσ(Eµν −Hµν)∂ρ

(
(Eκλ −Hκλ)vσ

)
= 0 . (2.21)

So the a(x)-field equation is identically satisfied when (2.19) holds. It can actually be seen that
this equation is a consequence of the Aµν-field equation of motion even if the symmetry (2.13)
is not fixed [127]. This reflects the fact that a(x) is a non-dynamical pure gauge field.

Note that, in view of the identity

HµνB
µν = 4sHs + 4pHp , (2.22)

on the mass-shell (2.19) the PST Lagrangian density (2.1) is

Lon-shell
PST = (sHs + pHp) −H(s, p). (2.23)

The quantity (2.23) vanishes in the Maxwell, ModMax and Bialynicki-Birula cases due to
the conformal invariance of these theories.
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Corollary 1. An important consequence of the property that the variation (2.21) of the
PST Lagrangian density with respect to the auxiliary field a(x) vanishes when the non-linear
self-duality condition is satisfied is that the on-shell Lagrangian density (2.23) is manifestly
6d relativistic invariant and independent of the auxiliary vector field vµ. Further evidence for
this Corollary will be given by the comparison of the on-shell PST Lagrangian density with
those in other formulations of the chiral-form theories.

2.2 PST energy-momentum tensor

A generic chiral 2-form energy-momentum tensor obtained by varying (2.1) with respect
to the metric has the following form [128]

Tµν = − 2√
−g

δL

δgµν
= −gµν

(
H− 1

2 HρλB
ρλ
)

+ 1
2vµvν(HρλB

ρλ)−Hµ
ρBνρ − 2v(µpν). (2.24)

Note that the last term in (2.24) is obtained from the metric variation of the first term
in (2.1) with the use of the identity [128]

Fµνρ = −3v[µEνρ] − 1
2√−g

εµνρλσδvλBσδ . (2.25)

Namely,

−1
2
δ(√−gEρλB

ρλ)√
−g δgµν

= −1
2v(µFν)λρB

λρ − 1
2vµvν EλρB

λρ = −2v(µpν) .

We will now show that on the mass shell, i.e. when the non-linear self-duality condi-
tion (2.19) is satisfied, the energy-momentum tensor does not depend on the auxiliary field
vµ. Indeed, with (2.19) taken into account, eq. (2.24) takes the form

Tµν = −gµνH + 1
2(gµν + vµvν)EρλB

ρλ − Eµ
ρBνρ − 2v(µpν) . (2.26)

Note that Eµ
ρBνρ is symmetric on the mass shell because Hµ

ρBνρ is symmetric.
Now, using the identity (2.25) and its dual, one finds that

1
4FµρλF

∗ ρλ
ν = 1

4(gµν + 2vµvν)EρλB
ρλ − E(µ

ρBν)ρ

+1
8vµενρλδσκE

ρλEδσvκ + 1
8vνεµρλδσκB

ρλBδσvκ . (2.27)

So, on the mass shell, i.e. taking into account the dynamical self-duality equation (2.19), the
“PST-invariance” condition (2.16) and eq. (2.23), one gets7

Tµν |on-shell = gµν

(1
4 HλρB

λρ −H
)

+ 1
4Fρλ(µF

∗ ρλ
ν) = gµν(

√
−g)−1L|on-shell + 1

4Fρλ(µF
∗ ρλ
ν) .

(2.28)
We see that the on-shell energy momentum tensor is 6d space-time covariant and vµ indepen-
dent, since we have already proved that the Lagrangian density is covariant and independent
of vµ on the mass shell (see Corollary 1 below eq. (2.23)).

7For the M5-brane the on-shell energy momentum tensor in this form was given in [129].
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Three explicit (trivial) examples of this general statement about vµ-independence and
6d space-time covariance of the chiral 2-form on-shell Lagrangian density are the conformally
invariant cases of (1) the free theory, (2) the ModMax chiral 2-form theory, and (3) the 6d
counterpart of the Bialynicki-Birula theory. In all three of these cases, the on-shell Lagrangian
density vanishes and is thus obviously covariant and independent of vµ.

With the help of the superembedding formulation of the M5-brane [130, 131], the
independence of the covariant on-shell Lagrangian from vµ was also explicitly shown in [132]
for different versions of the M5-brane action. Namely, (modulo normalization factors), the
on-shell Lagrangian density for the chiral two-form in this case is

Lon-shell
BI =

√
−g T

(
1 −

(
1 − 2

3T 2 Ih

)−1
)
, (2.29)

where
Ih = kµνk

µν , kµν = hµλρhν
λρ , hµνρ = h∗µνρ ,

with h3 being a self-dual three form to which the physical 3-form field strength is related
as follows

Fµνρ =
(

1 − 2
3T 2 Ih

)−1 (
δκ

µ + 2
T
kµ

κ
)
hκνρ ,

F ∗
µνρ =

(
1 − 2

3T 2 Ih

)−1 (
δκ

µ − 2
T
kµ

κ
)
hκνρ . (2.30)

See [109, 131, 133] for more details on the relations between Fµνρ and hµνρ, and on the form
of the non-linear self-duality conditions on Fµνρ derived from the superembedding formulation.
As we will show, the auxiliary self-dual three-form h3 is related in a non-linear way to an
auxiliary self-dual three form Λ3 of the INZ-type formulation of the BI-like theory which
we will consider in the next section.

3 INZ-type formulation of chiral two-form theories

In the previous section we have seen that the PST formulation requires the non-linear function
H(s, p) in the chiral two-form field action (2.1) to satisfy the equation (2.17), which ensures
the relativistic invariance of the theory, and, in particular, the (non-manifest) relativistic
invariance of the non-linear self-duality condition (2.19) independently of the choice of the
auxiliary vector vµ. The argument regarding the vµ-independence of the on-shell PST action
given in Corollary 1 implies that it should be always possible to rewrite the non-linear
self-duality condition (2.19) in a manifestly covariant form which does not contain vµ (see
also [134] where the same argument was used for the case of duality-symmetric non-linear
electrodynamics in d = 4).

As we will now show, the conversion of the non-linear PST self-duality condition (2.19)
into a covariant one containing only the physical gauge field can be achieved with the use
of the approach of Ivanov, Nurmagambetov and Zupnik [74] originally proposed in d = 4,
which we will generalize to higher-dimensional p-form theories. An important feature of
this formulation is that the most general duality-invariant interaction term in the action
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is a completely arbitrary function of a single quartic invariant of components of an extra
auxiliary tensor field. This is in contrast to the Hamiltonian and PST formulations in which
the non-linear Lagrangian must satisfy a relativistic-invariance condition similar to (2.17)
(see [37] for a review).

A generalization of the INZ formulation [74] to self-interacting chiral 2n-form fields in
d = 4n+ 2 > 6 dimensions will be described in section 6. In the d = 6 case the construction
of this novel formulation goes as follows.

3.1 Action, symmetries and equations of motion

Take the 6d PST Lagrangian density for the free chiral 2-form field, eq. (2.1) with H =
1
4BµνB

µν as in (2.6), and add to this Lagrangian density the following term containing a
self-dual auxiliary three-form field Λµνρ = Λ∗

µνρ:

Lfree
INZ = Lfree

PST +
√
−g
2 (Bµν + Λµν)(Bµν + Λµν)

=
√
−g
4 (Eµν −Bµν)Bµν +

√
−g
2 (Bµν + Λµν)2, (3.1)

where
Λµν = Λµνρv

ρ = Λ∗
µνρv

ρ . (3.2)

Modulo a total derivative, the INZ-type Lagrangian density is invariant under the local
symmetry (2.13) and a counterpart of the second PST symmetry (2.14) which is modified
as follows

δa = φ(x), δAµν = − φ√
−∂µa∂µa

(Fµνρv
ρ +Bµν + 2Λµν) , δΛµνρ = 0. (3.3)

Note that Λµνρ remains intact under the action of (2.13) and (3.3). This fact — that, off
the mass shell, the auxiliary tensor field is invariant under the PST local symmetries — was
used in [74] to construct the most general manifestly duality-invariant non-linear interaction
term in 4d electrodynamics. Such a general interaction can be parameterized in terms of an
arbitrary function of a single independent fourth-order Lorentz-invariant and duality-invariant
quantity built from a 4d anti-symmetric tensor Λ̂µν . A similar picture holds in 6d in which,
as was shown in [93], there is a single independent invariant which one can construct from
a self-dual three-form tensor Λµνρ. It has the following form

I = Mµ
νMν

µ , (3.4)

where
Mµ

ν = ΛµρλΛνρλ. (3.5)

Because of the self-duality of Λµνρ, the following useful identities hold (see e.g. [109, 133]
or [93])

ΛµνσΛσλκ = M[λ
[µδ

ν]
κ] , (3.6)

Mµ
νMν

ρ = 1
6δ

ρ
µ I . (3.7)
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As in the 4d analysis, to construct a generic non-linear chiral 2-form Lagrangian density in
the INZ formulation, we add to (3.1) an arbitrary function V(I) of I:

LINZ = Lfree
PST +

√
−g

(1
2(Bµν + Λµν)2 − V(I)

)
. (3.8)

The variation of the Lagrangian density (3.8) with respect to Λµνρ gives its (algebraic)
equation of motion, which in view of the self-duality of Λµνρ has the following form

3v[ρΛµν] − 1
2√−g

ερµνλσκvλΛσκ − Vµνρ = −3v[ρBµν] + 1
2√−g

ερµνλσκvλBσκ , (3.9)

where
Vµνρ = 6 ∂V

∂Λµνρ
= 24VIΛρµ

σM
σν , VI = dV/dI . (3.10)

Note that the term Λρµ
σM

νσ in Vµνρ is automatically anti-symmetric and anti-self-dual with
respect to the indices µ, ν, ρ because of the identity (3.6).

Contracting (3.9) with vρ we find that

Λµν + 24VIΛµσM
σ

ν = −Bµν . (3.11)

Note that in the free theory case V = 0, the above equation reduces to Λµν = −Bµν , the
second term in (3.1) vanishes and the free INZ-type action reduces to that of PST.

In the general case, using the identity

Λµνρ = −3v[ρΛµν] − 1
2√−g

ερµνλσκvλΛσκ, (3.12)

we may write

Mσ
ν = ΛρµσΛρµν = (δσ

ν + 2vσvν)ΛµρΛµρ − 4ΛσµΛνµ − 4(vσρν + vνρ
σ) , (3.13)

with
ρµ = − 1

8√−g
εµνρλσκΛρλΛσκvν , Λµνρ

ν ≡ 0, (3.14)

and
I = Mµ

νMν
µ = 6

(
(ΛµνΛµν)2 − 16ρ2

)
= 6

(
4 trΛ4 − (trΛ2)2

)
, (3.15)

where under the traces we use the standard multiplication law of the matrices Λµ
ν . Note

that I is non-negative, as its form is similar to non-negative s2 − p2 in (2.10).
Then equation (3.11) takes the following form

Bµν = −Λµν − 24VI

(
4Λµ

σΛσλΛλ
ν + Λµν (ΛρσΛρσ)

)
= −Λµν + ∂V

∂Λµν
= −Λµν + VI

dI

dΛµν
. (3.16)

From this equation one gets the following useful relations

s = −2IVI −
1
4tr

(
Λ2
) (

1 + 96IV2
I

)
, (3.17)

p2 = − 1
96

(
I − 6

(
tr
(
Λ2
))2

)(
1 − 96IV2

I

)2
. (3.18)
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Excluding the singular case of the Bialynicki-Birula theory, equation (3.16) can be inverted
(at least formally and/or order by order) to write

Λµν(B) = Bµν f1(s, p) + (B3)µν f2(s, p), (3.19)

where f1(s, p) and f2(s, p) are functions of the two invariants (2.4), whose form is related
to the form of V(I).

Substituting the expression (3.19) for Λµν into the INZ Lagrangian density (3.8), we get
a non-linear PST Lagrangian density (2.1), depending only on Eµν and Bµν . The resulting
interaction function H(s, p) is written in terms of Bµν and Λµν(B), where the latter is itself
a function of Bµν due to (3.19). Explicitly, one finds

H(s, p) = 1
4BµνB

µν − 1
2(Λµν(B) +Bµν)(Λµν(B) +Bµν) + V (I(Λµν(B))) (3.20)

= 1
4BµνB

µν − 48 (ΛµνΛµν) I V2
I + V .

Here we used (3.16) to compute (Λµν +Bµν)(Λµν +Bµν) = 96 (ΛµνΛµν) I V2
I and again we

stress that in all previous expressions Λµν = Λµν(B) and I(Λµν(B)), are functions of Bµν .
We will give further details on the relation between the PST and INZ formulation in

section 3.3.
Let us now consider the dynamical equation of motion of the 2-form potential Aµν in

the INZ formulation. It is obtained by varying (3.8) with respect to Aµν and results (with
the use of the local symmetry (2.13)) in the relation

Eµν +Bµν + 2Λµν = 0 → Eµν = −Bµν − 2Λµν . (3.21)

Substituting the expression (3.19) for Λ in terms of B into (3.21), one gets the PST non-linear
self-duality condition (2.19) associated with the “Hamiltonian” density (3.20).

Regarding the equation of motion of the scalar field a(x) which follows from (3.8),

εµνρκλσ(Eµν +Bµν + 2Λµν) ∂ρ

(
(Eκλ +Bκλ + 2Λκλ)vσ

)
= 0,

it is identically satisfied when eq. (3.21) holds. Thus a(x) is a pure gauge field, just as
in the PST formulation.

One can easily see that, because of the self-duality of Λ3 and F3 + F ∗
3 , eq. (3.21) is

equivalent to

Λµνρ = −1
2(Fµνρ + F ∗

µνρ) = −F+
µνρ . (3.22)

Then, using (3.9), one finds that

24VIΛµν
σM

σρ = 1
2(Fµνρ − F ∗µνρ) = F−µνρ . (3.23)

Replacing Λ on the left side of this equation with its on-shell value (3.22), we get the covariant
non-linear self-duality condition on the physical field strength,

F−µνρ = −6 ∂V
∂F+

µνρ
, (3.24)

which is the same as the one obtained in the formulation of [93] modulo a conventional
coefficient (see section 4 for further details).
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3.2 Energy-momentum tensor

The energy-momentum tensor of the INZ-type formulation obtained by varying (3.8) with
respect to the metric is

T INZ
µν = T free PST

µν + 2(Bµρ + Λµρ)(Bν
ρ + Λν

ρ) − 1
2(ηµν + 2vµvν)(Bρσ + Λρσ)2

+1
2ηµν(B + Λ)ρσΛρσ − 2Λ(µ

ρ(B + Λ)ν)ρ − v(µΛν)ρλ(B + Λ)ρλ

+ηµν(2I VI − V) . (3.25)

Upon performing some algebraic manipulations it can be written in the following form

T INZ
µν = −1

4(ηµν + 2vµvν)(Bρσ + 2Λρσ)Bρσ +B(ν
ρ(Bµ)ρ + 2Λµ)ρ)

+1
8v(µεν)ρλδγκ(B + 2Λ)ρλ(B + 2Λ)δγvκ + 1

8v(µεν)ρλδγκB
ρλBδγvκ

+ηµν(2I VI − V) . (3.26)

We can now use the on-shell relation (3.21) and the identity (2.27) to get the on-shell
expression for the energy-momentum tensor,

T INZ
µν |on-shell = 1

4Fρλ(µF
∗
ν)

ρλ + gµν(
√
−g)−1Lon-shell

INZ , (3.27)

where the on-shell value of the INZ Lagrangian density is

(
√
−g)−1Lon-shell

INZ = 2I VI − V(I) . (3.28)

Comparing (3.27) with the on-shell PST energy-momentum tensor (2.28), we can thus
assert that the on-shell Lagrangian densities of the PST and INZ formulation are equal
and related as follows

(
√
−g)−1Lon-shell = 2I VI − V(I) = sHs + pHp −H(s, p) , (3.29)

which provides further evidence that the on-shell PST Lagrangian density is vµ-independent
and Lorentz invariant. In fact, the relation

2I VI − V(I) = sHs + pHp −H(s, p) (3.30)

between V and H is valid off-shell,8 as we will prove in the next section, but of course it
does not describe the off-shell Lagrangian.

3.3 Off-shell relation between the INZ-type and PST formulation

As we have already pointed out, solving the algebraic equation (3.16) for Λµν as a function
of Bµν (see eq. (3.19)) and substituting the solution back into the Lagrangian density (3.8),
one gets a PST Lagrangian density with H(s, p) defined in (3.20).

8When we say that a relation holds “off-shell,” we mean that this relation is valid assuming the algebraic
equation of motion (3.9) (or (3.11)) which relates the auxiliary field Λµνρ to the physical field Bµν , but not
with the use of the dynamical field equation (3.21).
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Taking the derivative of (3.20) with respect to Bµν and using eq. (3.16) we get the
following off-shell relation

Hµν = 2 ∂H
∂Bµν

= −Bµν − 2Λµν(B). (3.31)

The equation (3.31) provides an explicit form of the formal expression (3.19) of Λ as a
function of B. In particular, using (3.31) one gets the following expression for the invariant
I of equation (3.15),

I = 6
(
s2 − p2

) (
H2

p − (1 + Hs)2
)2

. (3.32)

In section 2 we saw that for the PST theory to be invariant under the local symmetry (2.14)
the tensor Hµν must satisfy the condition (2.16) which is equivalent to (2.17). It can be
easily checked that Hµν defined in (3.31), with Bµν and Λµν related as in (3.16), identically
satisfies (2.16).9 Indeed, for the quantities related by (3.31) and (3.16), the condition (2.16)
reduces to

εµνρσκδvνΛρσ
dI

dΛκδ
= 0, (3.33)

where (see (3.16))

dI

dΛµν
= −24

(
4Λµ

σΛσλΛλ
ν + Λµν (ΛρσΛρσ)

)
. (3.34)

The equation (3.33) is identically satisfied by the self-dual tensor Λµνρ. This can be checked
using the identities (3.12) and (3.6).

Therefore, the INZ-type formulation is directly related to the PST formulation and
ensures that the PST-invariance constraint (2.17) on the non-linear term (3.20) of the PST
Lagrangian density is identically satisfied by any choice of V(I). Vice versa, for a given PST
function H(s, p), one finds the corresponding INZ interaction function

V(I) = H(s, p) − (sHs + pHp) − s2 − p2

p
HsHp . (3.35)

On the right hand side of this relation it is assumed that Bµν is a function of Λµν obtained
by inverting the equation (3.31) for Λ as a function of B.

The off-shell relation (3.35) is obtained from (3.20) in which one uses the equality (3.31)
and then the identities (2.22) and

HµνH
µν = 4(sH2

s + 2pHsHp + sH2
p) = 4s− 8(s2 − p2)

p
HsHp . (3.36)

Note also that the equation (3.35) is equivalent to (3.30) because of the relation
s2−p2

p HsHp = −2I VI , which is obtained by the comparison of the results of the multi-
plication of (3.16) with Λµν , and (3.31) with Bµν and the consequent use of (2.17).

9A more involved proof of this fact was given in [93] with the use of a dimensional reduction of the 6d

theory to d = 5.
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Finally, substituting the relations (3.31), (3.35) and (3.3) into the INZ energy momentum
tensor (3.26) and using (2.22), we find that the resulting expression coincides with that of
the PST off-shell energy-momentum tensor (2.24).

We have thus shown that the PST and INZ-type formulation are directly related to each
other via the algebraic relations (3.11) and (3.31) between the auxiliary field Λµνρ and the
components Bµν of the field strength of the physical chiral field Aµν .

3.4 Examples

6d conformal chiral 2-form (ModMax-like) theory. In this case the function H(s, p),
associated with the PST (Hamiltonian) density of the theory, has the form given in (2.10).
Using (2.10) one can directly compute the right-hand side of (3.35) and get

V(I) = −s
2 − p2

p
HsHp = sinh(γ) ∂γHMM = (cosh(γ)HMM − s) . (3.37)

On the other hand, from (3.4) we find that in the case under consideration

I = 96 cosh4
(
γ

2

)
(∂γHMM)2. (3.38)

Comparing (3.38) with (3.37) and taking into account that ∂γHMM ≤ 0 (see the comment
in item (iv) of section 2.1) we finally get

V(I(Λ)) = −1
2

(
tanh γ2

)√
I

6 . (3.39)

Vice versa, if one starts from the conformal INZ theory with V given in (3.39), and integrates
out the auxiliary field Λ, one gets H of the PST formulation of 6d ModMax (2.10). This can
be straightforwardly checked by substituting (3.39) into (3.20) and using (3.17) and (3.18).

Without giving details, the function V(I) = δ
√
I (with a constant δ) for the conformal

6d counterpart of the ModMax theory, which is similar to (3.39), was suggested in [93]
in a formulation put forward in [76]. We will briefly discuss this formulation in section 4.
Earlier, for the d = 4 ModMax theory, the corresponding form of V(I) in the Ivanov-Zupnik
formulation [96] (which will be given in equation (3.53)) was first obtained in [42], and then
in [92] in the approach of [76]. The reason that, for the 4d and 6d conformal duality-invariant
theories, the function V(I) must be proportional to the square root of the forth-order invariant
I is very simple. It is the only possible non-linear duality-invariant term (constructed with
the self-dual field) in the Lagrangian density which respects conformal invariance in these
formulations, thus ensuring the uniqueness of these theories.

For completeness, let us present an explicit form of the 6d conformal chiral two-form
field equations in the INZ formulation. This follows from (3.24), with V(I) given in (3.39)
upon some algebraic manipulations; one finds

F ∗µνρ = F νρλ

(
cosh(γ) δ µ

λ − 24 sinh2(γ)
F 2 Tλ

µ

)
, (3.40)

where
Tµν = 1

4Fρλ(µF
∗ ρλ
ν) = 1

4 cosh(γ)

(
FµρλFν

ρλ − 1
6ηµνF

2
)
. (3.41)
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Bialynicki-Birula theory [37, 108–110]. For this theory, substituting (2.8) into (3.4)
we find that I = 0. This is an off-shell constraint on the form of the Bialynicki-Birula
field strength Fµνρ. Therefore, in this case we cannot get V(I) as a result of the canonical
‘Legendre’ transform of the PST (Hamiltonian) function (2.8).

On the other hand, in [92, 93] it was claimed that the Bialynicki-Birula theory and its 6d
counterpart are described (modulo a conventional factor) by (3.39) in which
V(I) = ±1

2

√
I
6 , i.e. in the limit γ → ∞. However, using (3.17) and (3.18) for comput-

ing the form of H in (3.20) for this choice of V(I), we find that

p = HBB = 0 . (3.42)

Note that these conditions are valid off the mass shell. This is not the case for the BB
theory described by (2.8) even on-shell.

Instead, this is just the γ → ∞ limit of the ModMax theory (2.10). Indeed, let us
rewrite (2.10) as

HMM = cosh(γ) (s− tanh(γ)
√
s2 − p2) ,

and require that HMM remain finite in the γ → ∞ limit. This is only possible if
1

cosh(γ)HMM
∣∣
γ→∞ = s−

√
s2 − p2 = 0 → p = 0,

which agrees with (3.42). We conclude that the INZ-type Lagrangian formulation and the
“clone” formulation of duality-invariant field theories considered in the next section do not
include the Lagrangian description of the Bialynicki-Birula theory.

BI-like (M5-brane) theory. In this case, as we will discuss in section 5.2, the interaction
function V(I) takes the form of a certain hypergeometric function given in equation (5.34).
This function can be alternatively described by giving its “Legendre transform” from the
variable I to the quartic invariant Ih = hµρσh

ρσλhλκδh
κδµ of the auxiliary self-dual field h3 of

the superembedding formulation; the resulting function is very simple and is given in (2.29).
Moreover, comparing the on-shell expression for Λ3 in (3.22) with (2.30) we see that

Λµνρ = −
(

1 − 2
3T 2 Ih

)−1
hµνρ , (3.43)

and hence

I(Λ) =
(

1 − 2
3T 2 Ih

)−4
Ih . (3.44)

Inverting the above relation, one can (at least perturbatively) find an expression for Ih as a
function of I(Λ). Upon substitution into (3.43), this gives an expression for h3 as a function
of Λ3, while upon substitution into (2.29), it produces the relation between the expressions
of the interaction term as functions of I(Λ) and Ih

2I(Λ)VI − V(I(Λ)) = 2
3T

Ih
2

3T 2 Ih − 1
≡ W(Ih) . (3.45)

From (3.45), one can reconstruct VBI(I(Λ)) order-by-order and verify that it matches the
closed-form result (5.34) which will be obtained by solving a TT -like flow equation.
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Relationship with 4d Ivanov-Zupnik formalism. It turns out that equation (3.45)
expresses exactly the same relationship as the one between the interaction functions of 4d
Born-Infeld electrodynamics formulated in two related auxiliary field presentations of [96],
which we referred to as the ν- and µ-frames. Although we will not give a comprehensive
discussion of these formalisms in the current work, let us briefly state the main ingredients in
order to make the connection with our 6d analysis clear. We refer the reader to the original
work [96], a later survey [135], or to sections 5 and 6 of [48] for a more detailed treatment.

Within this formalism, in addition to the field strength Fµν of an Abelian gauge field in
four spacetime dimensions, one introduces an auxiliary 2-form field Vµν = −Vνµ, and then
converts both Fµν and Vµν to spinor indices as

F β
α = −1

4(σµ)αβ̇(σ̃ν)β̇βFµν , F β̇
α̇ = 1

4(σ̃µ)β̇β(σν)βα̇Fµν , (3.46)

V β
α = −1

4(σµ)αβ̇(σ̃ν)β̇βVµν , V β̇
α̇ = 1

4(σ̃µ)β̇β(σν)βα̇Vµν , (3.47)

where the σµ, σ̃µ are Pauli matrices. We also define the scalars

φ = FαβFαβ , φ = F α̇β̇F
α̇β̇ ,

ν = V αβVαβ , ν = V α̇β̇V
α̇β̇ ,

V · F = V αβFαβ , V · F = V α̇β̇F
α̇β̇ . (3.48)

Using this notation, consider the Lagrangian

L = 1
2 (φ+ φ) + ν + ν − 2

(
V · F + V · F

)
+ E (νν) , (3.49)

which depends on a function E(a) of one real variable a = νν (not to be confused with
the auxiliary PST scalar a(x)).

After integrating out the auxiliary fields V , V , any such Lagrangian gives rise to a
duality-invariant theory of 4d electrodynamics. Conversely, given any Lagrangian for a
duality-invariant theory which depends on Fµν but not its derivatives, there exists some
choice of function E(a) such that this given Lagrangian is equivalent to (3.49).10 Therefore, 4d
duality-invariant theories of non-linear electrodynamics without higher derivative interactions
are in one-to-one correspondence with interaction functions E(a) via the representation (3.49).
We refer to this as the “ν-frame representation.”

It is often convenient to write a theory in a different way by defining the complex
Legendre transform of the interaction function E,

H(µ, µ) = E(ν, ν) − νµ− νµ , (3.50)

where the variables µ, µ are defined by

µ(ν, ν) = ∂νE , µ(ν, ν) = ∂νE . (3.51)

10Strictly speaking, this is only true for theories which reduce to Maxwell electrodynamics in some limit,
and excludes exceptional cases like the Bialynicki-Birula theory.
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In terms of these variables, one can rewrite the Lagrangian (3.49) as

L = φ(µ− 1)
2(1 + µ) + φ(µ− 1)

2(1 + µ) +H(µµ) , (3.52)

which we call the “µ-frame representation.”
There is a one-to-one correspondence between interaction functions V(I) for 6d chiral

tensor theories in the INZ formalism and interaction functions E(a) for 4d theories of duality-
invariant electrodynamics in the ν-frame representation.11 For instance, we have already
commented below equation (3.39) that the ν-frame presentation of the 4d ModMax theory,
which is described by the interaction function

E(a, γ) = 2 tanh
(
γ

2

)√
a , (3.53)

is almost identical to the functional form (3.39) of V(I) for the 6d ModMax-like chiral tensor
theory, although with the opposite sign and a different constant prefactor.

Likewise, one can also describe Born-Infeld electrodynamics using these auxiliary field
formulations. It is simpler to write the explicit form of the BI interaction function in the
µ frame, where it takes the form

H(b) = 1
λ

2b
b− 1 , b = µµ . (3.54)

The ν-frame description of the Born-Infeld theory is somewhat more unwieldy; one can write
it in terms of the unique root t(a, λ) of the quartic equation

t4 + t3 − λ2a

4 = 0 , (3.55)

which has the property that t(a = 0) = −1. In terms of this quantity, one has

EBI(a, λ) = 2
(
t2 + 3t+ 1

)
. (3.56)

Note that, after making the identifications

b = 2Ih

3T 2 , λ = 1
T
, (3.57)

the µ-frame interaction function (3.54) can be written as

H(Ih) = 2 ·
(

2
3T

Ih
2

3T 2 Ih − 1

)
= 2W(Ih) , (3.58)

which (up to a factor of 2) is identical to the function W(Ih) appearing on the right side
of (3.45). Thus the expression for the 6d on-shell Born-Infeld-like Lagrangian density, written
as a function of Ih, is proportional to the µ-frame interaction function for the 4d Born-
Infeld theory. Furthermore, the relations (3.50)–(3.51) which convert between the µ frame
interaction function H(b) and the ν frame interaction function E(a) are also the same (up

11Although note that E(a) and V(I) differ by a sign, since E(a) appears in the Lagrangian (3.49) with a
plus sign but V(I) enters (3.8) with a minus sign.
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to constant factors) as those which relate LBI
∣∣
on-shell to V(I). As this relation expresses a

Legendre transform in the variables µ and ν, this is the sense in which we say that W(Ih)
in (3.45) is a “Legendre transform” of V(I) from the variable I to Ih.

We therefore expect that the INZ function V(I) which describes the 6d BI-like theory
should be equivalent, up to multiplicative factors and scaling of the argument, to the ν-frame
interaction function (3.56) for the 4d Born-Infeld theory. We will see that this is the case,
and exhibit a closed form solution for this function, around equation (5.39).

4 “Clone” formulation

Let us now briefly consider yet another formulation of chiral 2n-form theories in 4n + 2
spacetime dimensions [76, 91, 93]. In d = 6 the Lagrangian density of this formulation
has the following form

L = −
√
−g
4! XµνρX

µνρ + a(x)
12 εµνρσλκFµνρQσλκ −

√
−g V(I(X+)) , (4.1)

where
Xµνρ = Fµνρ + a(x)Qµνρ, (4.2)

a(x) is a PST-like auxiliary scalar field and Q3 = dÃ2 is the field strength of an additional
two-form gauge field Ã2 (whose presence explains the name “clone” [79] of the formulation
under consideration). The self-interaction term V(I) is an arbitrary function of the fourth
order invariant of the self-dual part X+

3 = 1
2(X3 + X∗

3 ) of X3, namely

I(X+) = X+
µνρX

+νρλX+
λκσX

+κσµ. (4.3)

In this formulation there are local symmetries (akin to (2.13) and (2.14)) which allow one to
eliminate a(x) and Q3 on the mass shell, thus leaving F3 = dA2 the only independent physical
field satisfying the non-linear self-duality condition equivalent to (3.24) (see [93] for details).

The energy-momentum tensor derived by varying (4.1) with respect to the metric has
the following form

Tµν = 1
4

(
XµρσXν

ρσ − 1
6gµνX

2
)

+ 1
2
(
Xλρ

(µVν)λρ − 2gµνV
)

(4.4)

where Vνλρ = 6 ∂V
∂X+νλρ is anti-self-dual. It has the same form as given in (3.10) but with

Λ replaced by X+.
Upon splitting Xµνρ into its self-dual and anti-self dual parts, and using the identity

X+λρ
(µVν)λρ = 4gµνIVI ,

one can bring the energy-momentum tensor to the following form

Tµν =
(1

4X
−
µρσX

−
ν

ρσ + 1
2X

−λρ
(µVν)λρ

)
+
(1

4X
+
µρσX

+
ν

ρσ + gµν(2IVI − V)
)
. (4.5)

A consequence of the equations of motion and local symmetries in this formulation is that

X−
µρσ = −Vµρσ(X+) . (4.6)
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One can now perform a gauge fixing of local symmetries by setting Q = 0 in (4.2), so that
Xµρσ = Fµρσ, and then eq. (4.6) reduces to

Vµρσ(F+) = −F−
µρσ → FµνρF

µνρ = −48IVI(F+) . (4.7)

So, the non-linear self-duality condition and the on-shell energy-momentum tensor in this for-
mulation coincide with those of the INZ-type formulation, eqs. (3.24) and (3.27). This, in turn,
relates the “clone” formulation to the non-linear PST one, though in a less straightforward way.

5 T T -like flows of 6d chiral two-form theories

In this section, we consider parameterized families of chiral two-form theories in six space-time
dimensions whose derivatives with respect to these parameters can be expressed in terms of
the energy-momentum tensor. That is, we study equations of the form

∂L(λ)

∂λ
= f

(
T (λ)

µν , λ
)
, (5.1)

in the Lagrangian formulation, or

∂H(λ)

∂λ
= g

(
T (λ)

µν , λ
)
, (5.2)

in Hamiltonian language. We call any equation which takes either of these forms a “stress
tensor flow,” or equivalently “TT -like flow,” and we refer to the function f or g on the right
side of these equations as the operator driving the flow. However, we should emphasize that
our analysis will be entirely restricted to the classical level, so these operators are simply
classical functions of the fields and not true quantum mechanical operators.

First let us make some general comments about such flows. It is straightforward to show
quite generally that classical deformations of the Lagrangian are equivalent to those of the
Hamiltonian, once the deforming operator is expressed in terms of the correct variables. To
be precise, let L(ϕa, ∂iϕ

a, ϕ̇a) be any Lagrangian density describing a collection of fields ϕa

in d space-time dimensions. Here we use a as an internal index which labels the different
fields, while i = 1, . . . , d− 1 is a spatial index, and ϕ̇a = ∂ϕa

∂x0 . The fields ϕa may also carry
arbitrary Lorentz indices, such as those of the p-form fields considered in this work, but
we suppress such indices for simplicity. Now let

H =
∑

a

πaϕ̇a − L (5.3)

be the corresponding Hamiltonian density. Suppose that the Lagrangian density depends
on some parameter λ and obeys a differential equation

∂L
∂λ

= O(ϕa, ∂iϕ
a, ϕ̇a) , (5.4)

where O is a function of the fields and their derivatives, and may also have explicit de-
pendence on λ which we will suppress in what follows. Then the Hamiltonian density
satisfies the equation

∂H
∂λ

= −O
(
ϕa, ∂iϕ

a, ϕ̇a
(
ϕb, ∂jϕ

b, πb
))

, (5.5)
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where we write ϕ̇a
(
ϕb, ∂jϕ

b, πb
)

to indicate the functional dependence of the time derivatives
ϕ̇a on the canonical momenta πb, fields ϕb, and their spatial derivatives. For equation (5.5)
to hold, it is necessary to use the relationship between the time derivatives and canonical
momenta within the theory L(λ) or H(λ), rather than the corresponding relation in the
“undeformed” theory at λ = 0. A proof of this statement at leading order in λ was given in
appendix A of [18]. The all-orders proof for (0 + 1)-dimensional theories (that is, particle
mechanics) can be found in [46], although the proof for field theories in arbitrary spacetime
dimension is identical.

The upshot of this simple observation is that we are free to consider stress tensor
deformations of either the Lagrangian or the Hamiltonian, and the two are equivalent. The
dictionary which translates between the Lagrangian flows (5.1) and Hamiltonian flows (5.2)
is simply taking g = −f . We will study flows in both of these formulations in this section.
For the class of models considered in this work, the relationship between Lagrangian and
Hamiltonian flows is somewhat more transparent, since the interaction function H(s, p)
appearing in the Lagrangian PST formulation plays the role of the Hamiltonian, and thus
it is clear that ∂λL = −∂λH for deformations of these models.

Our second general comment concerns the universality of flows constructed from the
energy-momentum tensor. We have seen in the preceding sections that a 6d chiral two-form
theory is characterized by a single interaction function of one real variable, which is called
V(I) in the INZ-type and clone formulations. (Alternatively, one can describe such a theory
in terms of an interaction function H(s, p) in the PST formulation, but this function must
satisfy the partial differential equation (2.17), whose solutions are parameterized by a single
function of one real variable.) Thus, one might ask why we consider flow equations of the
form (5.1), rather than the seemingly more general form

∂L
∂λ

= f(I, λ) , (5.6)

where I is the invariant used in the INZ-type and clone formalisms. Indeed, we have already
seen a differential equation of this schematic form in equation (3.38), which relates the γ
derivative of HMM to I.

The reason is that any such flow equation (5.6) can be recast in the form of a stress
tensor flow equation due to the functional dependence between the variable I and the Lorentz
scalars that can be constructed from the stress tensor. In fact, more is true: for any theory in
this class, the two Lorentz scalars Tµ

µ and TµνTµν built from the stress tensor are themselves
functionally dependent — as we will show shortly — so the variable I can be taken to be
dependent on one of these. We will choose the second invariant, TµνTµν , to write this relation,
since it is non-zero even for conformal theories. Therefore, in any theory in the INZ-type
or clone formulations, there exists a relation of the form

Υ (I, TµνT
µν) = 0 , (5.7)

for some function Υ of two variables. Therefore, one can locally invert this relation12 to
express any function of I as a function of the scalar combination TµνT

µν .
12More precisely, this is true with the possible exception of a discrete collection of exceptional points at

which this inverse map becomes singular.
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The analogue of this statement for theories of duality-invariant nonlinear electrodynamics
in four dimensions was discussed in [48]. It follows that any flow equation (5.6) can be
brought to the form (5.1).

Given the equivalence between deformations driven by functions of I, and those driven
by functions of the energy-momentum tensor, we prefer the latter. These stress tensor flow
equations are expressed in terms of deforming operators which are defined directly using
the data of a given theory (namely, its Hilbert stress tensor), rather than using an external
function f(I) which does not make obvious reference to the theory under consideration.

5.1 Hamiltonian flow equations

Let us begin by discussing deformations of chiral tensor theories with actions of the form (2.1)
described by a PST interaction function H(s, p). As we have reviewed around equation (2.18),
since LPST becomes first-order in time derivatives upon fixing a particular choice of gauge,
this interaction function can be viewed as the Hamiltonian of the model. In order to state our
results most simply, in this subsection we will first work in the “Hamiltonian PST” formulation
in which manifest Lorentz invariance is broken by singling out a preferred time coordinate;
we also assume that we work in flat Minkowski space-time throughout this subsection. One
can view this choice as working in the gauge

vµ = δ0
µ . (5.8)

As in the previous sections, we will reserve Greek symbols µ, ν, etc., for 6d indices, including
the time coordinate x0, and use Latin indices such as i and j for spatial (five-dimensional)
directions.

Owing to the relation Bµνv
ν = 0, when (5.8) is satisfied, we may restrict attention to only

the spatial entries Bij since the other components B0µ are vanishing. A general Hamiltonian
H is therefore a function of two variables, namely the SO(5) scalar

s = 1
4B

ijBklδikδjl , (5.9)

as well as the length of the spatial vector

pi = 1
8εijklmB

jkBlm . (5.10)

Thus far, we have made no assumptions whatsoever about any constraints satisfied by the
function H(s, p). However, we saw in section 2 that the interaction function in the Lagrangian
PST formulation must satisfy the partial differential equation (2.17). In Hamiltonian language,
this equation is required in order to guarantee the Lorentz invariance of the model.

The primary models of our interest in this work, which include the 6d chiral tensor
versions of the Born-Infeld and ModMax theories, are Lorentz-invariant theories and therefore
the corresponding functions H(s, p) for these models satisfy (2.17). Nonetheless, we should
point out that several past works have investigated TT -like flows of non-Lorentz-invariant
field theories [136–139]. These explorations have been motivated, in part, by the fact that the
argument of [1] for the well-definedness and factorization of the two-dimensional TT operator
does not require Lorentz invariance (or rotational symmetry, in Euclidean signature), but
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merely translation invariance. With an eye to potential future interest in results on TT -like
deformations of non-Lorentz-invariant 6d chiral tensor theories, we will present several general
expressions without assuming that the condition (2.17) holds, only imposing it at the end
to obtain simplified results in equation (5.22).

Given a Hamiltonian H(s, p), one can compute [37] the components of the energy-
momentum tensor which coincide with those of (2.24) for gµν = ηµν and vµ = δ 0

µ ,

T00 = H , T0i = −pi , Tij = HijB
jk − δi

k

(1
2BjlH

lj + H
)
, (5.11)

where Hij = 2 ∂H
∂Bij

is defined in equation (2.15), here restricted to spatial indices.
The two combinations which we will use for constructing flows are then

Tµ
µ = 6(sHs+pHp−H) , (5.12)

TµνTµν = 6H2−2p2−12pHHp+8p2H2
p+4sHs (4pHp−3H)−4

(
p2−3s2

)
H2

s .

A general stress tensor deformation of the Hamiltonian is then understood to mean a flow
equation of the functional form

∂H
∂λ

= −O
(
Tµ

µ , T
µνTµν , λ

)
, (5.13)

for some function O, along with an initial condition H(λ = 0) = H0. In equation (5.13),
the stress tensors in the arguments of O are evaluated from H(λ) rather than from the seed
Hamiltonian H0. Although we have indicated that a general deforming operator (5.13) may
have explicit λ dependence, in our primary cases of interest in this work, O will depend on
λ only through the combinations Tµ

µ and TµνTµν .
Among the family of stress tensor deformations, we are especially interested in two

special cases. The first is when the function O takes the form

O
(
Tµ

µ , T
µνTµν

)
= 1

12

(
TµνTµν − 1

3
(
Tµ

µ

)2
)
≡ OT 2 , (5.14)

which is the six-dimensional version of the classical TT -like deformation that is defined in
d space-time dimensions by the formula

O(d)
T 2 = 1

2d

(
TµνTµν − 2

d

(
Tµ

µ

)2
)
. (5.15)

Higher-dimensional classical flows of this form, driven by quadratic combinations of the stress
tensor, have been considered by many authors [25, 49]; see [24] for a study of the obstruction
to defining such operators at the quantum level. Here we make the particular choice of
numerical coefficients which leads to flows that generate the Nambu-Goto action from free
scalar in two space-time dimensions and the Born-Infeld action from the Maxwell theory in
four space-time dimensions, following the conventions in [40].

The second combination of interest is a version of the root-TT operator,

R =
√

1
6

(
TµνTµν − 1

6 (Tµ
µ )2

)
, (5.16)
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which likewise is the d = 6 case of the general definition

R(d) = 1√
d

√
T̂µν T̂µν , (5.17)

where

T̂µν = Tµν − 1
d
gµνT

ρ
ρ (5.18)

is the traceless part of the stress tensor. An operator proportional to (5.17) for general
dimension d was proposed in [44]. As in the case of O(d)

T 2 , the numerical prefactor is a choice
of conventions, and here we follow the normalization used in [40].

By using the expressions (5.12), we may express the two operators OT 2 and R in terms
of the Hamiltonian and its derivatives:

OT 2 = 1
2
(
(s2 − p2)H2

s − (H− sHs − pHp)2 − p2
(
1 −H2

s − 2sp−1HsHp −H2
p

))
,

R2 = 1
3
(
3
(
s2 − p2

)
H2

s − p2 + p2
(
H2

p + 2sp−1HsHp + H2
s

))
. (5.19)

We may now state one of our main results, which is that the six-dimensional interacting chiral
tensor model describing the worldvolume gauge theory of an M5-brane satisfies a classical TT -
like flow. In fact, more is true: the entire two-parameter family of ModMax-Born-Infeld-like
chiral tensor theories, defined by the Hamiltonian

H(γ, λ) = 1
λ

(√
1 + 2λ

(
s cosh(γ) − sinh(γ)

√
s2 − p2

)
+ λ2p2 − 1

)
, (5.20)

satisfies a pair of commuting flow equations,

∂H
∂λ

= −OT 2 ,
∂H
∂γ

= −R . (5.21)

The minus signs in (5.21) arise because we are deforming the Hamiltonian rather than
the Lagrangian, which reverses the sign of the deforming operators as discussed around
equation (5.13). This result is the six-dimensional analogue of the statement that the family
of ModMax-Born-Infeld theories in four space-time dimensions satisfies two commuting TT -
like and root-TT like flow equations [33, 34, 40].13 Note that the form of the root-TT equation
in (5.21) implies that Hγ ≤ 0 in compliance with the comment in item (iv) of section (2.1).

As we mentioned above, in this analysis we have not assumed that the Hamiltonian H(s, p)
satisfies the Lorentz invariance condition (2.17). However, the two-parameter family (5.20)
does satisfy this condition, and more generally one can show that any deformation of a Lorentz-
invariant seed Hamiltonian H0 by a flow of the form (5.13) also preserves this condition. For
Lorentz-invariant Hamiltonians, the two operators OT 2 and R of equation (5.19) simplify to

OT 2 = 1
2
(
(s2 − p2)H2

s − (H− sHs − pHp)2
)
,

R2 =
(
s2 − p2

)
H2

s . (5.22)

13A similar result holds in 2d for the so-called “Modified-Nambu-Goto” scalar theories, which reduce to the
Nambu-Goto Lagrangian for λ = 0 and a ModMax-like scalar theory when λ = 0 [44, 49, 140].
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In fact, when imposing the Lorentz-invariance condition, it turns out that, for a given H,
the two invariants Tµ

µ and TµνTµν become functionally dependent

TµνT
µν = 1

3(3H + Tµ
µ)2 + 3(H2 − 2p2), (5.23)

and indeed that any pair of Lorentz-invariant functions of s and p obey some functional
relation. This will be discussed in further detail in section 5.3.

5.2 Lagrangian flow equations

We established, around equation (5.5), that — up to a sign — deformations of the Lagrangian
are equivalent to those of the Hamiltonian. It therefore follows that any Lagrangian formula-
tion of the two-parameter family of ModMax-Born-Infeld-like chiral tensor theories will also
admit flow equations similar to those in equation (5.21). Nonetheless, we find it instructive
to verify this claim in the various formulations that have been treated in sections 2, 3, and 4.
All three of these formalisms are equivalent and, by construction, preserve manifest Lorentz
invariance. We now discuss flows in each formulation in turn. One interesting aspect of our
analysis is that, by investigating the Lagrangian analogue of Hamiltonian flows given above,
we are able to obtain new explicit Lagrangian descriptions for theories with Born-Infeld-type
interaction functions (see equations (5.34) and (5.39)) by solving sets of differential equations.

Lagrangian PST formulation. In this formulation (described in section 2), the generic
Lagrangian flow equation is

∂LPST
∂λ

= −∂H
∂λ

= O
(
Tµ

µ , T
µνTµν , λ

)
. (5.24)

Such a deformation modifies only the interaction function H(s, p) in the PST action (2.1), but
not the term proportional to EµνBµν . The properties of these flows are essentially identical
to those in the Hamiltonian PST formulation discussed above; deformations of the form (5.24)
reduce to these Hamiltonian flows in the gauge vµ = δµ

0 , and conversely, writing the flows in
Lagrangian language is merely restating these deformations in a manifestly Lorentz-invariant
way by restoring the auxiliary field vµ.

In particular, the Lorentz scalars Tµ
µ and TµνTµν in the Lagrangian PST formulation

have exactly the same form as in (5.12), but with s and p (defined in (2.4)) now containing
the auxiliary vector field vµ. Likewise, the expressions for the deforming operators OT 2

of (5.14) and R of (5.16) for these Lagrangian flows is exactly the same as in (5.22) for
Lorentz-invariant theories in the Hamiltonian formulation.

In the Lagrangian presentation, the interpretation of the condition (2.17) satisfied by the
function H(s, p) is that it guarantees PST gauge invariance of the Lagrangian (rather than
Lorentz-invariance of the Hamiltonian). Just as before, it turns out that any deformation
of the Lagrangian of the form (5.24), which is driven by a function of the stress tensor,
preserves this PST gauge-invariance condition. This is because, as we will discuss in detail
in section 5.3, on the mass shell all functions of Tµν are PST-invariant, vµ-independent and
hence manifestly Lorentz invariant, due to the fact that the on-shell PST energy-momentum
tensor does not depend on vµ and is therefore fully-fledged Lorentz covariant expression in
terms of the chiral field strength components, as was proved in section 2.2.
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In summary, we conclude that all general statements made about energy-momentum
flows in the Hamiltonian formulation are applicable to the Lagrangian PST formulation
and vice versa.

INZ-type formulation. We will now consider flows in the INZ-type formalism, which
includes an auxiliary self-dual three-form field Λ3, as discussed in section 3.

To construct flows, we will begin with the off-shell stress tensor (3.26) for a general
model, which is described by an interaction function V(I). This off-shell stress tensor, and
invariants built from it such as TµνTµν and Tµ

µ , depend upon both the field Bµν and upon
the auxiliary field Λµνρ, where the latter is used to construct interactions via the invariant
I(Λ) defined in eq. (3.4). To obtain closed flow equations for a deformed interaction function
V(I), we should replace Bµν with Λµνρ using the auxiliary field equation of motion, which
(after contraction with vµ) takes the form (3.11). The logic is very similar to the study
of flows for 4d duality invariant non-linear electrodynamics described in [48] by using the
auxiliary field formulation of [95, 96].

After eliminating Bµν in favor of Λµνρ in (3.26) in this way, one finds the following
expressions for the two invariants constructed from the stress tensor as functions of I:

Tµ
µ = 6 (2IVI − V) ,

TµνTµν = 6(2IVI − V)2 + I

16
(
1 − 96IV2

I

)2
. (5.25)

Note that both of the quantities (5.25) depend (via I(Λ)) only on the auxiliary self-dual field
Λ3, which is inert under the PST symmetry (3.3). Furthermore, by equation (3.22), Λ3 is
equal to the self-dual part F+

3 of the physical field strength on the mass shell. Therefore,
by construction, these quantities are independent of the auxiliary field vµ on-shell. We will
see later that any quantity which is independent of vµ on-shell can be expressed in terms
of stress tensor invariants such as those in (5.25).

Exactly as in the Hamiltonian formulation (and in the Lagrangian PST formalism), one
finds that higher traces of the INZ energy-momentum tensor (3.26), with Bµν expressed as
a function of Λµν in (3.11), are dependent upon these two invariants (5.25).

We can now construct the operators driving the TT -like and root-TT -like flows, eqs. (5.14)
and (5.16), as functions of the invariant I(Λ):

OT 2 = 1
12

(
TµνTµν − 1

3
(
Tµ

µ

)2
)

= 1
2

(
I

96
(
1 − 96IV2

I

)2
− (2IVI − V)2

)
,

R2 = 1
6

(
TµνTµν − 1

6
(
Tµ

µ

)2
)

= I

96
(
1 − 96IV2

I

)2
. (5.26)

The root-TT flow equation will then be

−∂V
∂γ

(γ, I) = R = 1
4
√

6
√
I|1 − 96IV2

I | , (5.27)
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and the solution with initial condition V(γ = 0) = 0 is

V(γ, I) = − 1
2
√

6
tanh

(
γ

2

)√
I , (5.28)

which is exactly the 6d counterpart (3.39) of the ModMax interaction function in the ν

frame of the four-dimensional Ivanov-Zupnik setting [42, 48] derived in section 3.4 from
the PST formulation.

Next let us consider the flow equation driven by the irrelevant operator OT 2 ,

−∂V(λ, I)
∂λ

= O(6d)
T 2 = 1

2

(
I

96
(
1 − 96IV2

I

)2
− (2IVI − V)2

)
, (5.29)

again with the initial condition V(λ = 0) = 0. As in the ModMax case we have just considered,
one might expect that the solution V(I) to this 6d flow equation will correspond to a similar
IZ-type interaction functions E(a) in the ν frame, as defined in equation (3.49). As a check
of this statement, one can verify that the flow equation (5.29) is identical, up to numerical
factors, to the one satisfied by the ν-frame Born-Infeld interaction function under a T 2

flow [48], which we record here for comparison:

∂EBI(a, λ)
∂λ

= O(4d)
T 2 = 1

2

(
a
(
1 − a(Ea)2

)2
− (2aEa − E)2

)
. (5.30)

It is straightforward to see that the differential equations (5.29) and (5.30) are the same after
reversing the sign of the function and identifying the variables as

a = I

96 . (5.31)

We can study the solution to either of these equivalent flow equations perturbatively by
first making the ansatz

V(λ, I) = − 1
λ
f
(
λ2I

)
, (5.32)

and then defining x = λ2I
96 . To the first few orders in x, the solution is

f(x) = x

2 − x2

8 + 3x3

32 − 13x4

128 + 17x5

128 + O(x6) . (5.33)

As expected, this exactly matches the Taylor series expansion of the interaction function
EBI(a, λ), which was defined implicitly in (3.56), for the Born-Infeld theory in the 4d Ivanov-
Zupnik (IZ) formalism. This series expansion is recorded, for instance, in equation (6.30)
of [48]. Thus we find that, up to the scaling of variables, the TT -like and root-TT -like flows
in the 6d INZ formalism have precisely the same behavior as the corresponding flows in
the 4d IZ formalism. Again, we note that the role of the interaction function E in 4d is
played by the function V(I) in 6d.

It is also possible to present the solution to the flow equation (5.29) in another form, which
has appeared in other studies of TT -like flows. Remarkably, the differential equation (5.29)
admits the following closed-form solution in terms of a hypergeometric function:

V(λ, I) = 3
2λ

(
3F2

(
−1

2 ,−
1
4 ,

1
4; 1

3 ,
2
3;− 2

81λ
2I

)
− 1

)
. (5.34)
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The same hypergeometric function, with the same parameters, has appeared in the study of
the TT deformation of Yang-Mills in two space-time dimensions [26, 141], and in deformations
of one-dimensional theories by functions of the Hamiltonian [45, 46, 142–144]. In the present
context, the reason for the appearance of this function can be understood from the fact that
this hypergeometric function satisfies a certain fourth-order algebraic constraint equation.14

Explicitly, if we define

F (x) = 3F2

(
−1

2 ,−
1
4 ,

1
4; 1

3 ,
2
3;− 2

81x
)
− 1 , (5.35)

then one has the constraint

2x+ 3
(
1 −

√
1 − 6F

) (
3 +

√
1 − 6F

)3
= 0 . (5.36)

This function F (x) can therefore be characterized as the root of an algebraic equation.
Alternatively, one can write this quartic constraint in terms of the derivative

F ′(x) = − 1
2883F2

(1
2 ,

3
4 ,

5
4; 4

3 ,
5
3; −2

81 x
)
, (5.37)

which satisfies

288F ′(x) +
(
1 − 216x

(
F ′(x)

)2)2
= 0 . (5.38)

The relationship between this hypergeometric function and the Born-Infeld theory, including
the quartic identity (5.38) that the function satisfies, was discussed in [146]. The origin
of this algebraic identity can be traced back to the quartic equation (3.55) obeyed by the
function t(a) in the 4d Ivanov-Zupnik formulation.

Since the structure of the 6d interaction function V(I) studied here is almost identical
to that of the ν-frame interaction function describing the 4d Born-Infeld theory in the
Ivanov-Zupnik formalism, a similar expression yields a closed-form result for the latter:

EBI(a) = − 3
2λ

(
3F2

(
−1

2 ,−
1
4 ,

1
4; 1

3 ,
2
3;−64

27λ
2a

)
− 1

)
. (5.39)

This closed-form expression is exactly equivalent to the implicit definition (3.56) involving
the root of a quartic. We see that the function (5.39) is related to the 6d analogue (5.34)
by reversing the overall sign and replacing a → I

96 , as expected from (5.31).

Clone formulation. Finally, let us now consider flows in the “clone” formulation which
was described in section 4.

Although this formalism is on-shell equivalent to the INZ one, stress tensor deformations
will have slightly different features in this formulation due to the difference in field content.
We saw above that the clone formulation has, in addition to the physical field F3 = dA2,
another tensor field Q3 = dÃ2 and an auxiliary scalar field a(x), both of which appear
in the stress tensor via the combination X3 = F3 + aQ3. We will therefore need to use
an implication of the equations of motion in order to express stress tensor flows as closed

14The observation that, for special values of their parameters, some hypergeometric functions satisfy algebraic
constraints of this form was first made by Schwarz [145].
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differential equations for the interaction function V(I), where now I(X+) is a fourth order
invariant (4.3) built out of the self-dual part of X3, much as we did when replacing Bµν using
the auxiliary field equation of motion for flows in the INZ formulation.

In particular, we recall that the equations of motion in the clone formulation imply the
relation (4.6), which allows us to eliminate the anti-self-dual part of X3. Let us stress that
this equation is only one implication of the equations of motion, and that imposing this
condition is strictly weaker than assuming that all of the fields satisfy their equations of
motion. Importantly, this assumption does not imply the equation of motion for either the
physical field F3 or the tensor field Q3. Therefore, when we use this condition to formulate
flows, one might say that we are going “partially on-shell” in the sense that we assume one
(but not all) of the implications of the equations of motion.

The energy-momentum tensor for a theory in the clone formalism with interaction
function V(I(X+)) was given in (4.5), which we reproduce again for convenience:

Tµν =
(1

4X
−
µρσX

−
ν

ρσ + 1
2X

−λρ
(µVν)λρ

)
+
(1

4X
+
µρσX

+
ν

ρσ + gµν(2IVI − V)
)
. (5.40)

The explicit form of Vνλρ can be read from (3.10) with Λ3 replaced by X+
3 .

We can now use the “partial on-shell” relation (4.6) and the identity

Vλρ
(µVν)λρ = 96X+

µρλX
+ ρλ
ν I(VI)2

to express Tµν entirely as a function of X+
3 :

Tµν = 1
4X

+
µρσX

+
ν

ρσ
(
1 − 24I(VI)2

)
+ gµν(2IVI − V) . (5.41)

Then one can check that Tµ
ν and TµνT

µν have exactly the same form as (5.25) but now as
functions of the forth order invariant I(X+). Therefore, all the general discussion regarding
the stress energy flows in this formulation goes through exactly as in the INZ-type case. For
instance, the solutions to the TT -like and root-TT -like flows in equations (5.28) and (5.34)
will be identical in the clone formulation, where all that has changed is that now I depends
on X+

3 rather than Λ3
An important lesson that we learned from the above consideration is that for constructing

suitable operators defining stress-tensor flows one should use an appropriate implication of
the equations of motion (algebraic in the INZ case, and dynamical in the “clone” case) to
bring the energy-momentum tensor to a form in which it only depends on the self-dual tensor
from which the interaction function is built in these formulations.

5.3 Generalities on deformations and invariants

There is a close formal analogy between stress tensor flows for six-dimensional chiral tensor the-
ories of the form considered in this work, and corresponding deformations of four-dimensional
theories of duality-invariant electrodynamics. Some of the properties of stress tensor de-
formations in the latter context have been investigated in [48]; for instance, it was shown
that any parameterized family of duality-invariant theories of electrodynamics in 4d can be
described as a stress tensor flow. In this section we will briefly comment on the corresponding
statements in the 6d chiral two-form context.
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The properties of interest for this discussion can be stated in any of the three equivalent
formulations described above. Let us first focus on the PST formalism, for concreteness.
Given a PST model with interaction function H(s, p) satisfying the differential equation (2.17),
consider an infinitesimal deformation of this interaction function,

H(s, p) → H(s, p) + λO(s, p) . (5.42)

In order to preserve the PST gauge invariance condition (2.17) to leading order in λ, this
function O(s, p) must satisfy

HsOs + s

p
(HpOs + HsOp) + HpOp = 0 . (5.43)

First, one can show by direct computation that if O depends on s and p only through the
two quantities Tµ

µ and TµνTµν given in equation (5.12), then O identically satisfies the
differential equation (5.43), assuming that the undeformed interaction H itself obeys (2.17).
This means that any Lorentz scalar constructed from the energy-momentum tensor gives
rise to a “consistent deformation” of the PST interaction function, in the sense that such a
deformation preserves PST gauge invariance to leading order. One can also argue for this
conclusion by noting that the stress tensor is independent of vµ on-shell, as we demonstrated
around equation (2.28).

Indeed, the condition (5.43) is actually equivalent to the statement that the operator O
is independent of the auxiliary field vµ on the mass shell. That is, the constraint

δvO
∣∣ = 0 , (5.44)

where
∣∣ indicates that the fields satisfy their equations of motion, implies that

εµνρσκδvνHρσ
∂O
∂Bκδ

= 0 , (5.45)

which, after some algebraic manipulations, yields the condition

0 =
[
Os

(
Hs + s

p
Hp

)
+ p−1Op (pHp + sHs)

]
pµδvµ . (5.46)

Equation (5.46) is satisfied for arbitrary δvρ if and only if (5.43) holds. Furthermore, note
that (5.45) can also be obtained by expanding the PST gauge invariance condition (2.16)
under a deformation by the operator O, which means that this condition also expresses
the assumption that O be invariant under such gauge transformations. Therefore, we may
characterize a “consistent deformation” O in any of the following equivalent ways:

1. The interaction function H(s, p) + λO(s, p) satisfies the differential equation (2.17) to
leading order in λ.

2. The operator O(s, p) obeys the “consistent deformation” condition (5.43).

3. The function O(s, p) is independent of the auxiliary field vµ on the mass shell.

4. The operator O(s, p) is invariant under the PST gauge transformations (2.14).
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In section 6.2, we will generalize these notions of consistent deformations to theories of chiral
(2n)-forms in d = 4n + 2 dimensions.

The statement that an invariant observable O generates a consistent deformation of a
chiral tensor theory, to leading order in the deformation parameter, extends to all orders
in a natural way. Consider a one-parameter family of PST interaction functions H(s, p;λ)
which obey a differential equation

∂H(s, p;λ)
∂λ

= O(s, p;λ) , (5.47)

along with an initial condition H(s, p; 0) which satisfies (2.17). Then all of the functions
H(s, p;λ) will satisfy the gauge invariance condition (2.17) if, at each value of λ, the function
O(s, p;λ) obeys the differential equation (5.43) with respect to the interaction function
H(s, p;λ) at the same value of λ. This condition guarantees that the solution to any stress
tensor flow equation, with an appropriately chosen initial condition, gives a consistent model
in the PST formulation. We have already seen one example in the solution (5.20), the
ModMax-Born-Infeld interaction function, which is generated by stress tensor deformations
of a free model and which indeed obeys (2.17).

Furthermore, given any two invariant observables O1 and O2, we claim that there exists
a functional relation of the form

Υ (O1,O2) = 0 . (5.48)

One can prove this statement in several ways; one approach, following the proof of Theorem
2 in [48], begins by defining two vector fields

f⃗1 = ∂O1
∂s

∂s + ∂O1
∂p

∂p , f⃗2 = ∂O2
∂s

∂s + ∂O2
∂p

∂p , (5.49)

in the (s, p) plane. One can check that both of these vector fields are non-vanishing, assuming
that the interaction function H(s, p) is not a constant. Since the operators O1, O2 both
satisfy the condition (5.43), they are each orthogonal to the vector field

v⃗ = (sHp + pHs) ∂s + (sHs + pHp) ∂p . (5.50)

But if two vector fields in two dimensions are both orthogonal to a third vector field, then
the two must be parallel, which implies that f⃗1 = αf⃗2 for some constant α. It follows that
the two operators O1, O2 are functionally dependent, as claimed.

A different way to prove this functional dependence is to use the INZ description of a
chiral tensor theory. In this formulation, any two consistent deformations O1, O2 must be
functions only of the quartic invariant I. But by the inverse function theorem, on an open
interval around a fixed value I = I0, each of the functions O1(I), O2(I) can be inverted to
write I(O1), I(O2) (so long as the derivatives of these functions are non-vanishing). We may
then express either of these operators in terms of the other, for instance by writing

O2(I) = O2 (I (O1)) . (5.51)

Thus one can, away from exceptional points, locally invert to express one of the operators in
terms of the other, which again means that they are functionally dependent.

– 34 –



J
H
E
P
0
5
(
2
0
2
4
)
3
2
0

Since any Lorentz scalar constructed from the stress tensor is an invariant observable, the
relation (5.7) which we stated earlier follows as a special case of this argument. In particular,
this means that any invariant observable O can be expressed as a function of the stress tensor,
which means that a general consistent deformation (5.47) can always — at least locally and
away from singular points — be written in a form

∂H(s, p;λ)
∂λ

= O (s, p;λ) != f
(
T (λ)

µν , λ
)
. (5.52)

We conclude that any parameterized family H(s, p;λ) of chiral tensor theories can be viewed
as a generalized TT -like flow, since taking a derivative with respect to λ must necessarily
yield a family of invariant observables O(λ) which can then be expressed in terms of the
stress tensor as in (5.52).

One could also make an entirely analogous argument within the equivalent clone for-
mulation. Here the only difference is that the invariant observables are functions of I(X+),
which is a quartic invariant constructed from the self-dual part of X3, rather than functions
of the corresponding fourth-order invariant built from Λ3.

All of the preceding remarks apply to manifestly Lorentz-invariant Lagrangian formula-
tions of 6d chiral tensor theories, such as the PST, INZ, and clone formalisms. To conclude
this section, let us briefly point out that entirely analogous statements hold within the
Hamiltonian formulation, where the role of an “invariant observable” is now played by a
Lorentz-invariant observable, and the notion of “consistent deformation” now refers to a
deformation which preserves Lorentz invariance. For instance, a function O(Bij) of the spatial
2-form Bij is Lorentz-invariant if and only if it satisfies the condition

εlmijkHjk
∂O
∂Blm

= 0 , (5.53)

which is equivalent to the relation

0 = HsOs + s

p
(HpOs + HsOp) + HpOp , (5.54)

where in this equation the symbols s and p now refer to the SO(5) scalars (5.9) and (5.10).
Likewise, every Lorentz-invariant function (5.54) gives rise to a deformation of the Hamiltonian
as H(s, p) → H(s, p) + λO(s, p) which preserves Lorentz invariance to leading order in λ, and
any two such Lorentz-invariant observables obey a functional relation, which means that any
such O can be expressed in terms of the stress tensor.

6 Self-interacting chiral 2n-forms in d = 4n + 2 dimensions

This section is devoted to the study of general models for self-interacting chiral 2n-forms in
d = 4n+ 2 ≡ 2p+ 2 dimensions, with n ∈ N. First, we will review the work [127], in which
Buratti, Lechner and Melotti (BLM) extended the PST formalism beyond six dimensions.
Then, we will describe consistent deformations of models for self-interacting chiral gauge
p-forms. Finally, we will present a new (INZ-type) formulation for such theories.
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Let Aµ(p) = Aµ1...µp be a gauge p-form potential15 on a time orientable space-time Md

with metric gµν , and let

Fµ(p+1) = (p+ 1)∂[µ1Aµ2...µp+1] (6.1)

be the corresponding gauge-invariant field strength. As in the d = 6 case, we introduce a
normalized timelike vector field16 vµ,

vµvµ = −1 . (6.2)

Making use of vµ allows us to associate with Fµ(p+1) the electric field

Eµ(p) = Fµ1...µpνv
ν , Eµ1...µp−1σv

σ = 0 , (6.3)

and the magnetic field

Bµ(p) = F ∗
µ1...µpνv

ν , Bµ1...µp−1σv
σ = 0 . (6.4)

Here we have introduced the dual field strength

F ∗µ(p+1) := 1
(p+ 1)!ε

µ1...µp+1ν1...νp+1Fν1...νp+1 , (F ∗)∗ = F , (6.5)

where εµ(d) denotes the Levi-Civita tensor

εµ1...µd := 1√
−g

εµ1...µd =⇒ εµ1...µd
=

√
−gεµ1...µd

, (6.6)

with εµ(d) and εµ(d) being the Levi-Civita tensors in Minkowski space.
Choosing vµ to be the first element of a basis for the tangent space TqMd at a point

q ∈ Md gives

Fµ(p+1) = −(p+ 1)E[µ1...µp
vµp+1] −

1
p!εµ1...µp+1ν1...νp+1B

ν1...νpvνp+1 , (6.7a)

F ∗
µ(p+1) = −(p+ 1)B[µ1...µp

vµp+1] −
1
p!εµ1...µp+1ν1...νp+1E

ν1...νpvνp+1 . (6.7b)

These identities lead to

F · F := Fµ1...µp+1Fµ1...µp+1 = (p+ 1) (B ·B − E · E) . (6.8)

6.1 Extending the PST formalism for non-linear chiral p-forms beyond six
dimensions

To describe the dynamics of a self-interacting chiral gauge p-form, the authors of [127]
postulated the action

S[A, a] =
∫

ddx
√
−g

[ 1
2p!E ·B −H(Bµ(p), gµν)

]
, vµ = ∂µa√

−∂a · ∂a
. (6.9)

15Throughout this section, we often make use of the condensed notation Tµ(k) and T µ(k) for rank-k
antisymmetric tensors Tµ1...µk = T[µ1...µk] and T µ1...µk = T [µ1...µk], respectively.

16The existence of such a vector field is guaranteed on any paracompact time orientable space-time (Md, gµν),
see e.g. [147, 148].
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The existence of a scalar field a(x), such that the vector field vµ defined by (6.9) is past
directed and timelike, implies non-trivial conditions on the global causal structure of space-
time which must be globally hyperbolic. A time-oriented space-time (Md, gµν) is called
stably causal17 if and only if there exists a smooth function T on Md such that ∇µT is a
past directed timelike vector field [147, 148]. Therefore, due to the explicit structure of the
timelike vector field vµ, eq. (6.9), the space-time on which the theory is defined is stably
causal. It is also known that (i) every stably causal space-time is strongly causal and (ii) every
globally hyperbolic space-time is strongly causal, see [147–149] for the technical details.18

For the globally hyperbolic space-times, the following theorem19 holds [152]:

Theorem 1. Every globally hyperbolic space-time (M, g) is isometric to(
R×S ,−βdT 2 + gT

)
, (6.10)

where T : R × S → R is smooth and positive, and gT is a smooth family of Riemannian
metrics on S. Furthermore, {T0} ×S is a smooth and spacelike Cauchy hypersurface for
all T0.

In order to introduce the Hamiltonian formulation of General Relativity (the ADM
formalism), space-time has to be globally hyperbolic, and thus a time function T exists. In
other words, the existence of the vector vµ with the above properties ensures the existence
of the Hamiltonian for the system under consideration.

The scalar function H(Bµ(d), gµν), associated with the Hamiltonian density of the theory
for ∂µa = δ 0

µ , depends on all possible contractions of Bµ(p) with itself, such as

tr
(
B̂k) , B̂ =

(
B ν1...νn

µ1...µn

)
, k > 1 . (6.11)

This means that Hµ(p) = p!∂H(B,g)
∂Bµ(p) , defined by

δBH(B, g) = 1
p!δB

µ1...µpHµ1...µp , (6.12)

is orthogonal to the vector field vν , that is

Hµ1...µp−1νv
ν = 0 . (6.13)

H(B, g) should also satisfy a condition which is dynamical in the sense that it guarantees
invariance under (properly generalised) PST gauge transformations. To derive this condition,
we first compute the variation of (6.9) under arbitrary displacements

Aµ(p) → Aµ(p) + δAµ(p) , a→ a+ δa . (6.14)

17Following [147, 148], a space-time (Md, gµν) is said to be stably causal if there exists a timelike vector
field tµ such that the metric g̃µν = gµν − tµtν possesses no closed timelike curves.

18However, not every stably causal space-time is globally hyperbolic, see [150].
19Here we use a reformulation of the Bernal-Sanchez theorem given in the 2004 lecture notes “Lorentzian

Geometry” by Christian Bär [151].
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Varying H(B, g) gives

δH(B, g) = 1
(p!)2

( 1
p+ 1εµ1...µpρν1...νp+1δFν1...νp+1vρ + εµ1...µpσρν1...νpEν1...νpvσδvρ

)
Hµ1...µp .

(6.15)

The kinetic term in the action (6.9) can be varied using the steps described in detail in [127].
With the notation

∫
=
∫

ddx
√
−g, the outcome is

δ

∫ 1
2E ·B =

∫
δF ∗µ1...µp+1Eµ1...µpvµp+1

+ 1
2p!

∫
εµ1...µpσ1...σpρν (Bµ1...µpBσ1...σp + Eµ1...µpEσ1...σp

)
vρδvν . (6.16)

Combining this with the expression (6.15) for δH(B, g), we obtain

δS = 1
p!

∫
δF ∗µ1...µp+1

(
Eµ1...µp −Hµ1...µp

)
vµp+1 (6.17)

+ 1
(p!)2

∫
εµ1...µpν1...νpσρ

(1
2Eµ1...µpEν1...νp + 1

2Bµ1...µpBν1...νp −Hµ1...µpEν1...νp

)
vσδvρ .

It is useful to introduce

Eµ(p) = Eµ(p) −Hµ(p) . (6.18)

Then, the variation of the action can be rewritten as

δS= 1
p!

∫
δF ∗µ1...µp+1Eµ1...µpvµp+1 (6.19)

+ 1
(p!)2

∫
εµ1...µpν1...νpσρ

(1
2Eµ1...µpEν1...νp−

1
2Hµ1...µpHν1...νp + 1

2Bµ1...µpBν1...νp

)
vσδvρ .

Integrating by parts, the first term can be rewritten as follows:
1
p!

∫
δF ∗µ1...µp+1Eµ1...µpvµp+1 = − 1

(p!)2

∫
εµ1...µpν1...νpσρδAν1...νp∂ρ

(
Eµ1...µpvσ

)
. (6.20)

As a simple application of the above consideration, we read off the equation of motion for
the gauge p-form Aµ(p)

∂[µ1

(
Eµ2...µp+1vµp+2]

)
= 0 . (6.21)

The two types of the PST gauge transformations extend from six to higher dimensions
as follows. The first one is

δAµ(p) = pv[µ1ψµ2...µp] , δa = 0 . (6.22)

The gauge freedom associated with this symmetry may be fixed in such a way that (6.21)
turns into

Eµ(p) = Eµ(p) −Hµ(p) = 0 (6.23)

which will be assumed below.
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The second PST transformation is

δAµ(p) = − φ√
−∂a∂a

Eµ(p) , δa = φ . (6.24)

The φ-variation (6.24) of the action proves to be [127]

δφS = 1
2(p!)2

∫
εµ1...µpν1...νpσρ (Bµ1...µpBν1...νp −Hµ1...µpHν1...νp

)
vσδvρ . (6.25)

This vanishes if

εσρµ1...µpν1...νp
(
Bµ1...µpBν1...νp −Hµ1...µpHν1...νp

)
vρ = 0 . (6.26)

Since Bµ(p) and Hµ(p) are orthogonal to vµ, in accordance with (6.4) and (6.13), the above
condition is equivalent to the equation

B[µ1...µp
Bµp+1...µ2p] = H[µ1...µp

Hµp+1...µ2p] , (6.27)

which is the dynamical condition on H(Bµ(d), gµν). Under this condition, the equation of
motion for a is identically satisfied if the equation of motion for Aµ(p), eq. (6.21), holds.

Every solution of the equation (6.27) generates a consistent model for a chiral gauge
p-form. The case of a free chiral p-form corresponds to

Hfree
PST

(
Bµ(p), gµν

)
= 1

2p!Bµ(p)B
µ(p) . (6.28)

Representing
H = 1

2p!Bµ(p)B
µ(p) + ∆H , (6.29)

(6.27) takes the form

B[µ1...µp
∆Hµp+1...µ2p] + 1

2∆H[µ1...µp
∆Hµp+1...µ2p] = 0 , (6.30)

which is useful for setting up a perturbative scheme to compute ∆H.
In accordance with (6.24), the scalar field a(x) is a purely gauge degree of freedom. Its

significance, in particular, is that it defines a (d − 1) + 1 splitting, which foliates curved
space-time Md into spacelike hypersurfaces defined by the level sets of a(x).

6.2 Invariant observables and consistent deformations

Given a scalar function O(Bµ(p), gµν), its partial derivative Oµ(p) = ∂O(B,g)
∂Bµ(p) is defined by

δBO(B, g) = 1
p!δB

µ1...µpOµ1...µp . (6.31a)

By construction, it is orthogonal to the vector field v, that is

Oµ1...µp−1νv
ν = 0 . (6.31b)
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The function O(B) is said to be an ‘invariant observable’ if it obeys the first-order differ-
ential equation

O[µ1...µp
Hµp+1...µ2p] = 0 . (6.32)

The reason for the name is that on the mass shell such quantities are vµ-field independent
and hence Lorentz (or general coordinate) invariant.

Indeed, let us give a small displacement to the timelike vector field, vµ → vµ + δvµ,
with vµδvµ = 0. Then Bµ(p) varies as

δvB
µ(p) = F ∗µ1...µpνδvν = −(p+ 1)B[µ1...µpvν]δvν − 1

p!ε
µ1...µpρν1...νp+1Eν1...νpvνp+1δvρ

= −Bν[µ1...µp−1vµp]δvν − 1
p!ε

ρµ1...µpν1...νp+1Eν1...νpvνp+1δvρ . (6.33)

Due to (6.31b), the first term in this variation does not contribute to δvO,

δvO = 1
p!δvB

µ1...µpOµ1...µp = − 1
(p!)2 ερµ1...µpν1...νp+1Oµ1...µpEν1...νpvνp+1δvρ . (6.34)

On the mass shell, Eµ(p) = Hµ(p), and therefore the variation takes the form

δvO
∣∣ = − 1

(p!)2 ερσµ1...µpν1...νpOµ1...µpHν1...νpvσδvρ , (6.35)

where O| means that the fields obey their equation of motion. Requiring this variation to
vanish for arbitrary δvρ leads to the condition

ερσµ1...µpν1...νpOµ1...µpHν1...νpvσ = 0 , (6.36)

which is equivalent to (6.32). Vice versa, if O obeys eq. (6.32), then the variation δvO
∣∣

vanishes and O is v-independent on the mass shell.
There is another equivalent interpretation of (6.32) as the condition of Lorentz (or general

coordinate) invariance of O. This property is naturally visualised either by choosing Md to be
Minkowski space, Md, or by making use of a Lorentz-invariant formulation for gravity-matter
systems in which: (i) the gravitational field is described by a vielbein eµ

a(x) such that the
space-time metric gµν(x) is a composite field, gµν = eµ

aeν
bηab, with ηab the Minkowski metric;

and (ii) each matter field is a scalar with respect to general coordinate transformations and
a tensor with respect to the local Lorentz group. For simplicity, we restrict our analysis
to Md. Given a scalar function O(Bµ(p), ηµν), it is Lorentz invariant if both Fµ(p+1) and vµ

transform according to their tensorial structure. We can choose a gauge vµ = δµ
0, and then

Bµ(p) defined by (6.4) has only space components,

Bµ(p) →Bi(p) = 1
(p+1)!ε

i1...ip0j1...jp+1Fj1...jp+1 =− 1
(p+1)!ε

i1...ipj1...jp+1Fj1...jp+1 . (6.37)

In this gauge, O(Bµ(p), ηµν) turns into O(Bi(p), δij) ≡ O(Bi(p)).
Consider an infinitesimal Lorentz boost generated by parameters ω0i = −ωi0 ≡ ωi. It

acts on Fi(p+1) as follows

δωFi(p+1) =−(p+1)ω[i1Ei2...ip+1] =⇒ δωB
i(p) = 1

p!ε
i1...ipj1...jp+1ωj1Ej2...jp+1 , (6.38)
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with Ei(p) = F i(p)0. On the mass shell, δωB
i(p) can be rewritten as

δωB
i(p)∣∣ = 1

p!ε
i1...ipj1...jp+1ωj1Hj2...jp+1 . (6.39)

Now, the condition of Lorentz invariance of O(Bi(p))| is

εi1...ipj1...jpk ∂O
∂Bi1...ip

Hj1...jp = 0 , (6.40)

which coincides with (6.36).
Invariant observables naturally arise as follows. The interaction term in (6.9) may

depend on a parameter λ,

S[A, a;λ] =
∫

ddx
√
−g

[ 1
2p!E ·B −H(Bµ(p), gµν ;λ)

]
, (6.41)

such that H(Bµ(p), gµν ;λ) is a solution of the equation (6.27) for every value of the parameter.
Differentiating (6.27) with respect to λ leads to (6.32) in which

O = ∂

∂λ
H(B, g;λ) . (6.42)

And vice versa, invariant observables generate consistent flows in the space of field theo-
ries describing the dynamics of self-interacting chiral p-forms in the following sense. Let
H(λ)(Bµ(p), gµν) and O(λ)(Bµ(p), gµν) be two scalar functions that depend on a real parameter
λ and satisfy the following conditions:

• H(λ) and O(λ) obey the equations

∂

∂λ
H(λ) = O(λ) , O(λ)

[µ1...µp
H

(λ)
µp+1...µ2p] = 0 ; (6.43)

• H(0)(Bµ(p), gµν) is a solution of (6.27).

Then H(λ)(Bµ(p), gµν) is a solution of (6.27) at every value of the parameter λ.
Guided by the d = 6 results obtained in this paper, it is natural to wonder whether their

extension to d = 4n+ 2 > 6 dimensions also holds, specifically whether: (i) every physical
observable may be realised as a function of the energy-momentum tensor Tµν ; and (ii) the
number of functionally independent invariant observables constructed from Tµν , is equal
to the number of functionally independent Lorentz invariants constructed from a self-dual
(p+ 1)-form Λµ(p+1) that plays an important role in the next subsection. Of course, since
the number of duality invariants in d > 6 is greater than one, it is not the case that any two
observables will be functionally dependent, unlike the d = 4 and 6 cases, i.e. eq. (5.48) does
not hold anymore. We leave these interesting problems for future study.

6.3 Extending the INZ-type approach beyond six dimensions

To develop an INZ-type formulation, we introduce a general self-dual (p + 1)-form field
Λµ(p+1), Λ∗ = Λ, which plays the role of an auxiliary field. Integrating out the auxiliary field
should lead to the model (6.9) which we have studied earlier.
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To start with, we discuss a free model. The proposed free action is

Sfree[A, a,Λ] = 1
p!

∫ [1
2E ·B − 1

2B ·B + (B + λ) · (B + λ)]
]

= Sfree[A, a] + 1
p!

∫
(B + λ) · (B + λ) , (6.44)

where we have defined

λµ(p) = Λµ1...µpνv
ν . (6.45)

The equation of motion for Λµ(p+1) is

(B + λ)[µ1...µp vµp+1] = εµ1...µp+1ν1...νp+1 (B + λ)ν1...νp
vνp+1 . (6.46)

Contracting with vµp+1 and lowering the indices gives

Bµ(p) + λµ(p) = 0 , (6.47)

and the action (6.44) turns into Sfree[A, a]. Since Λ∗ = Λ, the Lagrange multiplier Λµ(p+1)
becomes a function of Bµ(p),

Λµ(p+1) = (p+ 1)B[µ1...µp
vµp+1] + 1

p!εµ1...µp+1ν1...νp+1B
ν1...νpvνp+1 . (6.48)

We have shown that the model with action (6.44) is equivalent to that described by Sfree[A, a].
Our next task is to show that the action (6.44) is invariant under a simple generalization

of the gauge transformation (6.24) given by

δAµ(p) = φ√
−∂a∂a

[E + 2 (B + λ)]µ(p) , δa = φ , δΛµ(p+1) = 0 , (6.49)

where we have denoted

Eµ(p) = Eµ(p) −Bµ(p) . (6.50)

First of all, let us give the fields Aµ(p) and a arbitrary small disturbances, as in (6.14), while
keeping the Lagrange multiplier Λµ(p+1) fixed, and compute the corresponding variation of
the action (6.44). Routine calculations give

δA,a

∫
(B + λ) · (B + λ)

= 2
p!

∫
εµ(p)ν(p)ρσ (E +B + λ)ν(p) (B + λ)µ(p) vρδvσ

− 2
p!

∫
εµ1...µp+1ν1...νp+1δAν1...νp∂νp+1

[
(B + λ)µ1...µp

vµp+1

]
. (6.51)

Combining this with the variation of Sfree[A, a] gives

δA,a

[
Sfree[A, a] + 1

p!

∫
(B + λ) · (B + λ)

]
= − 1

(p!)2

∫
εµ1...µp+1ν1...νp+1δAν1...νp∂νp+1 [E + 2(B + λ)]µ1...µp

vµp+1

+ 1
2(p!)2

∫
εµ1...µpν1...νpρσ [E + 2 (B + λ)]µ1...µp

[E + 2(B + λ)]ν1...νp
vρδvσ . (6.52)
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With this result, the proof of invariance of the action under (6.49) is identical to that discussed
in subsection 6.1. One may also see that the action (6.44) is invariant under the following
generalisation of (6.22)

δAµ(p) = pv[µ1ψµ2...µp] , δa = 0 , δΛµ(p+1) = 0 . (6.53)

Since the auxiliary field is inert under the gauge transformations (6.49) and (6.53), we can
immediately turn on self-interactions of the form

S[A,a,Λ] = 1
p!

∫ [1
2E ·B− 1

2B ·B+(B+λ)·(B+λ)]
]
−
∫

V
(
Λµ(p+1),gµν

)
. (6.54)

6.4 Weyl transformations

In conclusion, we discuss the Weyl transformation laws of different fields under consideration.
A Weyl transformation acts on the metric and its inverse by the rule

gµν → e−2σgµν , gµν → e2σgµν , (6.55)

with the local scale parameter σ = σ(x) being arbitrary. It follows that the Levi-Civita
tensors (6.6) transform as

εµ1...µd → edσεµ1...µd , εµ1...µd
→ e−dσεµ1...µd

. (6.56)

The gauge p-form Aµ(p) is Weyl inert, and thus the Weyl transformation laws of the field
strength Fµ(d+1) and its contravariant counterpart Fµ(d+1) are

Fµ(p+1) → Fµ(p+1) , Fµ(p+1) → edσFµ(p+1) . (6.57)

For the dual field strength F ∗µ(p+1) and its covariant counterpart F ∗
µ(p+1) we get

F ∗µ(p+1) → edσF ∗µ(p+1) , F ∗
µ(p+1) → F ∗

µ(p+1) . (6.58)

The scalar field a(x) in (6.9) must be Weyl neutral in order for vµ to be primary and thus

vµ → e−σvµ , vµ → eσvµ . (6.59)

These transformation laws imply that the electric field (6.3) and its contravariant counterpart
transform as

Eµ(p) → eσEµ(p) , Eµ(p) → e(d−1)σEµ(p) . (6.60)

Similar transformation laws hold for the magnetic field (6.4) and its contravariant counterpart:

Bµ(p) → eσBµ(p) , Bµ(p) → e(d−1)σBµ(p) . (6.61)

The above relations imply that the free PST Lagrangian density,
√
−gLfree

PST =
√
−g 1

2p!
(
Bµ(p)E

µ(p) −Bµ(p)B
µ(p)

)
, (6.62)

is Weyl invariant.
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Now, consider the Lagrangian density in (6.9),

√
−gLPST =

√
−g

( 1
2p!Bµ(p)F

µ(p) −H(Bµ(p), gµν)
)
. (6.63)

In order for √
−gLPST to be Weyl invariant, H must be a homogeneous function,

H
(
eσBµ(p), e−2σgµν

)
= edσH

(
Bµ(p), gµν

)
. (6.64)

Then Hµ(p) defined by (6.12) is a primary field,

Hµ(p) → eσHµ(p) , Hµ(p) → e(d−1)σHµ(p) . (6.65)

Let us turn to the INZ formulation,

LINZ = Lfree
PST + 1

p!
(
Bµ(p) + λµ(p)

) (
Bµ(p) + λµ(p)

)
− V

(
Λµ(p+1), gµν

)
, (6.66)

with λµ(p) = Λµ(p)νv
ν . In order for Bµ(p) and λµ(p) to have the same Weyl transformation

law, Λµ(p+1) must be Weyl neutral,

Λµ(p+1) → Λµ(p+1) , Λµ(p+1) → edσΛµ(d+1) . (6.67)

In order for √
−gLINZ to be Weyl-invariant, V must be a homogeneous function,

V
(
Λµ(p+1), e−2σgµν

)
= edσV(Λµ(p+1), gµν) . (6.68)

In the d = 6 case, there is a unique solution to this condition given in (3.39). It corresponds to
the ModMax theory, but not to the Bialynicki-Birula theory, as was explained in section 3.4.
In d = 10 and higher space-time dimensions there are more solutions of (6.68) (see e.g. [93]),
which would be of interest to study.

7 Conclusion

In this paper, for the aim of developing a general approach to the construction of TT -like
deformations of interacting chiral form theories in six and higher space-time dimensions,
we have reviewed the PST formulation of these theories, in particular the structure of the
PST energy-momentum tensor, and related it to two other Lagrangian formulations of chiral
p-forms, the ‘clone’ formulation [79, 93] and a novel formulation which we obtained by
generalizing the duality-symmetric construction of non-linear 4d electrodynamics by Ivanov,
Nurmagambetov and Zupnik [74] to d ≥ 6.

We have shown that in all these formulations (which are on-shell equivalent, except
for a specific case of the Bialynicki-Birula theory, as explained in section 3.4), the chiral
p-form equations of motion (i.e. non-linear self-duality conditions), the on-shell values of their
Lagrangians, and the energy-momentum tensors are manifestly Lorentz (or diffeomorphism)
invariant and independent of the auxiliary fields. Using these results we have introduced the
general notion of ‘invariant observables’, the quantities which satisfy a certain invariance
condition that makes them gauge- and Lorentz-invariant and independent of the auxiliary fields
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on the mass shell. The invariant observables were shown to be functions of the components
of the energy-momentum tensor and as such are natural operators for constructing different
deformations of chiral form theories satisfying corresponding TT -like flow equations. We
have studied such stress tensor flows in all these formulations and, as an explicit example,
established that the ModMax-Born-Infeld chiral tensor theory satisfies two commuting flow
equations driven by 6d analogues of the TT and root-TT operators, see equations (1.2)
and (1.5), respectively. We have also argued that, extending 4d results of [48], such stress
tensor deformations are, in some sense, generic, since any parameterized family of Lorentz-
invariant 6d chiral tensor theories satisfy some generalized TT -like flow equation. Finally, in
appendices A–B, we then presented some extensions of our analyses by discussing TT -like
flows for self-interacting gauge (2n−1)-forms in d = 4n dimensions by using three approaches,
and by discussing deformations of U(1) duality-invariant supersymmetric theories in d = 4.

Further directions in which our results would be of interest to generalize include (i) a
detailed study of TT -like deformations of duality-symmetric and/or chiral p-form theories in
d ≥ 8, with d = 10 being the most interesting case in the context of string theory; (ii) the
study of the possibility of finding supersymmetric generalizations of the non-linear p-form
theories; and (iii) investigating possible connections between stress tensor deformations of 6d
chiral tensor theories and theories of modified gravity. In what follows, we briefly discuss
each of these directions.

T T -like deformations in d ≥ 8. To date, there has been very little work on classical
TT -like flows in spacetime dimensions d ≥ 8 (although see [38] for some results concerning
deformations of 4-form field strengths in eight dimensions up to O(λ2)). In appendix A
of the present work, we have made some initial remarks concerning such deformations in
d = 4n dimensions, but this is only scratching the surface. It would be very interesting to see
whether more of the results concerning T 2 flows in lower spacetime dimensions have natural
analogues in d ≥ 8. For instance, one future direction is to verify the conjecture that every
duality-invariant observable O can be expressed as a function of the stress tensor in d ≥ 8, as
we mention below equation (A.6). As another example, in 2d, it is possible to couple two
theories in a “universal” way by performing sequential TT flows [153]; one might ask whether
such a procedure also gives rise to natural interrelations between theories in higher dimensions.

As we have emphasized, TT -like deformations in d = 2, 4, and 6 seem to give rise to
theories related to strings and branes, including the Nambu-Goto action, the Born-Infeld
theory, and the interacting chiral tensor theory on the M5-brane worldvolume. It would be
very interesting if this pattern continues in d = 10. For instance, one might ask whether a
generalized stress tensor deformations of some terms in the action for type IIA or type IIB
supergravity generates a physically relevant series of higher-derivative corrections, such as
α′ corrections that are required by string theory. If so, stress tensor flows might provide an
organizing principle for generating and understanding such stringy corrections.

Supersymmetry. By now, the supersymmetric extensions of generic non-linear electrody-
namics theories were constructed only in d = 4 with the use of the N = 1 and N = 2 superfield
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formalism [103, 104, 121–123, 154] (see appendix B for some details).20 In d = 6 the only avail-
able superfield Lagrangian is for a free chiral two-form multiplet constructed in an N = (1, 0),
d = 6 harmonic superspace in [155]. Component actions for d = 6 supergravity coupled to
chiral tensor multiplets were constructed in [88–90], while the M5-brane [83, 84, 114, 130–
132, 156] and its NS5-brane counterpart [85] remain the only examples of supersymmetric
self-interacting chiral two-form theories in d = 6. In d = 10 the full supersymmetric duality-
invariant actions are available for IIB [87] and IIA [157] supergravities. It would be of interest
to study whether techniques developed in this paper might be useful for the construction of
duality invariant higher order (supersymmetric) corrections to type II, d = 10 supergravitites.
In particular, it would be intriguing to see whether one can use TT -like deformations to build
supersymmetric interacting chiral form theories as deformations of free theories.

Another direction, for which supersymmetry might play an important role, is to find a
version of the six-dimensional TT -like deformation considered in this work which is defined
at the quantum level. It is well-known [24] that no bilinear in stress tensor operators can
give rise to a well-defined local operator by point-splitting in d > 2; one way to see this is to
note that, even near a CFT seed, the leading term in our classical deformation has

⟨Tµν(x)Tµν(0)⟩ = d− 2
x2d

+ regular , (7.1)

and thus there is no hope of applying an argument like that of [1] to find a combination of
stress tensors which is independent of x except in d = 2. However, in a supersymmetric theory,
one might hope to identify some combination of bilinears of fields in the stress tensor multiplet
(and their derivatives) with the property that the appropriate point-split bilocal combination
is actually independent of the distance between the insertion points, and therefore attempt
to define a local supercurrent-squared operator by point-splitting.

Connections to gravity. Several authors have pointed out that the two-dimensional TT
deformation can be interpreted as a coupling to some kind of gravity [4, 158] or random geome-
try [5], or relatedly, that it may be viewed as a certain field-dependent diffeomorphism [49, 159].
Generalizations of this statement in higher dimensions [160] include connections to modified
gravity theories like Eddington-Inspired-Born-Infeld.21 In the latter work, the eigenvalue
structure of the stress tensor for 4d Abelian gauge theories played an important role: in
particular, the stress tensor for such a theory always has two pairs of degenerate eigenvalues.
We have seen that the stress tensor of a chiral tensor theory in 6d has a similar degeneracy,
as encoded for instance in the relation

tr(T 3) = 1
2tr(T 2)tr(T ) − 1

18 (tr(T ))3 , (7.2)

which holds for the energy-momentum tensor of any 6d chiral tensor theory. The degeneracy
of the eigenvalues also implies

det(T ) = − 1
63

(
tr(T 2) − 1

3 (tr(T ))2
)3

, (7.3)

20The formalism of U(1) duality rotations has recently been extended to higher-spin conformal gauge fields
on conformally flat backgrounds and some of their N -extended superconformal cousins [105, 106].

21See also [161] for another interesting observation on the relation between massive gravity and non-linear
electrodynamics as its ‘effective theory’.
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which is reminiscent of the corresponding relation for gauge theories pointed out in [26].
In particular, this means that the 6d flow equation driven by OT 2 which we considered in
this work can also be presented in the form

∂L
∂λ

= −1
2 (det(T ))1/3 , (7.4)

which is driven by a power of the determinant of the energy-momentum tensor. It would
be very interesting to see whether interacting 6d chiral tensor theories, such as the one with
Born-Infeld-type interaction function which describes the worldvolume gauge theory of the
M5-brane, has a connection to modified gravity theories as in the 4d case of [160].
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A T T -like flows for self-interacting gauge (2n − 1)-forms in d = 4n

dimensions

This appendix is devoted to a general discussion of TT -like flows in U(1) duality-invariant
theories of self-interacting gauge (2n − 1)-forms in d = 4n dimensions.

A.1 Gaillard-Zumino-Gibbons-Rasheed-type formalism

As is known, the Gaillard-Zumino-Gibbons-Rasheed (GZGR) formalism [97–101] to describe
duality-invariant models for nonlinear electrodynamics in four dimensions was also extended
to higher dimensions in [98, 162–164] (for reviews see [122, 165]). This formalism is useful
in the framework of TT -like flows of these theories.

In a curved space Md of even dimension d = 4n, with n a positive integer, we consider a
self-interacting theory of a gauge p-form Aµ1...µp (for p = 2n− 1) such that its Lagrangian,
L = L(F ), is a function of the field strength Fµ1...µp+1 = (p+ 1)∂[µ1Aµ2...µp+1]. In order for
this theory to possess U(1) duality invariance, the Lagrangian must satisfy the self-duality
equation [163]

Gµ1...µp+1G∗
µ1...µp+1 + Fµ1...µp+1F ∗

µ1...µp+1 = 0 , (A.1)
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where we have introduced22

G∗µ1...µp+1(F ) = (p+ 1)! ∂L(F )
∂Fµ1...µp+1

. (A.2)

As usual, the notation F ∗ is used for the Hodge dual of F ,

F ∗µ1...µp+1 = 1
(p+ 1)! εµ1...µp+1ν1...νp+1 Fν1...νp+1 . (A.3)

Every solution of (A.1) defines a U(1) duality-invariant theory. An infinitesimal U(1) duality
transformation is given by

δ

(
G

F

)
=
(

0 −c
c 0

)(
G

F

)
, (A.4)

with c ∈ R a constant parameter.
A function O(F ) is said to be a duality-invariant observable if it obeys the first-order

differential equation

∂O(F )
∂Fµ1...µp+1

Gµ1...µp+1 = 0 . (A.5)

In accordance with (A.4), O(F ) is inert under the duality transformations. An example
of a duality-invariant observable is the energy-momentum tensor Tµν . This follows from a
simple generalization of the arguments given in [98, 100, 101]. Specifically, let L(F ;λ) be the
Lagrangian of a U(1) duality-invariant theory, where λ is a duality-invariant parameter; L(F ;λ)
is a solution of (A.1) for every value of λ. Then, the function ∂L(F ;λ)/∂λ is duality invariant.

Duality-invariant observables generate consistent flows in the space of field theories
describing the dynamics of self-interacting gauge p-forms in the following sense. Let L(λ)(F )
and O(λ)(F ) be two scalar functions that depend on a real parameter λ ∈ (−ϵ, ϵ) ⊂ R and
satisfy the following conditions:

• L(λ) and O(λ) obey the equations

∂

∂λ
L(λ) = O(λ) ,

∂O(λ)(F )
∂Fµ1...µp+1

G(λ)
µ1...µp+1 = 0 . (A.6)

• L(0)(F ) is a solution of (A.1).

Then L(λ)(F ) is a solution of (A.1) at every value of the parameter λ.
In the four-dimensional case, p = 1, it was demonstrated in [48] that every scalar duality-

invariant observable O is a function of the energy-momentum tensor, O = O(Tµν). It is an
interesting problem to determine whether this property also holds beyond four dimensions.

22A partial derivative of L(F ) is defined by δL(F ) = δFµ1...µp+1
∂L(F )

∂Fµ1...µp+1
.
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A.2 Ivanov-Zupnik-type formalism

Ref. [102] described a reformulation of the above theory, which for p = 1 coincides with
the Ivanov-Zupnik formulation [94–96]. In this reformulation, along with the field strength
Fµ1...µp+1 , the Lagrangian L(F,Λ) depends on an auxiliary unconstrained rank-(p + 1) an-
tisymmetric tensor Λµ1...µp+1 and has the form

L(F,Λ) = 1
(p+ 1)!

{1
2F · F + Λ · Λ − 2Λ · F

}
+ Lint(Λ) , (A.7)

where we have denoted

Λ · F := Λµ1...µp+1Fµ1...µp+1 . (A.8)

The last term in (A.7), Lint(Λ), is at least quartic in Λµ1...µp+1 . It is assumed that the
equation of motion for V ,

∂

∂Λµ1...µp+1
L(F,Λ) = 0 , (A.9)

allows one to integrate out the auxiliary field Λ, resulting in a Lagrangian L(F ).
The self-duality equation (A.1) proves to be equivalent to the following condition on

the self-interaction in (A.7)

Λ∗
µ1...µp+1

∂

∂Λµ1...µp+1
Lint(Λ) = 0 . (A.10)

Introducing (anti) self-dual components of Λ,

Λµ1...µp+1
± = 1

2
(
Λµ1...µp+1 ± iΛ∗µ1...µp+1

)
, Λ∗

± = ∓iΛ± , Λ = Λ+ + Λ− , (A.11)

the above condition turns into(
Λµ1...µp+1

+
∂

∂Λµ1...µp+1
+

− Λµ1...µp+1
−

∂

∂Λµ1...µp+1
−

)
Lint(Λ+,Λ−) = 0 . (A.12)

This means that Lint(Λ+,Λ−) is invariant under U(1) phase transformations,

Lint(eiφΛ+, e−iφΛ−) = Lint(Λ+,Λ−) , φ ∈ R . (A.13)

It should be pointed out that the duality transformation (A.4) acts on Λ as

δΛ = cΛ∗ . (A.14)

In four dimensions, the most general solution to the condition (A.13) is given by

Lint(Λ+,Λ−) = f(|Λ+ · Λ+|) , (A.15)

with f(x) a real function of one variable. Similar solutions exist in higher dimensions. However
more general self-interactions are possible beyond four dimensions.

The description of consistent deformations of U(1) duality-invariant self-interacting gauge
p-forms is simple in the above approach based on the first-order formulation (A.7). One
considers a Lagrangian of the form

L(λ)(F,Λ) = 1
p!
{1

2F · F + Λ · Λ − 2Λ · F
}

+ L
(λ)
int (Λ) , (A.16)

where L(λ)
int (Λ) is required to obey the condition (A.13).

– 49 –



J
H
E
P
0
5
(
2
0
2
4
)
3
2
0

A.3 PST-type formalism

Another way to construct duality invariant theories for (2n− 1)-gauge potentials in d = 4n
dimensions is provided by the PST formalism [126]. It relies on the introduction of a pair of
p-form potentials, Aa

µ1...µp
, where p = 2n− 1 and a = 1, 2. In this case the U(1) symmetry is

manifest in that it is realized as an SO(2)-duality rotation of the index a. The corresponding
pair of field strengths is given by

F a
µ1...µp+1 = (p+ 1)∂[µ1A

a
µ2...µp+1]. (A.17)

In addition we introduce the electric and magnetic pairs of p-forms

Ea
µ1...µp

= F a
µ1...µpνv

ν , Ba
µ1...µp

= F ∗a
µ1...µpνv

ν . (A.18)

In the PST approach the action, involving also the scalar auxiliary field a, then assumes
the form (for simplicity we work in a flat background)

S[A, a] =
∫

ddx

[ 1
2p!ε

abEa ·Bb −H(B)
]
, vµ = ∂µa√

−∂a · ∂a
, (A.19)

where the Hamiltonian H(B) is an SO(2)-invariant function of Ba. In this case the condition
for Lorentz-invariance of the action (A.19) reads

εab
(
Ba

[µ1...µp
Bb

µp+1...µ2p] −Ha
[µ1...µp

Hb
µp+1...µ2p]

)
= 0 , (A.20)

since it ensures that the auxiliary field a becomes a pure gauge degree of freedom [126].
Above we have defined the partial derivatives Ha

µ1...µp
= ∂H/∂Baµ1...µp of the Hamiltonian

through the relation

δH(B) = 1
p!δB

aµ1...µpHa
µ1...µp

. (A.21)

The (PST gauge-fixed) equation of motion of the p-form potential Aa derived from the
action (A.19) is

Ea
µ1...µp

= εabHb
µ1...µp

. (A.22)

A Lorentz- and duality-invariant observable O(B) is an SO(2)-invariant function of the
magnetic fields Ba, such that

εabOa
[µ1...µp

Hb
µp+1...µ2p] = 0 , (A.23)

where
Oa

µ1...µp
= ∂O
∂Baµ1...µp

. (A.24)

In particular, with the same steps performed in section 6.2, one can show that on-shell,
i.e. when (A.22) holds, thanks to (A.23) the operator O(B) is invariant under infinitesimal
variations of the four-vector vµ. This signals, once again, that the field a(x) is non-propagating
and drops out from the dynamics.
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Let us now consider a deformed SO(2)-invariant Hamiltonian H(B, λ) which depends
on a continuous parameter and tends to H(B) as λ → 0. Then the condition (A.20) for
the decoupling of a is replaced by

εab
(
Ba

[µ1...µp
Bb

µp+1...µ2p] −H
a(λ)
[µ1...µp

H
b(λ)
µp+1...µ2p]

)
= 0 . (A.25)

This deformation can be interpreted as a consistent flow in the space of field theories if
there exists an SO(2)-invariant operator O(B, λ) such that the latter and H(B, λ) satisfy
the conditions:

• H(B, λ) and O(B, λ) obey the equations

∂

∂λ
H(B, λ) = O(B, λ) , εab Oa(λ)

[µ1...µp
H

b(λ)
µp+1...µ2p] = 0 ; (A.26)

• H(B, 0) ≡ H(B) is a solution of (A.20).

In fact, the derivative w.r.t. λ of (A.25) corresponds to the second relation in (A.26), and
the second condition above for H(B, 0) enforces the initial condition for (A.25). According
to this scheme, in a d = 8 dimensional space-time the SO(2)-invariant quartic interactions,
O(B, λ) ∼ λB4, found in [126] can be interpreted as first order flows (in λ) of the free theory
of duality invariant three-form potentials. In fact, at this order, the quartic interactions
found in [126] satisfy, actually by definition, the Lorentz-invariance condition (A.23)

The analysis of this section can in principle be reproduced by a dimensional reduction
from d = 4n + 2 to d = 4n of the corresponding analysis of section 6.2, in which the only
non-vanishing components of the (4n+ 2)-dimensional chiral gauge potential Aµ1···µ2n are
the gauge fields Aa

M1···M2n−1 with a = (4n, 4n + 1) and Mi = 0, · · · , 4n − 1.

B Deformations of U(1) duality-invariant supersymmetric theories in
d = 4

In this appendix we briefly describe how consistent deformations can be defined in the
family of U(1) duality-invariant models for non-linear N = 1, d = 4 supersymmetric elec-
trodynamics [121, 122]. The formalism of supersymmetric duality rotations in Minkowski
superspace [121, 122] was extended to supergravity in [123] and the reader is referred to
that paper for more technical details. We only point out that the supergravity covariant
derivatives are denoted DA = (Da,Dα, D̄α̇), and the covariantly chiral analogue of the scalar
curvature is denoted R, D̄α̇R = 0.

We consider a theory for an Abelian vector multiplet in curved superspace and denote by
S[W, W̄ ] the corresponding action functional. The action depends on the covariantly chiral
spinor field strength Wα and its conjugate W̄α̇,

Wα = −1
4 (D̄2 − 4R)DαV , D̄β̇Wα = 0 , (B.1)

which are constructed in terms of a real unconstrained gauge prepotential V . The prepotential
is defined modulo gauge transformations

δλV = λ+ λ̄ , D̄α̇λ = 0 , (B.2)
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such that Wα and W̄α̇ are gauge invariant. The gauge-invariant field strengths obey the
Bianchi identity

DαWα = D̄α̇W̄
α̇ , (B.3)

and thus Wα is a reduced chiral superfield. The action S[W, W̄ ] is assumed to have no
dependence on DαWα, and therefore it can unambiguously be defined as a functional of a
general chiral superfield Wα and its conjugate W̄α̇. Then, defining

iMα := 2 δ

δWα
S[W, W̄ ] , (B.4)

the equation of motion for V is

DαMα = D̄α̇M̄
α̇ . (B.5)

Here the variational derivative δS/δWα is defined by

δS =
∫

d4x d2θ E δWα δS

δWα
+ c.c. , (B.6)

where E denotes the chiral integration measure, and Wα is viewed to be an unrestricted
covariantly chiral spinor.

Since the Bianchi identity (B.3) and the equation of motion (B.5) have the same functional
form, one may consider U(1) duality rotations

δWα = cMα , δMα = −cWα , (B.7)

with c ∈ R a constant parameter. The theory possesses this U(1) duality invariance if and
only if the action obeys the self-duality equation

Im
∫

d4xd2θ E
{
WαWα +MαMα

}
= 0 . (B.8)

A functional O[W, W̄ ] is said to be duality invariant if it is inert under (B.7),∫
d4x d2θ E δMα δO

δWα
+ c.c. = 0 . (B.9)

Let us recall examples of duality-invariant observables given in [121–123]. Let S(λ) :=
S[W, W̄ ;λ] be a U(1) duality-invariant theory, with λ a duality-inert parameter. Then
∂S(λ)/∂λ is duality invariant. This property implies that the supercurrent multiplet, i.e. the
supersymmetric generalization of the energy-momentum tensor, is duality invariant. We
recall that this multiplet is described by the supercurrent Ja = J̄a and the covaraintly chiral
supertrace T , D̄α̇T = 0, which are defined in terms of covariantized variational derivatives
with respect to the supergravity prepotentials (see, e.g., [166] for the technical details),

Ja = ∆S
∆Ha

, T = ∆S
∆φ , (B.10)

and satisfy the conservation equation

D̄α̇Jαα̇ = −2
3 DαT , (B.11)
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when the matter superfields are put on the mass shell. The supercurrent multiplet was
computed in [123] for the general family of non-linear vector multiplet theories of the form

S[W, W̄ ] = 1
4

∫
d4xd2θ EW 2 + c.c.+ 1

4

∫
d4xd2θd2θ̄ E W 2 W̄ 2 Λ (u, ū) , (B.12a)

where W 2 = WαWα, u := 1
8(D2 − 4R̄)W 2. The restriction of the model to be self-dual

requires the interaction function Λ(u, ū) to satisfy the differential equation

Im
{∂(uΛ)

∂u
− ū

(
∂(uΛ)
∂u

)2 }
= 0 . (B.12b)

Duality-invariant observables generate consistent flows in the space of U(1) duality-
invariant non-linear vector multiplet theories. Let S(λ)[W, W̄ ] and O(λ)[W, W̄ ] be two scalar
functionals that depend on a real parameter λ and satisfy the following conditions:

• S(λ)[W, W̄ ] and O(λ)[W, W̄ ] obey the equations

∂

∂λ
S(λ)[W, W̄ ] = O(λ)[W, W̄ ] ,

∫
d4x d2θ E δMα δ

δWα
O(λ) + c.c. = 0 . (B.13)

• S(0)[W, W̄ ] is a solution of the self-duality equation (B.8).

Then S(λ)[W, W̄ ] is a solution of the self-duality equation (B.8) for any value of λ. Within
the family of duality-invariant models (B.12), it is natural to conjecture that consistent de-
formations are generated by duality-invariant observables of the form O[W, W̄ ] = O[Ja, T, T̄ ],
since these theories are in a one-to-one correspondence [121, 122] with the models for U(1)
duality-invariant electrodynamics

L(Fµν) = −1
2
(
ω + ω̄

)
+ ω ω̄ Λ(ω, ω̄) , (B.14)

where ω and ω̄ denote two invariants of the electromagnetic field

ω = α+ iβ , α = 1
4F

µνFµν , β = 1
4F

µνF ∗
µν . (B.15)

The interaction function Λ(ω, ω̄) in (B.14) obeys the same equation (B.8). Examples of
consistent TT flows in duality-invariant models for non-linear supersymmetric electrodynamics
were constructed in [15, 34, 40].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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