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Abstract Axions and axion-like particles emerge in many
models for physics beyond the Standard Model. Thus, they
have gained increasing research interest in both experimen-
tal and theoretical physics apart from their original proposi-
tion as a solution to the strong CP-problem. Among other
aspects it has recently been shown that ALPs can potentially
provide a solution to the long-lasting discrepancy between
theory and experiment of the anomalous magnetic moment
of the muon. Provided that the ALP has flavor-violating
couplings to leptons, they can also mediate flavor-violating
decays like μ → eγ . Both processes are mediated through
related form factors that we compute to two-loop order. We
further show numerical implications of our calculations and
how they might affect constraints on ALP couplings derived
from experiments.
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1 Introduction

Axions and axion-like particles (to which we will commonly
refer to as ALPs in this work) are well-motivated extensions
of the Standard Model (SM). As an emergent pseudo Nambu-
Goldstone boson from the spontaneous breaking of a global
U (1) symmetry, they are part of many new physics models.
Initially, they were introduced as a solution to the strong CP-
problem by Peccei and Quinn and others [1–4], though it
was soon noticed that ALPs can have serious connections to
other open SM questions, too. One example is the question
of the large hierarchy in fermion masses with the proposed
solution of the Froggatt–Nielsen mechanism that introduces
a new scalar field together with a high energy U (1) symme-
try under which the fermions are charged appropriately and
which is spontaneously broken at lower energies. Identify-
ing this underlying U (1) symmetry with the Peccei–Quinn
symmetry, or equivalently, identifying the phase of the new
scalar particle with an ALP, results in an ALP with cou-
plings to all SM fermions with a possibly rich flavor struc-
ture [5–7]. Furthermore, especially light ALPs have been
shown to be viable cold dark matter candidates [8] and be
able to provide a stochastic gravitational wave background
in the early universe [9–11]. Consequently, ALPs have gained
strong research interest by theory and experimental initiatives
likewise in recent years.

The QCD axion naturally couples to gluons when it is
supposed to provide a solution to the strong CP problem and
in fact most concrete ALP models feature strong couplings
of the ALP to gauge bosons. Whereas in KSVZ models the
SM fermions are uncharged under the PQ symmetry [12,13],
additional ALP-fermion couplings are present in DSFZ mod-
els [14,15]. Additionally, the mass of the ALP and the photon
coupling are inversely related to each other, resulting in a nar-
row band in the parameter space where the ALP is a solution
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to the strong CP problem [16]. In this work we take a model-
independent approach and make no further assumptions on
the ALP coupling structure. We also keep the ALP mass and
its photon coupling as free parameters.

In [17–19] it was shown that an ALP coupling to any
SM particle in the UV region will eventually generate cou-
plings to all SM particles in the low-energy effective theory
by subsequently evolving the operators from higher to lower
scales through their renormalization group (RG) equations
and, at the low scale, matching the effective theory to the
Standard Model. Whenever a mass threshold is crossed in
the evolution process, the respective particle is integrated
out and and a new matching is performed. This procedure is
repeated until at energies below μ0 ≈ 2GeV the theory is
matched onto a chiral perturbation theory (χPT), where the
ALP interacts directly with the hadrons instead. Most impor-
tantly, these running and matching effects generate effective
quark flavor-changing couplings in the down sector, even if
the underlying UV theory is flavor-blind or -conserving. This
opens a huge variety of possibilities to probe UV ALP cou-
plings with numerous flavor experiments.

Since the SM features the individual lepton numbers as
accidental symmetries, evolution effects alone cannot gener-
ate ALP couplings that are lepton flavor-changing. In princi-
ple, loops containing flavor-oscillating neutrinos could give
rise to flavor-changing processes also in the charged sector.
However, they are suppressed by factors of �m2

ν/m
2
W ≈

10−26, and hence are typically neglected. If such lepton
flavor-violating are already present at tree-level in the UV
region, in [17] it was shown that they do not receive correc-
tions from the evolution procedure.

QCD axions are typically thought to be light, ma < 1 eV.
Hence, QCD axions and ALPs in that mass region are best
probed by light shining through wall (LSW) experiments,
stellar and astrophysical probes. Bounds coming from fla-
vor experiments are most stringent in the mass range of
∼ 0.1 MeV to 10 GeV. For this work, we will therefore
assume the ALP mass to lie in this mass region. If the ALP
is heavier than ∼ 10 GeV, best limits arise from searches for
exotic decays of the Z and Higgs boson, as well as searches
for direct production at colliders. We refer the interested
reader to [17,18,20–36] for detailed overview over studies of
ALPs with both flavor-conserving and flavor-violating cou-
plings.

In a common normalization of the ALP Lagrangian, the
ALP couplings to gauge bosons are written as cVV

αV
4π

a
f Fμν

F̃μν where Fμν is the gauge boson field strength tensor
and F̃μν = 1

2εμναβFαβ its dual.1 Pulling out a factor of
αV /(4π) of the Wilson coefficients ensures the scale inde-
pendence of these couplings up to two-loop order. Conse-

1 We choose the convention ε0123 = 1.

quently, a ψ1 → ψ2γ one-loop Feynman diagram featuring
an ALP-photon coupling is, naïvely estimated, contributing
at the same order as the two-loop diagram where the direct
ALP-photon coupling is replaced by a fermion loop. The
work at hand is therefore dedicated to study the impact of
such two-loop effects thoroughly. Note that this is not only an
academic exercise, but an important contribution to consis-
tently study ALP effects in processes like the decay μ → eγ
and the anomalous magnetic moment of the muon and the
electron, (g − 2)μ and (g − 2)e.

Two-loop ALP corrections to dipole moments have been
calculated previously in the context of the anomalous mag-
netic moment of the muon in [36]. In this work, we first
re-evaluate the calculation in a different basis, eliminating
the need for an additional subtraction to render the expres-
sions finite. We then generalize the computation to flavor-
changing currents. Additionally we transfer our findings to
dipoles involving non-abelian fields and study the related
contribution to the chomomagnetic moment of the top quark.

2 ALPs coupling to the SM

2.1 The effective ALP Lagrangian

The Lagrangian containing the ALP and its interactions with
Standard Model particles is given by

LD≤5
eff = 1

2

(
∂μa

) (
∂μa

) − m2
a,0

2
a2

+ ∂μa

f

∑

f

(
ψ̄L kFγ μψL + ψ̄Rk f γ

μψR
)

+ cGG
αs

4π

a

f
Ga

νμG̃
μν,a + cγ γ

α

4π

a

f
Fμν F̃

μν

+ cγ Z
α

2πswcw

a

f
Fμν Z̃

μν + cZ Z
α

4πs2
wc

2
w

a

f
Zμν Z̃

μν,

(2.1)

where Ga
μν and Fμν are the gluon and photon field-strength

tensors and F̃μν = 1
2εμναβFαβ and equivalently for G̃ are the

dual tensors. The sine and cosine of the weak mixing angle are
abbreviated to sin θw ≡ sw and cos θw ≡ cw, respectively.
The couplings are defined below the electroweak scale, how-
ever, we keep the top quark and Z bosons as propagating
degrees of freedom. Because of their high mass, the contri-
butions of Z bosons to the processes studied here are negligi-
ble. At the classical level the Lagrangian the ALP couplings
to the SM fields are protected by an approximate shift sym-
metry a → a + constant. While the derivative couplings
to fermions naturally feature this symmetry, the additional
terms in the couplings to gauge bosons can be removed by
field redefinitions. Due to instanton effects the coupling to
gluons only respects a discrete version of the shift symmetry,
realized as a → a + nπ f/cGG , where n is a natural number
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[3,4]. The effective ALP mass ma is given as the sum of an
explicitly shift-symmetry breaking ALP mass ma,0 and the
contribution of non-perturbative QCD dynamics and reads at
lowest order in chiral perturbation theory [13,37,38]

m2
a = m2

a,0

[
1 + O

(
f 2
π

f 2

)]

+c2
GG

f 2
πm

2
π

f 2

2mumd

(mu + md)2 , (2.2)

with fπ � 130 MeV the pion decay constant.
We find that for the computation of ψ1 → ψ2V (V =

g, γ ) form factors it is helpful to work with an alternative
formulation of the Lagrangian in a different basis by applying
the equations of motion to the SM fermions

LD≤5
eff = 1

2

(
∂μa

) (
∂μa

) − m2
a

2
+ Lferm

+ c̃GG
αs

4π

a

f
Ga

νμG̃
μν,a + c̃γ γ

α

4π

a

f
Fμν F̃

μν. (2.3)

Here,

c̃γ γ = cγ γ +
∑

f

N f
c Q2

f c f f , and

c̃GG = cGG + 1

2

∑

q

cqq , (2.4)

where the sum of the first term runs over all SM fermions f
and in the second term it runs over all quark states q. The
couplings c f f and cqq are related to the couplings in the
Lagrangian (2.1) via

c fi fi = [k f ]i i − [kF ]i i . (2.5)

It is only in these combinations that the coupling parameters
of the original Lagrangian can appear in physical observables
[17,19]. The ALP-fermion Lagrangian is given by

Lferm = − ia

2 f

∑

f

[
(m fi − m f j )[k f + kF ]i j f̄i f j

+ (m fi + m f j )[k f − kF ]i j f̄iγ5 f j
]
. (2.6)

The suppression scale f of the dimension-5 operators is
related to the scale of global symmetry breaking by 
 =
4π f . Often one decides to eliminate f in favor of the axion
decay constant fa under the relation fa ≡ − f/(2cGG). In the
literature, this is often done when dealing with QCD axions.
Note that the ALP-fermion couplings are suppressed with
the fermion masses in this alternative formulation, allowing
us to neglect couplings to neutrinos.

In the Lagrangians (2.1) and (2.3) we pulled out a nor-
malization factor αi/(4π) for the gauge boson couplings,
as can be found in many explicit ALP models in the lit-
erature [18,19,33,39]. This ensures that the ALP-gauge

boson couplings cVV are scale independent at least up to
two-loop order, and the scale dependence of the c̃V V cou-
plings is fully governed by the evolution of the diagonal
fermion couplings [17,19,40]. As a consequence, we need
to take certain two-loop graphs into account when study-
ing ψ1 → ψ2V observables for the initial assumption that
c f f ∼ cVV ∼ O(1), because they contribute with the same
power of the QED/QCD coupling constant as other one-loop
diagrams. This circumstance is illustrated in Fig. 1. Here we
present an estimate for the size of the contribution of repre-
sentative classes of one and two-loop diagrams for the flavor
conserving process ψ1 → ψ1γ . We limit ourselves to one
exchange of an ALP, as further exchanges are suppressed
by additional factors of 1/ f . The diagrams (a) and (b) repre-
sent the two possible classes of one-loop diagrams. Diagrams
(e) and (f) are loop corrections to the aforementioned cases
and are therefore of subleading power in perturbation theory.
This is not true for diagrams (c) and (d). From the tentative
estimate one expects that inserting the fermion loop into the
ALP-photon vertex in (c) contributes at the same order of
perturbation theory as the direct contribution (b). For a con-
sistent treatment of ALP induced ψ1 → ψ2γ form factors
this contribution must therefore be taken into account. It is
similar to the well-known Barr–Zee diagrams [41] when the
ALP is exchanged with a Higgs boson. Due to our choice of
normalization the two-loop diagram with two ALP-photon
vertices (d) is severely suppressed in perturbation theory. In
models where the ALP-photon coupling is enhanced instead,
they can give major contributions to the amplitude.

2.2 Form factors

In this section we will show how to derive the electromagnetic
form factors relevant for ψ1 → ψ2γ processes. This can
easily be generalized to the non-abelian case with the obvious
replacements and insertions of color factors.

The matrix element of a ψ1 → ψ2γ process can generally
be written as

Mμ = �̄1(p1)�
μ�2(p2), (2.7)

where p1 (p2) denotes the momentum of the initial- (final-
) state particle. We furthermore define p ≡ p1 + p2, and
q ≡ p1 − p2 is the momentum of the outgoing photon. If
both initial- and final-state fermions are identical the matrix
element can be parametrized in terms of four linearly inde-
pendent form factors as follows

ūi (p2)�μ(p1, p2) ui (p1) = ūi (p2)

[
Fi→i

2 (q2)
(
pμ − 2miγ

μ
)

+ 2mi F
i→i
3 (q2)γ μ + F5,i→i

2 (q2)pμγ5

+ F5,i→i
3 (q2)

(
qμ + q2

2mi
γ μ

)
γ5

]
ui (p1) . (2.8)
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Fig. 1 Representative diagrams contributing to ALP-induced ψ →
ψγ form factors up to two-loop order, excluding multiple ALP
exchanges. Diagrams a and b are the one-loop diagrams. Diagrams e
and f present loop-corrections to a and b, respectively, and are therefore
suppressed. Diagram c contributes at the same order in perturbation the-

ory as diagram b, even though it is a two-loop correction, and therefore
its contribution must be taken into account for a consistent treatment
if c f f ∼ cγ γ is assumed. In our choice of normalization of the ALP-
gauge boson coupling diagram d is highly suppressed in perturbation
theory

Note that two additional form factors F (5)
1 that are pro-

portional to γ μ and γ μγ5, respectively, can be eliminated
through application of the Ward identity qμ�μ = 0. At tree-
level in the SM equation (2.8) takes the form �

μ
SM,0 = Qeγ μ,

where Q is the electric charge of the fermion. If the fermions
are leptons of flavor i , one can read off the anomalous mag-
netic moment defined by ai = (g−2)i

2 as

ai = 2mi

e
Fi→i

2 (q2 = 0). (2.9)

Furthermore, the electric dipole moment di of a fermion with
flavor i is given by

|di | = 1

2

∣∣∣F5,i→i
2 (q2 = 0)

∣∣∣ . (2.10)

In the case that initial and final states are of different
fermion flavors instead, the parametrization reads

ū j (p2)�
μ(p1, p2) ui (p1)

= ū j (p2)

[
Fi→ j

2 (q2)
(
pμ − (mi + m j )γ

μ
) + Fi→ j

3 (q2)

×
(
qμ − q2

mi − m j
γ μ

)

+ F5,i→ j
2 (q2)

(
pμ + (mi − m j )γ

μ
)
γ5

+ F5,i→ j
3 (q2)

(
qμ + q2

mi + m j
γ μ

)
γ5

]
ui (p1). (2.11)

Note that in equations (2.8) and (2.11) we keep the momen-
tum q of the photon general, even though it would be suffi-
cient to take q2 ≡ 0, i.e. the on-shell limit, for our purposes.
The reason why we do so is that if the photon is off-shell it
can give rise to secondary lepton pair production that could
induce experimental signatures like μ− → e−e+e−.

Flavor-changing neutral currents (FCNCs) are loop-
suppressed in the Standard Model. Since the lepton numbers
are individually conserved, lepton flavor-changing processes
are even strictly forbidden. Hence, we assume for this work
that the necessary flavor change stems from an ALP inter-
action instead. The branching ratio of such an ALP-induced
flavor-changing decay is given by

Br(ψ1 → ψ2γ ) = m3
1

8π�1

(
|F1→2

2 (0)|2 + |F5,1→2
2 (0)|2

)
,

(2.12)

with �1 the decay width of the initial state fermion. This for-
mula is valid up to leading order in the expansion in m2

2/m
2
1.

The mass hierarchies between the different fermion genera-
tions ensure that this is indeed a sufficient approximation.

3 Off-shell ALP-photon vertex

As an intermediate step, we compute the fermion loop cor-
rection to the ALP-photon vertex, see Fig. 2. Here, we keep
one of the photons as well as the ALP off-shell. The momen-
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Fig. 2 Feynman diagrams contributing to the effective ALP-photon
vertex, including the one-loop correction from fermion loops

tum of the ALP is denoted by k, and p and q represent the
momenta of the off- and on-shell photons, respectively. The
loop integral is finite and can be evaluated in d = 4 space-
time dimensions. Including both tree-level and loop-induced
diagrams, we obtain for the ALP-photon vertex

�
μα
aγ γ �(p2, k2) = iα

π f
εμαβρqβ pρ

×
{
cγ γ +

∑

f

N f
c Q2

f c f f

[
1−

1∫

0

dx

1∫

0

dy
m2

f

m2
f − x x̄(yp2 + ȳk2) − iε

]}
,

(3.1)

with x̄ = 1 − x and the polarization indices of off- and
on-shell photons denoted as α and μ. Since k = p + q we
may replace yp2 + ȳk2 = k2 − 2y k · q = (k − y q)2 in
the denominator. We find that the term involving k · q can
be neglected when initial and final state lepton coincide, as
in the diagrams contributing to (g − 2)μ. This renders the
y-integration trivial. Note that this is not true for diagrams
contributing to flavor-changing processes. It can be observed
that heavy fermions decouple from the vertex, whereas light
fermions contribute 1 inside the rectangular bracket. For the
vertex with two on-shell photons a fermion is considered
light when it fulfills m2

f � m2
a , in the case of one off-shell

photon the relevant condition is m2
f � |k2| instead.

We emphasize that the fermion-loop insertion in the effec-
tive ALP-γ γ vertex in Fig. 3 also includes light quarks. If
the momentum variables |p2| and |k2| both take small val-
ues, of order GeV2 or less, these contributions are sensitive to
hadronic effects and cannot be calculated reliably using per-
turbation theory. The internal three-point function connect-
ing the two photons and the ALP should then be replaced by
a non-perturbative correlator, which could be studied using
lattice QCD. For simplicity, we ignore these subtleties in the
following discussion. Note that our treatment is correct if
either the ALP or the initial or final state fermion is much
heavier than the QCD scale 
QCD. This means, in particular,
that our analysis of the chromomagnetic moment of the top

Fig. 3 Feynman diagrams for ψ1 → ψ2γ form factors with an effec-
tive ALP-photon coupling

quark (section 6) does not receive non-perturbative correc-
tions due to light quark loops.

4 General expressions for the form factors at two-loops

The one-loop diagrams contributing to the form factors have
already been calculated in the literature [18,34,39], which
is why we focus on the two-loop graphs here. Moreover, we
only consider diagrams with one ALP exchange, as graphs
with further ALP exchanges are suppressed by additional
factors of the large new physics scale 1/ f .

We insert the vertex function (3.1) into the diagrams, giv-
ing rise to the graphs shown in Fig. 3. Since the off-shell
vertex falls off like 1/k2 for large loop momenta (see (3.1)),
the graphs with internal fermion loops are UV finite and can
be evaluated in d = 4 spacetime dimensions. For the pro-
cesses we are interested in, only the form factors F (5)

2 (q2)

yield a contribution. In the relevant limit of q2 = 0, i.e. an
on-shell photon in the final state, we obtain

F (5)
2 (q2 = 0) = − eαq

16π3 (m1 ± m2)
|k f |12 ∓ |kF |12

f

×
(
c̃γ γ

f
I1 +

∑

f

N f
c Q2

f
c f f

f
I2

)
, (4.1)

where q is the charge of the initial and final state fermion,
and Q f and N f

c are the charge and number of flavors of
the fermions in the one-loop correction in the effective ALP-
photon vertex. I1 and I2 are the one and two-loop parameter
integrals, respectively, and read

I1 =
1∫

0

dx

x∫

0

dy

(
2δ2 + ln

(
μ2

�1

)
+ ln

(
μ2

�2

)

+ m1 + m2

2
(x − y)

[
m1(−1 + x) + m2(1 − y)

�1

+(m1 ↔ m2)

])
,

I2 = 1

2

1∫

0

dx
m2

f

x x̄

1∫

0

dy
[
4(A + A′) − (m1 + m2)

× (m1B + m2B
′) + (m2

1 − m2
2)(a + a′ − C − C ′)

]

(4.2)

123



571 Page 6 of 16 Eur. Phys. J. C (2024) 84 :571

with

�1 = m2
a(1 − x) + m2

1(−1 + x)(x − y)

+ m2
2(1 − y)(x − y),

�2 = m2
a(1 − x) + m2

1(1 − y)(x − y)

+ m2
2(−1 + x)(x − y).

(4.3)

In (4.2) the functions a, A, B and C and their primed coun-
terparts are Passarino–Veltman coefficient functions. They
are obtained through the relations (with m̄2 = m2

f /(x x̄))

∫
d4k

(2π)4

kμ

(k2 − m2
a)(k − q)2((k − yq)2 − m̄2)((k − p1)2 − m2

2)

= 1

(4π)2

(
apμ

1 + bqμ
)
,

∫
d4k

(2π)4

kμkν

(k2 − m2
a)(k − q)2((k − yq)2 − m̄2)((k − p1)2 − m2

2)

= 1

(4π)2

(
Agμν + Bpμ

1 pν
1 + C(pμ

1 q
ν + qμ pν

1 ) + Dqμqν
)
.

(4.4)

The primed coefficients follow equivalently with the replace-
ment (p1,m2) → (p2,m1). Moreover, δ2 = −3 is a scheme-
dependent constant derived from treating the Levi-Civita-
tensor as a d-dimensional object. If it is seen as a d = 4
dimensional object instead, δ2 = 0 [33]. Note that the one-
loop graphs are divergent and we choose to regularize them
with dimensional regularization. The dependence on the reg-
ularization scale μ as well as the dependence on the scheme-
dependent constant δ2 are eventually removed by adding a
contribution to the form factor F (5)

2 (q2) from dimension-6
LEFT operators, as explained in [43].

While it is possible to obtain analytic expressions for I1

and reduce I2 to one unevaluated parameter integral, the
equations are too long and unhandy to present them in this
article in a convenient form. In the phenomenologically rel-
evant cases, m1 = m2 and m2 � m1, they can be cast into
more compact representations, however

Im1=m2
1 = δ2 + ln

(
μ2

m2
1

)

+ 3 − h2

(
m2

a

m2
1

)

,

Im2�m1
1 = δ2 + ln

(
μ2

m2
1

)

+ 2 + g2

(
m2

a

m2
1

) (4.5)

with

h2(x) = 1 − x

3
+ x2

6
ln x

+ x + 2

3

√
(4 − x)x arccos

√
x

2
,

g2(x) = − x2 ln x

2(x − 1)
+ 1

2
(x − 1) ln(x − 1).

(4.6)

The two-loop terms simplify to

Im1=m2
2 =

1∫

0

dx F (yx , r1) ,

Im2�m1
2 =

1∫

0

dx

x x̄

1∫

0

du

⎧
⎨

⎩
(1 − u)ur1

[
−(ra − r1u)x x̄ ln

×
(

(ra − r1u)x x̄

1 − r1ux x̄

)
− ln(1 − r1ux x̄)

]

+ 3(1 − u)(1 − (ra − r1u)x x̄)

×
[

Li2

(−1 + (ra − r1u)x x̄

(ra − r1u)x x̄

)
− Li2

( −1 + rax x̄

(ra − r1u)x x̄

)]

+
1∫

0

dy

1−u∫

0

dv

1−u−v∫

0

dw

× ra(1 − u − v − w) + w
x x̄ + 3

2 r1u(1 − v − wy)
(
ra(1 − u − v − w) + w

x x̄ + 3
2 r1u(1 − v − wy)

)2

⎫
⎬

⎭
.

(4.7)

Here, we introduced the abbreviations ra = m2
a/m

2
f and

r1 = m2
1/m

2
f . The parameter integrals in the last row can

all be computed analytically. However, their expressions are
unwieldy long, which is why we decided to omit them here.
In the first line

F(yx , r1) = 1

1 − yx

[
h2

(
ra
r1

)
− h2

(
1

x x̄r1

)]
,

and yx = x(1 − x)ra . (4.8)

The function Im1=m2
2 in the equal mass limit has first been

computed in [36]. In this calculation the loop function in the
heavy mass limit needed to be subtracted to obtain the correct
result. The reason why a similar procedure is not necessary
in our calculation is that we changed the basis by applying
the equations of motions, and as a result the ALP features no
derivative couplings in this alternative form of the Lagrangian
(2.3). The advantage of this alternative formulation becomes
clear after a closer inspection of the effective ALP-photon
vertex (3.1). In the infinite mass limit m2

f � k2 the rectan-
gular bracket including the two-loop contribution vanishes.
In the opposite limit m2 � k2 the additional propagator ren-
ders the two-loop contribution finite, allowing us to perform
the calculation in d = 4 spacetime dimensions regardless of
the mass of the inner fermion. However, we want to empha-
size here that both basis choices are of course equivalent, and
consequently our results fully agree with those of Ref. [36].

The remaining parameter integrals can be readily inte-
grated numerically. In certain limits we find it interesting to
report some useful explicit results. The limits m2

a � m2
1 and

m2
f � m2

a,1 yield the same functional behavior for both the
flavor-conserving and flavor-changing case.

123



Eur. Phys. J. C (2024) 84 :571 Page 7 of 16 571

Limit m2
a � m2

1 In the limit that the ALP is much heavier
than the initial state fermion, one can take the limit r = ra

r1
→

∞ to obtain

f (ra) = lim
r→∞

1∫

0

dx F(yx , r1)

= −4√
ra(ra − 4)

{
π2

12
+ ln2

(
1

2

(√
ra − √

ra − 4
))

+Li2

[
−1

4

(√
ra − √

ra − 4
)2

]}
, (4.9)

Its asymptotic behavior is such that

f (ra) = ln
m2

f

m2
a

− 2 + O
(
m2

a

m2
f

)

; m2
f � m2

a,

f (ra) = −m2
f

m2
a

[

ln2

(
m2

a

m2
f

)

+ π2

3

]

+O
(
m4

f

m4
a

)

; m2
f � m2

a .

(4.10)

The fact that a light internal fermion decouples in the Barr–
Zee graphs is more general and holds also if ma ∼ m1. It
follows that for an light internal fermion (m2

f � m2
a) the

sum of all contributions proportional to c f f is

N f
c Q2

f c f f

[

ln
μ2

m2
1

+ δ2 + 3 − h2

(
m2

a

m2
1

)

+ O
(
m2

f

m2
a

)]

.

(4.11)

In essence this means that virtual loop momenta are cut off
for values below the scale max(ma,m1).
Limitm2

f � m2
a,1 In the limit that the inner fermion is much

heavier than both the initial state fermion and the ALP, one
finds that

lim
r1,ra→0

1∫

0

dx F(yx , r1)

= − ln
m2

f

m2
1

+ h2

(
m2

a

m2
1

)

− 7

2
+ O

(
m2

a,1

m2
f

)

. (4.12)

It follows that for an internal heavy fermion (m2
f � m2

a) the
sum of all contributions proportional to c f f is

N f
c Q2

f c f f

[

ln
μ2

m2
f

+ δ2 − 1

2
+ O

(
m2

a,1

m2
f

)]

. (4.13)

In essence, the virtual loop momenta are cut off for values
below the scale m f . For scales μ � m f the heavy fermion
decouples and can be integrated out.
Limitm2

1 = m2
2 = m2

f � m2
a The limit where the initial and

final state fermion coincide with the inner loop-fermion and
the ALP is very light light is mainly relevant in the case of

the chromomagnetic moment of the top quark. The integral
in the first line of (4.7) then reads

lim
r1=1,ra→0

1∫

0

dx F (yx , r1) = 2

3
+ 2π2

9
− 2π

3

ma

m f

+
(

1

3
+ π2

9

)
m2

a

m2
f

+ O
(
m3

a

m3
f

)

. (4.14)

Note that for this special case the expansion is linear in
ma/m f , giving that the ALP mass effects are not as strongly
suppressed as in the other limits that we have discussed here.
The opposite case that m2

1 = m2
2 = m2

f � m2
a is already

covered with the second equation in (4.10).

4.1 Two-loop contributions proportional to c2
γ γ

Two-loop diagrams involving two ALP-photon vertices yield
amplitudes proportional to c2

γ γ and are highly suppressed in
our normalization of the Lagrangian, see for example the
scaling of diagram (d) in Fig. 1. In models where the ALP-
photon coupling is enhanced instead, they can give substan-
tial contributions. The relevant diagrams consist of light-by-
light (LbL) scattering diagrams and ALP insertions into the
internal photon propagator that are similar to the correspond-
ing contribution of pions to the SM vacuum polarization.
The diagrams are shown in Fig. 4. We find it instructive to
to give an estimate of their size and compare their effects
with the two-loop diagrams described in the previous section,
since they arise at the same loop order. In [42] the contribut-
ing diagrams have been calculated to leading logarithmic
order. It was shown that while the LbL contribution gives rise
to double logarithmic corrections, the vacuum polarization
contribution only yields single logarithmic behavior and can
therefore often be neglected. In [43] the contributions where
derived more thoroughly through the means of solving the
renormalization group equations. Furthermore it was noticed
that in the previous work the single logarithmic contribution
was underestimated, yet the conclusion that the double log-
arithmic part gives the dominant contribution was correct.
Translating their findings to the quantities used in this work,
the contributions proportional to c2

γ γ read

F
c2
γ γ

2 (q2 = 0) = em3
μ

(4π)2

(α

π

)2
(
cγ γ

f

)2

×3

8

[

ln2 μ2

m2
μ

+
(

2δ2+56

9
− 2h2

(
xμ

)+ xμ

3

)
ln

μ2

m2
μ

]

,

(4.15)

with xμ = m2
a/m

2
μ. The scale μ should be chosen as

μ ∼ max(mμ,ma). However, if the ALP is too heavy it
should be integrated out from the low-energy effective the-
ory instead. Above the electroweak (EW) scale contributions
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Fig. 4 Feynman diagrams for the 2-loop contribution to the flavor-
conserving process proportional to the ALP-photon coupling only. Left:
Light-by-light scattering. Right: Photon vacuum polarization

from Z bosons need to be taken into account as well. In
our model where we all Z bosons as propagating degrees
of freedom also below the EW scale, their contributions are
negligible.

The diagrams in Fig. 4 are very similar to SM diagrams
with LbL scattering with neutral pions and pion insertions
in the photon propagator. They have been studied intensely
in the literature as they are an important ingredient of the
SM content supplying to the anomalous magnetic moment
of the muon aμ. Note that diagrams of this type cannot give
contributions to flavor-changing observables since the flavor-
change must be provided directly by the ALP.

5 Application to (g − 2)μ and μ→eγ

In this section we apply our findings to the phenomenological
studies of the anomalous magnetic moment of the muon aμ

and the lepton flavor-violating decay μ → eγ . The anoma-
lous magnetic moment defined via aμ = (g − 2)μ/2 is one
of the most precisely measured quantities in particle physics,
measured in the Brookhaven [44] and Fermilab [45] exper-
iments. However, it deviates from its predicted value in the
SM. How large this deviation is cannot be stated without
ambiguity. The reason for this is that there are currently two
methods used for determining the hadronic vacuum polariza-
tion (HVP), the part which is currently giving the dominat-
ing contribution to the theory uncertainty. In the data-driven
approach the HVP is extracted from e+e−-scattering data,
resulting in a discrepancy between the measurement of aμ

and the prediction of over 5σ [46].2 Alternatively, it can be
obtained using only input from lattice calculations by the
Budapest, Marseille and Wuppertal (BMW) collaboration
(BMW) [68], yielding a better agreement with the experi-
mental result. Since the lepton numbers are individually con-
served in the SM, lepton flavor-violating (LFV) decays like
μ → eγ are forbidden. Currently, the best constraint on the
respective muon branching ratio was obtained by the MEG
collaboration and reads Br(μ → eγ ) < 4.2 × 10−13 [69].

2 The theory initiative paper derives their result based on various con-
tributions to the SM prediction [47–67].

Taking neutrino oscillations into account the SM expectation
is Br(μ → eγ )|SM ≈ 10−52. Therefore LFV observables
present an excellent probe of new physics.

5.1 Application to aμ

An ALP coupling to SM particles gives rise to several contri-
butions toaμ. At the one-loop level, they have been calculated
in [33,34]. Here, we extend this computation by including
the two-loop graph with an inserted fermion-loop. The final
result is given by

δaμ = m2
μ

f 2

(
Kaμ( f, μ) − c2

μμ

16π2 h1

(
m2

a

m2
μ

)

− α

8π3 cμμ

[
c̃γ γ Im1=m2

1 +
∑

f

N f
c Q2

f c f f Im1=m2
2

]

︸ ︷︷ ︸
=ceff

γ γ

)
,

(5.1)

and we have ignored the numerically sub-dominant contri-
butions from the Z -boson. The parameter function h1 was
first calculated in [33] and reads

h1(x) = 1 + 2x + (1 − x)x ln x

−2x(3 − x)

√
x

4 − x
arccos

√
x

2
. (5.2)

To disentangle the effects of the different fermion species
in the loop, we decompose the effective ALP-photon cou-
pling ceff

γ γ defined in (5.1) into

ceff
γ γ = cγ γ Im1=m2

1 +
∑

i

Ci cii , (5.3)

where i runs over all SM fermion states. In Fig. 5 we show the
coefficientsCi for the contributions of the individual fermions
for quarks (left) and leptons (right). The shape of the func-
tions can be explained as follows: If the ALP is very heavy,
the light fermion decouples and the contribution to the effec-
tive photon coupling is only dependent on the ALP mass, as
dictated by equation (4.11). Essentially the coupling scales
as limma�m f c

eff
γ γ ∼ N f

c Q2
f ln μ2/m2

a , explaining the lin-
ear pattern in the logarithmically scaled plot as well as the
different slopes for up and down-type quarks, and leptons,
respectively, based on the number of colors. In the oppo-
site regime, m2

a � m2
f , the behavior is instead governed

by (4.13). The effective coupling reaches a plateau whose
value only depends on the mass of the loop fermion. Note
further that, in the up and down quark sector respectively,
light quarks give a bigger contribution than heavy quarks do,
as long as the quark can be considered light when compared
with the ALP. This is expected, since in this regime essen-
tially Ci ∼ Q2

fi
ln μ2/m2

fi
. To get a feeling how strong these

contributions are, we compare the value of the plateau for
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Fig. 5 Coefficients Ci in (5.3) for quarks (left) and leptons (right).
When the ALP is light when compared with the fermion in the loop, the
effective coupling tends to constant plateau, and the value is entirely
governed by the mass of the loop fermion. In the case that the ALP is the

heaviest particle the effective coupling scales as ∼ N f
c Q2

f ln μ2/m2
a .

Hence the behavior is dictated by the ALP mass and the slope depends
on the fermion type, i.e. up or down-type quark or lepton

Fig. 6 Leading order diagrams involving an ALP that contribute to
the anomalous magnetic moment of the muon up to two-loop level.
The contributions are proportional to c2

μμ, cμμc̃γ γ , cμμc f f , c2
γ γ , read-

ing from left to right. Note that for second and third diagram there exists
a mirror diagram, where the ALP leg is interchanged with the photon

leg. In the third diagram the inner loop fermion can run both clock-
wise and counter-clockwise. The fourth diagram has a mirror diagram
where the ALP-photon vertex with one on-shell photon is exchanged
with the other, additionally a diagram where the two rightmost legs are
interchanged and the mirror of that one, too

m2
a � m2

f with the value of the coefficient of cγ γ in that

limit. We find limma→0 Im1=m2
1 = 13.8, where we have cho-

sen the renormalization scale as the top quark mass μ = mt .
Hence, especially light fermions give rise to sizable contri-
butions to the effective ALP-photon coupling if one takes all
ALP couplings to be of the same order cγ γ ∼ c f f .

We find it instructive to compare the effects from the dif-
ferent terms contributing to δaμ (see Fig. 6 for comparison).
For this reason we decompose δaμ into

δaμ = m2
μ

f 2 Kaμ( f, μ)

+ 1

f 2

(
c2
μμδaμμ

μ + cμμc̃γ γ δaμγ
μ

+cμμc f f δa
μ f
μ + c2

γ γ δaγ γ
μ

)
. (5.4)

Combinations of ALP-SM particle couplings missing here
such as terms proportional to c2

f f are of higher loop order and
thus further suppressed. We will neglect these terms here. The
magnitude of the individual terms is compared in Fig. 7. Here

we only keep leptons in the loop in δaμ f
μ . The far dominant

contribution over all ALP masses is δaμμ
μ , exceeding the

others by multiple orders of magnitude. For this reason we
exclude this contribution in the overview for better visibility.
It can be seen from this figure that the two-loop contribution
is of roughly the same order as the one-loop contribution with
a tree-level ALP-photon coupling and therefore should not
be neglected when including the latter one. Note that the LbL
and photon polarization diagrams combined (proportional to
c2
γ γ ) are several orders of magnitude weaker than the cμμc f f

and cμμcγ γ contribution.
The results worked out in this section can easily be trans-

ferred to the similar cases of the anomalous magnetic moment
of the electronae and, in principle, to that of the tau-lepton aτ .
The latter is however experimentally too weakly constrained
to give meaningful constraints on new physics models. Since
it is not entirely clear what the Standard Model predicts for
the value of aμ, we refrain from deriving bounds on the ALP
couplings here.
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Fig. 7 Comparison between the absolutes of different contributions in
δaμ. Note that the LbL and photon polarization terms (proportional to
c2
γ γ ) are several order of magnitude weaker than the other terms. We

assumed c/ f = 1 TeV−1, where c is any ALP-SM coupling

5.2 Application to μ→eγ

An ALP with tree-level flavor-changing couplings can give
rise to LFV decays like μ → eγ . Unlike quark flavor-
changing couplings, lepton flavor-changing couplings cannot
be generated through evolution and matching corrections,
thus they need to be imprinted already at the high energy
scale, where the PQ symmetry is still unbroken [17,19].
Explicit models featuring such a flavor structure include for
example axiflavon models, where the PQ symmetry is identi-
fied with the U (1) symmetry of the Froggatt–Nielsen mech-
anism that could potentially explain the mass hierarchy of
the SM fermions.

Diagrams contributing to the decay rate of μ → eγ are
given in Fig. 3 for the case that an effective ALP-photon cou-
pling is present. Additionally penguin-like diagrams where
the ALP-loop closes on the fermion line also contribute. The
branching ratio is given by

Br(μ → eγ ) = m3
μ

8π�μ

(
|F2(0)|2 + |F5

2 (0)|2
)

, (5.5)

and the form factors read

F (5)
2 (0) = −emμ

64π

|kE |eμ ∓ |ke|eμ
f

(
cμμ

f
g1

(
m2

a

m2
μ

)

+ α

π

[
c̃γ γ

f
Ime�mμ

1 +
∑

f

N f
c Q2

f
c f f

f
Ime�mμ

2

]

︸ ︷︷ ︸
=ceff

γ γ

)
,

(5.6)

where Ime�mμ

1 and Ime�mμ

2 have been given in Eqs. (4.6)
and (4.7), respectively, and

g1(x) = 2x3/2
√

4 − x arccos

√
x

2
+ 1 − 2x

+ x2(3 − x)

1 − x
ln x (5.7)

Note that by taking the limit me � mμ we neglect terms that
scale as m2

e/m
2
μ = O(10−5) in the branching ratio, making

this a reasonable approximation.
As before, we like to show the numerical implications of

including the fermion-loop induced ALP-photon coupling
to the effective ALP-photon coupling. We decompose the
coupling into

ceff
γ γ = cγ γ Im2�m1

1 +
∑

i

Ci cii , (5.8)

in accordance with (5.3). The results for the real parts of the
coefficients are shown in Fig. 8. Overall, the picture looks
very similar to the flavor-conserving case in Fig. 5. While the
effective coupling tends to a constant for ALPs that are very
light, it yields a logarithmic function dependent only on the
ALP mass with the slope in the logarithmic plot dictated by
the number of colors of the inner loop fermion in the case that
the ALP is heavy. Again, it is notable that light fermions in
the loop give a larger contribution than heavy fermions. The
cusps and wiggles of the curves at valuesma ∼ mμ are due to
the fact that ceff

γ γ has imaginary values for ALPs lighter than
the muon mass. We want to give a feeling of the size of the
two-loop effects also in the flavor-changing case. If all cii are
set to zero and only cγ γ is kept, the real part of the effective
ALP-photon coupling in the vanishing ALP mass limit reads
limma→0 Re Im2�m1 = 13.8. Comparing this value to the
value of the plateaus for small ALP masses shows that also in
ALP mediated flavor-changing form factors a loop-induced
ALP-photon coupling is of the same order of magnitude than
a tree-level one.

As an illustration how different coupling structures of the
ALP imprint themselves on constraints on the ALP parameter
space with one lepton flavor-changing coupling, we show the
area of ceμ–ma parameter space derived from the latest limit
on the muon branching ratio Br(μ → eγ ) < 4.2 × 10−13

in Fig. 9. The bound was obtained from the MEG collab-
oration [69]. Here, the LFV ALP coupling is defined as

ceμ =
√

|kE |2eμ + |ke|2eμ. We assume that additionally to

the LFV coupling a diagonal coupling to the other leptons is
present, too. In the plot we distinguish the following cases: In
blue (yellow) we show the scenario where the ALP only cou-
ples to leptons, neglecting (taking into account) the additional
two-loop piece from inserting a lepton loop in the effective
ALP-photon coupling. The areas shaded in orange (red) and
light green (dark green) represent the corresponding scenar-
ios when the ALP features, additionally to the lepton cou-
pling, a coupling to up-type quarks and down-type quarks,
respectively. We keep the ALP mass and its LFV coupling
as free parameters and set all lepton couplings universally
to c��/ f = 1 TeV−1. In a similar way, cuu/ f = ccc/ f =
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Fig. 8 Effective ALP-photon coupling ceff
γ γ in μ → eγ for (left)

a quark and (right) a lepton in the loop. For this plot we assumed
c f f / f = 1 TeV−1. Note that for large ALP masses the functions

become degenerate and the slope depends on the only on the number
of colors and the electric charge of the fermions in the loop

ctt/ f = 1 TeV−1 and cdd = css = cbb = 1 TeV−1 are fixed
in the second and third scenario, respectively. Note that tak-
ing the two-loop contributions into account generally leads
to a weakening of the derived bounds. Even though the abso-
lute bound on the LFV coupling does not change too much
when the two-loop diagrams are considered because the dom-
inant contribution is still given by the penguin-like diagrams
proportional to ceμcμμ, relative corrections of ≈ 10 % are
encountered.

Note that if the ALP mass is below the muon threshold,
i.e. ma < mμ−me, the search for μ → eγ does not give rise
to the strongest constraints on LFV ALP couplings. Stronger
bounds arise from the indirect probes μ → ea → eγ γ and
μ → ea → 3e, where the ALP can be produced on-shell and
subsequently decays into a photon (lepton) pair, as well as
direct probes from searches for μ → ea(γ ). Limits derived
from these experiments are typically many orders of mag-
nitude stronger [18,34,39,70–72]. However, LFV couplings
of heavy ALPs ma > mμ −me are best probed by μ → eγ .

6 Generalization to gluons and application to the
chromomagnetic moment of the top quark

The computations presented for the anomalous magnetic
moment of the muon in section 5.1 are easily generalizable
to non-abelian gauge bosons, giving rise to chromomagnetic
moments of quarks. Especially the chromomagnetic dipole
moment of the top quark μ̂t is an excellent probe for new
physics above the electroweak scale [73–75]. It is defined as
the coefficient of the operator

L ⊃ −μ̂t
gs

2mt
t̄σμνT a t Ga

μν. (6.1)

The latest result on its value was derived by the CMS collab-
oration in two independent measurements [76,77] and yields
the exclusion limit

− 0.014 < Re(μ̂t ) < 0.004 (6.2)

at 95 % confidence level. The ALP could possibly induce
a non-vanishing chromomagnetic moment via the diagrams
given in Fig. 6, where one has to exchange the photons by
gluons. Its contribution is given by

μ̂t = m2
t

32π2 f 2

{
c2
t t h1

(
m2

a

m2
t

)
+ 2αs

π
ctt

[
c̃GGIm1=m2

1

+1

2

∑

q

cqqIm1=m2
2

]}
. (6.3)

The loop functions are given in equations (5.2), (4.5) and
(4.7), respectively. For ALPs that are significantly lighter
than the top quark the two-loop contribution is given by
(4.14). Terms proportional to c̃2

GG are suppressed by an addi-
tional factor of α2

s . Using RG methods, the leading loga-
rithmic contributions have been first derived in [78]. When
we want to derive limits on the ALP parameters entering
(6.3) from the experimental bound (6.2) we must however
mention an important caveat. The measurement puts con-
straints on the value of μ̂t through the operator (6.1) solely.
Any bound derived here therefore implicitly implies that
the ALP’s influence is mostly covered by aforementioned
operator. This means especially that the ALP does not alter
the underlying pp → t t̄ production process significantly.
We consider this assumption justified for the heaviest ALPs
ma � mϒ ≈ 10.58 GeV.

We show our derived bounds in Fig. 10 for varying ALP
masses for the three cases that the ALP couples only to the
top quark (red), the top quark and gluons (green), and the
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Fig. 9 Parameter space excluded by the non-observation of μ → eγ
for different coupling structures of the ALP, i.e. a coupling only to lep-
tons (light blue and dark blue), leptons and up-type quarks (orange
and red) and leptons and down-type quarks (light green and dark
green). To visualize the effect of our findings, we show the limits
for the given coupling structures on the flavor-violating ALP coupling

ceμ =
√

|kE |2eμ + |ke|2eμ when the two-loop contribution is neglected

(first color) and taken into account (second color). The diagonal ALP
couplings are assumed to be c f f / f = 1 TeV−1. We show the constraints
in the two regions ma � mμ (left) and ma � mμ (right). For ma < mμ

stronger bounds on |ceμ| than shown here arise from experiments like
μ → 3e and direct searches for μ → ea decays

top quark and down-type quarks (blue). In light red we show
the derived bounds for top couplings only in the case that the
two-loop contribution Im1=m2

2 is neglected. Note that similar
to the μ → eγ discussion including two-loop terms leads to
a weakening of the derived constraint on the ALP parame-
ter. We assume that all non-vanishing couplings are of the
same order, i.e. ctt ∼ cGG ∼ cqq ∼ c. The case in which
the ALP couples uniformly to all up-type quarks is not por-
trayed, because in the plot it would be indistinguishable from
the second case (top and gluon coupling). This observation
is easy to explain: The one-loop contribution is proportional
to the coupling structure c̃GG = cGG +1/2

∑
cqq . The cou-

pling ctt must be present to generate a non-vanishing μ̂t in
the first place. Hence, taking the additional couplings to up
and charm quarks into account has the same effect as keeping
a tree-level ALP-gluon coupling, for the assumption that all
ALP couplings are of the same order. For all quarks other than
the top quark the two-loop contribution Im1=m2

2 is negligible.
Comparing the two red regions in the plot, we emphasize that
the two-loop corrections entering the effective ALP-gluon
coupling should not be neglected. For an ALP with a mass
of ma = 100 GeV, the corrections to the derived bound are
of the order of ∼ 10 %.

Fig. 10 Parameter space excluded by searches for the chromomagnetic
dipole moment of the top quark. Excluded regions are shown for the
case when the ALP couples only to top quarks (light and dark red),
additionally to gluons (green), and top quarks and down-type quarks
(blue). All analysis assume that the couplings are of the same order
ctt ∼ cGG ∼ cqq ∼ c. The scenario where the ALP couples uniformly
to all up-type quarks coincides with the one where a coupling to top
quarks and gluons is present, assuming all couplings are of the same
order of magnitude. In the light red region we neglected the contribution
from the two-loop graph, giving rise to an overestimation of the excluded
parameter space of ∼ 10 % for ma = 100 GeV
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7 Conclusions

Axion-like particles are among the best motivated models
for physics beyond the Standard Model. Since they arise as
pseudo-Nambu-Goldstone bosons of a high-energy sponta-
neously broken U (1) symmetry, they are part of many mod-
els. Furthermore they have the potential to tackle multiple
issues of the SM at once, such as the strong CP problem
and the absence of dark matter in the SM. In an often used
formulation of the most general ALP-Lagrangian the Wil-
son coefficient associated with the ALP-photon coupling (or
a general ALP to gauge boson coupling) is suppressed by
a factor of α/(4π). The advantage of this normalization is
that up to two-loop order the gauge-boson couplings of the
ALP are scale independent. However, this comes at the price
that when the ALP-photon coupling is replaced by an ALP
coupling to a fermion loop that radiates the two photons, this
additional loop contributes with the same power of the QED
coupling constant. For a consistent treatment of ALP-photon
couplings it is therefore necessary to include this contribution
into the computations of Feynman diagrams.

In this work we have studied the impact of the added
fermion loop contribution to ψ1 → ψ2γ form factors. Exam-
ples where such form factors appear in phenomenological
studies are the lepton flavor-violating decay μ → eγ , as
well as the flavor-conserving observable of the anomalous
magnetic moment of the muon aμ. For the physically rele-
vant cases that either the two fermions ψ1 and ψ2 are the
same, or that the final state fermion is much lighter than the
initial state one, we were able to derive explicit expressions
for both the one-loop as well as the fermion-loop induced
two-loop contribution to the form factor. The mass hierar-
chy between the different fermion families ensures that the
assumption m2 � m1 in the flavor-violating case is indeed
justified. We find that generally for both flavor-conserving
and -violating processes the two-loop piece shows the same
behavior in certain mass limits: If the ALP is much heavier
than the loop fermion, the latter decouples in the Barr–Zee
graphs and in essence the virtual loop momenta are cut off
for values below the highest mass scale in the process. If on
the other hand the inner loop fermion is much heavier than
both the ALP and the initial state fermion, the loop fermion
can be integrated out.

Eventually, we applied our findings to the two lepton
observables of (g − 2)μ and μ → eγ . We find for both
scenarios that the effective ALP-photon coupling including
the one and two-loop contributions shows a similar behavior.
When the inner fermion is heavy, the ALP-photon coupling
tends to a constant dependent only on the fermion’s mass.
When the ALP is the heaviest particle instead, the effective
coupling is a linear function of the ALP mass in logarithmic
plots and the slope is dictated by the number of flavors in the
loop. We showed that neglecting the two-loop contribution

results in an overestimation of the effects of up to ≈ 10 %.
For the LFV observable μ → eγ we presented the impact
of this finding on the excluded parameter space in the three
scenarios where the ALP features additionally to the LFV
coupling a coupling to leptons, leptons and up-type quarks,
and leptons and down-type quarks, respectively. A similar
analysis is currently not possible for the anomalous mag-
netic moment of the muon, because it is unclear what the SM
predicted value is due to the discrepancy of the two generally
used methods to extract the hadronic vacuum polarization,
i.e. the term that is currently driving the SM error budget.

In the last section we eventually generalized our results to
the study of the chromomagnetic moment of the top quark.
We found that the insertion of the fermion loop has an impact
only when the fermion in the loop itself is a top quark, too.
Neglecting this effect however gives rise to an overestimation
of the excluded parameter space of about 10 %.
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