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1 Introduction

Supersymmetry and R-symmetry Ward identities impose linear relations among n-point on-
shell supergravity amplitudes. The superamplitudes satisfying Ward identities are consistent
with linearized supersymmetry.

It is also possible to study linearized supersymmetry constraints in supergravity using
superinvariants. These are integrals over linearized superspace of Lagrangians depending
on linearized superfiedlds. In this case, a dimensional analysis is available, and it leads to
specific predictions with regard to candidate counterterms and soft scalar limits.

A relation between superamplitudes and linearized superinvariants is known in various
examples. Here, we will present a universal relation that exists between these two approaches
to linearized supersymmetry in various dimensions.

In 4D supergravities, Ward identities for multi-point superamplitudes are known in
maximal supergravity case [1]. Explicit solutions to these Ward identities were given in [2].
The method developed in [2] to produce superamplitudes, solutions of Ward identities for
N = 8, was adapted to 4D supergravities with N = 5, 6 in [3]. The purpose of studying
6-point superamplitudes in [3] was to understand their soft scalar behavior. It was also
observed in [3] that the study of local superinvariants gave the same results as the actual
solutions of Ward identities for 6-point superamplitudes in all cases N ≥ 5.

Ward identities for superamplitudes were explored in general for higher dimensions; see,
for example, [4] and references therein. In type IIB 10D supergravity in [5, 6] the form
of the Ward identities for the amplitudes in maximal 10D supergravity was proposed and
investigated. Here we will generalize it to D ≥ 4 N -extended supergravities.
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Recently, a set of local 6-point superinvariants was studied in [7] in 6D maximal super-
gravity. It was observed1 that the properties of superamplitudes in 10D and superinvariants
in 6D are consistent.

The purpose of this note is to propose a form of Ward identities for multi-point super-
amplitudes for supergravities in diverse integer dimensions. In particular, this will make
clear the relation between linearized superinvariants and superamplitudes for D-dimensional
supergravities with N -extended supersymmetries.

Our main applications of the studies of Ward identities for amplitudes will be with regard
to cases where there is no 1-loop anomaly in R-symmetry. Namely, in 4D, there are no 1-loop
R-symmetry anomalies at N ≥ 5, and in 6D, there is no 1-loop R-symmetry anomaly in
maximal supergravity [8]. But in both cases, the status of soft scalar limits of the 6-point
amplitudes, i.e., the status of 1-loop G-symmetry anomalies, has not been established.

We will find out that the solution of the Ward identities for local amplitudes combined
with dimensional analysis directly gives correct results concerning soft scalar limits without
the need to perform complicated calculations of the explicit 6-point superamplitudes.

2 Superamplitudes and Ward identities in D-dimensional supergravity

Consider multi-point superamplitudes, which are constrained by the requirement of linearized
supersymmetry. Let us first ignore the issue of dimensions, loop order, and power of gravita-
tional coupling. We just require the n-point superamplitudes to be linearly supersymmetric,
i.e., satisfy Ward identities. The nice form of on-shell supersymmetry Ward identities for
amplitudes in 10D type IIB maximal supergravity was given in [5]. We generalize it here
for other dimensions and N -extended supergravities.

Following [9] we describe the field contents of ungauged supergravities as determined
by irreducible representations of the super Poincaré algebras. There are translations Pa,
generators of Lorentz transformations Mab, supercharges Qαi, and generators of automorphism
group T A. In cases of massless states, there are no central charges

[Mab, Qi] = 1
2γabQ

i , [T A, Qi] = (tA)i
jQj , [T A, T B] = fAB

CT C . (2.1)

Here tA and fAB
C are representation matrices and structure constant of the Lie algebra of

the automorphism group. The automorphism group is R, and the form of anticommutators
{Q, Q} depends on the spinor type of Qi.

The spinors in various dimensions have different properties described in [9]. They could
be Weyl, Majorana, symplectic (pseudo) Majorana, Majorana-Weyl, and symplectic (pseudo)
Majorana-Weyl spinors. In even dimensions, the supersymmetry algebra can be presented via
spinors of positive and negative chirality. In odd dimensions, the supercharges are (pseudo)
Majorana in 9D and 11D, and symplectic (pseudo) Majorana in 5D and 7D.

In all dimensions, there is a choice of supersymmetries with a total amount of 4N , which
can be split in half, 2N+2N . The choice in each case is defined by the choice of the 1/2 BPS
superfields, which depend on 1/2 of fermionic directions. It is known in each dimension. In

1C. Wen, Y.-t. Huang, private communication and [7].
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applications to n-point amplitudes we define these two sets as QA and Q̃A

QA =
n∑

i=1
qA

i =
n∑

i=1
(λi ηi)A , Q̃A =

n∑
i=1

q̃A
i =

n∑
i=1

(
λi

∂

∂ηi

)A
, i = 1 , . . . , n , A = 1, . . . , 2N ,

where
{QA, Q̃B} = γAB

a P a , {QA, QB} = 0 , {Q̃A, Q̃B} = 0 . (2.2)

The n-point amplitude is defined as

A = δD(P )δ2N (Q)F(λi, ηi) . (2.3)

The amplitude is manifestly supersymmetric under the action of the Q operator, i.e. under
1/2 of supersymmetry. However, the action of the operator Q̃ leads to Ward identities

Q̃A = δD(P )δ2N (Q)Q̃[F(λi, ηi)] = 0 . (2.4)

There are 3 types of solutions given in [5] in the 10D case. These are also valid in general
dimensions.2

1. The first solution requires that F is η independent

F(λi, ηi) = F(λi) = f(sij) . (2.5)

The supersymmetric amplitude is

A = δD(P )δ2N (Q)f(sij) (2.6)

since {Q, Q̃} = γaP a, and there is a delta-function δD(P ), the amplitude has all 4N
supersymmetries. These are superamplitudes of the 1/2 BPS type.

2. A CPT conjugate amplitude A is also supersymmetric. An example in the 10D case is
given in eq. (6) of [5].

3. The function F is η-dependent, and this dependence is strongly constrained by the
Ward Identity. The function F(λi, ηi) has to be of the form

F(λi, ηi) = Q̃ h(λi, ηi) =
n∑

j=1
λj

∂

∂ηj
h(λi, ηi) (2.7)

and Ward identities (2.4) are satisfied

Q̃[F(λi, ηi)] = Q̃2 h(λi, ηi) = 0 . (2.8)

Therefore the solution to Ward identities is

Q̃A = 0 → A = δD(P )δ2N (Q)Q̃ h(λi, ηi) . (2.9)

Thus, the n-point amplitude satisfying supersymmetric Ward identities has the form
given in (2.9) where the function h(λi, ηi) in not constrained as long as the total
amplitude has a factor

δ2N (Q)Q̃ , (2.10)
2See however appendix A here where we discuss one-quarter and one-eighth linearised BPS superinvariants.
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which has dimension 2N as this expression involves the product of 4N λ’s which
are spinor helicity variables of dimension 1/2. Note that in amplitudes, the η’s are
dimensionless variables. Thus we observe that these superamplitudes are associated
with superinvariants where the θ and θ̃ variables have dimension 1/2.

δ2N (Q)Q̃ ⇐⇒ d2N θd2N θ̃ , dim 2N . (2.11)

These superamplitudes are non-BPS type.

3 Dimensional analysis of superamplitudes

Consider the amplitudes at the L-loop order in D-dimensional N -extended supergravity. In
front of the L-loop superamplitude, we have a gravitational coupling

κ2(L−1)A (3.1)

where dimension of κ2 is (2 − D).

1. The half-BPS amplitudes are

κ2(L−1)ABPS = κ2(L−1)δD(P )δ2N (Q)f(sij) . (3.2)

therefore the dimension counting is (2 − D)(L − 1) − D + N + dim f(sij) = 0 and

dim[f(λi)] = (D − 2)L + 2 −N . (3.3)

Consider an example of 6D maximal N = 8 supergravity 4-point superamplitude. At
L = 0 dim[f(sij)] = −6, at L = 3 dim[f(sij)] = 6. This agree with the L = 0 result
in [10] where f = 1

stu and L = 3 result in [7] where f = stu.
Another example is 4D maximal supergravity 4-point amplitudes. At L = 0

dim[f(sij)] = −6, at L = 3 dim[f(sij)] = 0. This agree with the L = 0 result in [11]
where f = 1

stu and L = 3 where f = const.
2. The non-BPS n-point amplitudes are

κ2(L−1)Anon-BPS = κ2(L−1)δD(P )δ2N (Q)Q̃ h(λi, ηi) . (3.4)

Dimension counting is (2 − D)(L − 1) − D + 2N + dim[h(λi, ηi)] = 0 and

dim[h(λi, ηi)] = (D − 2)L + 2 − 2N . (3.5)

We find that to have supervertices, i.e., superamplitudes with no poles in momenta
with dim[h(λi, ηi)] ≥ 0 requires that

(D − 2)L + 2 − 2N ≥ 0 . (3.6)

For example, in 4D we need L ≥ N − 1 to have supervertices (no poles). But at
L ≤ N − 2 these supervertices are not available, which results in a non-vanishing scalar
soft limits and broken E7(7) symmetry if there were UV divergences at L ≤ N − 2.
This is in full agreement with [12] for N = 8 and with [3] for N ≥ 5. Moreover, we
have observed that already based on supersymmetric Ward identities and dimensional
analysis of superamplitudes, it was possible to establish this result without explicit
computations of the 6-point superamplitudes.
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4 Dimensional analysis of linearized superinvariants

Half-BPS linearized superinvariants are

SBPS = κ2(L−1)
∫

d2N θdDxLBPS . (4.1)

Dimension of κ2 is 2 − D. For the action to be dimensionless we require that

dim LBPS = L(D − 2) + 2 −N . (4.2)

For non-BPS superinvariants we have

Snon-BPS = κ2(L−1)
∫

d4N θdDxLnon-BPS . (4.3)

and
dim Lnon-BPS = L(D − 2) + 2 − 2N . (4.4)

In amplitude applications, what we would like to call “local multi-point superinvariants”
are often called supervertices, namely superamplitudes with no poles in momenta, see, for
example, [5]. Let us find out the smallest loop order where n-point supervertices are available.
Consider superinvariants in eq. (3.4) where

L(2 − D) − 2 + 2N + dim Lnon-BPS = 0 , (4.5)

and
L = 2(N − 1) + dim Lnon-BPS

(D − 2) . (4.6)

Below this loop order, there are no local multi-point superinvariants, i.e., there are no
superamplitudes without the poles in momenta.

Consider known examples where for local superinvariants we require that

dim L ≥ 0 . (4.7)

In 4D we can take dim L = 0 as it depends on a product of n superfields with scalars in
the first component. The R-invariant n-point local multi-point superinvariants with n ≥ 6
according to (4.5) are available starting with

L = N − 1 , D = 4 , (4.8)

and they are not available at L ≤ N − 2 in 4D. This is a result obtained in [3] based on
analysis of superinvariants.

This simple statement for superinvariants was confirmed by direct computations of
NkMHV 6-point superamplitudes in N = 5, 6, 8 supergravities [3]. The result of the compu-
tation, using solutions of Ward identities, did confirm the linearized superinvariant analysis.

Now we take 6D maximal supergravity where there is a UV divergence at L = 3 [13]. It
was found in [7] that local multi-point superinvariants R-symmetry invariants are available
starting with

L = 14 + dim L
4 > 3 , D = 6 , N = 8 . (4.9)
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But unlike in the 4D case, the computation of the relevant 6-point superamplitude has
not yet been performed. It would confirm that at L=3 there are no R-invariant local (no
poles) superamplitudes.

In 8D, one finds in maximal supergravity case where there is a UV divergence at L = 1 [14]
that local multi-point superinvariants are available starting with

L = 14 + dim L
6 > 2 , D = 8 , N = 8 . (4.10)

5 R symmetry

The supervertices in eq. (2.6), which we call half-BPS amplitudes in all dimensions, are also
called F-term vertices in 10D case [5], and MRV (Maximal R-symmetry Violating) amplitudes
in [15]. In 4D, these are known as MHV, Maximally Helicity Violating amplitudes, but
these do not exist in other dimensions [15].

4-point superamplitudes/superinvariants make an exception in all dimensions. The BPS
4-point amplitudes do not break R-symmetry. The existence of BPS amplitudes consistent
with R-symmetry for 4-point amplitudes is known in 4D supergravities [16, 17] where it
was proven for local BPS superinvariants. In 10D, it was proven in [15] that for n > 4,
BPS superamplitudes R-symmetry is broken, but it is preserved for n = 4. Finally, in 6D,
it was proven in [7] that 4-point BPS superinvariants have unbroken R-symmetry, but the
ones with n > 4 break R-symmetry.

Also, in known examples, the 4-point superamplitudes defined as half-BPS invariants in
eq. (2.6) are consistent with R-symmetry. However, at higher point amplitudes n > 4, the issue
of R-symmetry is more complicated, and these BPS superamplitudes often break R-symmetry.

However, there are cases of n-point half-BPS superamplitudes/linearized superinvariants
with n > 4, which preserve R-symmetry. For example, in [18] in 4D N = 4 supergravity, there
is a half-BPS 5-point amplitude which is not anomalous under U(1) symmetry. It corresponds
to a rational part of the 5-point amplitude R5 computed in [19]. The corresponding U(1)
preserving superamplitude is given in eq. (4.13) in [18]. Here, we will present it in the form
of the linearized superinvariant

MHV(3,2) = M1 + M2 (5.1)

where
M1 =

∫
d8θ̄

1
s45s43s53

W 1W 2C3 ∗ C4 ∗ C5 (5.2)

and

M2 =
∫

d8θ̄
1

s2
34s25s35s45

W 1 ∂α
α̇∂β

β̇W 2(∂γ
α̇C3 ∗ ∂δ

β̇ C4)C5 αβγδ + {1, 2} + {3, 4, 5} .

(5.3)

Here

W i ≡ W (pi, θ̄) , C3 ∗ C4 ∗ C5 ≡ Cαβ
γδ(p3, θ̄)Cγδ

µν(p4, θ̄)Cµν
αβ(p5, θ̄) (5.4)

∂C3 ∗ ∂C4 ≡ ∂Cαβ
γδ(p3, θ̄)∂Cγδ

αβ(p4, θ̄) . (5.5)
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The fact that this half-BPS 5-point superinvariants/superamplitudes preserve U(1) is obvious.
The Weyl superfields Cαβ

γδ have zero U(1) charge, and two W̄ ’ have U(1) charge canceling
the ones from a half-BPS measure of integration.

In these superinvariants

dim[L1(x, θ̄)] = dim
[ 1

∂6 W
2
C3
]

= 0 dim[L2(x, θ̄)] = dim
[ 1

∂10 W ∂2W∂C∂CC

]
= 0 .

(5.6)

We can compare it with explicit expressions for the superamplitudes for [18] in half-BPS (2.6)

dim[f1(λi)] = dim
[ [34][45][53]
⟨34⟩⟨45⟩⟨53⟩

]
= 0 , dim[f2(λi)] = dim

[
[34]2

⟨34⟩2
[25]⟨23⟩⟨24⟩
⟨25⟩⟨35⟩⟨45⟩

]
= 0 .

(5.7)

This is an example of the R-invariant half-BPS 5-point superamplitude in eq. (3.3) in 4D

at N = 4 and L = 1

dim[f(λi)] = (D − 2)L + 2 −N = 2 + 2 − 4 = 0 . (5.8)

On the other hand, the known examples of non-BPS n-point amplitudes with n > 4 satisfy
Ward identities in eq. (2.9) can easily preserve R-symmetry. One can see from eq. (2.11)
that the part of the superamplitude has a factor δ2N (Q)Q̃ analogous to the measure of the
integration over the whole superspace d2N θd2N θ̃ which has R-symmetry.

To keep R-symmetry using whole superspace superinvariants, one needs to have also
a Lagrangian L preserving R-symmetry∫

d2N θd2N θ̃dDxL(x, θ, θ̃) . (5.9)

In superamplitudes (2.9), the function h(λi, ηi) has to be taken in the form preserving
R-symmetry to have R-symmetric n-point superamplitudes.

6 Application to 4D N ≥ 5 supergravity soft limits

In [3], the computation of 6-point superamplitudes was performed. The results were that the
local superamplitudes are available starting from L = N − 1 but not below this loop order.

Here, instead of computing 6-point superamplitudes satisfying Ward identities, we present
an alternative derivation of the same result. R-symmetry invariant n-point amplitudes with
n > 4 require the form of solutions of Ward identities given in (3.4), (3.5), (3.6)

Supervertices (superamplitudes without poles) are available for n-point amplitudes, n > 4
in 4D supergravity starting with

dim[h(λi, ηi)] = 2L + 2 − 2N = 2(L − (N − 1)) ≥ 0 . (6.1)

This means that 6-point superamplitudes, supervertices without poles, are available at

L ≥ N − 1 . (6.2)

– 7 –
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This confirms the computation of 6-point superamplitudes in [3] where it was found that all
constructed 6-point superamplitudes with non-vanishing soft scalar limit are not local.

Here, we have found a way around the complicated computation of all explicit 6-point
amplitudes of the kind performed in [3]. It was possible to use a non-explicit solution of 4D

Ward identities in eq. (3.4) and only study the dimension of the relevant function h(λi, ηi).
Let us illustrate the case with N = 8, L = 6 where there are no local 6-point super-

amplitudes, according to (6.1).
To study soft limits, we need a 6-point superinvariant with bosonic part

κ10
∫

d4x ∂6 R4 ϕijkl ϕ̄ijkl . (6.3)

We can try

κ10
∫

d4x d32θ ∂2l(Wijkl W̄ ijkl)3 . (6.4)

It means that −10− 4 + 16 + 2l = 0, and l = −1 so the relevant supersymmetric expression is

κ10
∫

d4x d32θ (Wijkl W̄ ijkl)3∂−2 , (6.5)

and it is non-local. Using superamplitudes (6.1) we find the same dimension of h as dimension
of L = ∂2l(Wijkl W̄ ijkl)3 with l = −1

dim[h(λi, ηi)] = 2(6 − 7) = −2 . (6.6)

Thus, we see that at L = 6, maximal 4D supergravity does not have a local expression
with bosonic part ∂6 R4 ϕ ϕ̄. This, in turn, means that the 4-point UV divergence at L = 6
maximal 4D supergravity would imply that the E7(7) symmetry is broken. This conclusion
was reached in [12] using string theory and in [3] using superinvariants. Here we deduced the
same result using dimensional analysis of 4D superamplitudes satisfying Ward identities.

7 Applications to 6D maximal supergravity soft limits

The supercharges are symplectic Majorana-Weyl spinors with positive chirality Qi
+

(i = 1, 2, · · · , N+) and symplectic Majorana-Weyl spinors with negative chirality Qi
− (i =

1, 2, · · · , N−). They satisfy Ωij
+(Qj

+)c = Qi
+, Ωij

−(Qj
−)c = Qi

−, where Ωij
± are antisymmetric

matrices. The numbers N+ and N− must be even. The automorphism group is USp(N+)
× USp(N−). Anticommutators of the supercharges are

{Qi
+, QjT

+ } = 1
2(1 + γ̄)γaC−PaΩij

+ ,

{Qi
−, QjT

− } = 1
2(1 − γ̄)γaC−PaΩij

− ,

{Qi
+, QjT

− } = 1
2(1 + γ̄)C−Zij . (7.1)

Consider maximal 6D supergravity and 1/2 BPS superfields

N+ = 4 , N− = 4 . (7.2)

– 8 –
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The R symmetry group is USp(4)×USp(4). It coincides with the isotropy group H associated
with the coset G

H = E5(5)
USp(4)×USp(4) . It is convenient to discuss the ultrashort multiplets using

the following choice of the 4 × 4 Ω±-matrix [20](
0 I
−I 0

)
, (7.3)

here I is the 2 × 2 identity matrix. The non-vanishing entries in the r.h.s. of supersymmetry
algebra are

Ω13
± = Ω24

± = 1 . (7.4)

Spinor coordinates of the superspace satisfy a Majorana-Weyl pseudoreality condition

θ̄i = Ωijθβ
j cβα . (7.5)

The spinor derivatives satisfy the supersymmetry algebra

{Di
α, Dj

β} = iΩijγµ∂µ . (7.6)

The 25 scalars are given by V â
a field in SO(5) × SO(5) form, a, â = 1, 2, 3, 4, 5. The BPS

superfield is described in USp(4) × USp(4) basis so that the first component is

V îĵ
ij = γa

ijV â
a γ îĵ

â . (7.7)

Using linearized supersymmetry of the 6D maximal supergravity action [21, 22] one finds
that the superfield W 1̂2̂

12 (x, θ) depends only on half of fermionic coordinates

Dα1W 1̂2̂
12 = Dα2W 1̂2̂

12 = Dα̂1̂W 1̂2̂
12 Dα̂2̂W 1̂2̂

12 = 0 . (7.8)

This is consistent with the choice of the symplectic matrix Ω in (7.3). By making this
choice of the superfield, we have broken USp(4) × USp(4) R symmetry down to its sub-
group SU(2) × SU(2).

Now we can apply this information to 6D multi-point superamplitudes along the lines
used for type IIB supergravity amplitudes in 10D in [5]. The n-point amplitude is defined as

A = δ6(P )δ16(Q)F(λi, ηi) . (7.9)

Here
δ16(Q) = δ8

(
n∑

i=1
qA,I

i

)
δ8
(

n∑
i=1

q̂Î
i,Â

)
, (7.10)

which has manifest permutation symmetry. Here the supercharges are defined as qA,I
i =

λA
i,aηI,a

i , and q̂Î
i,Â

= λ̂i,Â,âη̂Î,â
i . These are half of the supercharges, and the other half involve

η derivatives. I, Î = 1, 2 and A, Â = 1, 2, 3, 4. Conservation of these additional supercharges
automatically follows from the first set together with the R symmetry. With

Q =
n∑

i=1
λi ηi Q̃ =

n∑
i=1

λi
∂

∂ηi
, (7.11)
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we recover the susy algebra in (2.2). The amplitude is manifestly supersymmetric under
the action of the Q operator, i.e. under 1/2 of supersymmetry. The action of Q̃ is more
constraining, in general. We have already explained this in [7] in terms of superinvariants. At
that time, the relevant information from the point of view of superamplitudes was proposed
in the context of 10D type IIB supergravity amplitudes. Here we can do it directly in the
framework of linearized 6D maximal supergravity amplitudes.

Consider R-invariant multi-point superamplitudes in 6D. The n-point superamplitudes
with n > 4 at L-loop order satisfying linearized Ward Identity at maximal supergravity are

κ2(L−1)δ6(P )δ2N (Q)Q̃ h(λi, ηi) , (7.12)

where according to (3.5) in 6D and N = 8

dim[h(λi, ηi)] = 4L − 14 . (7.13)

Thus, at L = 3 we find that

dim[h(λi, ηi)] = 12 − 14 = −2 (7.14)

and at 3-loops, there are no supervertices! There was again no need actually to find the
explicit solutions of Ward identities for the 6-point amplitudes, as we did in [3] in 4D case.
It was sufficient to establish the dimension of the function h(λi, ηi), as we did also above
for the 4D N ≥ 5 supergravities in section 6.

This, in turn, means that the 4-point UV divergence at L = 3 maximal 6D supergravity
breaks E5(5) symmetry since the soft scalar limit of the total 6-point amplitude is broken.

Thus, in addition to the analysis of superinvariants, we have also shown that the
superamplitudes in 6d supergravity lead to the same conclusion.

A nice example of the 10D 6-point superamplitude was already given in [6] and discussed
in [7]. In 6D, the 3-loop UV divergence is of the type κ4 ∫ d4x∂6R4. We are looking at the
local SO(5) × SO(5) invariant amplitude with two additional scalars

κ4
∫

d4x∂6R4ϕâ
aϕb̂

bδ
abδâb̂ , a, â = 1, 2, 3, 4, 5 . (7.15)

A supersymmetric one would take a form (3.4)

κ4Anon-BPS = κ4δ6(P )δ16(Q)Q̃ h(λi, ηi) . (7.16)

We already know that dimension of h here is negative, so the superamplitude has a pole.
It is interesting to see how it depends on λ and η’s.

The scalar superfields have a graviton at the 4th component, so to have 4 gravitons we
need 16 η’s. One of the scalars has η0, the other one has η8, one is the first component of the
BPS superfield, the other one is the last. So we need the total of η’s in h to be 24. This is
literally the superamplitude given in [6] for 10d type IIB supergravity and discussed in [7]

δ16(Qn)(Q̄n)16(ηi)8(ηj)8(ηk)8 . (7.17)
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To be more specific, in 6D at 3-loop order, we have the following superamplitude, which
includes 4 gravitons and 2 scalars which is USp(4) × USp(4) invariant

κ4δ6(P )δ16(Qn)(Q̄n)16(η)24h(λ) , dim h(λ) = −2 . (7.18)

Note that we have 32 λ’s in δ16(Qn)(Q̄n)16 which gives 16 in momenta, and only −14 from
κ4 and δ6(P ) at L = 3. Now we can see why the 10D superamplitude in (7.17) is in
agreement with our superinvariant analysis in 6D in [7] as well as our new analysis here of
the superamplitudes satisfying Ward identities in 6D as given in eq. (7.18) here.

The relevant 6-point candidate 3-loop linearized superinvariants does not exists since
the action has a negative dimension

dim
[
κ4
∫

d6x d32θ Tr V 6
]

= −2 . (7.19)

Here
Tr V 6 = V â

a V b̂
b V ĉ

c V d̂
d V ê

e V f̂
f tabcdef

âb̂ĉd̂êf̂
(7.20)

and tabcdef

âb̂ĉd̂êf̂
is an SO(5) × SO(5) covariant tensor. V â

a is a scalar superfield starting with a
25-components scalar field ϕâ

a. Its dimension is the same as in a relevant superamplitude
in eq. (7.18).

8 Summary

Supersymmetric Ward identities for linearized extended N ≥ 5 supergravities in 4D are
known for a long time [1–3]. We have found here that the more recent understanding of
supersymmetric Ward identities in 10D type IIB supergravity in [5, 6] allows a nice and
useful generalization of these identities to D ≥ 4 and extended N ≥ 5 supergravities.

It is satisfying to see this kind of universality with regard to Ward identities for amplitudes.
The short summary is that

1. 1/2 BPS superamplitudes have the form

κ2(L−1)δD(P )δ2N (Q)f(sij)x (8.1)

and
dim[f(sij)] = (D − 2)L + 2 −N . (8.2)

This is to be compared with the 1/2 BPS linearized superinvariants of the form where
we integrate over 1/2 of the superspace a Lagrangian depending on superfields

κ2(L−1)
∫

dDxd2N θLBPS
(
ϕ(x, θ)

)
, (8.3)

and
dim[LBPS(ϕ(x, θ))] = (D − 2)L + 2 −N . (8.4)

Thus
dim[LBPS(ϕ(x, θ))] = dim[f(sij)] . (8.5)
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2. Non-BPS n-point R-invariant superamplitudes with n > 4 have the form

κ2(L−1)δd(P )δ2N (Q)Q̃ h(λi, ηi) , (8.6)

and
dim[h(λi, ηi)] = (D − 2)L + 2 − 2N . (8.7)

This is to be compared with the non-BPS linearized superinvariants of the form where
we integrate over the whole superspace a Lagrangian depending on superfields

κ2(L−1)
∫

dDxd4N θLnon-BPS
(
ϕ(x, θ)

)
, (8.8)

and
dim[Lnon-BPS(ϕ(x, θ))] = (D − 2)L + 2 − 2N . (8.9)

Here we also note that

dim[h(λi, ηi)] = dim[Lnon-BPS(ϕ(x, θ))] . (8.10)

If the dimension of L(ϕ(x, θ)) is negative, the superinvariant is not a local one; some
insertion of inverse derivatives is required like ∂−2. But if the dimension of L(ϕ(x, θ)) is
not negative, we have a local superinvariant. If the dimension of the function h(λi, ηi) is
negative, it means that λ’s are in denominator, and there are some poles in momentum
space since p is quadratic in λ’s. Here η’s are dimensionless. If the dimension of h(λi, ηi)
is non-negative, the corresponding superamplitudes are so-called supervertices; they
have no poles in momentum space. It is, therefore, not surprising that superamplitudes
and linearized superinvariants have the same predictions.

The examples are in 4D N ≥ 5, where there are no 6-point supervertices at L < N − 1,

dim[h(λi, ηi)] = dim[Lnon-BPS(ϕ(x, θ))] = 2(L − (N − 1)) , (8.11)

since at L < N − 1, both superamplitudes as well as superinvariants are non-local. In [12]
and in [3] it was shown using superamplitudes as well as superinvariants.

In maximal 6D

dim[Lnon-BPS(ϕ(x, θ))] = dim[h(λi, ηi)] = 4L − 14 . (8.12)

The absence of 6-point supervertices at L ≤ 3 was proven in [7] using linearized superin-
variants. Here we have shown that the same result follows from superamplitudes satisfying
Ward identities.

The nice thing we have learned here is that it was not necessary to compute explicitly
the 6-point amplitudes satisfying Ward identities, as we did in 4D case in [3] for L ≤ N − 1.
It was sufficient both in 4D and in 6D cases to establish a dimension of the function h(λ, η)
which appears in the solutions of Ward identities. That allowed us to find out here that
certain 6-point amplitudes are not local, which was important for the soft scalar limits studies.

The actual computation of the n-point amplitudes is necessary when we are looking
for the 1-loop anomalies. This was the case in 4D N = 4 supergravity [23]. The existence
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of linearized n-point half-BPS superinvariants with non-vanishing soft scalar limits was
established, for example, there was a term

dn+2
(4π)2

∫
d4xd8θW n+2 + cc (8.13)

where the actual value of dn was not known. The corresponding superamplitude with 2
gravitons and n scalars was also known to be proportional to δ8

(∑n
i=1 η̃iλ̃i

)
. But the actual

computation of this amplitude has confirmed that dn+2 = 1
2(4π)2

1
n(n+1)(n+2) ̸= 0 and that

the 1-loop anomaly is present.
There was another candidate for 1-loop anomaly U(1) anomaly in 4D N = 4 supergravity

in the form of a linearized superinvariant

f4

∫
d8θ̄

1
∂6 C ∂∂W ∂∂W W . (8.14)

The superamplitude matching this superinvariant was computed in [23] using the double-copy
method. The result has shown that f4 ̸= 0 and the corresponding 1-loop anomaly is present.

The fact that some superamplitudes are consistent with Ward identities or, equivalently,
can be presented as superspace integrals can only tell us that such amplitudes are consistent
with linearized supersymmetry. But only the actual computation can tell us if these are
present or not. For example, the 1-loop 6-point amplitudes in 6D maximal supergravity have
to be computed to find out if there are E5(5) 1-loop anomalies.
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A One-quarter and one-eighth BPS superinvariants

In this paper, we have studied only half of BPS and non-BPS superinvariants and the relevant
superamplitudes. On the other hand, there are examples of linearized superinvariants,
which are one-half, one-quarter, and one-eighth superinvariants [24]. These are based on
superfields in harmonic superspace, which depend on 4N

(
1 − 1

k

)
directions, with k = 2, 4, 8.

Ignoring harmonic coordinates, they are given as integrals over a subspace of the whole
superspace of the form ∫

dDxd4(N− 1
k )θL(ϕ(x, θ)) (A.1)

where the superfields ϕ(x, θ) depend only on a fraction of all θ-directions. For example, in
maximal N = 8 case, one-half of BPS superfields depend on 16 θ’s, one-quarter of BPS
superfields depend on 24 θ’s, and one-eighth BPS superfields depend on 28 θ’s.
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All 1/k BPS superinvariants have R-symmetry for 4-point superinvariants. However,
when the number of superfields exceeds 4 in all examples, the R-symmetry of such invariants
is broken.

In the context of superamplitudes, which we studied in this paper, the cases of one-
half-BPS and non-BPS are simple and are now fully described in this paper for dimensions
D ≥ 4 and N ≥ 5.

We do not know of examples of one-quarter and one-eighth BPS superamplitudes
corresponding to relevant known superinvariants, and whether these superamplitudes are
available or not. Nevertheless, we brought it up here to keep in mind that there are cases
with linearized superinvariants that have not been studied in the context of superamplitudes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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