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Abstract: We investigate production of non-thermal dark matter particles and heavy sterile
neutrinos from inflaton during the reheating era, which is preceded by a slow-roll inflationary
epoch with a quartic potential and non-minimal coupling (ξ) between inflaton and gravity.
We compare our analysis between metric and Palatini formalism. For the latter, the tensor-
to-scalar ratio, r, decreases with ξ. We find that for ξ = 0.5 and number of e-folds ∼ 60, r

can be as small as ∼ O
(
10−3) which may be validated at future reaches of upcoming CMB

observation such as CMB-S4 etc. We identify the permissible range of Yukawa coupling
yχ between inflaton and fermionic DM χ, to be O

(
10−3.5) ≳ yχ ≳ O

(
10−20) for metric

formalism and O
(
10−4) ≳ yχ ≳ O

(
10−11) for Palatini formalism which is consistent with

current PLANCK data and also within the reach of future CMB experiments. For the
scenario of leptogenesis via the decay of sterile neutrinos produced from inflaton decay,
we also investigate the parameter space involving heavy neutrino mass MN1 and Yukawa
coupling yN1 of sterile neutrino with inflaton, which are consistent with current CMB data
and successful generation of the observed baryon asymmetry of the universe via leptogenesis.
In contrast to metric formalism, in the case of Palatini formalism, for successful leptogenesis
to occur, we find that yN1 has a very narrow allowable range and is severely constrained
from the consistency with CMB predictions.
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1 Introduction

The strongest evidences that upholds the standard model of cosmology comes from remarkable
agreement between the theoretical prediction and observed data about Big Bang Nucleosyn-
thesis (BBN), and the detection of CMB photons in the present universe. During the BBN era,
which occurs when the temperature of the universe is between ∼ 1MeV and ∼ 10 keV, light
elements e.g. deuterium, helium-3, helium-4, and lithium-7 are formed [1]. The production
mechanism for these elements during BBN is based on well established theory of standard
model (SM) of particle physics. Consequently, the abundance of those light elements put
stringent constraints on BSM physics.

Conversely, numerical analysis of data obtained from CMB also places constraints on
cosmological parameters such as present-day energy density of baryons and dark matter
(DM), among others. Almost all elementary particles in the SM of particle physics that
exist in our universe have corresponding antiparticles with the same mass and lifetime but
with opposite charges. All those SM particles were relativistic in the early universe, when
the temperature was higher than the mass of the top-quark. We assume their chemical
potential was negligible at that time so they existed likely in local thermal equilibrium with
the SM photons, which suggests that the numbers of particles and antiparticles were initially
equal. Therefore, the matter-antimatter asymmetry observed in our present observable
universe remains unexplainable. The ratio of the number density of baryons to photons in
the present universe obtained from CMB is ηB ∼ 6.14× 10−10 [2–4]. This result is consistent
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with BBN analysis and observed small fraction of antiproton (O
(
10−4)) and anti-helium-

4 (O
(
10−7)) from cosmic rays [1], and the ratio of antibaryon to baryon obtained from

the two colliding clusters of galaxies in Bullet Cluster [5]. Moreover, if there is a nearby
antimatter domain, it must not be located inside the cosmological horizon. Consequently,
a universe characterized by matter-antimatter symmetry is empirically ruled out [6]. The
predominance of matter over antimatter in the early universe can be generated through a
dynamic physical process if that violates (i) baryon number B, (ii) C- and CP-invariance, and
(iii) thermal equilibrium [7]. These conditions are known as Sakharov principles. Although,
numerous baryogenesis mechanisms have been proposed, including decay of heavy particles [7],
via evaporation of primordial black holes [8, 9], the most extensively studied ones being
electroweak baryogenesis [10–12] and baryogenesis through leptogenesis [13]. Among them
the latter involves the decay of heavy right-handed neutrinos, introduced as an extension
to the SM to achieve light neutrino masses via the Type-I seesaw mechanism [14–18], and
also addresses the puzzle of tiny neutrino mass generation which is evident from several
neutrino oscillation experiments.

Furthermore, CMB data, along with by several other independent cosmological obser-
vations, reveals that cold dark matter (CDM) contributes to ∼ 26% of total mass-energy
density of the universe [2, 19]. This contribution is almost five times that of visible matter.
The particle nature of dark matter remains an enigma to date, as no direct detection of DM
experiment found any evidence, including the most popular candidate for particle DM —
Weakly Interacting Massive Particles (WIMPs). It is assumed that WIMP particles were in
thermal equilibrium in the early universe, and then they decoupled at a later time. Several
unsuccessful attempts to detect such particles through the scattering of atomic nuclei or
electrons, or by detecting the products of their decay from cosmic rays [20, 21], or in particle
detectors at CERN [22–24], brings forth the alternative assumptions that DM particles are
so much feebly interacting that they could never reach in thermal equilibrium in the early
universe. They could be produced from the decay of massive particles in the early universe,
and unlike thermal DM, their relic density depends on the specific production channels.

Observation of the temperature of CMB photons over the full sky reveals that temperature
anisotropy is even less than 10−5 in contrast to the expectation of the last scattering surface
being ∼ 105 causally disconnected patches [25]. This implies that the largest length scale
that enters the causal Horizon today must have existed well inside the earliest epoch. The
simplest way to envision such a scenario is by proposing that there was an early epoch during
which the energy density of a slowly rolling scalar field, ϕ, referred to as inflaton, along the
slope of its potential dominated the universe. This minimal modification to the standard
model of cosmology effectively accounts for the generation of primordial perturbation and
flatness of our universe. Although further validation of the inflationary paradigm is still
on the cards, this is widely accepted as the new standard model of cosmology within the
scientific community. Despite its stupendous success in overcoming the limitations of Big
Bang cosmology and providing the required amount of seeds of matter perturbations, the
minimal models of chaotic inflation involving potential ∝ ϕp, where p is an integer number,
appear to be disfavored by the latest data released by Planck mission [2] and data from
Bicep+Keck Array [26] regarding unobserved B-mode of primordial tensor perturbations from
inflaton. However, as revealed in subsequent studies [27–29], the scenario can be reinstated,
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bringing these models back to the limelight, by considering that the inflaton is non-minimally
coupled to gravity. Such a coupling can be generated from quantum correction [30], and
provides a plateau-like region for the inflation to occur.

An interesting possibility arises when the inflaton is non-minimally coupled to gravity,
the predictions of slow-roll inflation, such as the scalar spectral index (ns) and tensor-to-scalar
ratio (r), may vary between the metric and Palatini formalisms (see refs. [31–34]). For
small or near-zero values of non-minimal coupling yield nearly identical predictions in both
formalisms, but larger values lead to differences. In the metric formalism, for an inflaton
potential V (ϕ) ∝ ϕp, ns and r remain independent of non-minimal coupling at the leading
order. Conversely, in the Palatini formalism, the predicted values of r vary inversely with
non-minimal coupling [35].

In metric formalism, space-time metric (gαβ) and its first derivative are the inde-
pendent variables, whereas in Palatini formalism, space-time metric and metric connec-
tion (or, affine connection which is denoted by Γλ

αβ) are independent variables [36, 37].
In differential geometry, metric connection measures the intrinsic curvature of the man-
ifold. In metric formalism, it is assumed that Γλ

αβ = Γλ
βα and ∇λgαβ = 0, and as a

result affine connection is replaced by Levi-Civita connection, Γ̄λ
αβ, which is defined as [38]

Γ̄λ
αβ = 1

2gJFλζ
[
∂α

(
gJF

βζ

)
+ ∂β

(
gJF

αζ

)
− ∂ζ

(
gJF

αβ

)]
. In the theory of general relativity,

the preference for the Levi-Civita connection arises not only because the torsion part of
the connection disappears, but also due to the Equivalence Principle and the importance of
aligning affine geodesics and metric geodesics to uphold causality [39]. Consequently, in metric
formalism, Riemann curvature tensor depends on the second derivative of the space-time
metric. Conversely, in Palatini formalism, Riemann curvature tensor depends on the first
derivative of the space-time metric [38], and Ricci tensor depends on connection but inde-
pendent of the metric tensor [39]. Moreover, in the Palatini formulation, increasing ξ values
reduces the value of r significantly (r ∼ NCMB

−2 in metric formalism, and r ∼ (ξ NCMB)−2 in
Palatini formalism, with NCMB denoting the number of e-folds of inflation [40]). This provides
a potential pathway for rescuing inflationary models which have been ruled out by CMB ob-
servations for predicting large values of r within the metric formalism [34, 41–43]. The end of
inflation is followed by reheating era that acts as a bridge to transform the inflaton dominated
cold universe into our familiar universe dominated by relativistic standard model particles [44].

In this article, we plan to investigate post-inflationary dark matter production and
leptogenesis parallelly within these two formalisms. Inflaton can also generate stable but
light particles contributing to dark radiation [45]. In this study, our focus is on a scenario
that involves both the inflaton and a gauge singlet BSM field which if stable is the CDM
candidate or can be the unstable right-handed neutrino which decays to SM particles leading to
baryogenesis via leptogenesis. For a list of models incorporating inflation and DM, see ref. [46]
and references therein. In our work, we assume that BSM vectorlike fermionic particles are
produced during the reheating era through the decay of inflaton. These particles are assumed
stable, non-relativistic, but feebly interacting with the SM relativistic plasma, and contributes
to the total CDM density of the universe. We also consider another possibility when a sterile
neutrino is produced from the decay of inflaton. Their decay is out-of-equilibrium, C and
CP violating process (with 1-loop effects) and violates lepton number, thereby satisfying
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Sakharov’s conditions [7]. Then, baryon-lepton number violating sphaleron processes coverts
lepton asymmetry to baryon asymmetry, see refs. [47–51]

This paper is organized as follows: in section 2, we discuss the Lagrangian density of
inflation non-minimally coupled to gravity, as well as the interaction Lagrangian density
during reheating. In section 3, we study the benchmark for slow roll inflationary scenario with
a quartic potential of inflaton. In section 4, we present the stability analysis. In section 5,
we focus on reheating and production of non-thermal BSM particles as CDM. In section 6
we explore leptogenesis from the decay of sterile neutrino.

In this work, we use ℏ = c = kB = 1 and the value of reduced Planck constant
MP = 2.4× 1018 GeV. In addition, we assume that the space-time metric is diagonal with
signature (+,−,−,−).

2 Lagrangian density

In this article, our focus is on the reheating era following a slow roll inflation, where we
consider the non-minimal coupling between the inflaton φ and the curvature scalar R, and the
production of a fermionic BSM particle alongside the SM Higgs particle h during reheating.
Then, the action for inflation in Jordan frame is given by [52, 53]

SJF ⊃
∫

d4x
√
−gJF

(1
2M2

P Ω2(φ)RJF + 1
2 (∂φ)2 − V JF(φ)

)
. (2.1)

We use JF in superscript to refer that the corresponding quantity is defined in Jordan frame.
Therefore, gJF, RJF, and V JF(φ) are the determinant of the space-time metric, Ricci scalar
and potential of the inflaton in Jordan frame, respectively. Additionally, we consider the
form of Ω2(φ) ≡ Ω2 ̸= 0 as1

Ω2(φ) = 1 + ξ
φ2

M2
P

, (2.2)

where both Ω2 and ξ are dimensionless. In Einstein frame, the gravity sector and φ are not
coupled. The metric in Einstein frame, denoted by gE

µν , can be obtained as

gE
µν = Ω2 gJF

µν . (2.3)

In this article, Greek indices in both subscript and superscript range from 0 to 3. Additionally,
we employ Einstein’s summation convention for repeated indices. In Einstein frame, the
potential for inflaton is

V E(φ) = V JF (φ)
Ω4 (φ) . (2.4)

1To ensure each term in the parentheses on the right-hand side of eq. (2.1) has dimension-4 with dimensionless
coefficients, a common choice for non-minimal coupling is Ω2 = 1+ ξφ2/M2

P. Despite the absence of interaction
between the inflaton and gravity sector at the tree level, non-minimal coupling can emerge at one-loop order.
Alternative forms of non-minimal couplings, such as periodic forms (see refs. [54, 55]), exist or we can include
additional covariant scalar terms like Rµν∂µφ∂νφ, where Rµν is Ricci curvature tensor, within the Lagrangian
density. However, limiting considerations to a finite number of loop corrections, neglecting derivative terms,
and adherence to CP symmetry yields a polynomial form for non-minimal coupling, with even power of φ,
making the form in eq. (2.2) the simplest and commonly adopted choice [30, 56].
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Furthermore, to make the kinetic term of inflaton canonical in Einstein frame, we need to
redefine the inflaton as ϕ. The relation between ϕ and φ is given by [55]

dϕ

dφ
=
√
Π(φ) , (2.5)

where [37, 40, 57]

Π(φ) = 1
Ω2 + κ

3
2

(
MP
Ω2

∂
(
Ω2)

∂ϕ

)2

, κ =
{
1 (metric formalism) ,

0 (Palatini formalism) .
(2.6)

In metric formalism space-time metric, and other fields (for example, φ in eq. (2.1)) are
the independent dynamical variables, while in Palatini formalism Γλ

αβ is also independent
dynamical variable in addition to φ and space-time metric [38]. Moreover, in Palatini
formalism Riemann tensor remains invariant under the transformation of eq. (2.3) [38]. For
the form of Ω2 mentioned in eq. (2.2), we have

dϕ

dφ
=



√√√√1 + (1 + 6ξ) ξφ2/M2
P(

1 + ξφ2/M2
P
)2 (metric formalism) ,

1√
1 + ξφ2/M2

P

(Palatini formalism) .

(2.7)

(2.8)

Now, integrating eq. (2.7), we get [58, 59]

√
ξ

ϕ

MP
=
√
6κξ + 1 sinh−1

(
u
√
6κξ + 1

)
−
√
6κξ tanh−1

( √
6κξu√

u2(6κξ + 1) + 1

)
, (2.9)

where u =
√

ξ φ
MP

. In metric formalism, under small field limit (i.e. u ≪ 1 such that(
1 + u2) ≈ 1 and

(
1 + u2 + 6ξu2) ≈ 1) [60], and under

√
ξu ≫ 1 we obtain [61]

φ ≃


ϕ (for

√
ξφ ≪ MP) ,

MP√
ξ
exp

( 1√
6

ϕ

MP

)
(for ξφ ≫ MP) .

(2.10)

However, in Palatini formalism, we can get exact relation between φ and ϕ from eq. (2.8)
as follows

φ = MP√
ξ
sinh

(√
ξ

ϕ

MP

)
. (2.11)

The relation between φ and ϕ in eq. (2.10) is approximated, whereas the relation in eq. (2.11)
is exact.

Moving forward, we assume that the interaction of inflaton with fermionic field χ, which is
singlet under SM gauge transformations, and with SM Higgs field H during post-inflationary
reheating era are defined in Einstein frame, and the interaction Lagrangian can be written
as [46, 55, 62, 63]

Lrh = −yχϕχ̄χ − λ12ϕH†H − λ22ϕ2H†H + h.c. + · · · . (2.12)
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Among the three couplings yχ, λ12, λ22, only λ12 has mass dimension. Moreover, in eq. (2.12),
ellipses denote scattering of χ by SM particles or inflaton. However, we assume those
interactions are not strong enough to keep χ-particles in local-thermal equilibrium with
the SM relativistic plasma of the universe. From ref. [64], and also from our previous
studies [46, 55, 65], it has been found that these scattering channels are not effective in
producing enough χ particles such that total CDM density is satisfied, unless χ particles are
highly massive (with a mass mχ ∼ O

(
1010 GeV

)
or larger). As a result, our current focus in

this article is solely on the production of χ particles through the decay of the inflaton. For
the sake of completeness, the Lagrangian density of χ and H are given below

LE
χ = iχ̄γµ∂µχ − mχχ̄χ , (2.13)

LE
H = (∂H)2 + m2

HH†H − λH

(
H†H

)2
, (2.14)

where i =
√
−1, γµ are the four gamma matrices and χ̄ = χ†γ0, and λH > 0. In section 5 of

this article, we investigate whether χ, vector-like fermionic stable particles produced through
the decay of inflaton, contribute 100% of the total CDM density of the present universe.
In contrast, in section 6, we explore the possibility of χ as a sterile yet unstable neutrino,
generating lepton asymmetry immediately after its production.

3 Quartic potential

In this article, we consider potential of inflaton in Jordan frame as [53, 66–68]

V JF(φ) = Λφ4 , (3.1)

where Λ is dimensionless. If we consider quantum loop correction arising due to the interaction
of inflation with a fermionic and a scalar field, the potential for inflaton in Jordan frame
is best described by Coleman-Weinberg potential (for example, see refs. [69–71]). However,
this form of potential for slow roll inflation is in tension with the best-fit ns − r contour
obtained from Planck2018+Bicep3 combined data [34], unless the renormalization scale is
super Planckian [65]. Since our focus in this work is to examine possible (in)consistencies,
if any, in the metric and Palatini formalism, we restrict ourselves to considering only the
simple quartic form of the inflationary potential.

The potential of inflation in Einstein frame can be written as

V E(φ) = Λφ4

Ω4(φ) . (3.2)

In metric formalism and for ξφ ≫ MP, the potential for inflaton mentioned in eq. (3.2)
is given by [67]

V E
(m)(ϕ) ≃

ΛM4
P

ξ2

(
1− e

−
√

2
3

ϕ
MP

)2
, (3.3)

and under small field limit (from eq. (3.3)) [59, 67]

V E
(m)(ϕ) ≈

2
3
Λ
ξ2 M2

P ϕ2 . (3.4)
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ln
(
1010As

)
3.044± 0.014 68%, TT,TE,EE+lowE+lensing+BAO [2, 19]

ns 0.9647± 0.0043 68%, TT,TE,EE+lowE+lensing+BAO [2]

r 0.014+0.010
−0.011 and 95%, BK18, Bicep3, Keck Array 2020, [2, 26, 74]

< 0.036 and WMAP and Planck CMB polarization (see also [75])

Table 1. Constraints on ns, r and As (T and E for temperature and E-mode polarization of CMB).

In Palatini formalism, the potential of inflaton in Einstein frame [66, 67]

V E
(P)(ϕ) = M4

P
Λ
ξ2

(
tanh

(√
ξ

ϕ

MP

))4
. (3.5)

Under small field approximation (assuming
√

ξϕ/MP < π/2) [67]

V E
(P)(ϕ) ≈ Λϕ4 . (3.6)

From eqs. (3.4) and (3.6) we see that during reheating when inflaton oscillates about the
minimum, potential is quadratic in metric formalism and quartic in Palatini formalism [67].

Under slow roll approximation, the observables of the inflationary epoch, namely scalar
spectral index (ns), tensor to scalar ratio (r), and amplitude of comoving curvature power
spectrum (As) are defined in Einstein frame as follows [72]

ns(ϕ∗) ≃ 1− 6 ϵE
V (ϕ∗) + 2 ηE

V (ϕ∗) , r(φ∗) ≈ 16 ϵE
V (ϕ∗) , V E(ϕ∗) ≃

3
2π2 r(ϕ∗)As M4

P .

(3.7)

Here, ϕ∗ is the value of inflaton corresponding to the pivot scale of CMB observations,
whereas ϵE

V (ϕ), and ηE
V (ϕ) are the potential slow roll parameters defined as [71, 73] ϵE

V (ϕ) =(
M2

P/2
) (

d ln[V E]/dϕ
)2

and ηE
V (ϕ) =

(
M2

P/V E
)(

d2V E/dϕ2
)
. During slow roll inflationary

epoch ϵE
V , ηE

V ≪ 1. Current bounds on ns, r, and As are mentioned in table 1. The duration
of the inflationary epoch is expressed in terms of the number of e-folds (NCMB) which is
defined as [72]

NCMB = M−1
P

∫ ϕ∗

ϕend

(
2 ϵE

V

)−1/2
dϕ , (3.8)

where ϕend is the value of the inflaton at which the slow roll phase ends, i.e., when the kinetic
energy of the inflaton becomes ∼ V E(ϕ). In other words, it happens when any of ϵE

V or ηE
V

becomes ∼ 1 [46]. In this article, we consider 50 ≤ NCMB ≤ 60.
Using the relation between ϕ and φ from eq. (2.11) (for Palatini) and exact expression

from eq. (2.9) (for metric), while varying ξ, we obtain benchmark values for slow roll inflation
for both the metric and Palatini formalisms. These benchmark values satisfy the bounds
presented in table 1 and are obtained for NCMB ∼ 50 and 60. These benchmarks are listed
in tables 2 and 3 (φ∗ and φend in Jordan frame correspond to the value of ϕ∗ and ϕend in
Einstein frame). Here, we are mainly interested in the regime where ξ ≫ 1, as in this case,
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Benchmark ξ φend/MP φ∗/MP NCMB ns r × 103 Λ

(m)BM1 0.5 1.3287 11.2724 60 0.9677 3.9483 3.1644× 10−11

(m)BM2 10.3349 50 0.9614 5.5837 4.5015× 10−11

(m)BM3 10 0.3372 2.8886 60 0.9678 3.0132 9.5886× 10−9

(m)BM4 2.6488 50 0.9616 4.2620 1.3624× 10−8

(m)BM5 102 0.1074 0.9203 60 0.9678 2.9688 9.4441× 10−7

(m)BM6 0.8439 50 0.9616 4.1993 1.3417× 10−6

(m)BM7 104 0.0107 0.0921 60 0.9678 2.9639 9.4283× 10−3

(m)BM8 0.0845 50 0.9616 4.1924 1.3395× 10−2

Table 2. Benchmark values for slow roll inflation in metric formalism.

Benchmark ξ φend/MP φ∗/MP NCMB ns r × 103 Λ

(P)BM1 0.5 1.7672 21.9801 60 0.9668 1.0923 8.5554× 10−12

(P)BM2 20.0779 50 0.9602 1.5675 1.2298× 10−11

(P)BM3 10 0.9197 21.9282 60 0.9667 5.5349× 10−2 1.7206× 10−10

(P)BM4 20.0211 50 0.9601 7.9643× 10−2 2.4760× 10−10

(P)BM5 100 0.5271 21.9152 60 0.9667 5.5490× 10−3 1.7243× 10−9

(P)BM6 20.0069 50 0.9600 7.9887× 10−3 2.4825× 10−9

(P)BM7 104 0.1680 21.9095 60 0.9667 5.5549× 10−5 1.7261× 10−7

(P)BM8 20.0007 50 0.9600 7.9989× 10−5 2.4855× 10−7

Table 3. Benchmark values for slow roll inflation in Palatini formalism.

the predictions between the metric and Palatini formalisms exhibit significant differences [35].
This will help us make the kind of comparison we intend to do between the two formalisms.
In either of the metric or Palatini formalism, tables 2 and 3 indicate that for a constant
value of ξ, the value of φend (or ϕend) remains fixed.

Figure 1 displays the ns − r predictions for slow roll inflation corresponding to the
potential of the inflaton mentioned in eq. (3.2), in both metric and Palatini formalisms.
The solid straight lines are for predictions in metric formalism: red colored line for ξ = 0.5,
while blue colored line for ξ = 104. The dashed straight lines are for predictions in Palatini
formalism: red colored line for ξ = 0.5, while blue colored line for ξ = 104. Along these
lines, NCMB varies between 50 and 60, marked with a triangular symbol at NCMB ≃ 50
and a square symbol at NCMB ≃ 60. Figure 1 also shows bounds on the ns − r plane from
observed CMB data from Planck2018 and Planck2018+Bicep3+Keck Array2015 combined
analysis, along with future prospective reaches for upcoming CMB experiments (with dashed
curved lines as perimeter) e.g. CMB-S4, LiteBIRD, Simons Observatory (SO), shown in the
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Figure 1. (ns − r) predictions for ξ = 0.5 and ξ = 104 in both metric and Palatini formalism and
for 50 ≲ NCMB ≲ 60 along with bounds on (ns − r) plane from CMB observations (Planck2018,
Bicep3, Keck Array) and prospective future reach from upcoming CMB experiments (LiteBIRD,CMB-
S4,SO [76–78]). The solid straight lines correspond to (ns, r) predictions in metric formalism — red
color line for ξ = 0.5 and blue colored line for ξ = 104. The dashed straight lines correspond to (ns, r)
predictions in Palatini formalism — red colored line for ξ = 0.5 and blue colored line for ξ = 104.
Along the lines, NCMB is varied from 50 to 60 from left to right.

background. This figure shows that while the predicted values of (ns, r) in both the metric
and Palatini formalisms, for both NCMB = 50 and NCMB = 60, fall within the 1− σ best-fit
contour of Planck2018 data, those predicted values for NCMB around 50 (NCMB ≳ 50) are
excluded at the 1 − σ C.L. by the combined analysis of Planck+Bicep+Keck Array data.
Furthermore, LiteBIRD, CMB-S4, and SO can verify all (ns, r) values, particularly those
predicted within the metric formalism. For example, predicted values of (ns, r) in metric
formalism for NCMB ∼ 60 can be tested by upcoming SO at 1 − σ C.L. For the predicted
values of (ns, r) in Palatini formalism around NCMB ∼ 50 for ξ = 0.5 can be tested in the
future by LiteBIRD at 1− σ C.L. or by SO at 2− σ C.L., and around NCMB ∼ 60 for ξ = 0.5
can be verified by upcoming CMB-S4 at 1− σ C.L. The predicted values of (ns, r) in Palatini
formalism around NCMB ∼ 50 for ξ = 104 can be validated in the future by forthcoming SO at
1− σ C.L. From tables 2 and 3 and figure 1, we see that predicted values r, at a fixed value
of ξ, exhibit a decrease as the value of NCMB increases. This is due to ln (r) ∝ − ln (NCMB)
observed in both formalisms [35]. Furthermore, figure 2 depicts variation of ns and r with
ξ for NCMB ∼ 60. Comparatively, r exhibits more significant variation with ξ than ns,
specifically, in Palatini formalism. This can be explained as follows: when ξ ≫ 1, at leading
order approximation r ∼ ξ0 in metric formalism, while r ∼ ξ−1 in Palatini formalism [35].
Furthermore, in the left panel, the areas shaded in pink and yellowish-orange depict the values
of r which can be validated at 1− σ C.L. by the forthcoming CMB experiments LiteBIRD
and CMB-S4, respectively. Therefore, this future CMB observation can refute or validate
at 1 − σ C.L. the analysis of slow roll inflation in metric formalism for the plain quartic
potential of inflaton and with non-minimal coupling with Ricci scalar.

4 Stability

In this section, we explore the permissible upper limit of yχ and λ12 such that the radiative
loop correction arising due to coupling of inflaton with χ and H does not distort the flatness
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Figure 2. Left-pannel: variation of predicted value of r against ξ for NCMB = 60 for metric and
Palatini formalisms. The pink-colored and Yellowish orange-colored regions represent the values of r

which can be validated at 1− σ C.L. by the upcoming CMB experiments LiteBIRD, and CMB-S4,
respectively. Right-pannel: variation of the predicted value of ns against ξ for NCMB = 60 for metric
and Palatini formalisms.

of the potential V E
(m) or V E

(P). Actually, we focus on reheating via λ12, assuming a very small
permissible value for λ22. Here, we use exact expression of V E

(m) rather than relying on an
approximate expression, such as the expression given in eq. (3.3). In this section, we use
V E

tree to denote V E
(m) or V E

(P) and call them as tree level potential. The Coleman-Weinberg
(CW) correction to the inflaton potential is [79]

V1-loop =
∑

j

nj

64π2 (−1)2sj m̃4
j

[
ln
(

m̃2
j

µ2

)
− cj

]
. (4.1)

Here, inflaton dependent mass for j ≡ χ and for j = H are m̃2
χ(ϕ) = (mχ + yχϕ)2 and

m̃2
H(ϕ) = m2

H + λ12ϕ, respectively. Furthermore, cj = 3
2 ; nH,χ = 4; sH = 0, sχ = 1/2;

and, we consider two values of the renormalization scale: µ = ϕ∗ and µ = ϕend. Now,
the first and second derivatives of the Coleman-Weinberg term of eq. (4.1) for χ and H

with respect to ϕ are [80]

V ′
1-loop =

∑
j

nj

32π2 (−1)2sj m̃2
j

(
m̃2

j

)′ [
ln
(

m̃2
j

µ2

)
− 1

]
, (4.2)

V ′′
1-loop =

∑
j

nj

32π2 (−1)2sj

{[((
m̃2

j

)′)2
+ m̃2

j

(
m̃2

j

)′′]
ln
(

m̃2
j

µ2

)
− m̃2

j

(
m̃2

j

)′′}
. (4.3)

The upper permissible values of yχ and λ12 can be obtained if both of the following conditions
are simultaneously satisfied (with mχ ≈ mH ≈ 0)∣∣∣V ′

1-loop,j(ϕ = µ)
∣∣∣ < V ′

tree(ϕ = µ) ,
∣∣∣V ′′

1-loop,j(ϕ = µ)
∣∣∣ < V ′′

tree(ϕ = µ) . (4.4)

From this point forward, we work with two benchmark values corresponding to ξ = 10
and ξ = 104 to demonstrate the dependence on the results on the coupling parameter. We
select these benchmark values with ξ ≫ 1 to distinctly differentiate between the metric and
Palatini formalisms, as discussed earlier. Furthermore, we select benchmarks corresponding
to NCMB = 60, as predicted (ns, r) values fall within the 1 − σ contour of Planck+Bicep
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Benchmark stability for yχ stability for λ12

about µ = ϕ∗ about µ = ϕend about µ = ϕ∗ about µ = ϕend

(m)BM3 yχ < 4.0723× 10−4 yχ < 1.4026× 10−3 λ12/MP < 1.3157× 10−6 λ12/MP < 1.7633× 10−5

(m)BM7 yχ < 4.8013× 10−4 yχ < 2.0114× 10−3 λ12/MP < 1.8197× 10−6 λ12/MP < 3.8608× 10−5

Table 4. Allowed upper limit of yχ and λ12 for the benchmark values (m)BM3 and (m)BM7 from
table 2.

Benchmark stability for yχ stability for λ12

about µ = ϕ∗ about µ = ϕend about µ = ϕ∗ about µ = ϕend

(P)BM3 yχ < 2.8987× 10−4 yχ < 1.2861× 10−3 λ12/MP < 1.0050× 10−7 λ12/MP < 7.8871× 10−6

(P)BM7 yχ < 2.0864× 10−4 yχ < 2.4894× 10−3 λ12/MP < 1.3483× 10−8 λ12/MP < 1.7057× 10−6

Table 5. Allowed upper limit of yχ and λ12 for the benchmark values (P)BM3 and (P)BM7 from
table 3.

combined analysis on the ns − r plane. The upper limit of yχ and λ12 from stability analysis
are mentioned in table 4 for metric formalism (Benchmark: (m)BM3 and (m)BM7) and in
table 5 for Palatini formalism (Benchmark: (P)BM3 and (P)BM7).

From tables 4 and 5 we infer the following upper limits of λ12 and yχ (i.e. λ12,max, and
yχ,max) that respect the stability criteria: for (m)BM3, yχ < 4.0723× 10−4 and λ12/MP <

1.3157× 10−6; for (m)BM7, yχ < 4.8013× 10−4 and λ12/MP < 1.8197× 10−6; for (P)BM3,
yχ < 2.8987 × 10−4 and λ12/MP < 1.0050 × 10−7; and for (P)BM7, yχ < 2.0864 × 10−4

and λ12/MP < 1.3483 × 10−8.

5 Reheating and production of χ from inflaton decay

The inflationary epoch is succeeded by the reheating era, during which the adiabatic production
of SM and possibly BSM particles from the oscillating inflaton takes place. Consequently,
the universe transitions from a cold to a hot radiation-dominated state as the inflaton decays.
With the formation of radiation (relativistic SM particles), the temperature of the universe
rises to its maximum (Tmax) and subsequently decreases due to Hubble expansion. Actually,
in the early stages of reheating, the total reaction rate (Γϕ) of the inflaton is lower than the
Hubble parameter (H), with the latter being the primary factor causing a decrease in the
energy density of the oscillating inflaton. As the universe continues to expand, at reheat
temperature (Trh), H becomes comparable to Γϕ, resulting in ρϕ = ρrad, indicating equality
in energy density between the oscillating inflaton (ρϕ) and radiation (ρrad). Following this,
the remaining energy density of inflaton quickly converts to SM and BSM particles, marking
the beginning of radiation-dominated universe. In this work, we investigate perturbative
reheating, and we assume that the SM particles generated during this epoch rapidly achieve
thermal equilibrium soon after their formation.
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The equation of state parameter of the oscillating inflaton, wϕ, can be defined as
wϕ = Pϕ/ρϕ,2

wre ≃
k − 2
k + 2 . (5.1)

Therefore, from eqs. (3.4) and (3.6), we can infer that

wre ≃


0 (in metric formalism) ,

1
3 (in Palatini formalism) .

(5.2)

Hence, in metric formalism, inflaton behaves as non-relativistic fluid, whereas in Palatini
formalism inflaton behaves as relativistic fluid. The primary reason behind this is that in
Palatini formalism, V E

(P)(ϕ) ∼ ϕ4, making ϕ massless and causing its evolution as radiation,
i.e. ρϕ ∼ a−4 [82]. From now on, we will use “(in metric formalism)” and “(in Palatini
formalism)” to provide a side-by-side comparison of the results obtained using the condition
that the potential of inflaton around the minimum is quadratic in metric formalism and
quartic potential in Palatini formalism. Note that this difference in results might not be
a generic feature for every model of inflation. In certain cases, the potential around the
minimum could be quadratic in both the metric and Palatini formalisms. However, that we
can find significant difference between the two formalisms for a class of inflationary models is
a salient point of the present analysis, that needs to be explored further as we go along.

Following the discussion of appendix B, we define Trh in both metric and Palatini
formalisms as

Trh ≃
√

2
π

(10
g⋆

)1/4√
MP

√
Γϕ , (5.3)

where Γϕ is the total decay width of inflaton. This particular choice in defining Trh ensures
that ρϕ(Trh) = ρrad(Trh). However, Tmax depends on whether the potential of inflaton is
quadratic or quartic during reheating. Tmax/Trh for the quadratic and quartic potential of
inflaton during reheating is derived in appendix B. Since, the potential about the minimum
of the inflaton is quadratic in metric formalism, and quartic in Palatini formalism for our
considered inflationary scenario, we obtain from eq. (B.14) and eq. (B.15) [82–84]

Tmax
Trh

≃



(3
8

)2/5 ( HI
H(Trh)

)1/4
(in metric formalism) ,

31/4

2

( HI
H(Trh)

)1/4
(in Palatini formalism) .

(5.4)

(5.5)

Here, we assume the effective number of relativistic degrees of freedom g⋆ ≈ 106.75.
Furthermore, HI denotes the value of Hubble parameter at the end of inflation (i.e. when

2We expect that wϕ ∈ [−1, 0] in Einstein frame in both metric and Palatini formalism during slow-roll
inflationary phase, and wϕ ∈ [0, 1] during reheating era (wϕ = 1 at the bottom of the potential at the location
of the minimum of the potential of inflaton). However, exact value of wϕ is determined by the particle
physics details of the reheating process (see ref. [35]). Nonetheless, claiming this in the Jordan frame is not
straightforward, as the kinetic energy is not canonical here (see ref. [81]).
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ρrad = 0 [84]), which is given by

HI ≃
√

V E(ϕend)
3M2

P
. (5.6)

Furthermore, H(Trh) is the value of Hubble parameter when T = Trh, i.e.

H(Trh) ≃
π

3MP

√
g⋆

10 T 2
rh . (5.7)

Considering eq. (2.12), Γϕ depends on decay width of inflaton to SM Higgs particle (h),
denoted as Γϕ→hh, and BSM particle (χ), denoted as Γϕ→χχ. These are given by

Γϕ = Γϕ→hh + Γϕ→χχ ≈ Γϕ→hh , (5.8)

Γϕ→hh ≃ λ2
12

8π mϕ
, Γϕ→χχ ≃

y2
χ mϕ

8π
. (5.9)

The reason for using the approximate sign in eq. (5.8) is to prevent the universe from being
dominated by DM immediately after reheating era. In eq. (5.9) mϕ is the effective mass of
inflaton in Einstein frame, which can be obtained for both metric and Palatini formalisms as

m2
ϕ = d2V E

dϕ2

∣∣∣∣∣
ϕ=ϕmin

. (5.10)

The value of mϕ = 0 in both formalisms because the potential from eq. (2.4) has a minimum
at ϕ = 0. However, we can always add a bare mass term mb

2 ϕ2 to the potential. To ensure
that the slow roll inflationary scenario discussed in section 3, holds good even after the
inclusion of this bare mass term, an upper limit is imposed on the bare mass, and it has
been discussed in appendix C. By using eqs. (C.8), (C.9) and (3.4) we prefer to choose the
value of bare mass as follows

mb(m),ξ = 1
ζ

√
2
3
Λ
ξ2 M2

P , (5.11)

mb(P),ξ ≃ 1
ζ

√
Λ
(√

3MP λ2
12

8π Λ

)1/3

= 1
ζ

(
3π2

40

)1/4

(g⋆ Λ)1/4 Trh , (5.12)

where we have used eq. (5.3). Additionally, ζ is a dimensionless numerical factor, and we
prefer to choose ζ = 10 and ζ = 100 in this work.

Now, figure 3 displays the variation of Tmax/Trh against Trh: left panel provides a
comparative view of variation of Tmax/Trh in metric (for benchmark value (m)BM3) and
Palatini formalisms (for benchmark value (P)BM3), for same values of ζ = 10, NCMB = 60
(and also for ξ = 10). The gray-colored vertical stripe on the left represents the lower bound
on Trh ≳ 4× 10−3 GeV [84] (see also refs. [85, 86]). The colored vertical stripes on the right
side represent those values of Trh are not allowed. The maximum allowed values of Trh
correspond to the maximum allowed values of λ12 as mentioned in tables 4 and 5.3 The

3These bounds correspond to mb(m),ξ=10 and mb(P),ξ=10 (for left panel) and mb(P),ξ=104 .
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Figure 3. Variation of Tmax/Trh against Trh. Left panel: shows Tmax/Trh is less in Palatini
formalism for same values of ξ and NCMB. Right panel: shows Tmax/Trh decreases with increasing ξ in
Palatini formalism for same values of NCMB. Solid line for metric formalism (actually for benchmark
(m)BM3), whereas dashed lines for Palatini formalism. The gray-colored stripe on the left denotes
that Trh ≮ 4MeV are not allowed, and colored vertical stripes on the right indicates those values of
Trh are not allowed from the stability analysis from tables 4 and 5.

bound for (m)BM3 scenario is represented by the deep cyan stripe, whereas for (P)BM3
scenario is shown by the deep blue (lighter tinted) region. From the left panel of figure 3
we see that Tmax/Trh is greater in metric formalism (solid line) than in Palatini (dashed
line) (Tmax/Trh = 5.0665× 108 for (m)BM3, while Tmax/Trh = 3.3999× 108 for (P)BM3, at
Trh = 4 × 10−3 GeV) for the same values of ξ and NCMB. Right panel of figure 3 depicts
Tmax/Trh vs. Trh for two benchmark values in Palatini formalism — (P)BM3 and (P)BM7. It
shows Tmax/Trh decreases with higher values of ξ (Tmax/Trh = 1.4736× 108 for (P)BM7, at
Trh = 4× 10−3 GeV) which happens because potential becomes more flat for larger values of
ξ. The same conclusion is also true in metric formalism, but the difference is not so much
noticeable in comparison to Palatini formalism (e.g. Tmax/Trh = 5.0665× 108 for (m)BM7 at
Trh = 4× 10−3 GeV). In the case of (P)BM3 scenario, the bound correspond to the maximum
allowable value of Trh for is denoted by the deep blue but lightly shaded vertical stripe,
whereas, for (P)BM7 scenario, it is shown by the deep blue (darker shaded) region. To derive
the maximum allowable value on Trh, we have considered ζ = 10 for both panels. For ζ > 10,
the maximum allowable value of Trh would increase further.

5.1 Production of DM through decay

In this section, we investigate the case when the χ-particles are produced from the decay of
inflaton during the reheating era. We further assume that these χ-particles, being both stable
and non-thermal, act as viable DM candidates. Our aim is to explore the conditions under
which these χ-particles could potentially contribute to the entirety of the present-day CDM
density in the universe. If nχ and Nχ denotes the number density and comoving number
density of DM particles, then the evolution equation of comoving number density of χ is

dNχ

dt
= a3 γ , (5.13)
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where γ is the rate of production of nχ and for (ϕ → χ̄χ)

γ = 2BrΓϕ
ρϕ

mϕ
. (5.14)

Here, ‘Br’ denotes branching fraction for the production of χ from the decay process, and
using eqs. (5.8) and (5.9), it can be expressed as [55, 65]

Br = Γϕ→χ̄χ

Γϕ
≈ m2

ϕ

(
yχ

λ12

)2
. (5.15)

Following appendix B, for Tmax > T > Trh, H and ρϕ can be defined as [64]

H ≃ π

3

√
g⋆

10
T 4

MP T 2
rh

, ρϕ ≃ π2g⋆

30
T 8

T 4
rh

. (5.16)

Using eqs. (B.16) and (5.14) to (5.16) in eq. (5.13), we can obtain DM yield, Yχ which is
defined as the ratio of number density of χ to entropy density, as

Yχ ≃



3
π

g⋆

g⋆,s

√
10
g⋆

MP Γϕ

mϕ Trh
Br (in metric formalism) ,

9
2π

g⋆

g⋆,s

√
10
g⋆

MP Γϕ

mϕ Trh
Br (in Palatini formalism) .

(5.17)

(5.18)

Present day CDM yield is given by

YCDM,0 = 4.3. × 10−10

mχ/GeV . (5.19)

The condition Yχ ∼ YCDM,0 leads to

Trh ≃

6.4907× 1025 y2
χ mχ (in metric formalism) ,

9.7360× 1025 y2
χ mχ (in Palatini formalism) .

(5.20)
(5.21)

If DM particles are produced from the decay of inflaton during reheating era in our considered
inflationary scenario, and account for 100% of the total CDM density of the present universe,
then it must satisfy eqs. (5.20) and (5.21). These equations are represented as dotted lines
for various fixed values of yχ on (Trh, mχ) plane, as shown in figure 4. Top-left panel of this
figure for metric formalism (for (m)BM3 with ζ = 10), top-right panel for Palatini formalism
(for (P)BM3 with ζ = 10 and ζ = 100), and bottom panel for Palatini formalism but for
(P)BM3 and (P)BM7 with ζ = 10. The bounds on (Trh, mχ) plane are mentioned below.

• The maximum permissible value Trh: this bound corresponds to the maximum
permissible value of Trh which in turn correspond to the maximum allowed value of
λ12 = λ12,max from tables 4 and 5. This bound can be obtained from eqs. (5.3), (5.11)
and (5.12), and it is as follows:

Trh

∣∣∣∣
max

≃



√
2
π

(10
g⋆

)1/4√
MP

(
λ2

12,max
8π mb(m),ξ

)1/2

(for metric) ,

√
ζ

2

( 1
3π10 Λ

)1/12 (10
g⋆

)1/4
MP

1/3λ12,max
2/3 (for Palatini) .

(5.22)

(5.23)
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Figure 4. The allowed region (unshaded area) on (Trh, mχ) plane and viable range for the Yukawa-like
coupling yχ to produce the entire CDM of the present universe: top-left panel: is for benchmark
(m)BM3, top-right panel: is for benchmark (P)BM3 with bounds delimited by solid lines for ζ = 10
and dashed lines for ζ = 100, bottom panel: is for benchmark (P)BM3 and (P)BM7 with bounds
delimited by solid lines for ξ = 10 and dashed lines for ξ = 104, both for ζ = 10.

This is displayed as horizontal forest-green or pastel-green shaded horizontal stripe
placed at the upper side of the plots.

• The maximum value of yχ: this bound corresponds to the maximum permissible
value of yχ = yχ,max obtained from tables 4 and 5. This bound varies in metric and
Palatini formalism as outlined below (from eqs. (5.20) and (5.21)):

Trh ≃

6.49× 1025 yχ
2
max mχ (in metric formalism) ,

9.74× 1025 yχ
2
max mχ (in Palatini formalism) .

(5.24)
(5.25)

This is displayed as cyan colored (or deep blue colored on the plot at the bottom plane)
wedge-shaped region at the left-corner of the plots.

• The maximum possible value of mχ in decay process: which is mχ ≲ mb(m),ξ/2
(in metric formalism), and mχ ≲ mb(P),ξ/2 (in Palatini formalism). In metric formalism,
the region for mχ > mb(m),ξ/2 is indicated by a vertical copper-rose stripe on the
right-side of the plot. However, in the Palatini case, due to the dependence of mb(P),ξ
on Trh, the representation for the region mχ > mb(P),ξ/2 changes to a wedge-shaped
copper-rose region instead of a vertical stripe.

• Lyman-α bound: this constraint guarantees that χ-particles do not contribute to
warm dark matter, but rather to CDM. Since the χ-particles are feebly interacting,
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their velocity can only decrease due to redshift. Based on this the lower bound on mχ,
as derived in ref. [64] (see also discussion in ref. [46]), is

mχ ≳ 2× 10−6 mϕ

Trh
GeV . (5.26)

In top-left panel (for the case of metric formalism) it is denoted by the peach-colored
wedge-shaped region at the left bottom of the plot. However, in Palatini formalism,
this bound can be obtained from eq. (5.12) as

mχ≳
2× 10−6

ζ

(
3π2

40

)1/4

(g⋆ Λ)1/4 GeV (5.27)

≳


2.1596× 10−9 GeV (for (P)BM3 with ζ=10,Λ=1.7206× 10−10) ,

2.1596× 10−10 GeV (for (P)BM3 with ζ=100,Λ=1.7206× 10−10) ,

1.2154× 10−8 GeV (for (P)BM7 with ζ=10,Λ=1.7261× 10−7) .

(5.28)

Since, this bound is very small for Palatini case, it is omitted from the top-right and
bottom panels of figure 4. Actually, the lower bound on warm dark matter particle
mass is set at ≳ 3.5 keV [64], rising to ≳ 5.3 keV [87, 88] at 95% C.L. for thermal warm
dark matter. Uncertainties in the thermal history of the universe may reduce this to
1.9 keV [89]. For other Feebly Interacting Massive Particles are bounded between 4 and
16 keV [90–97].

• BBN: Trh ≳ 4MeV. This is presented as a horizontal slate-gray stripe at the bottom
of the plots.

The unshaded region in the plot at top-left panel of figure 4 represents the permissible
parameter space on (Trh, mχ) plane for (m)BM3 with ζ = 10. Since, there is no significant
difference in mb(m),ξ=10 (for (m)BM3) and in mb(m),ξ=104 (for (m)BM7), only the allowed
region for (m)BM3 is shown here (mb(m),ξ=10 = 1.1307 × 10−6MP, mb(m),ξ=104 = 1.1212 ×
10−6MP for ζ = 10). Similarly, the bottom panel of figure 4 presents the permissible
parameter region on (Trh, mχ) plane for (P)BM3 and (P)BM7 with ζ = 10: continuous
lines demarcate bounds corresponding to (P)BM3, while dashed lines demarcate bounds
corresponding to (P)BM7. Analysis of this figure leads to the conclusion that χ particles,
produced from the decay of inflaton for the case of benchmark (m)BM3, can explain the total
CDM density, provided that yχ lies within the range 10−3.5 ≳ yχ ≳ 10−20, and mχ fall within
7.1008× 10−7 ≲ mχ/GeV ≲ mb(m),ξ=10. Conversely, in Palatini formalism, the upper limit
varies with Trh. Additionally, lower limit of yχ is ∼ 10−11, which is higher in comparison
to metric case. With higher value of ζ, the allowable range of yχ narrows (e.g. see dotted
line correspond to yχ = 10−11), and broadens with larger values of ξ.

The benchmarks we have chosen in metric formalism for NCMB ∼ 60, mentioned in
table 2, can be validated in the future by the forthcoming CMB observations. These future
observations, therefore, can help in verifying whether the range of 10−11 ≳ yχ ≳ 10−20 is
valid. Furthermore, the forthcoming CMB-S4 observation can validate, as we have discussed
earlier, the benchmarks we have chosen in the Palatini formalism. As an illustrative example,
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CMB-S4 can affirm the validity of benchmark (P)BM3, thereby aiding in determining that a
range around yχ ∼ 10−11.5 is valid for a fixed value of ζ, let’s say ζ = 10. In summary, these
forthcoming CMB observations should be able to provide the validity of the benchmarks we
have chosen, both in metric and Palatini formalisms, along with the valid range of values of yχ.

6 Non-thermal leptogenesis

Here, we consider the production of non-thermal right-handed heavy sterile (i.e. fermionic
fields which are gauge singlet under SM gauge groups) neutrinos, Nj during the reheating
era from the decay of the inflaton. Then the Lagrangian density is given by [98–103]

Llepto = i
∑

j=1,2,3
N̄jγµ∂µNj −

MN j

2 N̄ c
j Nj −

∑
a,b,j=1,2,3

(
ϵab Ydj N̄j La

d Hb + h.c.
)
+Lϕ→NN̄ +Lϕ→H†H ,

(6.1)
where γµ are the gamma matrices, N̄j = N †

j γ0, with superscript c indicating charge conju-
gation, ϵab = iσ2 is the Levi-Civita symbol in 2-D and σ2 is the Pauli matrix, Latin index
d corresponds to three generations-e, µ, and τ . In eq. (6.1), MN js represents the Majorana
masses of the sterile neutrinos, forming a real diagonal mass matrix in the chosen basis,
whereas Ydj is a complex number denoting the Yukawa coupling matrix. The presence
of a non-zero value for MN j leads to the violation of lepton number, fulfilling Sakharov’s
first condition, while the complex Ydj is essential for CP violation, satisfying Sakharov’s
second condition to generate baryon asymmetry [98]. Additionally, Ld is the left leptonic
doublet, defined as Ld ≡ (νd, d−l ), where νd are the light left-handed neutrinos in SM [98].
The ‘h.c.’ in eq. (6.1) denotes hermitian conjugated of interaction terms ∼ Y∗

dj H̃b L̄a
d N c

j ,
where H̃b = ϵbaH†a. Lϕ→NjN̄j

= −yNj ϕ N̄jNj , and Lϕ→H†H in eq. (6.1) indicates that SM
Higgs particles are also produced along with Nj from the inflaton decay during the reheating
era, and it is defined as

Lϕ→H†H = −λ12 ϕ H†H − λ22 ϕ2 H†H + h.c. . (6.2)

Similar to eq. (5.8), in this case, we also assume that the dominant decay channel is to SM
Higgs and as a result, Trh is still determined by eq. (5.3). Actually, χ is very similar to Nj ,
as they both share the feature that when the BSM particle χ is stable, it contributes to
CDM energy density of the present universe. However, when χ is not stable and decays to
SM leptons, it plays a role in producing the observable baryon asymmetry in the universe.
However, left- and right-handed vector-like fermions transform identically [104]. Therefore,
decay width for ϕ → NjN̄j is

Γϕ→NjNj
≃

y2
Nj

mϕ

4π
, (6.3)

where Nj is the sterile neutrino particle of j-th generation.
Due to non-zero value of Mj , Nj can decay via two decay channels: Nj → Ld + H, and

Nj → L̄d + H̃ [47, 48, 98]. If Γj(Nj → Ld + H) and Γj(Nj → L̄d + H̃) are respective decay
width of those decay channels, then Sakharov’s third condition of thermal inequilibrium is
satisfied if Γj(Nj → Ld + H) + Γj(Nj → L̄d + H̃) ≫ H, and from section 5 we see that
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it happens when T just reach and drops below Trh. In this work, we assume N1 is the
lightest among the three sterile neutrinos. Hereafter, we focus on the asymmetry generated
by the decay of N1, as asymmetry produced in the decays of heavier particles gets washed
out by the asymmetry generated by the lightest ones [99]. Considering both tree-level and
one-loop diagrams, the lepton asymmetry generated by the decay process of N1 is expressed
as [47, 105, 106]

ϵlep
1 = Γ1(N1 → Ld + H)− Γ1(N1 → L̄d + H̃)

Γ1(N1 → Ld + H) + Γ1(N1 → L̄d + H̃)
. (6.4)

By combining contributions from one-loop vertex and self-energy corrections, eq. (6.4) leads
to [47, 105, 107]

ϵlep
1 = − 1

8π

1
(Y Y†)11

∑
j=2,3

Im
[{(

Y Y†
)

1j

}2
] [

f

(
MN j

2

MN 1
2

)
+ 2g

(
MN j

2

MN 1
2

)]
. (6.5)

The functions f(x) and g(x), where x = MN j
2/MN 1

2, accounts the contributions from
vertex and self-energy corrections/wave function corrections [105, 106], and they are given
by [106, 107]

f (x) =
√

x

[
−1 + (x + 1) ln

(
1 + 1

x

)]
, g (x) =

√
x

2(x − 1) . (6.6)

Under the assumption of mass hierarchy MN 1 ≪ MN 2, MN 3 i.e. x ≫ 1 [106], f(x) ∼ 1√
2 x

and g(x) ∼ 1
2
√

x
[105]. Then, we obtain from eq. (6.5)

ϵlep
1 = − 3

16π

1
(Y Y†)11

∑
i=2,3

Im
[{(

Y Y†
)

1i

}2
]

MN 1
MN j

. (6.7)

Using Im
{((

YY†
)

11

)2
}
= 0 and properties of inverse of a diagonal matrix, we can rewrite

eq. (6.7) as [106]

ϵlep
1 = − 3

16π

MN 1
(Y Y†)11

Im
{(

YY† 1
M
Y∗YT

)
11

}
, (6.8)

where M is the diagonal Majorana mass matrix. To relate lepton asymmetry with the mass
of j-th generation SM light neutrino, mνj , we use Type-I see-saw mass of the neutrino mν =
−YT M−1 Y ⟨H⟩, where mν is the mass matrix of SM neutrinos and ⟨H⟩ = 246/

√
2GeV [105,

106]. mν is diagonalizable matrix, i.e. it can be diagonalized by unitary transformation as [106]

(mν)αβ =
∑
i

UαiUβi (m̂ν)i . (6.9)

Here, m̂ν represents the diagonalized mass matrix m̂ν = diag (mν1, mν2, mν3) with mν1 <

mν2 < mν3. Similarly, we can define Ŷ as

Ŷij =
∑

α

ŶiαU∗
αj . (6.10)
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Consequently, we obtain [47]

ϵlep
1 ≃ 3

16π

MN 1

⟨H⟩2 mν3 δeff , (6.11)

where δeff is the measure of effective CP violating phase, which is defined as [106]

δeff =
Im
[(

Ŷ13
)2

+ mν 2
mν 3

(
Ŷ12

)2
+ mν 1

mν 3

(
Ŷ11

)2
]

∣∣∣Ŷ13
∣∣∣2 + ∣∣∣Ŷ12

∣∣∣2 + ∣∣∣Ŷ11
∣∣∣2 , (6.12)

and 0 ≤ δeff ≤ 1 [48]. If we assume that produced N1 decays immediately after production
from inflaton decay, then produced Lepton asymmetry is expressed in terms of lepton-to-
entropy ratio as [106]

YL ≡ nL

s
= ϵlep

1
nN1

s
, (6.13)

where nL is the number density of excess Leptons produced due to decay of N1 neutrino and
nN1 is the number density of N1 neutrino produced from the decay of inflaton. The value of
nN1/s can be obtained by utilizing eqs. (5.17), (5.18) and (6.3) as

nN1

s
≃


2.3258× 10−2 MP

Trh
yN1

2 (in metric formalism) ,

3.4887× 10−2 MP
Trh

yN1
2 (in Palatini formalism) .

(6.14)

(6.15)

As a result of electroweak sphaleron processes, the lepton asymmetry undergoes conversion
into the baryon asymmetry. Hence, the baryon asymmetry is proportional to the lepton
asymmetry, leading to [48, 107]

YB = 28
79YL . (6.16)

The value of YB from Planck2018 data can be obtained as [48, 99]

YB ≡ nB − nB̄

s
= nγ

s
ηB ≃ 8.7× 10−11 , (6.17)

where nB − nB̄, nγ , and ηB are the difference in the number density of baryons and anti-
baryons, the number density of CMB photons, and baryon-to-photon ratio, respectively. In
eq. (6.17), we use the values of present day number density of photons nγ ∼ 410.73 cm−3,
and present day value of entropy density s = 2891.2 cm−3 (as we are using kB = 1 unit)
obtained from Planck2018 data. Utilizing eqs. (6.13) and (6.17), we get for both metric
and Palatini formalisms as

Trh ≃5.6073× 109 y2
N1 MN 1 . (6.18)

Here, we consider δeff = 0.5, and mν3 ≈ 0.05 × 10−9 GeV. Thus, if the sterile neutrino is
produced from the decay of inflaton during the reheating era, and becomes accountable for
the generation of baryon asymmetry of the present universe, then it must satisfy eq. (6.18).

– 20 –



J
H
E
P
0
6
(
2
0
2
4
)
0
3
8

yN1=
10

-3.5

yN1=
10

-6

yN1=
10

-8

yN1=
10

-10

yN1=
10

-12

��� ��� ����

��-�

���

���

����

���
[���]

�
��
[�
�
�
]

BBN

Stability m
b
(m

),ξ=
10 <
2
M
N
1

M
N
1 ⊀
10

9G
eV

M
N
1 ⊀
10

3G
eV

Figure 5. The allowed region (unshaded area) on (Trh, MN1) plane and viable range for the Yukawa-
like coupling yN1 to produce the baryon asymmetry of the present universe for NMPQ in metric
formalism for the benchmark (m)BM3.

These are presented as dotted lines for different values of yN1 in figure 5. In this plot,
the unshaded region represents the permissible parameter space on (Trh, MN1) plane for
benchmark (m)BM3. Constraints on this plane include: a forest-green horizontal stripe
situated at the top of the plot, representing the maximum permissible Trh value; a cyan-colored
wedge-shaped region in the upper-left corner. Both of these bounds are derived from table 4.
Additionally, a copper-rose vertical stripe on the right side reflects the condition MN1can not
be > mb(m),ξ/2, while a slate-gray horizontal stripe at the bottom rules out the possibility
Trh < 4MeV. These constraints have been discussed in the context of figure 4. Furthermore,
purple-colored region excludes MN1 < 109 GeV [108], and a yellow-colored region similarly
eliminates MN1 < 103 GeV. Hence, for 10−3.5 ≳ yN1 ≳ 10−12, the sterile neutrino produced
from the decay of inflaton within the metric formalism of our considered inflationary scenario
can effectively account for the entire baryon asymmetry in the present universe.

However, Palatini formalism puts more stringent bounds on the production of sterile
neutrinos as it can be seen from figure 6. The bounds on these figures are: the maximum
permissible value of Trh obtained from the stability analysis in table 5 i.e. Trh|λ12=λ12,max

.
This is depicted as a forest-green horizontal stripe positioned at the top of the figures. The
cyan-colored wedge-shaped area in the upper-left corner of the figures corresponds to the
highest acceptable values of yN1 from table 5. The presence of a copper-rose colored region
effectively excludes the possibility of the value of MN1 surpassing mb(P),ξ/2. Top-left panel
of figure 6 is for the benchmark (P)BM3 with ζ = 1. For this scenario, the possibility of the
sterile neutrino generated from inflaton decay contributing to baryon asymmetry is feasible
only for yN1 ∼ 10−3.6. Top-left panel of figure 6 is for the benchmark (P)BM3 with ζ = 10,
and this plot shows that the sterile neutrino from inflaton decay cannot account for the
present-day baryon asymmetry within this scenario. However, the bottom panel reveals that
successful Leptogenesis remains feasible for (P)BM7, even with ζ = 10, if yN1 ∼ 10−4.

7 Discussion and conclusion

In this article, we considered slow-roll, single-field inflationary scenarios with quartic potential
of the inflaton, and a non-minimal coupling between the inflaton and the gravity, and explored
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Figure 6. The allowed region (unshaded area) on (Trh, MN1) plane and viable range for the Yukawa-
like coupling yN1 to produce the baryon asymmetry of the present universe for NMPQ in Palatini
formalism: top-left-panel for the benchmark (P)BM3 for ζ = 1(top-left), top-right-panel is also for the
benchmark (P)BM3 but for ζ = 10, and bottom-panel is for the benchmark (P)BM7 and for ζ = 10.
Thus, the parameter space of yN1 within Palatini formalism is tightly constrained.

the particle production scenario from there-in. To this end, we suggested production of
non-thermal fermionic BSM particle, which can be either stable or unstable, during the
post-inflationary reheating era. Stable BSM fermionic particle can be accountable for the
total CDM density of the universe. If the BSM fermionic particles are sterile neutrinos, they
can decay to generate the total baryon asymmetry in the present universe via leptogenesis.
Next, we studied a set of benchmark values for slow roll inflation satisfying bounds from CMB
data within both metric and Palatini formalisms, and explored the corresponding parameter
space of the coupling between the BSM fermionic field and inflaton, and the mass of the
fermionic field that leads to successful DM relic and leads to observed baryon asymmetric
of the universe. The salient features of our analysis are as follows:

• For our chosen benchmarks, the predicted values of ns and r in both metric and Palatini
formalisms, falls within 1−σ contour of combined analysis of Planck2018+Bicep3+Keck
Array2018 on (ns, r) plane for NCMB ∼ 60 (see figure 1). For ξ = 0.5, the predicted
value of r in Palatini formalism can be as small as 10−3, such that it can be tested
in the future at 1 − σ C.L. by forthcoming CMB-S4 experiment. We also observed
from tables 2 and 3, as well as from figure 2, that the difference between predicted
values of r in Palatini formalism and in metric formalism, for the same ξ, increases for
higher values of ξ. This is because r varies as ξ−1. Left panel of figure 2 shows that
increasing the value of ξ and considering Palatini formulation of gravity helps to rescue
the inflationary model, even when the predicted values of r in metric formalism are
invalidated by CMB observations.
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• From stability analysis, we obtained the upper limit of the coupling between the inflaton
and the BSM fermionic field as < O(10−4) in both metric and Palatini formalisms.
However, the upper limit of λ12 obtained in metric formalism exceeds the value obtained
in Palatini formalism by one order (see tables 4 and 5).

• Since mϕ = 0 in both metric and Palatini formalisms, we suggested incorporating a
bare mass term to the potential for successful reheating. From our estimation, we
found that the upper limit of the bare mass term in metric formalism depends on ξ

(eq. (5.11)), whereas in Palatini formalism, it depends on Trh (eq. (5.12)).

• In figure 3, we found that Tmax/Trh is higher in metric formalism than in Palatini
formalism for same values of ξ and NCMB. This is due to the fact that the inflaton
potential around the minimum in Palatini formalism is quartic while it is quadratic
around minimum in metric formalism. We also observed that Tmax/Trh differs noticeably
with ξ in Palatini formalism in contrast to metric formalism.

• From figure 4 we conclude that stable non-thermal χ produced only through inflaton
decay can account for 100% of the total relic density of CDM of the present universe,
and the allowed range of yχ is 10−3.5 ≳ yχ ≳ 10−20 in metric formalism, while 10−4 ≳
yχ ≳ 10−10 in Palatini formalism. Unlike metric formalism, we observed that the
permissible range of yN1 varies noticeably with ξ in Palatini formalism. Furthermore,
in contrast to metric formalism, the permissible upper limit of mχ depends on Trh. The
benchmarks chosen for NCMB60 in metric formalism (table 2) will be validated by future
CMB observations, confirming the validity of the range of yχ (10−11 ≳ yχ ≳ 10−20).
Additionally, CMB-S4 will affirm benchmarks in Palatini formalism, such as (P)BM3,
indicating a valid range of yχ around 10−11.5 for ζ = 10. In summary, future CMB
observations, such as CMB-S4, can confirm given scenarios for dark matter physics and
matter-antimatter asymmetry in metric and Palatini formalisms, with respect to BSM
parameters yχ and mχ.

• When sterile neutrinos are produced from the decay of inflaton and generates total
baryon asymmetry of the universe, we found from figure 5 that permissible range yN1

is 10−3.5 ≳ yN1 ≳ 10−12 in metric formalism. However, Palatini formalism puts more
stringent bounds on parameter space available for yN1 . For instance, in the case of
(P)BM3, generating the baryon asymmetry necessitates yN1 ∼ 10−3.5 when bare mass is
approximately equal to its upper limit. But there is no permissible range of yN1 when
the bare mass is one order below the upper limit, or even smaller. This suggests that
generating the universe’s total baryon asymmetry through leptogenesis involving sterile
neutrinos produced from the decay of inflaton is severely constrained for our chosen
inflationary scenario in Palatini formalism.

In summary, just by extending the standard model with two degrees of freedom: a real
scalar inflaton, and a fermionic DM, we showed that tiny temperature fluctuations in CMBR
can be explained via inflation and also addressed the DM puzzle of the Universe. We have
also made a comparative analysis between the metric and Palatini formalisms of gravity
for the entire scenario. We have also demonstrated that future measurements of the CMB
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from experiments like CMB-S4, SPTpol, LiteBIRD, and CMB-Bharat [76, 77, 109, 110] will
further be able to test the simple models we have studied. We believe that, apart from
producing necessary amount of DM and demonstrating successful Leptogenesis, starting from
an well-motivated model of inflation in the two different gravity formalisms lead to different
bounds on the parameter spaces thereby leaving significant effects on the corresponding
physical conclusions of the theory. This is the major finding of the analysis, that makes
it a compelling case to explore further.

As a future outlook we would like to analyze the scalar perturbations and see if large
density fluctuations at small scales can occur in these models leading to PBH production and
scalar-induced Gravitational Waves in upcoming GW experiments like Laser Interferometer
Space Antenna (LISA), Cosmic Explorer, Einstein Telescope [111–113]. We leave such
estimates for future studies.
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A CW inflation

Since, we consider a SM gauge singlet BSM field as the inflaton with quartic potential in
our work, the presence of self-interaction or Yukawa interaction in the Lagrangian density
can give rise to quantum corrections. When such quantum loop corrections originating
from interaction terms, UV completions [114], etc., are included, the effective potential for
inflaton in Jordan frame becomes

V JF(φ) = VNMCW(φ) = ΛQ4

4 + Λφ4
[
log

(
φ

Q

)
− 1

4

]
, (A.1)

where Q represents the renormalization scale, and the inclusion of the term ΛQ4

4 is to ensure
that the value of the potential is ≳ 0, even at its minimum (the minimum of VNMCW(φ) is
located at φ = Q). With an aim to find benchmark values for which predicted values of
(ns, r) fall within 1− σ best fit contour of Planck2018+Bicep3+Keck Array2015 combined
analysis, unlike the form of non-minimal coupling considered in eq. (2.2), we consider the
non-minimal coupling of the following form [65, 115]

Ω2(φ) = 1 + ξ
φ2 −Q2

M2
P

. (A.2)

This particular form of non-minimal coupling also ensures that Ω2(φ → Q) → 1. Consequently,
Einstein frame and Jordan frame becomes the same when inflaton reaches to the minimum of
the potential. The potential for non-minimal Coleman Weinberg slow roll inflation (NMCW)
in Einstein frame is

V E(φ) ≡ V E
NMCW(φ) =

ΛQ4

4 + Λφ4
[
log

(
φ
Q

)
− 1

4

]
(
1 + ξ φ2−Q2

M2
P

)2 . (A.3)
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Benchmark Q/MP ξ φend/MP NCMB φ∗/MP ns r × 102 Λ

(m)NM-CW1 52 −0.0020 50.7913 60 39.0185 0.9647 1.5708 9.4735× 10−15

(m)NM-CW2 50 39.8917 0.9595 2.2375 1.3815× 10−14

(m)NM-CW3 175 −0.0025 174.1685 60 161.9637 0.9655 0.6114 2.9743× 10−15

(m)NM-CW4 50 162.9510 0.9603 0.8765 4.3037× 10−15

Table 6. Benchmark values for NMCW inflationary model in metric formalism.

Benchmark Q/MP ξ φend/MP NCMB φ∗/MP ns r × 102 Λ

(P)NM-CW1 52 −0.0020 50.7649 60 38.9338 0.9647 1.5332 9.2276× 10−15

(P)NM-CW2 50 39.8033 0.9595 2.1851 1.3456× 10−14

(P)NM-CW3 175 −0.0025 173.9785 60 161.2729 0.9655 0.5104 2.4699× 10−15

(P)NM-CW4 50 162.2357 0.9605 0.7321 3.5699× 10−15

Table 7. Benchmark values for NMCW inflationary model in Palatini formalism.

For the form of non-minimal coupling in eq. (A.2), the relation between the inflaton in
Einstein frame and φ is

dϕ

dφ
=



√
ξ(6ξ + 1)φ2M2

P − ξQ2M2
P + M4

P(
M2

P + ξ(φ2 −Q2)
) 2 (in metric theory) ,

√
M2

P(
M2

P + ξ(φ2 −Q2)
) (in Palatini theory) .

(A.4)

A set of benchmark values for slow roll inflation with potential V E
NMCW(φ) in Einstein frame

in metric and Palatini formalism are mentioned for NCMB = 50 and NCMB = 60 in tables 6
and 7. From those tables, we see that |ξ| < 1 for our chosen benchmark values. In this
scenario, slow roll inflation initiates near ϕ = 0 and inflaton moves towards higher value
of ϕ as inflation progresses. The picture is opposite for slow roll inflation in plain quartic
potential for inflaton, where the inflaton moves from larger to smaller values of inflaton
during slow roll inflation. The predicted values of (ns, r) fall within 1− σ best-fit contour of
Planck+Bicep+Keck Array combined data for NCMB = 60, which is similar to inflation with
plain quartic potential of inflaton (see tables 2 and 3). Therefore, hereafter, we consider only
the benchmark values corresponding to NCMB = 60 for further analysis. The predicted (ns, r)
values for benchmark (m)NM-CW1, (m)NM-CW3, (P)NM-CW1, and (P)NM-CW3 are shown
in figure 7 along with present 1− σ and 2− σ contour from Planck and Planck+Bicep+Keck
Array mission, along with prospective future reaches from forthcoming CMB observations
as mentioned in figure 1. From this figure, we can see that for the same values of ξ and
NCMB for our chosen set of benchmarks, there is no large difference between the predicted
values of (ns, r) in metric and Palatini formalisms. This is in contrast to what we observed
for a simple quartic potential for inflation, as illustrated in figure 1. The reason for these
almost similar predicted values of (ns, r) is our choice of |ξ| < 1. Additionally, the chosen four
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Figure 7. (ns − r) predictions for ξ = −0.002 and ξ = −0.0025 in both metric and Palatini formalism
and for NCMB ∼ 60 (from tables 6 and 7) along with bounds on (ns − r) from current and future
prospective reaches from forthcoming CMB observations mentioned in figure 1.

Benchmark stability for yχ stability for λ12

about ϕ∗ about ϕend about ϕ∗ about ϕend

(m)NM-CW1 yχ < 3.0956× 10−4 yχ < 3.0671× 10−4 λ12/MP < 2.3304× 10−6 λ12/MP < 3.3615× 10−6

(m)NM-CW3 yχ < 1.6355× 10−4 yχ < 2.5870× 10−4 λ12/MP < 8.9651× 10−7 λ12/MP < 2.7832× 10−6

Table 8. Allowed range of yχ and λ12 for the benchmark values from table 6.

Benchmark stability for yχ stability for λ12

about ϕ∗ about ϕend about ϕ∗ about ϕend

(P)NM-CW1 yχ < 3.0724× 10−4 yχ < 3.0673× 10−4 λ12/MP < 2.2859× 10−6 λ12/MP < 3.3423× 10−6

(P)NM-CW3 yχ < 1.5297× 10−4 yχ < 2.5183× 10−4 λ12/MP < 7.7185× 10−7 λ12/MP < 2.5579× 10−6

Table 9. Allowed range of yχ and λ12 for the benchmark values from table 7.

benchmarks ((m)NM-CW1, (m)NM-CW3, (P)NM-CW1, and (P)NM-CW3) for NCMB ∼ 60,
can be confirmed in the future with the help of the three forthcoming CMB observations,
the prospective future reaches of which are illustrated in figure 7.

Following the similar approach used in section 4, we estimated permissible upper values
of yχ and λ12 for the interaction Lagrangian eq. (2.12) and for V E

tree ≡ V E
NMCW(φ), and it is

mentioned in table 8 (for metric formalism) and in table 9 (for Palatini formalism). From
these table, we conclude that upper permissible values of yχ and λ12 are

• for (m)NM-CW1: yχ < 3.0671× 10−4, λ12/MP < 2.3304× 10−6.

• for (m)NM-CW3: yχ < 1.6355× 10−4, λ12/MP < 8.9651× 10−7.

• for (P)NM-CW1: yχ < 3.0673× 10−4, λ12/MP < 2.2859× 10−6.

• for (P)NM-CW3: yχ < 1.5297× 10−4, λ12/MP < 7.7185× 10−7.

These upper permissible values of λ12 leads to the estimation of the maximum permissible
value of Trh. We make the assumption that for NMCW inflation, reheating happens in
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Benchmark mϕ/MP

(m)NM-CW1 9.8092× 10−6

(m)NM-CW3 1.3023× 10−5

(P)NM-CW1 9.9903× 10−6

(P)NM-CW3 1.7395× 10−5

Table 10. mϕ for NMCW inflationary model in both metric and Palatini formalism.

y χ=
10
-3
.6

yχ=
10
-6

yχ=
10
-8

yχ=
10
-1
0

yχ=
10
-1
2

yχ=
10
-1
4

yχ=
10
-1
6

yχ=
10
-1
8

yχ=
10
-2
0

��-� ��� ��� ���� ����

��-�

���

���

����

�χ[���]

�
��
[�
�
�
]

BBN

Stability m
b
(m

),ξ=
10 <
2
m

χ

Ly-α
yN1=

10
-3.6

yN1=
10

-6

yN1=
10

-8

yN1=
10

-10

yN1=
10

-12

��� ��� ����

��-�

���

���

����

���
[���]

�
��
[�
�
�
]

BBN

Stability

m
ϕ <
2
M
N
1M

N
1 <
10

9G
eV

M
N
1 <
10

3G
eV

Figure 8. Left panel: shows the allowed region (unshaded area) on (Trh, mχ) plane and viable range
for the Yukawa-like coupling yχ to produce the entire CDM density of the present universe. Right
panel: displays the allowed region (unshaded area) on (Trh, MN1) plane and viable range for the
Yukawa-like coupling yN1 to produce the baryon asymmetry of the present universe. Both panels are
for NMCW in metric formalism for the benchmark (m)NM-CW1. The allowed regions on (Trh, mχ)
plane and viable range for yχ, and allowed regions on (Trh, MN1) plane and viable range of yN1 are
almost identical for the benchmark (P)NM-CW1. This similarity arises from the almost identical
values of mϕ and permissible upper limits of yχ and λ12, with slight variations, for both benchmarks
(m)NM-CW1 and (P)NM-CW1.

quadratic potential for both metric and Palatini formalisms. Furthermore, φmin = Q is the

location of minimum of V E
NMCW(φ) and mϕ =

((
d2V E/dϕ2

)∣∣∣
φ=φmin

)1/2
is not vanishing,

as we have seen for plain quartic inflation (see table 10). Hence, unlike NMPQ, we don’t
require introducing a bare mass term to the potential. The assumption that potential in
Einstein frame around the minimum in NMCW inflation can be approximated as ∝ ϕ2, even
in Palatini formalism, along with non-vanishing values of mϕ, leads to the different results in
the context of DM production and leptogenesis, compared to NMPQ, that we obtain next
for the production of DM and Leptogenesis.

Left panel of figure 8 is similar to figure 4, but for NMCW (benchmark-(m)NM-CW1).
In this figure, the dashed lines correspond to eq. (5.17) illustrating the values of yχ for
which χ produced from the decay of inflaton can be accountable for the 100% of total CDM
density of the present universe. The bounds on (Trh, mχ) plane in figure 8 have been already
mentioned in figure 4: from stability analysis mentioned in table 8, mχ should be ≲ mϕ/2
(mϕ is mentioned in table 10), Ly-α bound from eq. (5.26), BBN bound: Trh ≳ 4MeV.
The allowed range of yχ is 10−3.6 ≳ yχ ≳ 10−20, which is identical for metric formalism in
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NMPQ. In NMCW, the allowed range of yχ is also nearly the same for Palatini formalism
(benchmark (P)NM-CW1), because mϕ, and the upper permissible limit of yχ and λ12 are
almost identical in both metric and Palatini formalisms for our chosen benchmark values.
Right panel of figure 8 is similar to figure 5, but for NMCW (benchmark-(m)NM-CW1)
depicting allowed range for yN1 by dotted lines. The unshaded region is allowed, and the
bound on (Trh, MN1) plane have been already mentioned in figure 5. The allowed range
of yN1 is 10−3.6 ≳ yN1 ≳ 10−12, which is identical for metric formalism in NMPQ. The
allowed region in Palatini formalism is identical and this conclusion is different from the
result we obtained for NMPQ.

B Boltzmann

Here, we derive the expression for Tmax while reheating happens in either quadratic or quartic
potential about the minimum. However, to make the calculations more general, we assume
the potential during reheating V E ∝ ϕk where k can be any even number > 0 so that we
can get a proper minimum during reheating. Then, the Boltzmann equations governing
the evolution of ρϕ, ρrad, and ρχ (which refers to energy density of χ), and first Friedmann
equation are given by [82–84]4

dρϕ

dt
+ 3

( 2k

k + 2

)
Hρϕ = −Γϕρϕ , (B.1)

dρrad
dt

+ 4Hρrad = Γϕρϕ , (B.2)

dnχ

dt
+ 3Hnχ = R(t) , (B.3)

H2 = ρϕ + ρrad + ρχ

3M2
P

≈ ρϕ

3M2
P

. (B.4)

The approximation presented in eq. (B.4) holds true starting from the onset of reheating
era and prior to the point when the temperature of SM relativistic plasma, or equivalently,
the temperature of the universe reaches Trh. When Γϕ ≪ H, which occurs during the early
stages of reheating, we can approximate the right-hand side of eq. (B.1) as 0. Under this
approximation, the solution to eq. (B.1) can be written as ρϕ ∝ a−3(2k/(k+2)). To further
simplify the calculations of combined eqs. (B.1) to (B.4), we make use of comoving energy
density ρϕ = Rϕ a−3(2k/(k+2)), ρrad ∼ Rrad a−4, ρχ = Rχ a−3. By combining them with
eqs. (B.2) and (B.4), we obtain the following

dRrad
da

=
√
3MP Γϕ

√
Rϕ a6/(2+k) , (B.5)

which is applicable at early times i.e. when H ≫ Γϕ. This allows us to assume Rϕ ≈ RϕI ,
where RϕI is the value of Rϕ at the beginning of reheating and dRϕI

da ≈ 0. Then

Rrad ≃
√
3MP Γϕ

√
RϕI

2 + k

8 + k
a(8+k)/(2+k) + c (B.6)

4In contrast to our approach or the approach used in ref. [83], ref. [82] considers that mϕ is not a constant
parameter. As a result, there is a different relationship between ρrad and a and T as compared to the one we
derive below.
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where c is the indefinite integral constant that may be settled with the assumption that

Rrad(aI) ≃ 0. (B.7)

Therefore,

Rrad ≃
√
3MP Γϕ

√
RϕI

2 + k

8 + k

(
a(8+k)/(2+k) − a

(8+k)/(2+k)
I

)
. (B.8)

To further facilitate the computations, let us introduce a variable A ≡ a/aI. Besides,
energy density of the produced relativistic SM particles which are thermalized and posses
the temperature T can be written as

Rrad = π2

30g⋆T 4A4a4
I . (B.9)

Equating eqs. (B.8) and (B.9), we obtain

T = 33/8
(10MP Γϕ

π2 g⋆

√
RϕI

)1/4 (2 + k

8 + k

)1/4
a

−3k
4(2+k)
I

(
A

−3k
(2+k) − A−4

)1/4
. (B.10)

In eq. (B.10), the maximum value of T can be obtained if
(

A
−3k

(2+k) − A−4
)1/4

reaches
maximum, which happens when

Amax =
(4
3

k + 2
k

) k+2
k+8

=
(4
3

2
w + 1

) 2
5−3wre

. (B.11)

The, the maximum possible temperature during reheating

Tmax =
( 60

π2 g⋆

)1/4
M

1/4
P Γ1/4

ϕ R
1/8
ϕI

a
− 3k

4(k+2)
I

31/8

23/4

((27
64

) k
k+8

(
k

k + 2

) 3k
k+8
)1/4

, (B.12)

Tmax =
( 60

π2 g⋆

)1/4
M

1/2
P Γ1/4

ϕ HI
1/4 31/4

23/4

((27
64

) k
k+8

(
k

k + 2

) 3k
k+8
)1/4

, (B.13)

where we have used RϕIa
−3(2k/(k+2)) = 3H2

I M2
P.

Therefore,

Tmax =



(3
8

)2/5 ( 60
g⋆ π2

)1/4
(HI Γϕ)1/4 M

1/2
P , (for quadratic) ,

( 3
16

)1/4 ( 60
g⋆ π2

)1/4
(HI Γϕ)1/4 M

1/2
P , (for quartic) .

(B.14)

(B.15)

Since A−1 < A
−3k

4(2+k) for A > 1 and k > 1, we can approximate eq. (B.10) as

T ≈ 33/8
(10MP Γϕ

π2 g⋆

√
RϕI

)1/4 (2 + k

8 + k

)1/4
a

−3k
4(2+k)
I A

−3k
4(2+k) . (B.16)

From eq. (B.16), we can see that T ∝ a−3k/4(2+k). Additionally, using ρϕ = Rϕ a−3(2k/(k+2)),
we see that ρϕ ∼ T 8 and this functional dependence remains unchanged regardless of whether
we consider a quadratic or quartic potential for the inflaton during reheating.
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C Upper limit estimation for bare mass

In this section, we estimate the upper limit on the bare mass that can be incorporated into
the potential of inflaton for successful reheating without disrupting the slow roll inflationary
scenario. We assume that the potential of inflaton around its minimum during reheating
(in Einstein frame, with ϕ as the inflaton in Einstein frame) can be approximated using
one of the following forms:

Ṽ E(ϕ) ∝
{
Λqud ϕ2 ,

Λqur ϕ4 ,
(C.1)

where Λqud, Λqur are numerical factors. Our initial goal is to calculate the upper limit for the
bare mass when reheating occurrs at the quartic minimum. By using eq. (5.1) along with
the relation ρϕ ∝ a−3(1+wre), we obtain during the reheating era [82]

ρϕ ∝ a−4 . (C.2)

Comparing eqs. (C.1) and (C.2), we can say that amplitude of oscillation varies as (for
quartic potential)

ϕ ∼ a−1 . (C.3)

Therefore, mϕ ∼ a−1 (as mϕ ∼
√
Λqur ϕ), and Γϕ ∼ a1. Additionally, H ∼ a−2 as

H ∼
√

Ṽ E(ϕ).
Hence,

Γϕ

H
∝ a3 . (C.4)

Therefore, using Γϕ,rh ∼ Hrh, we get

arh
aend

∼
(

Hend
Γϕ,end

)1/3

. (C.5)

By using eq. (C.3) in eq. (C.5), we obtain

ϕrh ∼ ϕend

(Γϕ,end
Hend

)1/3
. (C.6)

Then, using Hend ∼
√

V (ϕend)/(
√
3MP),

ϕrh ∼
(√

3MP√
Λqur

Γϕ,end ϕend

)1/3

∼
(√

3MP λ2
12

8π Λqur

)1/3

, (C.7)

where we have used Γϕ,end = λ2
12

8π
√

Λqurϕend
. If we want to incorporate a bare mass term mb

during quartic reheating, we need to satisfy the following condition [116]

mb <
√
Λqur ϕrh =

√
Λqur

(√
3MP λ2

12
8π Λqur

)1/3

. (C.8)

For reheating happens in quadratic potential, the upper limit on bare mass can straight-
forwardly be estimated as

mb <
√
Λqud. (C.9)
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