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1 Introduction

A boundary conformal field theory (BCFT) is a conformal field theory (CFT) defined on
a manifold with codimension-one boundaries, such that a maximal subgroup of conformal
symmetry is preserved on the boundaries [1–4]. A holographic description of BCFTs was
proposed in [5, 6], inspired by the earlier works on the brane-world holography [7–10]. This
duality is called AdS/BCFT correspondence, and its idea is to simply extend the boundary of
BCFT towards inside of the bulk AdS spacetime, which shapes the end-of-the-world (EOW)
brane. (See figure 1 for a sketch of the AdS/BCFT setup.) The EOW brane has tension T ,
which is related to the brane location ρ∗ by imposing Neumann boundary condition on the
brane. This AdS/BCFT correspondence recently found an interesting application for the black
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hole information paradox and derivation of the Page curve [11]. In the context of AdS/BCFT
correspondence, holographic stress-energy tensor has been investigated widely [12–23]. On
the other hand, holographic conserved currents associated to bulk gauge fields have not been
discussed so extensively. The purpose of this paper is to further investigate holographic
conserved currents in the context of AdS/BCFT correspondence.

In addition to the maximal subgroup of conformal symmetry, in this paper, we consider
a Υ(1) preserving boundary condition [24–26]. From the point of view of BCFT, this means
that the conserved current Jµ associated to this Υ(1) symmetry satisfies

Jw(w = 0) = 0, (1.1)

on the boundary. Here w is the perpendicular direction to the boundary and we placed the
boundary at w = 0. From the bulk point of view of AdS/BCFT, this condition implies that
there is no coupling between bulk fields and brane-localized fields. Gauge fields confined on
the EOW brane were previously studied in [27, 28]. On the other hand, we study propagating
bulk gauge fields, as well as massive fields, without brane-localized fields. Our set-up is similar
to the one considered in [29–31] in the context of brane world holography. In contrast to these
conserved currents Jµ, other vectorial operators Oµ, in general can have a non-vanishing
perpendicular component on the boundary:

Ow(w = 0) ̸= 0. (1.2)

These two types of operators Jµ and Oµ in BCFT are associated to massless and massive
vector fields in AdS spacetime through the AdS/BCFT correspondence. The goal of this
paper is to clarify the origin of these two different behaviors (1.1) and (1.2), from the bulk
point of view of AdS/BCFT. We will explain that the origin of these different behaviors are
the presence or absence of the bulk gauge symmetry, but not the value of masses. Therefore,
even in the massless limit of a massive vector perturbation, in general one can obtain a
non-vanishing perpendicular component on the boundary (1.2). We will also discuss p-form
generalization of the above discussion.

Some other motivations of this work are as follows. An abelian p-form gauge field in
d = 2(p + 1) dimensional flat space with a planar codimension-one boundary, without any
boundary interaction, is known to be BCFT [32]. Our discussion on the p-form gauge field
perturbations in AdS would be useful when constructing a holographic model for such p-form
BCFT. Furthermore, when p = 1 we can also induce boundary interactions. One particular
such model is known as boundary QED, where a 4-dimensional bulk Maxwell field and
3-dimensional planar boundary fermions interact on the boundary [32–34]. This boundary
QED was argued to model a time parity odd dynamics in a planar sheet of graphene in the
continuum limit [35]. Even though we do not include boundary interactions, our discussion
on the Υ(1) gauge field perturbation in AdS would be a first step toward constructing a
holographic model for boundary (large N) QED. It also seems like that a string theory
embedding of AdS/BCFT correspondence requires some type of p-form gauge field [36–40].
Therefore, our study on the p-form perturbations might be useful to construct some string
theory embedding of AdS/BCFT correspondence.

– 2 –



J
H
E
P
0
6
(
2
0
2
4
)
1
3
7

w

z
AdSd+1

x

BCFTd

EOW brane

Figure 1. A sketch of the AdS/BCFT setup. The end-of-the-world (EOW) brane is depicted in
purple, and the asymptotic boundary is depicted in green, where the dual BCFT lives on. The
boundary of the BCFT is a straight plane at w = 0. The gravity dual of the BCFT lives in AdSd+1
between the EOW brane and the asymptotic boundary.

The rest of the paper is organized as follows. In section 2, we introduce the background
geometry of the AdS/BCFT setup and define our notations. The following sections (from
section 3 to section 6), we discuss perturbations on top of this background geometry and
their implications for the dual BCFT operators. In section 3, we study a massless vector
perturbation, where the equation of motion can be decomposed into each component, by
using Lorentz gauge. Then, the equation of motion becomes a second order homogeneous
differential equation for each component, which leads to the behavior (1.1). In section 4, we
study a massive vector perturbation, where one cannot decompose the equation of motion
for each component, due to the absence of gauge symmetry. Then, the equation of motion
becomes a second order inhomogeneous differential equation. The general solution for the
corresponding homogeneous equation is analogous to the massless solution, which leads to
the behavior (1.1) in the massless limit. However a special solution for the inhomogeneous
equation leads to the behavior (1.2), even in the massless limit. In section 5 and section 6,
we discuss p-form generalization of the above discussion, and readers who are interested only
in the vector cases can skip these sections, since the results are simple generalization of the
vector cases. On the other hand, readers who want to start from the most general discussions
can skip vector sections and jump into the p-form sections. Even though the vector cases can
be obtained from the p-form cases by setting p = 1, since vector fields are more ubiquitous,
we decided to present them separately. In section 7, we conclude this paper, and the appendix
gives the formulae to derive the dual BCFT operators from asymptotics of bulk fields.

2 Background

In this section, we summarize the background geometry of the AdS/BCFT setup [5, 6].
For the background, we have the total action

Ibackground = Ibulk + Ibrane + Ibdy, (2.1)

– 3 –



J
H
E
P
0
6
(
2
0
2
4
)
1
3
7

where

Ibulk = − 1
16πGN

∫
M

dd+1x
√

g(R − 2Λ), (2.2)

Ibrane = − 1
8πGN

∫
Q

ddx
√

h(KQ − T ), (2.3)

Ibdy = − 1
8πGN

∫
Σ

ddx
√

γKγ . (2.4)

We denote the bulk AdSd+1 spacetime by M , which is cut by the EOW brane Q. The
asymptotic AdS boundary is denoted by Σ, where the dual BCFT lives on. The cosmological
constant is given by

Λ = −d(d − 1)
2ℓ2

AdS
, (2.5)

and hereafter we set ℓAdS = 1. h and γ are induced metrics on the EOW brane and the
asymptotic AdS boundary, respectively. K’s are trace of the extrinsic curvatures and T

is the brane tension.
Since the bulk action is just the Einstein-Hilbert action with negative cosmological

constant, the solution is given by an empty AdSd+1. For AdSd+1, the Poincare metric is
written as

ds2
d+1 = dz2 + dw2 +

∑d−2
i=1 dx2

i

z2 . (2.6)

However, these exsit more convenient coordinates for a study of AdS/BCFT. By coordinate
transformations

z = y

cosh ρ
, w = y tanh ρ, (2.7)

we can move to the hyperbolic slicing coordinates

ds2
d+1 = dρ2 + cosh2 ρ

(
dy2 +

∑d−1
i=1 dx2

i

y2

)
. (2.8)

In the following we denote this metric by

ds2
d+1 = dρ2 + a(ρ)2γµνdqµdqν , (2.9)

such that

a(ρ) := cosh ρ, (2.10)

qµ = {xi, y} and γµν is the d-dimensional Poincare metric. In this paper, we will mostly follow
the notation of [23]. In particular, the indices µ, ν, λ, · · · denote the d-dimensional coordinates
without ρ-direction. We use capital indices M, N, L, · · · to denote (d + 1) dimensional
coordinates and small indices i, j, k, · · · to denote (d − 1) dimensional coordinates.

We impose Neumann boundary condition on the EOW brane, which is explicitly written as

Kµν = (K − T )hµν , (2.11)
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where the Kµν (and K) is the EOW brane extrinsic curvature (and its trace). This condition
fixes the brane location. We place the EOW brane at ρ = ρ∗, and this position of the brane
is determined by the boundary condition as [5, 6]

T = (d − 1) tanh ρ∗. (2.12)

3 Massless vector perturbations

Now we study vectorial perturbations on top of the background discussed in section 2. In this
section, we study massless Υ(1) gauge field perturbations. We will also discuss massive vector
case in section 4. Massless Υ(1) gauge field in empty AdS was previously discussed in [41–43].

The perturbation action we consider in this section is given by

IEM = −1
4

∫
M

dd+1x
√

gF MN FMN . (3.1)

The equation of motion derived from (3.1) is

∇M F MN = 0, (3.2)

where ∇M is the covariant derivative with respect to the background (2.9) and the field
strength is F MN = ∇M AN −∇N AM . Now we only induce d-dimensional perturbations and
we impose a gauge fixing condition Aρ = 0. Furthermore, we also impose the d-dimensional
Lorentz gauge

∇̃µAµ = 0, (3.3)

where ∇̃µ is the covariant derivative with respect to the d-dimensional Poincare metric γµν .
We note that with the condition Aρ = 0, this d-dimensional Lorentz gauge also implies
(d + 1)-dimensional Lorentz gauge

∇M AM = 0. (3.4)

Upon this Lorentz gauge, the equation of motion is rewritten as [41]

(□ + d)AM = 0, (3.5)

where □ := gMN∇M∇N . Now we decompose the ρ-direction. Then the equation of motion
leads to [

a−2(□̃ + 1) + ∂2
ρ + (d + 2) tanh ρ∂ρ + 2d − d

cosh2 ρ

]
Aν = 0, (3.6)

with □̃ := γµν∇̃µ∇̃ν . We assume the separable form of the solutions

Aµ(ρ, x, y) = a(ρ)−1
∞∑

n=0
Rn(ρ)Y µ

n (x, y). (3.7)
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Here, we separated a factor of a(ρ)−1 in order to follow the convention of [23]. Then, the
equation of motion is decomposed into the ρ-direction and the remaining d-dimensional
equations as

R′′
n + d tanh ρR′

n + (d − 1)Rn = −λn

cosh2 ρ
Rn, (3.8)

(□̃ + 1)Y µ
n = λnY µ

n , (3.9)

where the prime denotes a derivative with respect to ρ.

3.1 ρ-direction

The ρ-direction equation (3.8) is solved by the associated Legendre functions as

Rn(ρ) = (1 − ζ2)
d
4

[
c1P µ

ν− 1
2
(ζ) + c2Qµ

ν− 1
2
(ζ)
]

, (3.10)

where

ζ = tanh ρ, µ = d − 2
2 , ν = 1

2

√
(d − 1)2 + 4λn. (3.11)

We note that for a massive scalar field, we have the same expression for the ρ-direction
wavefunction as discussed in [23], except that µ is given by

µ = 1
2
√

d2 + 4m2, (3.12)

where m is the mass of the scalar field. This implies that the massless gauge field wavefunction
is related to that of massive scalar field with mass square

m2 = −(d − 1). (3.13)

The same relation between the massless gauge field and a massive scalar field was also
noticed in empty AdS in [42].

For the asymptotic AdS boundary (ζ → 1 or ρ → ∞), we impose the standard Dirichlet
boundary condition. This fixes the relation between the two coefficients c1 and c2 in (3.10).
After imposing this boundary condition, the solution is written as [23]

Rn(ρ) = B0(1 − ζ2)
d
4 P−µ

ν− 1
2
(ζ), (3.14)

where B0 is a new numerical coefficient and we note that the order of the associated Legendre
function is now replaced by −µ. This solution behaves as

Rn(ρ) ∼ (1 − ζ)
d−1

2 , (3.15)

towards the asymptotic AdS boundary (ζ → 1). Therefore, the behavior of the original
gauge field is

Aµ(ρ, x) ∼ e−dρ. (3.16)
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On the EOW brane, we impose Neumann boundary condition [5, 6]

0 = Fρµ

∣∣
ρ=ρ∗

. (3.17)

Since we set Aρ = 0, this condition implies

0 = ∂ρ
(
a2Aµ)∣∣

ρ=ρ∗
, (3.18)

or equivalently

0 = d

dζ

(
aRn

)∣∣
ζ=ζ∗

. (3.19)

where ζ∗ = tanh ρ∗. Using a property of the Legendre function, this condition can be written
in a simply form as in the gravity case [23]:

0 = P 1−µ

ν− 1
2
(ζ∗). (3.20)

This condition quantizes the eigenvalue (or Kaluza-Klein mass) λn. Obtaining exact analytical
solutions for this condition seems difficult, except d = 3 and d = 5 cases. For d = 3, the
Neumann boundary condition is written as

0 = P
1
2

ν− 1
2
(ζ∗) =

√
2

π sin θ∗
cos(νθ∗), (3.21)

where we defined θ∗ by

cos θ∗ = ζ∗ = tanh ρ∗. (3.22)

This condition is solved by

νn =
(2n + 1

2

)
π

θ∗
, (n = 0, 1, 2, · · · ) (3.23)

For d = 5, the Neumann boundary condition is written as

0 = P
− 1

2
ν− 1

2
(ζ∗) =

√
2

π sin θ∗

sin(νθ∗)
ν

, (3.24)

This was already discussed in [23] and the solutions are given by

νn = (n + 1)π
θ∗

, (n = 0, 1, 2, · · · ) (3.25)

In figure 2, we show numerical solutions for low lying modes νn with n = 0, 1, 2, 3, 4. We
notice that for d = 2, the lowest mode (n = 0) is actually independent of the brane location
θ∗, or the brane tension T through the relation (2.12). This can be explained as follows. For
d = 2, the Neumann boundary condition (3.20) can be written as

0 = P 1
ν− 1

2
(ζ∗) = −(1 − ζ2

∗ )
1
2

[
d

dζ
Pν− 1

2
(ζ)
] ∣∣∣∣

ζ=ζ∗

. (3.26)
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Figure 2. Brane tension dependence of numerical solutions for the lowest five modes in AdSd+1 with
d = 2, 3, 4 and 5.

Therefore, when the Legendre function Pν− 1
2
(ζ) is constant (i.e. independent of ζ), such

ν is a solution. This happens when ν = 1/2, since P0(x) = 1. Therefore for d = 2, the
lowest mode is given by

ν0 = 1
2 , (for d = 2) (3.27)

It would be interesting to further explore physical meaning of this constant mode for the
dual BCFT2, but we leave this question for a future work.

For the asymptotic spectrum, we can also find an analytical expression. (For the
scalar perturbation, this was found in [44].) For large ν (with fixed µ), the boundary
condition (3.20) can be approximated by

0 = 1
νµ−1

(
θ∗

sin θ∗

) 1
2 (

Jµ−1(νθ∗) + O(ν−1)
)

≈ 1
νµ−1

( 2
πν sin θ∗

) 1
2

cos
(

νθ∗ −
πµ

2 − π

4

)
. (3.28)

Therefore, the asymptotic spectrum is found as

νn ≈ π

2θ∗

(
µ + 3

2 + 2n

)
, (for large n) (3.29)
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3.2 x-direction

Now we consider the remaining d-dimensional equation (3.9). We study this equation on
the d-dimensional Poincare metric

ds2
d = γµνdqµdqν = dy2 +

∑d−1
i=1 dx2

i

y2 . (3.30)

First we note that the Lorentz gauge (3.3) is explicitly written as

∂iY
i = −∂yY y + d

y
Y y. (3.31)

Using this condition, we can write the x -direction equation (3.9) explicitly as

0 = □0Y y −
(

d + 2
y

)
∂yY y +

(2d + 2 − λn

y2

)
Y y, (3.32)

0 = □0Y i − d

y
∂yY i − 2

y
∂iY

y +
(

d − λn

y2

)
Y i, (3.33)

where

□0 := ∂2
y + ∂i∂i. (3.34)

The Y y equation (3.32) is solved as

Y y(x, y) = y
d+3

2

[
c3Jν(

√
−k2y) + c4Yν(

√
−k2y)

]
eik·x. (3.35)

We impose Dirichlet boundary condition at y = 0 as in [23], which sets c4 = 0. Therefore,
the asymptotic behavior (y → 0) is given by

Y y(x, y) ∼ y
d+3

2 +ν . (3.36)

For the remaining modes Y i, we decompose it into helicity-0 component ϕ and helicity-1
component V i as

Y i = ∂iϕ + V i, (3.37)

where

∂iV
i = 0. (3.38)

The helicity-0 component ϕ is fixed by the Lorentz gauge (3.31) as

ϕ = 1
k2

(
∂yY y − d

y
Y y
)

. (3.39)

Therefore, the asymptotic behavior of the helicity-0 component Y i
(0) = ∂iϕ is given by

Y i
(0)(x, y) ∼ y

d+1
2 +ν . (3.40)
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For the helicity-1 component Y i
(1) = V i, Y y does not contribute. Therefore, the equation (3.33)

is simply solved as

Y i
(1)(x, y) = y

d+1
2

[
c5Jν(

√
−k2y) + c6Yν(

√
−k2y)

]
eik·xEi(k, s), (3.41)

where Ei(k, s) is a basis vector satisfying

kiE
i(k, s) = 0, Ei(k, s)Ei(k, s′) = δss′ . (3.42)

Here, s is the label representing different choices of basis vectors. Therefore, the asymptotic
behavior of the helicity-1 component is same as that of helicity-0 component, so the parallel
components have

Y i(x, y) ∼ y
d+1

2 +ν . (3.43)

3.3 Holographic conserved currents

The holographic conserved currents Jµ are obtained from bulk gauge field perturbations by

Jµ(x, w) = lim
z→0

z−dAµ(x, w, z), (3.44)

in the Poincare coordinates. This formula is derived in appendix A. Using the coordinate
transformations (2.7), we can rewrite this in the hyperbolic slicing coordinates as

Jµ(x, w) = lim
ρ→∞

[(
eρ

2y

)d

Aµ(ρ, x, y)
] ∣∣∣∣∣

y=w

. (3.45)

Since the asymptotic behavior of the gauge field is given by (3.16)

Aµ(ρ, x, y) ∼ e−dρ, (3.46)

the ρ → ∞ limit in (3.45) indeed gives a finite value. Finally combining with the asymptotic
behavior of Y µ discussed in section 3.2, near-the-boundary behavior (w → 0) of the holographic
conserved currents are found as

Jw(x, w) ∝ wν+−d+3
2 , J i(x, w) ∝ wν+−d+1

2 . (3.47)

Since λn is non-negative, we have

ν ≥ d − 1
2 . (3.48)

This implies that at most the powers of the perpendicular direction w are given by

Jw(x, w) ∝ w, J i(x, w) ∝ w0 = 1. (3.49)

Therefore, the perpendicular component of the holographic conserved current Jw vanishes at
the boundary Jw(w = 0) = 0, while the transverse components can have finite non-vanishing
values at the boundary w = 0.
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4 Massive vector perturbations

In this section, we study massive vector perturbations on top of the background discussed in
section 2. Massive vector fields in empty AdS were previously discussed in [41, 45, 46].

Unlike the massless case, we cannot impose the gauge condition Aρ = 0, since there is
no gauge symmetry in the present case. Therefore, we induce the full (d + 1)-dimensional
vector perturbations and the perturbation action is given by

Iv = −
∫

M
dd+1x

√
g

[
1
4F MN FMN + m2

2 AM AM

]
. (4.1)

The equation of motion derived from this action is

∇M F MN = m2AN . (4.2)

Even though we do not have any gauge fixing condition, due to the anti-symmetric nature
of F MN , we get a supplemental condition [41]

∇M AM = 0, (4.3)

from the equation of motion. Using this supplemental condition, the equation of motion
is rewritten as

(□ + d − m2)AM = 0. (4.4)

As in the massless case, once we separate the ρ-direction, the equations of motion read[
a−2□̃ + ∂2

ρ + (d + 2) tanh ρ∂ρ + 2d − m2 − d

cosh2 ρ

]
Aρ = 0, (4.5)

and[
a−2(□̃ + 1) + ∂2

ρ + (d + 2) tanh ρ∂ρ + 2d − m2 − d

cosh2 ρ

]
Aν = −2 tanh ρ∂νAρ. (4.6)

To write these equations, we also used the supplemental condition (4.3), whose ρ-separated
form is given by

∇̃µAµ = −∂ρAρ − d tanh ρAρ. (4.7)

We note that for this massive vector case, the M = ρ component of the equation of motion
leads to a non-trivial equation, which we need to solve. Furthermore, a slight difficultly in
the current massive vector case is that the second equation is an inhomogeneous differential
equation and it has a source contribution from Aρ in the right-hand side. We note that
this structural difference of the equations of motion is due to the absence of a bulk gauge
symmetry to set Aρ = 0. As we indicated in the Introduction, this structural difference
of the equations of motion eventually leads to the different behavior of the perpendicular
component of the dual BCFT operator, as we will see below.
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4.1 Solution for Aρ

We first solve the equation (4.5) for Aρ. As in the massless case, we assume the separable
form of the solution and take an ansatz

Aρ(ρ, x, y) = a(ρ)−1
∞∑

n=0
Rn(ρ)Y ρ

n (x, y). (4.8)

Then, the equation of motion is decomposed as

R′′
n + d tanh ρR′

n + (d − 1 − m2)Rn = −λn

cosh2 ρ
Rn, (4.9)

□̃Y ρ
n = λnY ρ

n . (4.10)

The equation for Rn is basically the same structure as in the massless case, so the
solution is given by

Rn(ρ) = B0(1 − ζ2)
d
4 P−µ

ν− 1
2
(ζ), (4.11)

but the order of the associated Legendre function is now modified by the mass as

ζ = tanh ρ, µ = 1
2

√
(d − 2)2 + 4m2, ν = 1

2

√
(d − 1)2 + 4λn. (4.12)

This solution behaves as

Rn(ρ) ∼ (1 − ζ)
d+2µ

4 , (4.13)

towards the asymptotic AdS boundary (ζ → 1). Therefore, the behavior of the original
gauge field is

Aρ(ρ, x, y) ∼ e−( d+2
2 +µ)ρ. (4.14)

Once we impose a boundary condition on the EOW brane at ρ = ρ∗, this condition quantizes
the eigenvalue λn.

Next for the Y ρ
n , since it behaves as a scalar field in equation (5.10), we don’t need to

worry about the rest of the component Aµ to solve this equation. It is explicitly written as

0 = □0Y ρ −
(

d − 2
y

)
∂yY ρ − λn

y2 Y ρ. (4.15)

Therefore, the solution is given by

Y ρ(x, y) ∝ y
d−1

2 Jν(
√
−k2y)eik·x. (4.16)

The asymptotic behavior (y → 0) of this solution is given by

Y ρ(x, y) ∼ y
d−1

2 +ν . (4.17)
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4.2 Solution for Aµ

For the equation (4.6) for Aµ, we first study the homogeneous equation. For the homogeneous
solution, we assume the separable form of the solution and take an ansatz

Aµ
hom(ρ, x, y) = a(ρ)−1

∞∑
n=0

Rn(ρ)Y µ
n (x, y). (4.18)

Then, the equation of motion is decomposed as

R′′
n + d tanh ρR′

n + (d − 1 − m2)Rn = −λn

cosh2 ρ
Rn, (4.19)

(□̃ + 1)Y µ
n = λnY µ

n . (4.20)

We can see that the equation for Rn is the same as Aρ case discussed in the previous
subsection. Therefore, the solution is given by (4.11) with (4.12). The quantization condition
of νn is given by the same form as in (3.20) but µ is now replaced by (4.12). We note
that the brane-tension-independent mode we found in the massless case in d = 2 does not
exist in the present massive case. This is because for m2 > 0 and d ≥ 2, we have µ > 0.
Therefore for massive case, we cannot use the formula like (3.26) to express the boundary
condition as a derivative with respect to ζ.

On the other hand, the equation for Y µ
n is the same as massless case discussed in the

previous section, provided that the eigenvalue λn is appropriately quantized in the current
massive case. Therefore, besides the precise quantization condition for λn, the solutions
are given by (3.35) and (3.41) with c4 = c6 = 0. In particular, the asymptotic behavior
(y → 0) of the homogeneous solutions are given by

Y y
hom(x, y) ∼ y

d+3
2 +ν , Y i

hom(x, y) ∼ y
d+1

2 +ν . (4.21)

Next, we consider a special solution of the inhomogeneous equation (4.6). It looks difficult
to find an exact solution, since the solution of Aρ is given in the summation form as in (4.8).
Therefore, in this subsection, let us just determine the leading asymptotic behavior of a
special solution. For the ρ direction, we use the following ansatz for the special solution

Âµ(ρ, x, y) = e−( d+2
2 +µ)ρŶ µ(x, y). (4.22)

We use a hat to denote this special solution. With this ansatz, the leading contribution
(in large ρ) of the inhomogeneous equation (4.6) identically vanishes and the subleading
contribution is given by

(
□̃ + 1 − λ̂

)
Ŷ µ = −2∂µY ρ, (4.23)

where we defined

λ̂ := d −
(

d + 2
2

)(
d + 2

2 + µ

)
. (4.24)
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With this definition of λ̂, the l.h.s. becomes the same form as (3.9), whose explicit form is
given by (3.32) and (3.33). Therefore for Ŷ µ, we need to solve

□0Ŷ y −
(

d + 2
y

)
∂yŶ y +

(
2d + 2 − λ̂

y2

)
Ŷ y = − 2

y2 ∂yY ρ, (4.25)

□0Ŷ i − d

y
∂yŶ i +

(
d − λ̂

y2

)
Ŷ i = 2

y
∂iŶ

y − 2
y2 ∂iY

ρ. (4.26)

Comparing with the asymptotic behavior of Y ρ (4.17), we find the asymptotic behavior
of the special solution as

Ŷ y ∼ y
d−3

2 +ν , Ŷ i ∼ y
d−1

2 +ν . (4.27)

Therefore for all components of Ŷ µ, we have found that the exponents of the asymptotic
behavior are smaller than those of the general solution for the homogeneous equation (4.21).

4.3 Dual vector operators

The dual vector operator Oµ is obtained from bulk massive vector field perturbation by

Oµ(x, w) = lim
z→0

z−( d+2
2 +µ)Aµ(x, w, z), (4.28)

in the Poincare coordinates. This formula is derived in appendix A. Using the coordinate
transformations (2.7), we can rewrite this in the hyperbolic slicing coordinates as

Oµ(x, w) = lim
ρ→∞

[(
eρ

2y

) d+2
2 +µ

Aµ(ρ, x, y)
] ∣∣∣∣∣

y=w

. (4.29)

Since the asymptotic behavior of the massive vector field is given by (4.14)

Aµ(ρ, x, y) ∼ e−( d+2
2 +µ)ρ, (4.30)

for both the homogeneous and inhomogeneous solutions, the ρ → ∞ limit in (4.28) indeed
gives a finite value. Therefore, we next need to consider the asymptotic behavior of Y µ. Let
us separately consider the contributions from the homogeneous and inhomogeneous solutions.
First, the contribution from the homogeneous solution is found as

Ow
hom(x, w) ∝ wν+ 1

2−µ, Oi
hom(x, w) ∝ wν− 1

2−µ. (4.31)

If we take the massless limit m2 → 0, these scaling behaviors coincide with those of the
conserved currents, discussed in section 3.3. Therefore, in the massless limit, Ow

hom vanishes
on the boundary w = 0.

Next we show that the contribution from the inhomogeneous solution gives qualitatively
different behavior compared with the homogeneous solutions. The contribution from the
inhomogeneous solution is found as

Ow
inh(x, w) ∝ wν− 5

2−µ, Oi
inh(x, w) ∝ wν− 3

2−µ. (4.32)

Even in the massless limit, Ow
inh can have a negative power in w in the close to the boundary

limit. Therefore, in general the contribution from the inhomogeneous solution Ow
inh can have

non-vanishing value on the boundary w = 0.

– 14 –
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5 Massless p-form perturbations

In this section, we study massless abelian p-form gauge field perturbations on top of the
background discussed in section 2.

The perturbation action is given by

Ip = − 1
2(p + 1)!

∫
M

dd+1x
√

gHM1···Mp+1HM1···Mp+1 , (5.1)

with the field strength

HM1···Mp+1 = 1
p!∇[M1BM2···Mp+1], (5.2)

where [· · · ] is a totally anti-symmetrization without any numerical coefficients. The equation
of motion derived from this action reads

∇M1HM1···Mp+1 = 0. (5.3)

As in the massless vector case discussed in section 3, we induce only d-dimensional
perturbations and we impose BρM2···Mp = 0. Furthermore, we also impose the d-dimensional
transverse gauge

∇̃µ1Bµ1···µp = 0. (5.4)

We note that with the condition BρM2···Mp = 0, this d-dimensional transverse gauge also
implies (d + 1)-dimensional transverse gauge

∇M1BM1···Mp = 0. (5.5)

Upon this transverse gauge, the equation of motion is rewritten as[
□ + p(d + 1 − p)

]
BM1···Mp = 0. (5.6)

Now we decompose the ρ-direction. Then the equation of motion leads to[
a−2(□̃ + p) + ∂2

ρ + (d + 2p) tanh ρ∂ρ + 2pd − p(d + p − 1)
cosh2 ρ

]
Bµ1···µp = 0. (5.7)

We assume the separable form of the solutions

Bµ1···µp(ρ, x, y) = a(ρ)−p
∞∑

n=0
Rn(ρ)Y µ1···µp

n (x, y). (5.8)

Then, the equation of motion is decomposed to the ρ-direction and the remaining d-dimensional
equations as

R′′
n + d tanh ρR′

n + p(d − p)Rn = −λn

cosh2 ρ
Rn, (5.9)

(□̃ + p)Y µ1···µp
n = λnY µ1···µp

n . (5.10)
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5.1 ρ-direction

The ρ-direction equation (5.9) is solved by the same form as the massless vector case by
the associated Legendre functions as

Rn(ρ) = (1 − ζ2)
d
4

[
c1P µ

ν− 1
2
(ζ) + c2Qµ

ν− 1
2
(ζ)
]

, (5.11)

where the order µ is modified as

ζ = tanh ρ, µ = d − 2p

2 , ν = 1
2

√
(d − 1)2 + 4λn. (5.12)

For the asymptotic AdS boundary (ζ → 1 or ρ → ∞), we impose the standard Dirichlet
boundary condition. Then imposing this boundary condition, the solution is written as [23]

Rn(ρ) = B0(1 − ζ2)
d
4 P−µ

ν− 1
2
(ζ), (5.13)

where B0 is a numerical coefficient. This solution behaves as

Rn(ρ) ∝ (1 − ζ)
d−p

2 , (5.14)

towards the asymptotic AdS boundary (ζ → 1). Therefore, the behavior of the original
gauge field is

Bµ1···µp(ρ, x) ∼ e−dρ. (5.15)

On the EOW brane, we impose Neumann boundary condition [5, 6]

0 = Hρµ1···µp

∣∣
ρ=ρ∗

. (5.16)

Since we set Bρµ2···µp = 0, this condition implies

0 = ∂ρ
(
a2pBµ1···µp

)∣∣
ρ=ρ∗

, (5.17)

or equivalently

0 = d

dζ

(
apRn

)∣∣
ζ=ζ∗

. (5.18)

where ζ∗ = tanh ρ∗. Using a property of the Legendre function, this condition can be written
in a simply form as in the massless vector case:

0 = P 1−µ

ν− 1
2
(ζ∗). (5.19)

This condition quantizes the eigenvalue (or Kaluza-Klein mass) λn.
As in the massless vector case, we can find exact solutions when d = 2p+1 and d = 2p+3

cases. For d = 2p + 1, the solutions are given by

νn =
(2n + 1

2

)
π

θ∗
, (n = 0, 1, 2, · · · ) (5.20)

– 16 –



J
H
E
P
0
6
(
2
0
2
4
)
1
3
7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 θ*
0

5

10

15

20

νn

d=2

n=4

n=3

n=2

n=1

n=0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 θ*
0

5

10

15

20

νn

d=3

n=4

n=3

n=2

n=1

n=0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 θ*
0

5

10

15

20

νn

d=4

n=4

n=3

n=2

n=1

n=0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 θ*
0

5

10

15

20

νn

d=5

n=4

n=3

n=2

n=1

n=0

Figure 3. Brane tension dependence of p = 2 numerical solutions for the lowest five modes in AdSd+1
with d = 2, 3, 4 and 5.

and for d = 2p + 3, the solutions are given by

νn = (n + 1)π
θ∗

, (n = 0, 1, 2, · · · ) (5.21)

In figure 3, for p = 2 we show numerical solutions for low lying modes νn with n =
0, 1, 2, 3, 4. We notice that, the lowest two mode (n = 0, 1) for d = 2 and the lowest mode
(n = 0) for d = 4 are actually independent of brane location θ∗. This can be again explained
as follows, as in the vector case discussed in section 3.1. For d = even case, we denote d = 2k.
Then, the Neumann boundary condition (5.19) can be written as

0 = P 1−k+p

ν− 1
2

(ζ∗) = (−1)1+p−k(1 − ζ2
∗ )

1+p−k
2

[
d1+p−k

dζ1+p−k
Pν− 1

2
(ζ)
] ∣∣∣∣

ζ=ζ∗

. (5.22)

Therefore, the first 1 + p − k Legendre polynomials give the solutions. Hence for d = 2k,
the lowest constant modes are given by

νn = 1
2 + n, (n = 0, 1, 2, · · · p − k, for d = 2k) (5.23)

As far as this Neumann boundary condition on the brane is concerned, the gravitational
perturbation studied in [23] formally corresponds to the p = 0 case. Therefore, in the
gravitational perturbation case, we do not find any brane-tension-independent mode.

The asymptotic spectrum for the present case is also given by (3.29), with µ now given
by (5.12).
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5.2 x-direction

Now we consider the remaining d-dimensional equation (5.10). We study this equation on
the d-dimensional Poincare metric

ds2
d = γµνdqµdqν = dy2 +

∑d−1
i=1 dx2

i

y2 . (5.24)

We note that since Y µ1···µp is totally antisymmetric, the non-zero components are Y yi2···ip

and Y i1···ip . The transverse gauge (5.4) is explicitly written as

∂iY
iµ2···µp = −∂yY yµ2···µp + d

y
Y yµ2···µp . (5.25)

Using this condition, we can write the x -direction equation (3.9) explicitly as

0 = □0Y yi2···ip −
(

d + 2p

y

)
∂yY yi2···ip +

((p + 1)(d + p) − λn

y2

)
Y yi2···ip , (5.26)

0 = □0Y i1···ip −
(

d + 2p − 2
y

)
∂yY i1···ip − 2

y

(
∂i1Y yi2···ip + · · · + ∂ipY i1···ip−1y

)
+
(

p(d + p − 1) − λn

y2

)
Y i1···ip , (5.27)

where

□0 := ∂2
y + ∂i∂i. (5.28)

The Y yi2···ip equation (5.26) is solved as

Y yi2···ip(x, y) = y
d+2p+1

2

[
c3Jν(

√
−k2y) + c4Yν(

√
−k2y)

]
eik·x. (5.29)

We impose Dirichlet boundary condition at y = 0 as in [23], which sets c4 = 0. Therefore,
the asymptotic behavior (y → 0) is given by

Y yi2···ip(x, y) ∼ y
d+2p+1

2 +ν . (5.30)

For the remaining modes Y i1···ip , as in the massless vector case, we decompose it into
helicity-(p − 1) component ϕi1···ip−1 and helicity-p component V i1···ip as

Y i1···ip = ∂[i1ϕi2···ip] + V i1···ip , (5.31)

where V i1···ip is totally antisymmetric and satisfies

∂i1V i1···ip = 0. (5.32)

By the transverse gauge (5.25), the helicity-(p − 1) component ϕi1···ip−1 must satisfy

∂i1∂[i1ϕi2···ip] = −∂yY yi2···ip + d

y
Y yi2···ip . (5.33)
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Therefore, the asymptotic behavior of the helicity-(p − 1) component Y
i1···ip

(p−1) = ∂[i1ϕi2···ip]

is given by

Y
i1···ip

(p−1) (x, y) ∼ y
d+2p−1

2 +ν . (5.34)

For the helicity-p component Y
i1···ip

(p) = V i1···ip , Y yi2···ip does not contribute. Therefore, the
equation (5.27) is simply solved as

Y
i1···ip

(p) (x, y) = y
d+2p−1

2

[
c5Jν(

√
−k2y) + c6Yν(

√
−k2y)

]
eik·xEi1···ip(k, s), (5.35)

where Ei1···ip(k, s) is a basis tensor satisfying

ki1Ei1···ip(k, s) = 0, Ei1···ip(k, s)Ei1···ip(k, s′) = δss′ . (5.36)

Here, s is the label representing different choices of basis p-form. Therefore, the asymptotic
behavior of the helicity-1 component is same as that of helicity-0 component, so the transverse
component has

Y i1···ip(x, y) ∼ y
d+2p−1

2 +ν . (5.37)

5.3 Holographic generalized conserved currents

The holographic conserved current Jµ1···µp is obtained from bulk gauge field perturbations by

Jµ1···µp(x, w) = lim
z→0

z−dBµ1···µp(x, w, z), (5.38)

in the Poincare coordinates. This formula is derived in appendix A. Using the coordinate
transformations (2.7), we can rewrite this in the hyperbolic slicing coordinates as

Jµ1···µp(x, w) = lim
ρ→∞

[(
eρ

2y

)d

Bµ1···µp(ρ, x, y)
] ∣∣∣∣∣

y=w

. (5.39)

Since the asymptotic behavior of the gauge field is given by (5.15)

Bµ1···µp(ρ, x) ∼ e−dρ. (5.40)

the ρ → ∞ limit in (5.39) indeed gives a finite value. Finally combining with the asymptotic
behavior of Y µ1···µp discussed in section 5.2, near-the-boundary behavior of the holographic
conserved currents are found as

Jwi2···ip(x, w) ∝ wν+−d+2p+1
2 , J i1···ip(x, w) ∝ wν+−d+2p−1

2 . (5.41)

Since λn is non-negative, we have

ν ≥ d − 1
2 . (5.42)

This implies that at least the powers of the perpendicular direction w are given by

Jwi2···ip(x, w) ∝ wp, J i1···ip(x, w) ∝ wp−1. (5.43)

Therefore, the perpendicular component of the holographic conserved current Jwi2···ip vanishes
at the boundary Jwi2···ip(w = 0) = 0. For the transverse components, p = 1 seems a special
case, for which one can have finite non-vanishing values at the boundary w = 0, while for
p ≥ 2, our result indicates that the transverse components also vanishes at the boundary
J i1···ip(w = 0) = 0. It would be interesting to further investigate whether this behavior is an
artifact of our setup or general feature of a p-form operator in BCFT.
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6 Massive p-form perturbations

In this section, we study massive p-form field perturbations on top of the background discussed
in section 2. Massive p-form fields in empty AdS were previously discussed in [47, 48].

Unlike the massless case, we cannot impose the gauge condition BρM2···Mp = 0, since
there is no gauge symmetry in the this case. Therefore, we induce the full (d + 1)-dimensional
p-form perturbations and the perturbation action is given by

Imp = − 1
2p!

∫
M

dd+1x
√

g

[ 1
(p + 1)HM1···Mp+1HM1···Mp+1 + m2BM1···MpBM1···Mp

]
. (6.1)

The equation of motion derived from this action is

∇N HNM1···Mp = m2BM1···Mp . (6.2)

Even though we do not have any gauge fixing condition, due to the anti-symmetric nature
of HM1···Mp+1 , we get a supplemental condition [47, 48]

∇M1BM1···Mp = 0, (6.3)

from the equation of motion. Using this supplemental condition, the equation of motion
is rewritten as [

□ + p(d + 1 − p) − m2
]
BM1···Mp = 0. (6.4)

As in the massless case, once we separate the ρ-direction, the equations of motion read[
a−2(□̃ + p − 1

)
+ ∂2

ρ +
(
d + 2p

)
tanh ρ∂ρ + 2pd − m2 − p(d + p − 1)

cosh2 ρ

]
Bρµ2···µp = 0, (6.5)

and [
a−2(□̃ + p

)
+ ∂2

ρ +
(
d + 2p

)
tanh ρ∂ρ + 2pd − m2 − p(d + p − 1)

cosh2 ρ

]
Bµ1···µp

= −2 tanh ρ
(
∂µ1Bρµ2···µp + ∂µ2Bµ1ρµ3···µp + · · ·

)
. (6.6)

To write these equations, we also used the supplemental condition (6.3), whose ρ-separated
form is given by

∇̃µBµM2···Mp = −∂ρBρM2···Mp − d tanh ρBρM2···Mp . (6.7)

As in the massive vector case, we have a non-trivial equation for Bρµ2···µp . Then the second
equation is an inhomogeneous differential equation, which is sourced by Bρµ2···µp in the
right-hand side.

6.1 Solution for Bρµ2···µp

We first solve the equation (6.5) for Bρµ2···µp . As in the massless case, we assume the
separable form of the solution and take an ansatz

Bρµ2···µp(ρ, x, y) = a(ρ)−p
∞∑

n=0
Rn(ρ)Y ρµ2···µp

n (x, y). (6.8)
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Then, the equation of motion is decomposed as

R′′
n + d tanh ρR′

n +
(
p(d − p) − m2)Rn = −λn

cosh2 ρ
Rn, (6.9)(

□̃ + p − 1
)
Y ρµ2···µp

n = λnY ρµ2···µp
n . (6.10)

The equation for Rn is basically the same structure as in the massless case, so the
solution is given by

Rn(ρ) = B0(1 − ζ2)
d
4 P−µ

ν− 1
2
(ζ), (6.11)

but the order of the associated Legendre function is now modified by the mass as

ζ = tanh ρ, µ = 1
2

√
(d − 2p)2 + 4m2, ν = 1

2

√
(d − 1)2 + 4λn. (6.12)

This solution behaves as

Rn(ρ) ∼ (1 − ζ)
d+2µ

4 , (6.13)

towards the asymptotic AdS boundary (ζ → 1). Therefore, the behavior of the original
gauge field is

Bρµ2···µp ∼ e−( d+2p
2 +µ)ρ. (6.14)

Once we impose a boundary condition on the EOW brane at ρ = ρ∗, this condition quantizes
the eigenvalue λn.

Next for the Y
ρµ2···µp

n , we need to consider Y
ρyi3···ip

n and Y
ρi2···ip

n . Their equations of
motion are

0 = □0Y ρyi3···ip −
(

d + 2p − 2
y

)
∂yY ρyi3···ip +

(
p(d + p − 1) − λn

y2

)
Y ρyi3···ip , (6.15)

0 = □0Y ρi2···ip −
(

d + 2p − 4
y

)
∂yY ρi2···ip − 2

y

(
∂i2Y ρyi3···ip + ∂i3Y ρi2yi3···ip + · · ·

)
+
((p − 1)(d + p − 2) − λn

y2

)
Y ρi2···ip . (6.16)

These equations are identical to (5.26) and (5.27) with replacement of p → p − 1. Therefore,
the solutions are also given in section 5.2 with replacement of p → p − 1. In particular their
asymptotic behaviors (y → 0) are given by

Y ρyi3···ip(x, y) ∼ y
d+2p−1

2 +ν , Y ρi2···ip(x, y) ∼ y
d+2p−3

2 +ν . (6.17)

6.2 Solution for Bµ1···µp

For the equation (6.6) for Bµ1···µp , we first study the homogeneous equation. For the
homogeneous solution, we assume the separable form of the solution and take an ansatz

B
µ1···µp

hom (ρ, x, y) = a(ρ)−1
∞∑

n=0
Rn(ρ)Y µ1···µp

n (x, y). (6.18)
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Then, the equation of motion is decomposed as

R′′
n + d tanh ρR′

n +
(
p(d − p) − m2)Rn = −λn

cosh2 ρ
Rn, (6.19)

(□̃ + p)Y µ1···µp
n = λnY µ1···µp

n . (6.20)

We can see that the equation for Rn is the same as Bρµ2···µp case discussed in the previous
subsection. Therefore, the solution is given by (6.11) with (6.12). On the other hand, the
equation for Y

µ1···µp
n is the same as massless case discussed in the previous section, provided

that the eigenvalue λn is appropriately quantized in the current massive case. Therefore,
besides the precise quantization condition for λn, the solutions are given by (5.29) and (5.35)
with c4 = c6 = 0. In particular, the asymptotic behavior (y → 0) of the homogeneous
solutions are given by

Y
yi2···ip

hom (x, y) ∼ y
d+2p+1

2 +ν , Y
i1···ip

hom (x, y) ∼ y
d+2p−1

2 +ν . (6.21)

Next, we consider an inhomogeneous solution for (6.6). It looks difficult to find an exact
solution, since the solution of Aρ is given in the summation form as in (6.8). Therefore, in
this subsection, let us just determine the leading asymptotic behavior of an inhomogeneous
solution. For the ρ direction, we use the fooling ansatz for the special solution

B̂µ1···µp(ρ, x, y) = e−( d+2p
2 +µ)ρŶ µ1···µp(x, y). (6.22)

We use a hat to denote this special solution. With this ansatz, the leading contribution
(in large ρ) of the inhomogeneous equation (6.6) identically vanishes and the subleading
contribution is given by(

□̃ + p − λ̂
)
Ŷ µ1···µp = −2

(
∂µ1Y ρµ2···µp + · · ·

)
, (6.23)

where we defined

λ̂ := p(d + p − 1) −
(

d + 2p

2

)(
d + 2p

2 + µ

)
. (6.24)

With this definition of λ̂, the l.h.s. becomes the same form as (5.10), whose explicit form
is given by (5.26) and (5.27). Therefore for Ŷ µ1···µp , we need to solve

□0Ŷ yi2···ip −
(

d + 2p

y

)
∂yŶ yi2···ip +

(
(p + 1)(d + p) − λ̂

y2

)
Ŷ yi2···ip (6.25)

= − 2
y2

(
∂yY ρi2···ip + · · ·

)
,

□0Ŷ i1···ip −
(

d + 2p − 2
y

)
∂yŶ i1···ip +

(
p(d + p − 1) − λ̂

y2

)
Ŷ i1···ip (6.26)

= 2
y

(
∂i1 Ŷ yi2···ip + · · ·

)
− 2

y2

(
∂i1Y ρi2···ip + · · ·

)
.

Comparing with the asymptotic behavior of Y ρµ2···µp (6.17), we find the asymptotic behavior
of the special solution as

Ŷ yi2···ip ∼ y
d+2p−5

2 +ν , Ŷ i1···ip ∼ y
d+2p−3

2 +ν . (6.27)

Therefore for all components of Ŷ µ, we have found that the exponents of the asymptotic
behavior are smaller than those of the general solution for the homogeneous equation (6.21).
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6.3 Dual p-form operators

The dual p-form operator Oµ1···µp is obtained from bulk massive p-form field perturbation by

Oµ1···µp(x, w) = lim
z→0

z−( d+2p
2 +µ)Bµ1···µp(x, w, z), (6.28)

in the Poincare coordinates. This formula is derived in appendix A. Using the coordinate
transformations (2.7), we can rewrite this in the hyperbolic slicing coordinates as

Oµ1···µp(x, w) = lim
ρ→∞

( eρ

2y

) d+2p
2 +µ

Bµ1···µp(ρ, x, y)

 ∣∣∣∣∣
y=w

. (6.29)

Since the asymptotic behavior of the massive p-form field is given by (4.14)

Bµ1···µp(ρ, x, y) ∼ e−( d+2p
2 +µ)ρ, (6.30)

for both the homogeneous and inhomogeneous solutions, the ρ → ∞ limit in (6.28) indeed
gives a finite value. Therefore, we next need to consider the asymptotic behavior of Y µ1···µp .
Let us separately consider the contributions from the homogeneous and inhomogeneous
solutions. First, the contribution from the homogeneous solution is found as

Owi2···ip

hom (x, w) ∝ wν+ 1
2−µ, Oi1···ip

hom (x, w) ∝ wν− 1
2−µ. (6.31)

If we take the massless limit m2 → 0, these scaling behaviors coincide with those of the
conserved currents, discussed in section 5.3. Therefore, in the massless limit, Owi2···ip

hom vanishes
on the boundary w = 0.

Next we show that the contribution from the inhomogeneous solution gives qualitatively
different behavior compared to these contributions from the homogeneous solutions. The
contribution from the inhomogeneous solution is found as

Owi2···ip

inh (x, w) ∝ wν− 5
2−µ, Oi1···ip

inh (x, w) ∝ wν− 3
2−µ. (6.32)

Even in the massless limit, Owi2···ip

inh can have a negative power in w in the close to the
boundary limit. Therefore, in general the contribution from the inhomogeneous solution
Owi2···ip

inh can have non-vanishing value on the boundary w = 0.

7 Conclusions and discussions

In this paper, we studied massless/massive vector and p-form field perturbations in the bulk
of the AdS/BCFT setup. We employed Υ(1) preserving Neumann boundary condition on the
end-of-the-world brane. For massless perturbations, we studied sepectrums carefully, and
found several brane-tension-independent modes, which are understood as boundary-condition-
independent modes in the dual BCFT. For massless cases, by imposing Lorentz gauge, the
equations of motion can be decomposed into each component, and they become homogeneous
differential equations. The general solution of the perpendicular component leads to the
vanishing-on-the-boundary behavior (1.1) of the holographic conserved currents. On the other
hand, for massive perturbations, the equations of motion cannot be decomposed into each
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component, and they are inhomogeneous differential equations. This is also true in the massless
limit, due to the absence of gauge symmetry. The general solutions of the corresponding
homogeneous equation are simple massive generalization of the massless solutions, whose
perpendicular component leads to the vanishing-on-the-boundary behavior (1.1) in the
massless limit. However, a special solution of the inhomogeneous equation leads to the non-
vanishing-on-the-boundary behavior (1.2) even in the massless limit. Most part of this paper is
rather technical, but we hope that some of the results would be useful for further understanding
of the AdS/BCFT correspondence. Some possible future directions are as follows.

In this paper, we studied a Υ(1) preserving Neumann boundary condition, but it is also
interesting to consider Υ(1) breaking Neumann boundary condition [24]. For this purpose,
we probably need a coupling to brane-localized fields or currents, as in the scalar field cases
studied in [23, 49, 50]. Also from the perspective of causality [51, 52], such brane-localized
fields are perhaps necessary in the AdS/BCFT setup.

We found several brane-tension-independent modes in massless perturbations in d =
even dimensions. Since if we turn on masses slightly, these modes immediately disappear,
it is tempting to think that these modes are somehow related to the global symmetry of
the dual BCFTs. It would be particularly nice if we could identify these modes from the
boundary conformal bootstrap [4, 53–57].

In general, p-form conserved currents (like what we studied in section 5.3) generate
higher-form symmetries [58–60]. Some type of higher-form symmetries have been discussed
in the context of the AdS/CFT correspondence (e.g. [61, 62]). However, up to the author’s
knowledge, higher-form symmetries have not yet discussed in the context of the AdS/BCFT
correspondence. It would be interesting to clarify meanings of higher-form symmetries in
AdS/BCFT ant its relation to the EOW brane. We believe that our studies on the p-form
gauge field perturbation will be also useful for this purpose.
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A Scaling behaviors

A.1 Vector case

In this appendix, we consider the asymptotic scaling behavior of the perturbations. Since
for this purpose, massless case is simply obtained by taking m2 → 0 limit from the massive
case, we consider the massive vector in this appendix. It is enough to study the equation
of motion (4.4)

0 = (□ + d − m2)AM , (A.1)

in the Poincare coordinates (2.6)

ds2
d+1 = dz2 + dw2 +

∑d−2
i=1 dx2

i

z2 . (A.2)
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The M = z component of the equation of motion is explicitly written as

0 = z2∂N ∂N Az − (d + 3)z∂zAz + (3d + 3 − m2)Az. (A.3)

Here we are only concerned of the asymptotic behavior (z → 0), substituting a scaling ansazt

Az ∼ zα, (A.4)

the equation of motion gives

0 = α(α − d − 4) + d + 3 − m2, (A.5)

and its solutions are given by

α± = d + 4
2 ± 1

2

√
(d − 2)2 + 4m2. (A.6)

Hence, the asymptotic behavior of Az is found as

Az ∼ Az
(−)z

α− + Jzzα+ . (A.7)

Next, the M = µ component of the equation of motion is explicitly written as

z2∂N ∂N Aµ − (d + 1)z∂zAµ + (2d − m2)Aµ = 2z−1∂µAz. (A.8)

This equation is an inhomogeneous differential equation and it has a source contribution
from Az in the right-hand side. Let us first consider the homogeneous solution. Substituting
a scaling ansazt

Aµ ∼ zβ , (A.9)

into the homogeneous equation gives

0 = β(β − d − 2) + 2d − m2. (A.10)

The solutions are given by

β± = d + 2
2 ± 1

2

√
(d − 2)2 + 4m2. (A.11)

Now we consider an inhomogeneous solution. Again just considering the asymptotic behavior,
the inhomogeneous solution must match with the scaling of the r.h.s. of (A.8). This comparison
gives the scaling behavior of the inhomogeneous solution as zα+1. This behavior is subleading
compared with the scaling behavior of the inhomogeneous solution zβ . Therefore, the leading
asymptotic behavior of Aµ is determined by β± as

Aµ ∼ Aµ
(−)z

β− + Jµzβ+ . (A.12)

Hence, the dual conserved currents are found by

Jµ = lim
z→0

z−β+Aµ. (A.13)

This gives the formulae (3.44) and (4.28).
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To be precise, for the Jy component, we also need to consider the contribution from Az.
Under the coordinate transformation (2.7), the vector fields are related by

Ay = ∂y

∂w
Aw + ∂y

∂z
Az. (A.14)

Since y =
√

w2 + z2, this relation is explicitly given by

Ay = 1√
w2 + z2

(
wAw + zAz

)
. (A.15)

Therefore, even for Ay, the asymptotic scaling behavior is same as those of Aw, which is
included in (A.12). Thus the Jy component is also obtaind by the formula (A.13).

A.2 p-form case

In this appendix, we consider the asymptotic scaling behavior of the perturbations. Since for
this purpose, massless case is simply obtained by taking m2 → 0 limit from the massive case,
we consider the massive p-form field in this appendix. (The vector case is simply obtained
by setting p = 1.) It is enough to study the equation of motion (6.4)[

□ + p(d + 1 − p) − m2
]
BM1···Mp = 0, (A.16)

in the Poincare coordinates (2.6)

ds2
d+1 = dz2 + dw2 +

∑d−2
i=1 dx2

i

z2 . (A.17)

The {z, µ2, · · · , µp} component of the equation of motion is explicitly written as

0 =
[
z2∂N ∂N − (d + 2p + 1)z∂z + (2p + 1)(d + 1) − m2

]
Bzµ2···µp . (A.18)

Here we are only concerned of the asymptotic behavior (z → 0), so substituting a scaling ansazt

Bzµ2···µp ∼ zα, (A.19)

the equation of motion gives

0 = α(α − d − 2p − 2) + (2p + 1)(d + 1) − m2, (A.20)

and its solutions are given by

α± = d + 2p + 2
2 ± 1

2

√
(d − 2p)2 + 4m2. (A.21)

Hence, the asymptotic behavior of Bzµ2···µp is found as

Bzµ2···µp ∼ B
zµ2···µp

(−) zα− + Jzµ2···µpzα+ . (A.22)

Next, the {µ1, · · · , µp} component of the equation of motion is explicitly written as[
z2∂N ∂N − (d + 2p − 1)z∂z + 2pd − m2

]
Bµ1···µp

= 2z−1
(
∂µ1Bzµ2···µp + · · · + ∂µpBµ1···µp−1z

)
. (A.23)
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This equation is an inhomogeneous differential equation and it has a source contribution from
Bzµ2···µp in the right-hand side. Let us first consider the homogeneous solution. Substituting
a scaling ansazt

Bµ1···µp ∼ zβ , (A.24)

into the homogeneous equation gives

0 = β(β − d − 2p) + 2pd − m2. (A.25)

The solutions are given by

β± = d + 2p

2 ± 1
2

√
(d − 2p)2 + 4m2. (A.26)

Now we consider an inhomogeneous solution. Again just considering the asymptotic behavior,
the inhomogeneous solution must match with the scaling of the r.h.s. of (A.23). This
comparison gives the scaling behavior of the inhomogeneous solution as zα+1. This behavior
is subleading compared with the scaling behavior of the inhomogeneous solution zβ . Therefore,
the leading asymptotic behavior of Bzµ2···µp is determined by β± as

Bµ1···µp ∼ B
µ1···µp

(−) zβ− + Jµ1···µpzβ+ . (A.27)

Hence, the dual conserved currents are found by

Jµ1···µp = lim
z→0

z−β+Bµ1···µp . (A.28)

This gives the formulae (5.38) and (6.28).
To be precise, for the Jyµ2···µp components, we also need to consider the contribution

from Bzµ2···µp . Under the coordinate transformation (2.7), the vector fields are related by

Byµ2···µp = ∂y

∂w
Bwµ2···µp + ∂y

∂z
Bzµ2···µp . (A.29)

Since y =
√

w2 + z2, this relation is explicitly given by

Byµ2···µp = 1√
w2 + z2

(
wBwµ2···µp + zBzµ2···µp

)
. (A.30)

Therefore, even for Byµ2···µp , the asymptotic scaling behavior is same as those of Bwµ2···µp ,
since the contribution from Bzµ2···µp is subleading. This is included in (A.27), so the Jyµ2···µp

component is also obtaind by the formula (A.28).
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