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Abstract LSZ-type reduction formulae are derived for
gauge fields and fermions in curved spacetime. The formulae
are derived using a conserved current method applicable also
to flat spacetimes. The method generalizes to more general
quantum field theories. The formulae are then applied to a
couple of basic problems to illustrate their use.

1 Introduction

It is well known that calculations in perturbative quantum
field theory in curved spacetimes are exceedingly difficult.
The propagators are hard to determine, and quantization is
impossible for arbitrary spacetimes; particle interpretations
can only be established in very few time-dependent space-
times [1,2]. The existence of the S-matrix is also dubious,
though can be proved in some spacetimes (notably static
spacetimes and a restricted class of non-static ones) [3].

Nevertheless, in some spacetimes, perturbative calcula-
tions are possible. Various Robertson-Walker models, impor-
tant in cosmology, are examples of a metric in which
mode functions can be determined [4]. In principle, pertur-
bative calculations can be performed using an Lehmann–
Symanzik–Zimmerman1-type formalism [5], or by using the
Schwinger–Keldysh formalism [6]. Calculations can be per-
formed either in the in-out formalism in which the prop-
agators are calculated as the matrix element between two
vacuums or the in-in formalism, where one picks either the
in or out vacuums and calculates expectation values using
only that. The calculations usually are done in the in-in for-
malism, since it seems to more easily lend itself to physical

1 Typically abbreviated LSZ.

a e-mail: jejohuh@utu.fi (corresponding author)
b e-mail: vilja@utu.fi

interpretation [6], and in any case the calculations are often
easier [7].

Though practical calculations are difficult, there are exam-
ples of e.g. scalar decay calculations [4,8–10], scalar decay in
to fermions in Robertson–Walker spacetimes [11], and solu-
tions for free fermions in assorted spacetimes [12,13]. There
are also recent results for backreaction [14–19]. The calcu-
lations so far have relied on conformally coupled, massless
particles.

Our contribution will be to present the reduction formulae
for fermions and gauge fields in globally hyperbolic curved
spacetimes, suitable for use in either the in-in or in-out for-
malisms. Such reduction formulae have previously been pub-
lished for scalar fields [1,5], but to our knowledge not for
fermions or gauge fields. We present two ways to derive the
reduction formula with the hope that the second way is more
technically expedient than what is typically found in text-
books on quantum field theory. The second method differs
both conceptually and technically from the standard method
found in e.g. Srednicki’s textbook [20]. We will also apply
the formulae to a few topical systems to illustrate their use.

In the following, we will assume that the model under
investigation is mathematically well-defined. The relevant
criterion is the existence of the S-matrix; for the S-matrix to
exist, the Bogoljubov transformation between the different
vacua of the theory must exist. This essentially requires that
the sum of the Bogoljubov coefficients converges; full details
can be found in [2]. We also require space to be globally
hyperbolic and asymptotically stationary, such that it is pos-
sible to define vacua for the in and out states; more details in
[5]. We point out that if the Bogoljubov transform cannot be
found, then there is no unitary transformation between the in-
and out states and the S-matrix does not exist. In that case,
we cannot hope to do any calculations. We therefore limit
ourselves to the class of spacetimes in which the S-matrix
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exists. In particular, it is known to exist for the spacetimes
used in Sect. 4.

In the present paper we study the various types of fields
in the curved space time, present novel derivations and for-
mulae for spinors and gauge fields, and discuss their usage
in practical calculations.

2 Preliminaries

2.1 Fermions

In curved spacetime with metric gμν , the gamma-matrices is
modified to satisfy the anti-commutation relations

{γ μ, γ ν} = 2gμν. (1)

We then define the curved space gamma matrices with the
help of the tetrads eaμ. The details may be found in [1]. Taking
advantage of the principle of equivalence, we can set up an
inertial coordinate system ξ at every point such that the tetrad
is given by its relation to the general curved coordinates:

∂ξa

∂xμ
dxμ = eaμdx

μ. (2)

Then,

gμν = eaμe
b
νηab, (3)

γ μ = eμ
a γ (a). (4)

We have adopted the notation that latin indices refer to inertial
coordinate systems, and parentheses refer to flat spacetime
gamma matrices.

The covariant derivatives ∇μ are then given by

∇μψ(x) = ∂μψ(x) − ψ(x)�μ, (5)

∇μψ(x) = ∂μψ(x) + �μψ(x), (6)

∇μγ μ = ∂μγ μ + �ν
νμγ μ + [�μ, γ μ] = 0 (7)

and the Dirac conjugate is defined as ψ = ψ†γ (0). Here, the
�ν

νμ refers to the Christoffel symbol, whereas �μ is the spin
connection, explicitly

�μ = 1

8
[γ (a), γ (b)]eν

a∇μebν. (8)

Quantization proceeds in analogy to the flat spacetime
case. One sets up the equal-time anti-commutation relations

{ψa(x, t), πb(x
′, t)} = iδabδ(x − x ′), (9)

where π is the conjugate momentum. We then write the field
opera0tor as

ψ(x, t) =
∑

s

∑

k

fs(x, t)b
s
k + gs(x, t)d

s†
k , (10)

where s is the helicity index and fs and gs are the mode
functions. Further details are available in standard textbooks,
for example [1].

With the preceding notations the Dirac Lagrangian in
curved spacetime (see e.g. [1])

1√−g
Lψ = i

2

(
ψγ μ∇μψ − (∇μψ)γ μψ

)
− mψψ (11)

leads to the well-known equation of motion

iγ μ∇μψ − mψ = 0. (12)

2.2 Gauge fields

The free Lagrangian of a gauge field in curved spacetime is
given by

L = −1

4

√−g

(
∇μAν − ∇ν Aμ

)(
∇μAν − ∇ν Aμ

)

= −1

4

√−gFμνFμν (13)

with ∇μ the usual covariant derivative. This expression of
free, quadratic Lagrangian is suitable for all gauge compo-
nents of any gauge field, commutative or not. To avoid irrel-
evant indices, we omit them, or consider only one Abelian
gauge field. Thus the equation of motion of the free gauge
field reads as

∇μF
μν = ∇α∇αAμ − ∇μ∇ν Aμ = 0. (14)

Moreover, in this article, we work in the covariant Lorenz
gauge ∇μAμ = 0, a straightforward generalization of the
flat space-time case. We assume that corresponding calcula-
tions in some other gauge are also possible, but we have not
checked this.

3 Reduction formulae in curved spacetime

3.1 General reduction

We first deal with the common generic part of the formula,
which only depends on the Bogoljubov coefficients and not
on the particular type of the field. Note also, that all following
calculations should in principle be done using wave packets
instead of sharply defined particle states (unnormalized Fock
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space states), but as in the flat spacetime case, this omission
does not cause any difficulties (see almost any standard QFT
textbook, e.g. [20]). So, we have omitted writing out the wave
packets to save space and highlight the essential parts of
the derivations. Moreover, we have suppressed all irrelevant
indices, such as helicity indices, gauge group indices etc.
to keep the formulae as simple as possible. This part of the
formula is available in [5], but in that reference it is somewhat
inscrutable; we rederive it here using our own notation that
facilitates the later application of the reduction formula in
Sect. 4.

We suppose that a, a† are the annihilation/creation oper-
ators associated with the in-vacuum and b, b† with the out-
vacuum. To these operators are associated mode functions
f (in-vacuum) and g (out-vacuum). We suppose, that the
initial time is −∞ and the final time is ∞. The sets {pi }
and {ki } denote the outgoing and incoming four-momenta,
respectively.

Then we are interested in reducing the matrix elements

S = 〈{pi }|{ki }〉. (15)

to the expectation vacuum values of some well defined oper-
ator of the fields. To that we need the Bogoljubov transfor-
mations, relation between in- and out-operators, which are
given by [1]

ak =
∑

p

(
αpkbp + β∗

pkb
†
j

)
, (16)

bp =
∑

k

(
α∗
pkak − β∗

pka
†
k

)
. (17)

Here the sum should be understood in a generalized sense; if
the spectrum is continuous, they may be replaced by integrals.
Using the following notation,

a†
k (∞) − a†

k (−∞) = F†[ f ], (18)

ak(∞) − ak(−∞) = F[ f ∗], (19)

b†
k (∞) − b†

k (−∞) = F†[g], (20)

bk(∞) − bk(−∞) = F[g∗], (21)

where F is a hitherto unknown functional of the mode func-
tions, 2 we are able to write the matrix element in a reduced
form.

We express (15) as

〈{pi }|{ki }〉 = 〈{pi }|a†
k (−∞)|{ki } \ k〉, (22)

2 Functional in the generalized sense: F is a map from functions to
operators.

and writing from (18)

a†
k (−∞) = a†

k (∞) − F†[ f ] (23)

we obtain

〈{pi }|a†
k (−∞)|{ki } \ k〉 = 〈{pi }|a†

k (∞) − F†[ f ]|{ki } \ k〉.
(24)

Next we combine the Bogoljubov transformations (16) and
(17)

a†
k (∞) =

∑

pq

α−1
k,pb

†
p(∞) + α−1

kp βpqaq(∞) (25)

and apply (19) to the latter annihilation operator, with the aim
of getting something we can use to operate on the right-side
−∞ in-vacuum. We get

∑

pq

α−1
k,pb

†
p(∞) + α−1

kp βpqaq(∞)

=
∑

pq

α−1
k,pb

†
p(∞) + α−1

kp βpq

(
aq(−∞) + F[ f ∗]

)
, (26)

which finally leads to the formula having the appropriate
annihilation and creation operators:

〈{pi }|ak(∞) − F†[ f ]|{ki } \ k〉
= 〈{pi }| − F†[ f ] +

∑

pq

α−1
k,pb

†
p(∞)

+ α−1
kp βpq

(
aq(−∞) + F[ f ∗]

)
|{ki } \ k〉

= 〈{pi }| − F†[ f ]|{ki } \ k〉
+

∑

p j∈{pi }
〈{pi } \ p j |α−1

kp j
|{ki } \ k〉

+
∑

q∈{ki }\k
〈{pi }|α−1

k,pβp,q |{ki } \ {k, q}〉

+ 〈{pi }|
∑

pq

α−1
kp βpq F[ f ∗]|{ki } \ k〉. (27)

This is the single particle reduction from the right.
The same steps using

ak(−∞) =
∑

p

(αpkbp(−∞) + β∗
pkb

†
p(−∞))

⇔
bp(−∞) =

∑

k

α−1
kp ak(−∞) −

∑

qk

α−1
qp β∗

kqb
†
k (−∞), (28)

give immediately single particle reduction from left:
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〈{pi } \ p|bp(∞)|{ki }〉
=

∑

k∈{ki }
〈{pi } \ p|α−1

kp |{ki } \ k〉

−
∑

q

∑

p j∈{pi }\p
〈{pi } \ {p, p j }|α−1

qp β∗
p j q |{ki }〉

−
∑

qk

〈pi \ p|α−1
qp β∗

kq F
†[g]|{ki }〉

+ 〈{pi } \ p|F[g∗]|{ki }〉. (29)

In the corresponding in-in calculation, the difference is
that the parts of (29) and (27) dependent on the Bogoljubov
coefficients vanish as the in- and out vacuums are the same.

To get the desired form of the reduction formula we need
to find the functional F[ f ]. For scalars F is well-known and
it is given by

F†[ f ] = −i
∫

d4x
√−gw(x)∗Kxφ(x), (30)

where Kx = � + m2 is the curved spacetime Klein-Gordon
operator with the curved spacetime D’Alembertian � [5],
and w is the positive energy mode function. Next we derive
the reduction formulae for spin 1

2 and spin 1 fields.

3.2 The fermion formula

3.2.1 Derivation by EOM manipulation

The reduction formula for fermions is not previously found
in the literature. We derive it in two ways. First by brute
force, direct calculation commonly found most textbooks.
Secondly using conserved currents. The comparison between
the two methods emphasises the relative simplicity of the
latter method.

The Lagrangian (11) leads to
the equation of motion for a massless fermion given by

∇μψ(x)γ μ = 0 (31)

with the covariant derivative satisfying equations (5) and (7).
The inclusion of (Dirac) mass does not change the final for-
mula, but

merely make the intermediate expressions lengthier; it will
be evident by the end that there is no essential difference in
the calculation. We choose the inner product3

〈ϕ|ψ〉 =
∫

d3x
√−g ϕ(x)γ 0ψ(x) (32)

3 The use of the term inner product is merely conventional. Equation
(32) does not fulfill the typical criteria of an inner product.

and we are looking for the difference (18) between the cre-
ation/annihilation operators in the far past and future.

When the field ψ has a mode expansion4

ψ(x) =
∑

s

∑

k

usk(x)b
s
k + vsk(x)d

s†
k (33)

respect to an orthonormal basis of modes usk(x) (and vsk(x))
satisfying the equation of motion (31) we have

bsk(t) = 〈usk |ψ〉 =
∫

d3x
√−g usk(x)γ

0ψ(x), (34)

when the mode functions are orthonormal with respect to the
inner product (32). We will henceforth suppress the helicity
indices s, because they are of no consequence for the follow-
ing calculation.

Let us first use the fundamental theorem of calculus in
operator form:

bk(∞) − bk(−∞) =
∫ ∞

−∞
dt ∂0bk(t). (35)

Combining it and (34), we get

bk(∞) − bk(−∞)

=
∫

d4x∂0

(√−g uk(x)γ
0ψ(x)

)

=
∫

d4x
√−g

[
1√−g

(∂0
√−g)uk(x)γ

0ψ(x)

+ (∂0uk(x))γ
0ψ(x) + uk(x)(∂0γ

0)ψ(x)

+ uk(x)γ
0(∂0ψ(x))

]
. (36)

From the equation of motion (31) we get

∂0uk(x)γ
0 = −∇i uk(x)γ

i + uk(x)�0γ
0. (37)

We insert this to the second term in the square brackets of
the eq. (36), obtaining

(∂0uk(x))γ
0ψ(x)

=
(

− ∇i uk(x)γ
i + uk(x)�0γ

0
)

ψ(x)

=
(

− ∂i uk(x)γ
i + uk(x)�iγ

i + uk(x)�0γ
0
)

ψ(x).

(38)

4 As usual, the general ladder operators ak and bk are replaced by their
fermionic counterparts bsk and dsk , respectively.
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Taking into account the integration of the term it can be
rewritten as
∫

d4x
√−g(∂0uk(x))γ

0ψ(x)

=
∫

d4x
√−g

[(
− ∂i uk(x)γ

i + uk(x)�iγ
i

+ uk(x)�0γ
0
)

ψ(x)

]

=
∫

d4x
√−g

[(
uk(x)∂iγ

i + 1√−g
uk(x)γ

i∂i
√−g

+ uk(x)�iγ
i + uk(x)�0γ

0
)

ψ(x) + uk(x)γ
i∂iψ(x)

]

=
∫

d4x
√−g

[(
uk(x)∂iγ

i + 1√−g
uk(x)γ

i∂i
√−g

+ uk(x)�μγ μ

)
ψ(x) + uk(x)γ

i∂iψ(x)

]
. (39)

where the second and third equalities follow from simply
taking the derivatives and applying Gauss’ theorem. Inserting
the result in to eq. (36) we get

bk(∞) − bk(−∞) =
∫

d4x
√−g

[
1√−g

(∂0
√−g)uk(x)γ

0ψ(x) + (∂0uk(x))γ
0ψ(x)

+ uk(x)(∂0γ
0)ψ(x) + uk(x)γ

0(∂0ψ(x))

]

=
∫

d4x
√−g

[
uk(x)

(
∂μγ μ + �μγ μ

)
ψ(x)

+ uk(x)
1√−g

γ μ∂μ

√−gψ(x) + uk(x)γ
μ∂μψ(x)

]
.

(40)

Now we can use eq. (7) to modify the first term in this expres-
sion:

uk(x)

(
∂μγ μ + �μγ μ

)
ψ(x)

= uk(x)

(
− �ν

νμγ μ + γ μ�μ

)
ψ(x)

= uk(x)

(
− 1√−g

∂μ

√−gγ μ + γ μ�μ

)
ψ(x). (41)

Finally, using (41) in Eq. (40)

bk(∞) − bk(−∞) =
∫

d4x
√−g uk(x)γ

μ∇μψ(x). (42)

This result generalises the corresponding flat space formula,
as expected. Using the massive fermion field with a mass m,
we get the result

bsk(∞) − bsk(−∞) =
∫
d4x

√−g usk(x)(iγ
μ∇μ − m)ψ(x),

(43)

where we have replaced the omitted helicity indices: the
derivation is completely independent of them. The corre-
sponding calculation for dsk operators follows the same pat-
tern.

3.2.2 Using a conserved current

Let us now introduce the conserved current method as a way
of finding reduction formulae. The idea is to find a conserved
current and use it to find an inner product with respect to
which the mode functions are orthogonal. This method differs
from the one in the previous section, as we will avoid the
direct manipulation of the equation of motion. This inner
product – taken as the zeroth component of the conserved
current – is then used to derive the reduction formula in a
simple manner. The reference [21] provides further details
on the requirements of inner products in relativistic quantum
mechanics.

We now find the appropriate inner product with respect to
which the mode functions are orthogonal. In curved space-
times, we should keep in mind that the words “appropriate
inner product” do quite a bit of heavy lifting: inner products in
QFT are not unique, since it is possible to explicitly construct
unitarily inequivalent inner products [2]. Unitarily equivalent
inner products give the same physical results, but inequiva-
lent ones may not; the inner product has to be fixed by some
other method, like experimental data or defining the inner
product to have the appropriate flat spacetime limit. Finding
an appropriate structure might be difficult in the most general
case, but it is possible for fermions and gauge fields.

We find an appropriate inner product by considering the
global and infinitesimal phase transformation ψ → ψ ′ =
eiχψ ≈ (1 + iχ)ψ and using the the inner product deter-
mined by the conserved Noether charge. This guarantees that
the inner product is conserved in time, independent on the
time-slice, and thus allowing the sotr of probability interpre-
tation mentioned in [21]. In the following, we assume that
the spacetime is globally hyperbolic and that it is possible to
choose appropriate coordinates such that x0 marks the time
direction. Any other coordinate system would work, but this
is the most convenient one.

Starting directly from a standard expression for the change
of the action
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�S =
∫

V
d4x

( ∑

a

[
∂L
∂ψa

− ∂μ

∂L
∂(∂μψa)

]
�ψa

+ ∂μ

∑

a

[
∂L

∂(∂μψa)
�ψa

])
= 0, (44)

where V is a space-time volume bounded by two space-like
surfaces: ∂V = σ1 ∪σ2. The last equality is due to the global
U(1) symmetry of the Lagrangian (both interacting and non-
interacting, for the interactions considered here). The index
a here runs over the components of the fermion field and its
Dirac conjugate.

We can calculate the current (second bracketed term)
directly:

∫
d4x ∂μ

∑

a

[
∂L

∂(∂μψa)
�ψa

]

=
∫

d4x ∂μ

[√−gψ(x)γ μψ(x)

]
χ (45)

and if ψ and ψ are solutions of their equation of motion,
then the first bracketed term in (44) is zero. Applying Gauss’
theorem as usual to (45) and using (44) we get

0 =
∫

σ1

d3x
√−g nμ

[
ψ(x)γ μψ(x)

]
χ

−
∫

σ2

d3x
√−g nμ

[
ψ(x)γ μψ(x)

]
χ (46)

⇐⇒
0 =

∫

σ1

d3x
√−g

[
ψ(x)γ 0ψ(x)

]

−
∫

σ2

d3x
√−g

[
ψ(x)γ 0ψ(x)

]
. (47)

Here nμ is a future-oriented unit vector, while the spacelike
surfaces σi define a foliation of the spacetime. For the second
line we have used our special coordinate system and the fact
that the space is globally hyperbolic and χ �= 0. This quantity
is clearly conserved in time.

Now we can replace the field appearing in the Dirac conju-
gate ψ(x) by completely independent spinor field ψ ′ which
has same gauge transformation and obeys the same equa-
tion of motion as ψ . The current that we get is equally well
conserved and has the form

Jμ[ψ ′, ψ] = ψ ′γ μψ. (48)

This gives the general form of the inner product determined
by the phase transformation, eq. (32).

Replacing the field ψ ′ by a mode uk , using Gauss’ theorem
and knowing that uk is a solution of the equation of motion

but ψ is interacting,

∫
d4x

√−g∇μ J
μ[uk, ψ]

=
(∫

σ2

−
∫

σ1

) √−g J 0[uk, ψ]d3x

= bk(∞) − bk(−∞), (49)

where σ1 and σ2 are the constant time surfaces, which are
set to limits t → ±∞, correspondingly. The first equality
follows from Gauss’ theorem and the second from (34). The
equation (49) provides the functional F which can then be
plugged in to equations (27) and (29), thus providing us with
a reduction formula.

The latter procedure is completely general: if a conserved
current is available as a sesquilinear inner product, we can
use it to derive a reduction formula. Even if the current is not
of the Noetherian, we can still use the procedure, as we will
see presently.

The inner product we have used here is by no means
unique, which is a typical situation in quantum field the-
ory. Let us consider an example of another current we could
conceivably use for an inner product in the massless fermion
case. The transformation ψ �→ ψ ′ = eiχγ μγ 5

ψ (with curved
γ μ and γ 5) generates another conserved Noether current, the
axial current, and inner product leading to the functional for-
mula

F[u∗] =
∫

d4x
√−g usk(x)γ

5γ 0ψ(x). (50)

This is the same functional as previously except with a redef-
inition u �→ γ 5u. If u satisfies the EOM, then so does γ 5u
as can be easily checked:

γ μ∇μuk = 0 ⇐⇒ 0 = γ 5γ μ∇μuk = γ μ∇μ(γ 5uk),
(51)

where in the last equality we used the covariance properties
of the curved spacetime γ 5.

The operators defined with this inner product are evidently
not quite the same as the ones in the foregoing calculation, but
nevertheless they are clearly unitarily equivalent. For mass-
less fermions, there does not seem to be an obvious reason
to prefer one over the other.

A word of warning about using conserved currents in
deriving reduction formulae is in order: it relies on assuming
formula (34) is valid even when ψ is interacting and lives in
different Hilbert space that the non-interacting field. This is
a standard assumption made in QFT textbooks like [20], but
runs afoul of Haag’s theorem [22]. In flat spacetime, this dif-
ficulty is not considered serious, since Haag’s theorem relies
on idealized assumptions that are presumably not realized in a
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practical calculation. In curved spacetime, the additional dif-
ficulty is that the S-matrix may not exist in some spacetimes
– such spacetimes cannot be used for scattering calculations,
so we do not concern ourselves with them. The foregoing cal-
culation or basically any calculation using both interaction
and non-interacting fields is strictly speaking non-rigorous.
It works in the same sense as the standard calculations work:
as a mnemonic that can be made more rigorous by careful
study, in particular when using perturbation theory.

3.3 The gauge field formula

We now utilize the method introduced in the previous subsec-
tion to derive the gauge field formula. The equation of motion
for a real spin-1 gauge field in curved spacetime derived from
eq. (13) is

∇μF
μν[A] = 0, (52)

where ∇μ is the curved spacetime derivative and we have
denoted

Fμν[A] = ∇μAν − ∇ν Aμ. (53)

As discussed earlier, we use the Lorenz gauge with ∇μAμ =
0. The choice is based on convenience alone.

First of all, we establish that the following current is con-
served when A, A′ are solutions of (52) in covariant Lorentz
gauge and thus can be used as an inner product:

Jν[A′, A] = −i A′
μ

↔∇ν A
μ. (54)

Let us first collect some general formulas to be used:

∇μ∇μAν = ∇μ∇ν Aμ + ∇μF
μν, (55)

[∇μ,∇ν]Aα = Rα
δνμA

δ, (56)

Bμ∇ν∇μAν = Bμ[∇ν,∇μ]Aν + Bμ∇μ∇ν A
ν

= Bμ[∇ν,∇μ]Aν . (57)

The first formula is only the equation of motion, the second
eq. is well-known commutator of covariant derivatives, and
the third uses the gauge condition.

As in the case of the scalar field, the use of the inner
product relies on an extension of the real field to the com-
plex space. When Aμ satisfies (52), the latter term in (55) is
zero. The complexification is needed to enable the inner prod-
uct for the positive/negative energy modes. While assuming
A′ = B does not satisfy (52) but Aμ does, we have

∇ν J
ν = Bμ∇ν∇ν Aμ − (∇ν∇νBμ)Aμ (58)

= Bμ∇ν∇ν Aμ − (∇ν∇μBν)A
μ − (∇νF[B]ν α)Aα

(59)

= Bμ[∇ν,∇μ]Aν − ([∇ν,∇μ]Bν)Aμ

− (∇νF[B]ν α)Aα (60)

= BμRν
δμν A

δ − Rν
δμνB

δAμ − (∇νF[B]ν α)Aα

(61)

= −(∇νF
ν
α[B])Aα (62)

employing eqs. (55), (57), and (56) in a row. The last expres-
sion is clearly identically 0 if B satisfies the EOM as well, so
this is an appropriate current for an inner product. As in the
previous section, we will assume that B does not satisfy the
free equation of motion, since it is supposed to be interacting.

We may now directly apply the ideas of the previous sec-
tion. We write

a†
k (t) = 〈u|A〉 =

∫

t
d3x

√−g J 0[u, A]

=
∫

t
d3x

√−g u∗
kα

↔
∇0Aα, (63)

where uμ is the mode function associated to ladder opera-
tor ak . Then, if A is an interacting field and u a free mode
function, be Gauss’ theorem we get

∫
d4x

[√−g∇μ J
μ[u, A]

]

=
∫

σ

d3x
√−g J 0[u, A] = a†

k (σ2) − a†
k (σ1) (64)

where σ = σ2 ∪σ1 is defined as previously. We then take the
limit as σi → ±∞:

a†
k (−∞) − a†

k (∞) = −i
∫

d4x
√−g∇μF

μ
α[A](uα

k )∗.

(65)

Hence we have derived the reduction formula.
A note about the nature of the vector field is in order.

The simple non-gauge vector field with Lagrangian L′ =
1
2
√−g∇μAν∇μAν leads to the very same reduction formula

(65) as in the case of gauge bosons, but without the need of
the gauge condition. The only difference is that the equation
of motion ∇μF

μ
α[A] is replaced by ∇μ∇μAα .

4 Using the formulae

4.1 The general setup

To summarize, we first utilize the the general reduction for-
mulae in Sect. 3.1 until we have vacuums on both sides of
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Table 1 Functionals F for all the known cases with Kx = � + m2

the curved spacetime Klein-Gordon operator and Dx = iγ μ∇μ − m
and Dx = iγ μ∇μ + m the Dirac curved spacetime Dirac operators
[1]. For fermions, there are two sets of operators, and for vectors, two
polarization directions; adding those indices happens as expected

F[ f ∗] F†[ f ]
Scalars −i

∫
d4x

√−g u∗(x)Kxφ(x) −i
∫
d4x

√−g u(x)Kxφ(x)

Fermions −i
∫
d4x

√−g usk(x)Dxψ(x) −i
∫
d4x

√−gψ(x)
←
Dxusk(x)

Vectors −i
∫
d4x

√−g∇μF
μ
α[A]u∗α(x) −i

∫
d4x

√−g∇μF
μ
α[A]uα(x)

the bra-ket. We then plug in the calculated functionals F[g],
which we put into the Table 1 for convenience. The one-
particle reduction formulae given above can be used recur-
sively for any number of particle in/out states.

We will utilize these formulae for two already known cases
to illustrate how they work: the scalar decay in to fermions
reported in [11] and the classic Bogoljubov coefficient cal-
culation in [1,23]. The purpose of the reduction formulae is
to trivialize the process of expressing momentum states in
terms of field operators, so these examples will quite nat-
urally be rather elementary; any application of the formula
will be similarly easy.

4.2 In-in calculation: decay of a scalar field

We now apply the reduction formula in the in-in formalism to
the decay of a massive scalar particle in to massless fermions.
There is only a single vacuum in the calculation so there is
no need for a Bogoljubov transformation.

Let us denote the fermion (Dirac) operator at point x by
Dx and the Klein–Gordon operator as Kx . The propagators
are normalized as

DxG
D
f (x − x ′) = − 1√−gx

δ(x − x ′) (66)

with a corresponding normalization for the Klein–Gordon
operator.

We are looking for the scattering element 〈1ψ
k1

1ψ
k2

|1φ
p〉.

Now

ψ(t, x) =
∑

s

∫
d3k

[
bsku

s
k(t, x) + ds†

k vsk(t, x)

]
(67)

ψ(t, x) =
∑

s

∫
d3k

[
dskv

s
k(t, x) + bs†

k usk(t, x)

]
(68)

φ(t, x) =
∫

d3k

[
akw(t, x) + c†

kw
∗(t, x)

]
(69)

with b, d and a, c the fermionic and bosonic annihi-
lation operators, respectively, satisfying the usual (anti)
commutation relations.

We then use the reduction formulae. Since the in- and
out-vacuums are exactly the same, αmn = δmn and βnm = 0.
Then, using (29) and (27), the only term left is the one with
no Bogoljubov coefficients. Note that 〈ki |k j 〉 = δi j , which
is why the term with only αnm is zero. We get

〈1ψ
k1

1ψ
k2

|1φ
p〉

= −〈0|Ffermion[u]Ffermion[v]Fscalar[w]|0〉
=

∫
dy1

√
gy1

∫
dy2

√
gy2

∫
dx1

√
gx1u

s
k(t, x)v

s′
k (t, x)

× w(t, x)Dy1 Dy2 Kx1〈0|Tψ(y1)ψ(y2)φ(x1)|0〉 (70)

where Dyi are the Dirac operators and Kx1 is the Klein–
Gordon operator.

Let us specify the interaction as

Lint = T exp

(
− iλ

∫
dz

√−gz ψ(z)φ(z)ψ(z)

)
(71)

≈ 1 − iλ
∫

dz
√
gz ψ0(z)φ0(z)ψ0(z) (72)

with the subscript 0 indicating a free field. Then the field
operator expectation value in (70) is written as

〈0|Tψ(y1)ψ(y2)φ(x1)|0〉
= −iλ〈0|Tψ0(y1)ψ0(y2)φ0(x1)

×
∫

dz
√
gz ψ0(z)φ0(z)ψ0(z)|0〉. (73)

Using Wick’s theorem, we can write (73) as

〈0|Tψ(y1)ψ(y2)φ(x1)|0〉
= −iλGD

f (y1 − z)GD
f (y2 − z)GK

f (x − z). (74)

Applying the Dirac and Klein–Gordon operators to this
expression and using the normalization (66), we get imme-
diately

− i Dy1 Dy2 KxλG
D
f (y1 − z)GD

f (y2 − z)GK
f (x − z) (75)

= i
1√−gy1gy2gx

[
δ(y1 − z)δ(y2 − z)δ(x − z)

]
. (76)
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Inserting this to (70), we get after a few integrations

〈1ψ
k1

1ψ
k2

|1φ
p〉 = iλ

∫
dz

√−g

[
usk(t, x)v

s′
k (t, x)w(t, x)

]
.

(77)

Had we used the in-out S-matrix element instead, we
would have needed to use the out-vacuum field operators for
fermions and in-vacuum field operator for the scalar field.

4.3 In-out calculations: using Bogoljubov coefficients

Let us then deal with an example where we use only the
Bogoljubov coefficients. For concreteness, starting with a 0-
particle state in the Robertson–Walker metric, we wish to end
up with an 2-particle state due to space-time particle creation.
We assume there are no interactions, so that only spacetime
particle creation is relevant. We deal with the scalar case to
avoid the cumbersome use of indices. Then using formula
(29) we get

〈1φ
k1

1φ
k2

|0〉 = −
∑

p

〈0|α−1
pk1

β∗
k2 p|0〉, (78)

and furthermore

〈{1φ
ki

}|0〉 = 0 if |{1φ
ki

}| ≡ 0 mod 2 (79)

with the vertical bars indicating the cardinality of the set. We
see the expected result: particles are created in pairs. If we
had only one particle in the out-state, the amplitude would
be zero. If there were more particles to reduce, the formula
would then be applied recursively until we end up with a
vacuum. If interactions were present, more terms from e.g.
(29) would be added; if there were fermions, you would take
the formula (29) with the fermionic creation operations, and
so on.

Note that this is a separate issue from observing particles.
Particles may of course be observed one at a time. Mathemat-
ically the construction for a “measurement device” is given
in standard works, such as [1]. We are here dealing with only
the amplitudes of particle creation; observation requires a
separate treatment.

5 Discussion

We have derived curved spacetime reduction formulae for
vectors and fermions in arbitrary spacetimes and applied
them to a few example problems. In addition, we expressed
the Bogoljubov-dependent part of the reduction formulae in a
way which we hope is less oblique than the scalar field calcu-

lations in [5],5 and therefore be more practical. The formulae
were derived using a method not typically seen in the litera-
ture. We hope to use our the reduction formulae for scattering
calculations in e.g. cosmological spacetimes in the future.

The reason for our interest in reduction formulae is that
they are relatively formalism-agnostic. Just as is the case in
flat spacetime, the reduction formula binds together a vari-
ety of formalisms for doing scattering calculations: you can
first use the formula and then use whichever method seems
suitable to get the vacuum expectation values. We also have
not seen these curved spacetime formulas published in full,
though [1] mentions them and [5] includes the full scalar
reduction formula. We hope they facilitate more calculations
such as those in [8–11].

In flat spacetimes propagators are in practice obtained
either by the operator formalism or by using path integrals.
In curved spacetimes, however, there are a variety of meth-
ods; for example, variations of Schwinger’s method [6,7], the
added-up method as used in [24,25], operator methods like
those in [5], and even Schrödinger picture methods [26]. The
variety of methods is a result of the complications in dealing
with spacetime in quantum field theory, but whenever a scat-
tering calculation is at hand, the preceding formulae may be
used.

We used the conserved current method for deriving the
reduction formulae in this paper. We have not seen other
examples of this method in the literature – possibly because
in the flat spacetime case, it is relatively straightforward to
derive the reduction formulae by manipulating equations of
motion directly, such as we did here for the fermions. In
curved spacetimes, as can be seen in the fermion calculation,
this method quickly becomes laborious and technically chal-
lenging. The use of the conserved currents not only simplifies
the calculation but conceptually relates conservation laws to
the inner products used in QFT. It also generalizes to any
field theory with conserved currents easily.

We emphasize that the inner products used in QFT are not
fixed by the algebraic structure of the theory. You can explic-
itly construct unitarily inequivalent representations of the
commutation relations [2]; Haag’s theorem also shows that
interacting theories are not unitarily equivalent to free ones
[22]. This allows us to use our conserved current of choice;
there may well be other unitarily equivalent choices, as we
showed. Yet other choices may well be unitarily inequiva-
lent, and there is no telling if they would lead to the same
predictions.

We think that using conserved currents directly to find
the reduction formula might be more transparent and ped-
agogical than manipulating the equation of motion in the
brute-force way, since the procedure seems more generally

5 There are also some typographical errors in [5] which one should be
wary of when applying the formulae.
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applicable. It also makes the arbitrariness of the inner product
obvious, and in our opinion makes clearer the assumptions
going in to putting interacting fields in to the current to get the
creation operators. At any rate, obtaining reduction formu-
lae using the direct method as in Sect. 3.2.1 is a technically
complicated endeavor, whereas using the conserved currents
is quite easy.
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