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1 Introduction

Composite Higgs models (CHM) [1–3] postulate that the Higgs degrees of freedom, as well
as possibly other scalar partners, are composite (pseudo) Nambu-Goldstone bosons (NGBs)
arising from the spontaneous breaking G → H produced during the confinement of some
new strongly coupled system, presumably at the TeV scale. Thus, CHMs provide, together
with Supersymmetry, one of the most appealing solutions to the so-called hierarchy problem;
see refs. [4, 5] for comprehensive reviews.

In practice, CHMs have been also studied in connection with other problems that the
Standard Model (SM) does not solve, for example dark matter [6–19], flavour [20–22] or
baryogenesis [9, 23–25]. This explains partially why, as of today, most works on CHMs have
focused on particular realisations of this paradigm. To the best of our knowledge, the most
extensive description of the different cosets allowed in CHMs is given in ref. [26], which is
however far from complete beyond rank 3. (As the authors manifest, they did not intend
to be exhaustive in this respect.) Hence, a comprehensive and systematic study of the
landscape of CHMs, describing aspects such as the possible symmetries of the NGB sector or
the scalar SM multiplets most present in CHMs, among many others, is still lacking. With
the current work we aim to fill this gap.

We classify all CHMs based on the coset of compact Lie groups G/H with up to 13 NGBs
that preserve custodial symmetry and contain no coloured or fractionally charge scalars. In
order to scan the enormous landscape of possibilities, we use GroupMath [27] plus some extra
code to handle the specific demands of this endeavour. We note that since the topological
properties of the groups are not important, throughout our work we operate with Lie algebras.

The article is organised as follows. In section 2, we provide a brief introduction to
the mathematical structure of CHMs. We address the problem of whether a given set of
massless scalars can be UV completed into a CHM in which they arise as NGBs and how to
build the corresponding Lagrangian using only IR information. In section 3, we discuss the
aforementioned classification of CHMs, which we provide fully in the file Landscape_CHM.txt
in the Supplementary material, putting special emphasis on the fact that the landscape is
finite, on the possibility of embedding any SM-group scalar content in a CHM, as well as on
the absence of certain IR symmetries in CHMs. On the basis of these results, in section 4 we

– 1 –



J
H
E
P
0
3
(
2
0
2
4
)
0
1
7

discuss the frequency of cosets involving certain types of scalar multiplets of the custodial
group SU(2) × SU(2) (singlets, doublets, triplets, etc.), as well as certain properties (such as
being symmetric) across the landscape of CHMs. We conclude in section 5.

2 Composite Higgs models

The CHM idea is inspired by the successful understanding of the dynamics of pions on the
basis of chiral symmetry breaking in QCD. To a very good extent, the global symmetry of
the two-flavour version of QCD is G = SU(2)L × SU(2)R, but the quark condensate ⟨qq⟩
breaks this spontaneously to H = SU(2)L+R. The three pions are identified with the NGBs
of the coset G/H; all other resonances being much heavier [4]. The physics of the system is
described by a Lagrangian in which the global symmetry is non-linearly realised [28, 29].

In very much the same vein, CHMs identify the four real degrees of freedom of the Higgs
with four NGBs from the spontaneous symmetry breaking G → H in some new strongly
interacting sector. The least one can ask of H is that it contains the SM electroweak group
SU(2) × U(1), with the Higgs transforming as 2±1/2. In practice, constraints from violation
of custodial symmetry favour an H containing the larger SU(2) × SU(2) subgroup, with
the Higgs transforming as (2, 2). Other phenomenological considerations restrict further
the allowed cosets G/H; for example, the presence of NGBs with fractional electric charges
should be avoided.

All in all, we arrive at the following operational definition:

A composite Higgs model is to be identified by a group G and a subgroup H ⊃ SU(2)×
SU(2), together with embeddings φ1 : H → G and φ2 : SU(2) × SU(2) → H. For
simplicity, rather than tracking the functions φ1 and φ2, we consider that two models
are different if the branching rules of any representations of (i) G under H or (ii) H
under SU(2) × SU(2) are different. We require that Adj(G) → Adj(H) + rH under H,
with rH → rSU(2)×SU(2) = (2, 2) + · · · under SU(2)× SU(2) and such that no fractional
electric charges are present in rH.

The decomposition of any G-representation under H depends only on the coset space
G/H and it is unchanged if we were to add a factor group to G that remains unbroken,
namely a spectator group. In other words, we identify a pair of group-subgroup {G′,H′}
with {G,H} whenever G′ = G × F , H′ = H × F and the F in H′ is trivially embedded in
the F of G′ (that is, φ1 (F ⊂ H ′) = F ⊂ G′). For example, SU(4) can be embedded in
SU(4)1 × SU(4)2 in two different ways. In one case, the embedded SU(4) coincides with
SU(4)1 or SU(4)2 (so one of them is a spectator), while in the other case it is the diagonal
combination of SU(4)1,2. We keep this last possibility and discard the first one, since it is
the same as simply having SU(4) break into nothing

Given an explicit representation of G and a decomposition of the generators into those
spanning H, T ã, and those parameterising the coset space, T â, we can trivially build the
leading order NGB Lagrangian upon using the CCWZ formalism [28, 29]. It reads:

L = 1
4f2d â

µ dµ,â , (2.1)
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where d â
µ is the projection of the Maurer-Cartan one-form ωµ onto the coset space. Explicitly:

ωµ ≡ −iU−1∂µU = d â
µT â + T ã terms , U = exp

(
iΠâT â

f

)
. (2.2)

The Πâ parameterise the NGBs, while the constant f can be roughly interpreted as the
typical scale of the strong sector. (If rH is reducible, for example (1, 1) + 2 × (2, 2) in
SU(4)/SU(2)2, there is in general more than one different scale corresponding to the different
singlets in the product of two dâ

µ symbols.)
One might ask: given a real representation R of a group H, is it always possible to find

G such that the coset space G/H transforms exactly as R, i.e. rH = R? The answer is no,
and one of the simplest counter-examples (which therefore does not give rise to a CHM) is
the representation 9 of SU(2).1 The only group G such that G/SU(2) is 9-dimensional is
G = SU(2)4,2 and the associated coset space contains only SU(2) triplets and/or singlets.

However, as we argue later on, for any choice of representation RSU(2)×SU(2) of the
custodial group it is always possible to pick a G and a subgroup H such that G/H transforms
exactly as RSU(2)×SU(2).

Equally interesting is the fact that if R fullfills a so-called closure condition, there is at
least one group G such that rH = R. This is best seen by first taking a top-down approach,
so let us start by assuming that there is a group G with generators T a; as above, tildes
distinguish those T ’s which span a subgroup H and hats stand for the ‘broken’ generators
associated to G/H. The fact that G is a group means that the commutator of two T ’s can
be expressed as a linear combination of the generators:[

T a, T b
]

= ifabcT
c (2.3)

for some anti-symmetric structure constants fabc. Furthermore, it is well known that this
tensor obeys the Jacobi identity

fiabficd + fiadfibc + fiacfida = 0 . (2.4)

It contains four free indices, and we now consider what happens when each of them is
associated to either a preserved or a broken generator of G. Given that permutations of
{a, b, c, d} leave the equation invariant, there are just five possibilities: there can be none,
one, two, three or four indices associated with H (with a tilde), with the rest being associated
to G/H (with hats). Assuming that the coset G/H is symmetric, that is

fâb̂ĉ = 0 , (2.5)

we get three non-trivial relations from eq. (2.4).

1. The first, involving only f
ã̃bc̃

, is simply the Jacobi identity for the subgroup H.

1The smaller real and irreducible representations rH = 3, 5 and 7 can be obtained from the groups
G = SU(2) × SU(2), SU(3) and SO(5), respectively.

2We are disregarding groups with U(1)’s since for those the coset space contains at least one singlet of
SU(2).
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2. Another relation involves f
ã̃bc̃

and fãb̂ĉ. Note that this last tensor corresponds to the
entries of the H-matrices under which the coset space transforms (let us call them T ã

rH ,
so that fãb̂ĉ = i

(
T ã

rH

)
b̂ĉ

). With this in mind, the second relation is just eq. (2.3) for

the subgroup H and the rH representation:
[
T ã

rH , T b̃
rH

]
= if

ã̃bc̃
T c̃

rH .

3. Finally, there is a relation involving only fãb̂ĉ, or equivalently T ã
rH , which reads(

T ĩ
R

)
âb̂

(
T ĩ

R

)
ĉd̂

+
(
T ĩ

R

)
âĉ

(
T ĩ

R

)
d̂b̂

+
(
T ĩ

R

)
âd̂

(
T ĩ

R

)
b̂ĉ

= 0. This is the so-called closure
condition [30].

Now we can revert this top-down point-of-view and make the following bottom-up
observation. By picking any real represent representation R, of any group H, that obeys the
closure condition, we can extend the structure constants of H. These extended structure
constants respect the Jacobi identity, and therefore they are associated to some bigger group
G containing H and such that the coset G/H is symmetric.3 We wish to emphasize that for
this constructive argument one only needs to have the representation matrices of R, and in
fact the identity of the group G built in this way is far from obvious.

For symmetric cosets, the NGB interaction Lagrangian is then completely fixed by the
choice of H and rH. One can also see that it is so from the CCWZ formalism. Using the
notation adA (B) ≡ [A, B], the Maurer-Cartan one-form ωµ in eq. (2.2) can be written as

ωµ ≡ ωa
µT a = −i

I − exp
(
− i

f adΠ
)

adΠ

 (∂µΠ)

=
∞∑

n=0

(−i)n

fn+1 (n + 1)! (adΠ)n (∂µΠ)

= 1
f

∂µΠ − i
2f2 [Π, ∂µΠ] − 1

6f3 [Π, [Π, ∂µΠ]] + · · · (2.6)

with Π ≡ ΠâT â. The infinite tower of commutators in this expression is removable with
the help of eq. (2.3):

ωa
µ = −i

[
F−1

(
I − exp

(
− i

f
F
))]

ab̂

(∂µΠ)b̂ , (2.7)

where Fab ≡ iΠx̂fx̂ba is just a matrix. When the index a is associated to one of the broken
generators, ωa

µ is nothing but the dâ
µ in eqs. (2.1) and (2.2). Furthermore, for a symmetric

coset only the fãb̂ĉ structure constants are used inside the matrix F , which becomes off-
diagonal. We get that

dâ
µ =

[
F−1 sin

(F
f

)]
âb̂

(∂µΠ)b̂ . (2.8)

A Taylor expansion of the sine function shows that this expression has no odd powers of F ;
it is only a function of F2 which is equivalent to the matrix T (times f2) in [31]. That the

3Note that if we find any tensor which respects eq. (2.4), we obtain a new group/algebra. That is because
this equation is simply eq. (2.3) applied to T a

bc = −ifabc.
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Lagrangian of a CHM can be built only from IR information when the closure condition
holds was first pointed out in refs. [30, 32] (and investigated further in refs. [31, 33]). The
exposition in there starts from the observation that the Adler’s zero condition [34], namely
that fact that the amplitudes involving NGBs must vanish when one external momentum is
zero, can be taken as the defining property of a NGB, which is thereafter enforced at the level
of the Lagrangian. We think that our approach provides a different perspective on this topic.

3 The landscape of composite Higgs models

Our main goal is to find all cosets of up to certain size that are compatible with the definition
of a CHM given in the previous section. Before going into specific details, we make the
following simple observation:

The set of different composite Higgs models with m Nambu-Goldstone bosons is finite.

This holds for the following reason. Given that the number of subgroups H of a group
G is finite, for a fixed G the number of cosets G/H with m generators is obviously finite as
well. However, one might imagine that for larger and larger G’s one finds an infinite set of
pairs group-subgroup with exactly m broken generators. It so happens that this is not the
case: as the size of G grows, looking at its maximal subgroups we observe that the minimum
number of broken generators also increases. For simple groups, this fact is visually depicted
on the left plot of figure 1; for the infinite classical families SU(n), Sp(2n) and SO(n) the
trend exhibited in this figure is true for arbitrary large values of n. More generally, when the
group is semi-simple, G = G1 ×G2 × · · · , its maximal subgroups are obtained either by taking
the maximal subgroup of one of the factors Gi, or by taking the diagonal subgroup of two
equal factors, i.e. Gi ×Gi → Gi. The first possibility has just been addressed, while the second
one necessary involves a larger amount of NGBs as the size or number of the Gi increases (we
stress again that in this work we require that none of the Gi factors of G remains unbroken).

With this said, in this work we consider all CHMs with up to m = 13 NGBs. Com-
putational time is an important consideration, but it is certainly possible to go beyond
this bound; we adopt this limit because the number of CHMs is already quite large for
m ≤ 13, allowing us to highlight the importance and feasibility of thoroughly scanning the
landscape of possible models.

There are only 18 simple groups G for which one can have 13 or less NGBs, the largest
of which is SO(14); see figure 1. This last group has rank 7, however if non-simple groups
are considered then we must scan up to rank 8, since the coset SU(2)8/SU(2)4 is associated
to 12 NGBs. In total, ignoring U(1) factors, there are 472 groups with rank no larger than
8 (see the left plot on figure 1).

For each of these groups, we scan over all possible subgroups and check whether the
corresponding coset fullfils the requirements of a CHM, for which we rely on GroupMath [27].
CHMs differing by extra U(1)’s in either G or H are trivial to account for. This is because
the effect of each extra U(1) in G is simply to add a NGB transforming as a singlet of H, and
as (1, 1) under the custodial group SU(2) × SU(2). As for H, assuming that H× U(1) is also
a subgroup of G, the coset space G/(H× U(1)) has one less singlet NGB in comparison to
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Figure 1. Left: size of simple groups G, and the minimum number of broken generators which can
be obtained by looking at the largest subgroup of G with no abelian factors. E8 is not shown (the size
of this algebra is 248 and at least 112 generators must be broken). Groups above the dashed line are
associated to more than 13 NGBs and therefore are not considered in our scan. (Note that in our
scan we also consider semi-simple groups.) Right: number of semi-simple groups (excluding abelian
U(1) factors) of a given rank.

G/H. Therefore, the only non-trivial information that needs to be tracked is, for each G and
H with no abelian factors, what is the maximum number nmax of U(1)’s that can also be left
unbroken; G/(H× U(1)nmax) has the lowest number of H singlets and it is always possible to
have more of them upon removing U(1)’s from the subgroup or by adding them to G.

A very important point in this systematic exploration of the CHM landscape is the
different ways in which the same H can be embedded into a larger given G. Following ref. [35],
we consider that two embeddings of H into G are (linearly) equivalent if they lead to the same
branching rules for all representations of G. In practice though, there is no need to inspect
the branching rules of all irreducible representations of G; only one irreducible representation,
or two in the case of SO(2n) groups, must be considered [35, 36]. Furthermore, it is standard
practice to disregard embeddings which are obtained trivially from others by some symmetry
of G belonging to the outer automorphism group of G. We therefore also adopt this practice
here. For example, the two embeddings of SU(3) in SU(4) associated to the branching rules
4 → 1+3 and 4 → 1+3 are taken to be the same, since they are converted into one-another via
the Z2 automorphism group of SU(4) (which has the effect of conjugating representations).4

It is often overlooked that there can be more than one inequivalent embeddings of H in
G, even though their number can be rather large, particularly when the two groups have very
different dimensions. For example, it is not hard to prove (see section 3.4 of ref. [37]) that
there are p(n) − 1 inequivalent embeddings of SU(2) in SU(n), where p(n) is the function
that counts the distinct number of ways of partitioning the integer n as a sum of positive
integers: p(1), p(2), · · · = 1, 2, 3, 5, 7, · · · ; p(n) ∼ exp

(
π
√

2n/3
)

/
(
4
√

3n
)

for large n. As
a further example, SU(3) and SU(3) × SU(2) can be embedded in G = SU(10) in 10 and
35 inequivalent ways, respectively.

The list of all CHMs with up to 13 NGBs can be found in the Supplementary material

4A rather technical but nevertheless important consequence of factoring also these variations is that even
for the SO(2n) groups, in order to distinguish two embeddings it is enough to consider how the fundamental
representation decomposes under them.
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Landscape_CHM.txt. We find 642 CHMs, provided we do not distinguish those models
differing only on U(1) factors. Each element of the list corresponds to a different CHM,
for which the following information is provided: (1) name of G as a string, (2) name of H
as a string, (3) Cartan matrix of G, (4) Cartan matrix of H, (5) projection matrix of the
embedding of H in G, (6) rH, (7) projection matrix of the embedding of SU(2) × SU(2) in
H, (8) rSU(2)×SU(2). Thus, for the next-to-minimal CHM [38], we have:

{"SU4"}, {"SO5"}, {{{2,-1,0},{-1,2,-1},{0,-1,2}}}, {{{2,-2},{-1,2}}},
{{0,1,0},{1,0,1}}, {{{{1,0}},1}}, {{1,1},{1,0}}, {{{1,1},1},{{2,2},1}}

Note that the different representations are given in terms of their Dynkin coefficients
(with the exception of SU(2)’s of the custodial group, which we label using the dimension)
together with their multiplicity. Thus, {{{1,0}},1} refers to the 5 of SO(5), with multiplicity
1; whereas {{1,1},1},{{2,2},1}} indicates the (1, 1) + (2, 2) of SU(2) × SU(2).

The first projection matrix, in this case P = ( 0 1 0
1 0 1 ), characterises how the subgroup

H = SO(5) is embedded in G = SU(4). Specifically, ω′ = Pω for any pair of weights ω and ω′

of G and H, respectively [27]. An analogous comment applies to the second projection matrix.
In those cases where the subgroup H may contain one or more U(1)’s, namely when

H = Hnon-ab × U(1)n, rather than provide all trivial possibilities n = 0, 1, · · · as different
entries in the list of models, we only print the one associated to the largest n. For example, in
the case of SU(4)/SU(2)2 we may add at most one U(1) to H. In the corresponding entry in the
Supplementary material, the U(1) is explicit in the name of H, {"SU2","SU2","U1"}, as well
as in the Cartan matrix, {{{2}},{{2}},{}}; and the number of singlets in the decomposition
of rH under SU(2) × SU(2) is specified with a list {0,1} in {{{1,1},{0,1}},{{2,2},2}}.
Hence these cosets yield either a two-Higgs-doublet model (2HDM) [39] or a 2HDM extended
with a singlet [14, 40].

One last comment, involving a subtlety, is in order. In our scan, we sometimes find
different models associated to the same G, H, rH and rSU(2)×SU(2). Looking at the projections
matrices, one sees that they are different but it is important to note that more than one
such matrix can yield the same branching rules; as such, a visual comparison of projection
matrices is not an adequate method of distinguishing embeddings. The explanation for what
is going on is the following: (1) as stated previously, we use the criteria of linear equivalence to
access whether or not two embeddings are the same; (2) this relies on checking the branching
rules for all representations of the group of interest, but in practice it is enough to look
at the fundamental representation; (3) in some cases, it can happen that two inequivalent
embeddings lead to the same branching rules for the adjoint representation, which is essentially
the information we provide in rH and rSU(2)×SU(2). However, in general other representations
decompose differently so the apparently repeated models are in reality inequivalent. As an
example, there is only one embedding of H = G2 ×SO(5) in G = SO(7)×SU(4), under which
the coset space transforms as rH = (7, 1)+(1, 5). There are then two inequivalent embeddings
of SU(2) × SU(2) in H such that rH → rSU(2)×SU(2) = 2 × (3, 1) + (2, 2) + 2 × (1, 1): in one
of them we have (7, 1) → 2 × (3, 1) + (1, 1) and (1, 5) → (2, 2) + (1, 1), while for the other
embedding the branching rules are (7, 1) → (3, 1) + (2, 2) and (1, 5) → (3, 1) + 2 × (1, 1).
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Nonetheless, since the light scalars depend only on what happens to the adjoint represen-
tation, in the Supplementary material we provide only one model for each of these collections
of apparently equivalent cosets; we are happy to provide the rest upon request.5

4 Highlighted results

Whilst the full list of all the CHMs with up to 13 NGBs is huge and hence only given
in electronic form, the list of those models with up to eight NGBs is small enough to be
provided in text. There are 44 in total, which we identify in table 1 (factoring out cases
which differ only by U(1)’s, the number of models shrinks to 26). We group these CHMs
in terms of their field content under the (custodial) SM. Two immediate observations are
in order. First, we note that:

For any choice of Standard Model field content, rSU(2)×SU(2), there exists at least one
composite Higgs model with the Nambu-Goldstone bosons transforming in that way.

For example, the SM-group combination of a Higgs doublet and a real triplet can
be realised via SU(2) × SO(5)/SU(2)2 as well as via SO(7)/G2 or SO(8)/SO(7) or even
SU(2)2 × SO(5)/SU(2)3.6 Although it might be surprising, this results extends not only to
m = 13 but actually to an arbitrary number of NGBs. In fact, any custodial-group field
content can be realised in an SO(m + 1)/SO(m) CHM.

The validity of this last statement is rather simple to prove. An m-dimensional (potentially
reducible) real, faithful and unitary representation of any group consists of a set of m × m

orthogonal matrices, so they form a subgroup of the full set O(m) of all such matrices. If
the matrices have unit determinant, then they form a subgroup of SO(m). Hence, for any
m-dimensional real representation rSU(2)×SU(2) of SU(2)×SU(2) there is always an embedding
in SO(m) such that the fundamental representation of this group transforms as rSU(2)×SU(2)
under SU(2) × SU(2). Given that the coset space SO(m + 1)/SO(m) transforms as the
fundamental representation of SO(m), it can realise any (real) combination of SU(2) × SU(2)
fields provided that this subgroup is appropriately embedded in SO(m).

In this way we obtain, for example, the CHM version of the Georgi-Machacek model [45],
composed of the light scalars (2, 2) + (3, 3), which, to the best of our knowledge, has not been
discussed previously in the literature. The corresponding coset is simply SO(14)/SO(13),
with the embedding of SU(2) × SU(2) into SO(13) associated with the projection matrix
P = ( 1 2 4 6 8 4

1 0 2 2 0 1 ). It can be also realised with SO(5) × SO(10)/(SU(2)2 × SO(9)), as well as
with a more minimal coset (SO(5) × SU(4))/SU(2)4. Other scenarios not yet studied within
the CHM context include the scalar minimal dark matter multiplets [46]. These, together
with all other single-field extensions of the Higgs doublet arising in composite models with
up to 13 NGBs are shown in table 2. From the tables, it is also clear that all composite
singlet extensions of the scalar sector have been studied. For 2HDMs, we find one option
that has not been considered previously in the literature, namely SO(5)2/SU(2)4, but this

5Without this reduction we obtain a total of 752 models, 110 more than the 642 we mention in the text
and which we provide in the auxiliary file.

6Note that SU(2) is an active group in these examples; it is not spectating.
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SU(2) × SU(2) content rH H G/H
(2, 2) (2, 2) SU(2) × SU(2) SO(5)/SU(2)2 [41]

(2, 2) + (1, 1) (2, 2) + (1, 1) SU(2) × SU(2) SO(5) × U(1)/SU(2)2 [42]
5 SO(5) SU(4)/SO(5) [38]

(2, 2) + (1, 3)

(2, 2) + (1, 3) SU(2) × SU(2) SU(2) × SO(5)/SU(2)2

7 G2 SO(7)/G2 [43]
7 SO(7) SO(8)/SO(7)

(1, 2, 2) + (3, 1, 1) SU(2)3 SU(2) × SU(2) × SO(5)/SU(2)3

2 × (2, 2)

2 × (2, 2) SU(2) × SU(2) SU(4)/(SU(2)2 × U(1)) [39]
4 + 4̄ SU(4) SU(5)/SU(4) × U(1) [44]

8 SO(7) –
(2, 4) SU(2) × SO(5) Sp(6)/(SU(2) × SO(5)) [39]

(1, 2, 2) + (2, 1, 2) SU(2)3 –
8v SO(8) SO(9)/SO(8) [44]

(1, 2, 1, 2) + (2, 1, 2, 1) SU(2)4 SO(5)2/SU(2)4

(2, 2) + 2 × (1, 1)
(2, 2) + 2 × (1, 1) SU(2) × SU(2) SO(5) × U(1)2/SU(2)2

SU(2) × SO(5)/(SU(2)2 × U(1))
1 + 5 SO(5) SU(4) × U(1)/SO(5)

6 SU(4) SO(7)/SU(4) [9, 12]

(2, 2) + (1, 1) + (1, 3)

1 + 7 G2 SO(7) × U(1)/G2
(1, 1) + (2, 2) + (1, 3) SU(2)2 SU(2) × SO(5) × U(1)/SU(2)2

8 SO(7) –
1 + 7 SO(7) SO(8) × U(1)/SO(7)
(2, 4) SU(2) × SO(5) Sp(6)/(SU(2) × SO(5))

(1, 5) + (3, 1) SU(2) × SO(5) SU(2)2 × SU(4)/(SU(2) × SO(5))
(1, 2, 2) + (2, 2, 1) SU(2)3 –

(1, 1, 1) + (1, 2, 2) + (3, 1, 1) SU(2)3 SU(2)2 × SO(5) × U(1)/SU(2)3

8v SO(8) SO(9)/SO(8)
(1, 1, 2, 2) + (2, 2, 1, 1) SU(2)4 SO(5)2/SU(2)4

(2, 2) + 3 × (1, 1)

(2, 2) + 3 × (1, 1) SU(2)2 SO(5) × U(1)3/SU(2)2

SU(2) × SO(5)/SU(2)2

2 × 1 + 5 SO(5) SU(4) × U(1)2/SO(5)
SU(2) × SU(4)/(SO(5) × U(1))

1 + 6 SU(4) SO(7) × U(1)/SU(4)
7 SO(7) SO(8)/SO(7)

(1, 2, 2) + (3, 1, 1) SU(2)3 SU(2)2 × SO(5)/SU(2)3

(2, 2) + 4 × (1, 1)

(2, 2) + 4 × (1, 1) SU(2)2
SO(5) × U(1)4/SU(2)2

SU(2) × SO(5) × U(1)/SU(2)2

SU(2)2 × SO(5)/(SU(2)2 × U(1)2)

3 × 1 + 5 SO(5) SU(4) × U(1)3/SO(5)
SU(2) × SU(4)/SO(5)

2 × 1 + 6 SU(4) SO(7) × U(1)2/SU(4)
SU(2) × SO(7)/(SU(4) × U(1))

1 + 7 SO(7) SO(8) × U(1)/SO(7)
(1, 5) + (3, 1) SU(2) × SO(5) SU(2)2 × SU(4)/(SU(2) × SO(5))

(1, 1) + (1, 5) + (2, 1) SU(2) × SO(5) –
(1, 1, 1) + (1, 2, 2) + (3, 1, 1) SU(2)3 SU(2)2 × SO(5) × U(1)/SU(2)3

2 × (2, 1, 1) + (1, 2, 2) SU(2)3 SO(5) × SU(3)/(SU(2)3 × U(1))
8v SO(8) SO(9)/SO(8)

(1, 1, 2, 2) + (2, 2, 1, 1) SU(2)4 SO(5)2/SU(2)4

Table 1. CHMs with up to eight NGBs arranged according to the scalar field content. The symmetries
on the scalar sector allowed from an IR perspective are specified. When relevant, citations to works
in which these models have been studied are provided. For the five cases with a dash in the last
column no CHM can be built; we include them in this table to support our discussion on this topic
(see main text).
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G H rH rSU(2)×SU(2)

SO(5) × U(1) SU(2) × SU(2) (1, 1) + (2, 2) (1, 1) + (2, 2) [42]
SU(4) SO(5) 5 (1, 1) + (2, 2) [38]
SU(4) SU(2)2 × U(1) (2, 2)−2 + (2, 2)+2 2 × (2, 2) [39]
SO(7) G2 7 (2, 2) + (3, 1) [9]
SO(7) SU(2)3 (2, 3, 2) (2, 2) + (4, 2)
Sp(6) SU(2) × SO(5) (4, 2) 2 × (2, 2) [39]

SU(2) × SO(5) SU(2) × SU(2) (3, 1) + (2, 2) (2, 2) + (3, 1)
SU(5) SU(4) × U(1) 4−5 + 4+5 2 × (2, 2) [44]
SO(8) SO(7) 7 (2, 2) + (3, 1)
SO(9) SO(8) 8v 2 × (2, 2) [44]
Sp(8) SU(2) × Sp(6) (2, 6) (2, 2) + (4, 2)
Sp(8) SU(2) × Sp(6) (2, 6) (2, 2) + (4, 2)

SO(5) × SU(3) SU(2)3 (2, 2, 1) + (1, 1, 5) (2, 2) + (5, 1)
SO(5)2 SU(2)3 (7, 1, 1) + (1, 2, 2) (2, 2) + (7, 1)
SO(5)2 SU(2)4 (2, 2, 1, 1) + (1, 1, 2, 2) 2 × (2, 2)

G2 × SO(5) SU(2)4 (4, 2, 1, 1) + (1, 1, 2, 2) (2, 2) + (4, 2)
SU(2)2 × SO(5) SU(2)3 (3, 1, 1) + (1, 2, 2) (2, 2) + (3, 1)

SO(10) SO(9) 9 (2, 2) + (5, 1)
SO(5) × SU(4) SU(2)2 × SO(5) (2, 2, 1) + (1, 1, 5) (2, 2) + (5, 1)
SO(5) × SU(4) SU(2)4 (2, 2, 1, 1) + (1, 1, 3, 3) (2, 2) + (3, 3)
SO(5) × SO(7) SU(2)2 × G2 (2, 2, 1) + (1, 1, 7) (2, 2) + (7, 1)
SO(5) × Sp(6) SU(2)3 × SO(5) (2, 2, 1, 1) + (1, 1, 2, 4) (2, 2) + (4, 2)

SO(12) SO(11) 11 (2, 2) + (7, 1)
SO(13) SO(12) 12 (2, 2) + (4, 2)

SO(5) × SO(8) SU(2)2 × SO(7) (2, 2, 1) + (1, 1, 7) (2, 2) + (7, 1)
SO(5) × SO(9) SU(2)2 × SO(8) (2, 2, 1) + (1, 1, 8v) (2, 2) + (4, 2)

SO(14) SO(13) 13 (2, 2) + (9, 1)
SO(14) SO(13) 13 (2, 2) + (3, 3)

SO(5) × SO(10) SU(2)2 × SO(9) (2, 2, 1) + (1, 1, 9) (2, 2) + (9, 1)
SO(5) × SO(10) SU(2)2 × SO(9) (2, 2, 1) + (1, 1, 9) (2, 2) + (3, 3)

Table 2. CHMs with at most 13 NGBs and which transform as a bi-doublet plus a single extra irrep
of the custodial group.

is just two minimal CHMs charged under different SO(5)’s and SU(2)2’s with the custodial
group being the diagonal subgroup of the two SU(2)2’s. Extensions with one real triplet
are much less explored; we find four possible cosets, one of which — SO(7)/G2 — has been
previously studied in refs. [13, 43].
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A second observation is:

Certain symmetries of the Nambu-Goldstone boson sector, acceptable from an IR
perspective, are never realised within a composite Higgs model. Specifically, there are
choices of H and rH for which there is no larger group G ⊃ H such that Adj(G) →
Adj(H) + rH.

The clearest example is a 2HDM sector in which the eight scalar degrees of freedom
transform as the 8 of H = SO(7). In CHMs, either the scalar sector is not that symmetric,
or the symmetry is larger than that; H = SO(8) is a possibility, since the coset space
SO(9)/SO(8) transforms as an octet of this group. Needless to say, the 8 of SO(7) does
not fulfil the closure condition.

5 Conclusions

We have made an exhaustive compilation of CHMs with at most 13 NGBs. In particular, we
have computed all cosets G/H with at most 13 generators, with G and H being compact semi-
simple Lie groups. Factoring out U(1)’s whose only effect is to change the number of singlet
NGBs, we have found 642 models. Along the way, a number of interesting results were derived.

First, we have obtained conditions for a set of scalar fields to be UV completable into a
(symmetric) CHM. An in-depth inspection of our scan shows however that about 20% of them
do not fulfil this condition, implying that a large fraction of them are non-symmetric.7 (The
only case for which both G and H are simple groups is SO(7)/G2.) As far as we can tell, and
in line with previous works [30, 32], these models can not be reconstructed on the basis of IR
data only. Instead, the full knowledge of both H and G is needed, which we have provided here.

Second, we have found that the set of CHMs is actually finite for any fixed number m of
NGBs. That is because the gap between the number of generators of a group G and those of
its maximal subgroups grows as we consider larger and larger G’s. For the particular case
m ≤ 13, we find that G can have a rank of at most 8. For rank 3 we reproduce all the results
of ref. [26], and extend these with the cosets Sp(6)/(SU(2) × SO(5)), SO(7)/SU(2)3 and
Sp(6)/SU(2)3, which provide one singlet, one bi-doublet and one triplet; one bi-doublet and
one quartet; and one singlet, two bi-doublets and one triplet, respectively. The first two are
not listed in ref. [26] because they involve less Higgs doublets than in different embeddings of
the custodial group into H. The last one, in which rH is reducible, can be obtained from Sp(6)
via an intermediate breaking to SU(2) × SO(5).8 On top of these we find two models based
on G = SU(2) × SO(5), each of which can be seen as the combination of two separate cosets.

Third, we have found that any combination of multiplets of the custodial symmetry shows
up as the NGB sector of some CHM. In general, there is more than one CHM with the same

7For simplicity of the calculation, we do not take the full landscape of 642 CHMs, but rather the sample of
those with no abelian factors and in which rH does not involve complex components — thus excluding, for
example, 4−5 + 4+5 in SU(5)/(SU(4) × U(1)). This reduces the sample of CHMs to 478.

8Nevertheless we note here that in general the reducibility of rH is unrelated to the existence of an
intermediate breaking (i.e., it is unrelated to whether or not H is a maximal subgroup of G). For example,
under the maximal subgroup SU(2) of Sp(6), the corresponding coset space transforms as 7 + 11.
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SM field content (but different dynamics). In this respect, it is worth highlighting that we
have found three CHMs with real triplets whose phenomenology, to the best of our knowledge,
has not been explored in the literature. These are SO(8)/SO(7), SU(2)2 × SO(5)/SU(2)3 and
SU(2) × SO(5)/SU(2)2. On top of this, it can be checked that triplet scalars are, together
with singlets, the multiplets that arise most often in CHMs; on the other hand, doublets
are not as common as larger multiplets for big enough cosets.9 In our view, these two
observations constitute a further motivation for the search of electroweak triplets at colliders
and other facilities. Moreover we have found three different realizations of the Georgi-
Machacek model [45] composed of the light scalars (2, 2) + (3, 3), as well as realizations
of the minimal dark matter candidates [46].

Finally, we have also observed that some symmetries of the scalar sector, which are
perfectly valid from the IR point of view, are never realised within CHMs. This occurs only
for scalar sectors with at least four NGBs. For example, a 2HDM in which the eight real
degrees of freedom transform in the 8 of H = SO(7) is not permitted within CHMs. This
finding is related to the first point raised above, namely the fact that representations of
this sort do not fulfil the closure condition.

Among other future directions, this work could be extended by considering more than
13 NGBs. A more enlightening extension would be to allow a non-custodial H, requiring
only that it contains the SM gauge group SU(2) × U(1), in which case large corrections
to the ρ parameter must be avoided by assuming that the compositeness scale f is large.
Likewise, we could consider those scenarios in which (SU(2) × U(1))2 ⊂ H, in application
to little-Higgs models [47, 48].
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