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ABSTRACT: In this paper, we investigate, in the framework of the topological approach to
black hole thermodynamics, using the generalized off-shell Helmholtz free energy, the topolog-
ical numbers of the static multi-charge AdS black holes in four- and five-dimensional gauged
supergravities. We find that the topological number of the static-charged AdS black holes
in four-dimensional Kaluza-Klein (K-K) gauged supergravity theory is W = 0, while that
of the static-charged AdS black holes in four-dimensional gauged —iX%X'-supergravity
and STU gauged supergravity theories, and five-dimensional Einstein-Maxwell-dilaton-
axion (EMDA) gauged supergravity and STU gauged supergravity, and five-dimensional
static-charged AdS Horowitz-Sen black hole are both W = 1. Furthermore, we observe a
novel temperature-dependent thermodynamic topological phase transition that can happen
in the four-dimensional static-charged AdS black hole in EMDA gauged supergravity theory,
the four-dimensional static-charged AdS Horowitz-Sen black hole, and the five-dimensional
static-charged AdS black hole in K-K gauged supergravity theory. We believe that the novel
temperature-dependent thermodynamic topological phase transition could help us better
understand black hole thermodynamics and, further, shed new light on the fundamental
nature of gauged supergravity theories.
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1 Introduction

The discovery of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence [1-3]
has attracted a great deal of interest in studying the thermodynamic properties of charged
AdS black holes in four- and five-dimensional gauged supergravities [4-23]. In fact, the
establishment of the three widely accepted thermodynamic mass formulas, i.e., the first law
of black hole thermodynamics [24, 25], the Bekenstein-Smarr mass formula [26], and the
Christodoulou-Ruffini squared-mass formula [27, 28], is not the only facet of the investigation
of black hole thermodynamics.

Recently, topology has received considerable interest and enthusiasm as an important
mathematical tool applicable to black hole physics. There are two important aspects to
the topology research underway at present. One area of investigation focuses on the light
rings [29-35] corresponding to some black holes, which could present more support for black
hole observation in the future and has been expanded to timelike circular orbits [36, 37].
Another area of investigation focuses on the thermodynamic properties of black holes [38-59].
Extraordinarily, a new method for exploring the thermodynamic topological features of black
holes has developed, as pointed out in ref. [60]. This method treats black hole solutions
as topological thermodynamic defects, calculates topological numbers, and then classifies



black holes into three different categories according to their topological numbers. This
breakthrough work has provided novel insights into the fundamental nature of black holes
and gravity. The thermodynamic topological procedure presented in ref. [60] has achieved
considerable popularity because of its broad application and convenience. Therefore, it has
been effectively applied to explore the topological numbers corresponding to various famous
black holes [61-95]. However, the topological classes of the multi-charge static AdS black
holes in four- and five-dimensional gauged supergravities are still unknown and merit further
exploration, since the structure of the metric, though spherically symmetric, is notably
different from that of the corresponding Reissner-Nordstrom-AdS (RN-AdS) cases. Hence
the reason why we undertake the present paper.

In this paper, we shall investigate the topological numbers of the static multi-charge
AdS black holes in four- and five-dimensional gauged supergravity theories. In the context of
gauged supergravity theory, static-charged AdS black holes in four and five dimensions have
four and three independent electric charge parameters, respectively. For each of these black
holes, we examine various electric charge parameter configurations and explore their impact
on the thermodynamic topological classification of these black holes. We find that, in four-
dimensional spacetimes, for two nonzero electric charge parameters (the other two being zero),
the thermodynamic topological number is temperature dependent: it is W = 1 for two large
electric charge parameters, but for two small electric charge parameters, it can be W =0 (at
cold temperatures) or W = 1 (at high temperatures). Likewise, in five-dimensional spacetimes,
we also find that the static-charged AdS black hole in Kaluza-Klein (K-K) supergravity theory
has W =1 if the electric charge parameter is large, but if the electric charge parameter is
small, then the topological number W exhibits a similar temperature dependence, i.e., W =0
(at cold temperatures) or W =1 (at high temperatures). In other words, we observe a kind
of novel temperature-dependent thermodynamic topological phase transition.

The remaining part of this paper is organized as follows. In section 2, we present a
brief review of the thermodynamic topological method proposed in ref. [60]. In section 3,
we examine the topological numbers of four-dimensional static multi-charge AdS black
holes in gauged supergravity theory [4] for several different combinations of electric charge
parameters, and we address each case separately in six subsections. In section 4, we investigate
the topological numbers of five-dimensional static multi-charge AdS black holes in gauged
supergravity theory [5] with various distinct combinations of electric charge parameters
and separate our discussion of each case into five subsections. Finally, our conclusions and
outlooks are given in section 5.

2 A brief review of thermodynamic topological method

In this section, we present a brief review of the novel thermodynamic topological method
proposed in ref. [60]. As stated in ref. [60], we start by introducing the generalized off-shell
Helmholtz free energy

F=M-— 5 (2.1)
T
for the black hole thermodynamic system with mass M and Bekenstein-Hawking entropy

S, the extra variable 7 can be treated as the inverse temperature of the cavity enclosing



the black hole. Only in the case of 7 = 1/T does the generalized Helmholtz free energy
exhibit on-shell features and return to the standard Helmholtz free energy F' = M — TS
of the black hole [96-99].

In ref. [60], the essential vector ¢ is defined as

oF
=|—, —cotOcscO ], 2.2
o= (5 ) (22)
where 7, is the event horizon radius of the black hole, © is an extra factor, and © € [0, 4+00].
It is worth noting that the component ¢© diverges at © = 0 and © = 7, demonstrating that
the vector has an outward direction in both of these cases.

In order to build a topological current, one can employ Duan’s theory [100-102] on
¢-mapping topological currents as follows:

b

1
GH = %e“l’peab&,n“{?pn , v, p=0,1,2, (2.3)

where 9, = 9/dx" and z¥ = (7, 5, ©). The normalized vector is formulated as n = (n",n®)
with n” = ¢ /||#|| and n® = ¢©/||#||. It is simple to verify that this topological current

is conserved
ougt =0. (2.4)

Using the three-dimensional Jacobian tensor ¢®JH(¢/x) = ¢ p(%(baﬁpqﬁb, we can describe

the topological current as a J-function of the field configuration [31, 101, 102]

. ¢

G = 5%(p)J" (m : (2.5)
This argument clearly shows that j* is nonzero only at the zero points of ¢%(z;), i.e.,
¢*(xz;) = 0. Finally, the topological number at the given parameter region ¥ can be

determined by utilizing the following formula:

N N
W= / P& =" Bini = wi, (2.6)
= i—1 i—1

where the positive Hopf index (3; denotes the number of loops made by ¢* in the vector ¢-space
as o* moves around the zero point z;, the Brouwer degree n; = sign(J°(¢/z),,) = +1, and w;
is the winding number for the ith zero point of ¢. In addition, if two different closed curves,
31 and Yo, intersect at the same zero point of ¢, their winding numbers must be the same; if
there is no zero point of ¢ within the enclosed region, then the topological number W = 0.

It is worth mentioning that the local winding number w; is a key instrument for deter-
mining local thermodynamical stability. Positive w; values indicate thermodynamically stable
black holes, while negative values indicate unstable ones. The global topological number
W denotes the difference between the numbers of thermodynamically stable and unstable
black holes with a black hole solution at a given temperature.



3 Four-dimensional static multi-charge AdS black holes in gauged
supergravity theory

In this section, we will investigate the topological numbers of the four-dimensional static
multi-charge AdS black holes in gauged supergravity theory [4]. For the general static four-
charge AdS black hole in four-dimensional STU gauged supergravity theory, whose metric,
Abelian gauge potentials, and scalar fields are [4]

4 4
dsZ _ H Hi_l/2 fdtQ + HHZ}/z (ffldTQ + TQdQ%) :

=1 i=1
; Vqi(gi +2m) LT 1A
A= T2 g, X, = H, H'*, 3.1
2(r + ¢) ‘ ! ]1_[1 J 3:1)
where

om 22 q;
f:l——+l—2HHZ-, Hy=1+ 2, (3.2)

T i1 T

in which [ is the AdS radius, m and ¢; are the mass and four independent electric charge
parameters, respectively.

For the static charged AdS black hole metric described by (3.1), the most general case
is that of a solution possessing four independent electric charge parameters. In addition,
according to the classification of black hole solutions in figure 1 of ref. [103], there are several
special truncated supergravity solutions: for example, when the electric charge parameters
q1 = ¢2 and q3 = ¢4, this is known as the static charged AdS black hole solution in gauged
—i XX supergravity theory [104] (namely, the static pairwise-equal four-charge AdS black
hole case); when ¢ # g2 # 0, q3 = q4 = 0, namely the four-dimensional static charged AdS
Horowitz-Sen black hole solution [105, 106]; when ¢; = g2 # 0 and g3 = ¢4 = 0, i.e., the
static charged AdS black hole solution in Einstein-Maxwell-dilaton-axion (EMDA) gauged
supergravity theory [107]; and when ¢; # 0 and g2 = g3 = g4 = 0, i.e., the static charged AdS
black hole solution in K-K gauged supergravity; and when ¢; = g2 = g3 = q4 # 0, which is the
familiar RN-AdS black hole case after the coordinate transformation by p = r + ¢;; and so on.

The thermodynamic quantities are given by [7]

4 4
1 1 7
M:m—’_ZE qi, Ql:§ QZ(QZ+2m)7 S:WH(Th—’_Ql)l/Qa
i=1

=1
/ 4
_ i(qi + 2

T:f(rh)HHil/Q(rh), @i:@, P:i,

dm 2(rn + qi) 87?2

7T7“3 4 4 1

V = —h Hi(Th) . (33>

3 g jZIHj(Th)

It is easy to verify that these mentioned thermodynamic quantities simultaneously satisfy
the first law and the Bekenstein-Smarr mass formula

4
dM =TdS + Y ®dQ; + VdP, (3.4)
=1
4
M =2TS+> &Q;—2VP. (3.5)
=1



Utilizing the definition of the generalized off-shell Helmholtz free energy (2.1) and
substituting the relation 12 = 3/(87rP) [7, 108, 109], one can easily obtain

FeTryl z +4”Pnrh+ql—fnm—+ql (3.6)

for the static four-charge AdS black hole in four—dlmenswnal gauged supergravity. Then
the components of the vector ¢ can be derived as

1 4rP I g & )
O =5+ 3 |02+ (2 +a3)a1 + (a2 + g3+ qa) - ?‘f‘th;%“i‘&”h
T 3 2 -
NN {12rh + 9rj. ; qi + 6rp, [(J3Q4 +q2(q3 + q4) + q1(q2 + g3 + (J4)}
+3 [C]1CJ2613 + q2q3q4 + q1(q2 + CJ3)Q4] } ; (3.7)
#° = —cot O cscO. (3.8)

By solving the equation: ¢™ = 0, one can compute the zero point of the vector field ¢ as

3mri [Q1q2q3 + q192q4 + 1434 + q2q3q4 + 2X T + 33 S g + 47",?;] 5.9
T= , .

[Tiz1 V7 +qz'{37“;2; + 8P [— [Ty @i + Xy + 20} Sy 4 +37“ﬂ }

where
X =q3q4 + q2(q3 + q1) + q1(q2 + g3+ q4) -

Note that eq. (3.9) consistently reduces to the result obtained in the case of the four-
dimensional Schwarzschild-AdS black hole [64] when the four independent electric charge
parameters g; vanish. Due to the requirement of considering four independent electric charge
parameters, different values of these electric charge parameters correspond to distinct black
hole solutions within various truncated supergravity theories. Therefore, we will explore
the topological numbers of static charged AdS black holes in several special supergravity
theories, respectively.

3.1 q1 #0, g2 =q3 = qq4 = 0 case (K-K gauged supergravity)

In this subsection, we focus on the case where ¢; # 0 and g2 = g3 = g4 = 0, which corresponds
to the static charged AdS black hole in four-dimensional K-K gauged supergravity theory. For
the four-dimensional static charged AdS black hole in K-K gauged supergravity theory, one
can plot the zero points of the component ¢ with Prg =0.1,q/ro=2,andga =¢q3 =q1 =0
(the four electric charge parameters act equivalently) in figure 1, and the unit vector field n
on a portion of the © — rp, plane in figure 2 with 7/ry = 3.5. Here, r( represents an arbitrary
length scale defined by the size of a cavity around the static charged AdS black hole in four-
dimensional K-K gauged supergravity theory. Figure 1 illustrates that for 7 < 7, = 3.68ry,
there exist two four-dimensional static charged AdS black holes in K-K gauged supergravity:
one thermodynamically stable and one thermodynamically unstable.

In figure 2, two zero points are located at (rp,/ro,©) = (0.15,7/2), and (0.44,7/2),
respectively. The winding numbers w; for the blue contours C; can be characterized as
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Figure 1. Zero points of the vector ¢™ shown in the rj, — 7 plane with q; /rg = 2, Pr¢ = 0.1, and
q2 = q3 = q4 = 0. There is one thermodynamically stable and one thermodynamically unstable
four-dimensional static charged AdS black hole in K-K gauged supergravity theory for 7 < 7, = 3.68r¢.
Obviously, the topological number is: W =1 -1 = 0.
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Figure 2. The arrows represent the unit vector field n on a portion of the r, — © plane for the
four-dimensional static charged AdS black hole in K-K gauged supergravity theory with 7/rq = 3.5,
q1/ro =2, Prd = 0.1, and g2 = g3 = g4 = 0. The zero points (ZPs) marked with black dots are at
(rn/r0,0) = (0.15,7/2), and (0.44, 7/2), respectively. The blue contours C; are closed loops enclosing
the zero points.

1 = —1 and we = 1, which differ from the four-dimensional RN-AdS black hole (which
only has wy = 1). Therefore, the topological number W = 0 for the four-dimensional static
charged AdS black hole in K-K gauged supergravity theory is easily noticed in figure 2,
distinguishing it from the topological number of the four-dimensional RN-AdS black hole
(W =1) [60]. It implies that the topological number are significantly affected by the number
of the electric charge parameters.
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Figure 3. Zero points of the vector ¢"* shown in the rj, — 7 plane with q; /79 = g2/70 = 2, Pr3 = 0.1,
and g3 = q4 = 0. There is one thermodynamically stable four-dimensional static charged AdS black
hole in EMDA gauged supergravity theory for 7 < 7, = 2.89r¢. Obviously, the topological number
ist W =1.

3.2 q1 =q2#0, g3 =qq =0 case (EMDA gauged supergravity)

In this subsection, we discuss the case where q1 = q2 # 0, g3 = g4 = 0, corresponding to the
static charged AdS black hole in four-dimensional EMDA gauged supergravity theory. For
the four-dimensional static charged AdS black hole in EMDA gauged supergravity theory,
we find that different values of the two identical electric charge parameters also influence
their topological numbers, which is a new property of this black hole solution (in sections 3.3
and 4.1, we will find that the four-dimensional static charged AdS Horowitz-Sen black hole
solution and the five-dimensional static charged AdS black hole solution in K-K gauged
supergravity theory possess similar properties). Therefore, we next discuss each of the three
cases by taking larger, smaller, and critical values of two equal electric charge parameters.

3.2.1 Large values of two identical electric charge parameters

We first consider the case where two equal electric charge parameters take larger values. We
plot the zero points of the component ¢™ with Pr% =0.1,q1/ro = q2/r0 =2,and g3 = q4 =0
in figure 3, and the unit vector field n in figure 4 with 7/r9 = 1. Note that for these values of
Pr3, q1/ro and q2/r¢, there is one thermodynamically stable four-dimensional static charged
AdS black hole in EMDA gauged supergravity theory if 7 < 7, = 2.89r¢. In figure 4, one can
observe that the zero point is located at (r,/ro, ©) = (3.32,7/2). Therefore, the topological
number W = 1 for the above black hole can be clearly found in figures 3 and 4 by applying the
local property of the zero points, which is the same as that of the four-dimensional RN-AdS
black hole [60], but different from that of the four-dimensional static charged AdS black hole
in K-K gauged supergravity theory in the previous subsection, which is W = 0.

3.2.2 Small values of two identical electric charge parameters and the
temperature-dependent thermodynamic topological phase transition

Then, we consider the case where two identical electric charge parameters take smaller values.
Taking q1/ro = g2/r0 = 0.2, g3 = q4 = 0, and Pr3 = 0.1, we plot the zero points of the
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Figure 5. Zero points of the vector ¢™ shown in the r, — 7 plane with ¢1/ro = ¢2/ro = 0.2,
g3 = q4 = 0, and Pr¢ = 0.1. There are one thermodynamically stable and one thermodynamically
unstable four-dimensional static charged AdS black hole in EMDA gauged supergravity theory for
1.22rg = 17, < 7 < 7, = 3.78rg, and one thermodynamically stable four-dimensional static charged
AdS black hole in EMDA gauged supergravity theory for = < 7, = 1.22r.

component ¢" in figure 5, and the unit vector field n on a portion of the ® — r, plane with
T = 3rg, 1o in figure 6, respectively. With the help of figure 5, it is easy to figure out that
in four-dimensional EMDA gauged supergravity theory, for 1.22rg = 7, < 7 < 71, = 3.78ry,
there are one thermodynamically stable and one thermodynamically unstable black hole
branch, and one thermodynamically stable black hole branch for 7 < 7, = 1.22r¢. Therefore,
the local property of the above black hole for these values of parameters is different from
that of the four-dimensional RN-AdS black holes [60].
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Figure 6. The arrows represent the unit vector field n on a portion of the r;, — © plane. The zero
points (ZPs) marked with black dots are at (rp/ro, ©) = (0.20,7/2), (1.20,7/2), (4.75,7/2), for ZPy,
ZP5, and ZP3, respectively. The blue contours C; are closed loops surrounding the zero points.

Though (ry/ro,®) = (0.20,7/2) and (1.20,7/2), respectively, are the locations of the
zero points in figure 6(a), for the blue contours Cj, one can therefore interpret the winding
numbers w;: w; = —1, we = 1, so that the topological number at this inverse temperature
T =3rgis W = —1+1 = 0; However, (r,/ro,0) = (4.75,7/2) is where the zero point is
found in figure 6(b), hence the topological number at this inverse temperature 7 = ¢ is
W = 1 since the winding number for the blue contour C3 is w3 = 1. Thus, we find that
the topological number is temperature dependent: it is W = 0 (at inverse temperature
1.22rg =74 < 7 < 7, = 3.78r¢) or W =1 (at inverse temperature 7 < 7, = 1.22ry). At the
point of the critical inversion temperature 7 = 7, the black hole occurs a novel temperature-
dependent thermodynamic topological phase transition. As can be seen from the figure 5, the
function 7 is smooth and continuous at the critical point 7,, and there is no extreme point
nearby 7,, so the above temperature-dependent thermodynamic topological phase transition
is supposed to be a thermodynamic topological higher-order phase transition (continuous
phase transition). It is regrettable that we have not yet been able to find an effective method
to analyze this higher-order thermodynamic topological phase transition.

3.2.3 Ciritical values of two identical electric charge parameters

The analysis conducted in the preceding two subsubsections indicates that the topological
number assumes the value of unity when the magnitudes of the two equivalent electric charge
parameters take larger values. Conversely, when these parameters take smaller values, the
topological number is temperature-dependent: it is W = 0 (at cold temperatures) or W =1



(at high temperatures). It is evident that a critical threshold exists for the two identical
electric charge parameters, beyond which the aforementioned transition in the topological
number occurs. In other words, there is a topological thermodynamic phase transition at
the critical point. In the following, we will investigate the critical value for the two equal
electric charge parameters.

When the electric charge parameters g1 = g2 = g and g3 = g4 = 0, the inverse temperature
T in eq. (3.9) becomes

67 (2rp + q)
8mP(q + 3rp)(q+1n) +3 (3.10)
Now, according to ref. [38], one can construct a similar new vector ¢ = (", ©®)
, or o
= —, Yo =—cotOcscO. (3.11)
8rh

The normalized vector field can be obtained through 7 = (A7, 72®) with A" = " /||¢|| and
n® = ©®/||p||. The first advantage of the ©-term is that the direction of the introduced
vector ¢ is vertical to the horizontal lines at ® = 0 and m, which can be treated as two
boundaries in the parameter space. A further advantage is that the zero point of ¢ is always
located at © = 7/2. In addition, it is simple to check that the critical point is located exactly

at the zero point of the ¢. Then the components of the vector ¢ can be computed as

127 P[87(3r} 4 3¢rn + ¢°) — 3]
[87P(q + 3ry)(q+ 74) + 3]2

Th

, ©® = —cotOcscO. (3.12)

Therefore, when 7, — 0, the expression for the critical value of the electric charge parameter
can be obtained by solving the equation ¢ = 0, which is given by

Y
e = 4P’

Thus, if ¢ > q., the topological number of the static charged AdS black hole in four-dimensional

(3.13)

EMDA gauged supergravity theory is W = 1; and when 0 < ¢ < ¢, the topological number
is W = 0 (at cold temperatures) or W = 1 (at high temperatures).

Taking q1 /10 = q2/70 = qc/70 = 1.09, g3 = g4 = 0, and Prg = 0.1, we plot the zero points
of the component ¢"» in figure 7, and the unit vector field 72 on a portion of the ©® —ry, plane in
figure 8, respectively. In figure 7, one can observe that there are one thermodynamically stable
four-dimensional static charged AdS black hole in gauged EMDA supergravity theory for
T < T, = 3.43rp. In figure 8, the critical point (CP) is located at (ry, /79, ©) = (0,7/2), and the
topological charge of this critical point is W = —1, thus it is a conventional critical point [38].

3.3 q1 #q2#0, g3 =q4 =0 case (D =4 AdS Horowitz-Sen solution)

In this subsection, we explore a more general solution to the previous subsection, focusing
on the case in which the electric charge parameters are q; # ¢ # 0 and g3 = ¢4 = 0. This
specific case corresponds to the four-dimensional static charged AdS Horowitz-Sen black
hole solution [110]. In the following, we first explore whether there is a critical relationship
between two different electric charge parameters similar to that of eq. (3.13).
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Figure 7. Zero points of the vector ¢™ shown in the r, — 7 plane with ¢ /r¢ = ¢2/r¢ = 1.09,
g3 = g4 = 0, and Pr3 = 0.1. There is one thermodynamically stable four-dimensional static charged
AdS black hole in gauged EMDA supergravity theory for 7 < 7, = 3.43r¢.
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Figure 8. The arrows represent the unit vector field 7 on a portion of the r, — © plane with
q1/7m0 = q2/ro = 1.09, g3 = q4 = 0, and Pr3 = 0.1. The critical point (CP) marked with a red dot is
at (rn/ro,®) = (0,7/2). The blue contour C'is a closed loop enclosing the critical point.

When the electric charge parameters q; # g2 # 0 and g3 = g4 = 0, the inverse temperature
7 in eq. (3.9) becomes

s 3r[4ry + 3ra(q1 + @2) + 20142
VTh + qiTh + {87 P3r2 + 2r(q1 + ¢2) + q1g2] + 3}

According to the definition of vector ¢ in eq. (3.11), solving the equation ¢™ = 0 and taking

(3.14)

the limit r, — 0, one can obtain the following critical relationship as
3
- 87Pqy

Therefore, for a fixed electric charge parameter ¢ and a fixed pressure P, if the electric

qlc (315)

charge parameter q; > qi., the topological number of the four-dimensional static charged

— 11 —
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Figure 9. Zero points of the vector ¢" are depicted in the r, — 7 plane for the parameters ¢z /ro = 1,
g3 = @2 = 0, and Pr3 = 0.1, with three distinct values of q; /ro: (1) q1/r0 = 0.1, which is less than
the critical value ¢1./ro (represented by the blue solid line); (2) ¢1/r¢o = 15/(47), equal to the critical
value q1./ro (depicted by the green solid line); and (3) g1 /ro = 10, which exceeds the critical value
q1c/7o (illustrated by the red solid line).

AdS Horowitz-Sen black hole is W = 1; and when 0 < ¢1 < g1, the topological number is
W =0 (at cold temperatures) or W =1 (at high temperatures), which is exhibited in figure 9
with a fixed electric charge parameter g2/79 = 1 and a fixed pressure Pr3 = 0.1.

In figure 9, one can observe that when ¢1/r9 = 10 > qi./ro (the red solid line), there
is one thermodynamically stable four-dimensional static charged Horowitz-Sen AdS black
hole for 7 < 74 = 2.12r¢, and the topological number W = 1; when ¢;/r9 = 15/(47) = qic/r0
(the green solid line), there is one thermodynamically stable four-dimensional static charged
Horowitz-Sen AdS black hole for 7 < 7. = 3.41rg, and the topological number W = 1;
when ¢;/r9 = 0.1 < qi/70 (the blue solid line), there are one thermodynamically stable
and one thermodynamically unstable four-dimensional static charged Horowitz-Sen AdS
black hole branch for 1.80rg = 7, < 7 < 7, = 3.64r9, and one thermodynamically stable
four-dimensional static charged Horowitz-Sen AdS black hole branch for 7 < 7, = 1.807q, thus
the topological number is W = 0 (at inverse temperatures 1.80rg = 7, < 7 < 7, = 3.6470)
or W =1 (at inverse temperatures 7 < 7, = 1.80rg). According to the analysis in the
previous subsection, the critical point corresponding to the inverse temperature 7, should be
a thermodynamic topological higher-order phase transition critical point, while the critical
point corresponding to the inverse temperature 7. should be a thermodynamic topological
conventional phase transition critical point.

At the end of this subsection, we address an important issue. As the smaller electric
charge parameter tends to zero, the four-dimensional static charged Horowitz-Sen AdS black
hole asymptotically transitions into the four-dimensional static charged AdS black hole in
K-K gauged supergravity theory in section 3.1. For the latter, the topological number W
consistently assumes a single value, W = 0. The question arises: is the vanishing of the
smaller electric charge parameter a prerequisite for the emergence of a single value for the
topological number, or is there a critical threshold for the smaller electric charge parameter
below which a temperature-dependent thermodynamic topological phase transition does not
happen? To ensure that the topological number for the four-dimensional static charged

— 12 —
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Figure 10. Zero points of the vector ¢" shown in the r, — 7 plane with q1/rg = ¢2/r0 = q3/70 =
q4/ro = 1, and Pr¢ = 0.1. There is one thermodynamically stable four-dimensional RN-AdS black
hole for any value of 7.

AdS Horowitz-Sen black hole assumes a single value, it is imperative to satisfy the specific
constraint stated in eq. (3.15), namely,

q1 > qic = (316)

8T P qo .
It is readily apparent that when ¢y = 0, the value of ¢; becomes infinite. Consequently, it
is essential for one of the electric charge parameters to be zero in order to obtain a single
value for the topological number.

3.4 q1=g2 =q3 = qa # 0 case (RN-AdSy)

Considering the pressure as Pr% = 0.1 and the four electric charge parameters q;/rg =
q2/m0 = q3/ro = qa/ro = 1 for the four-dimensional RN-AdS black hole, we plot the zero
points of ¢™ in the r;, — 7 plane in figure 10, and the unit vector field n on a portion of the
O — r, plane with 7/rg = 2 in figure 11, respectively. Based upon the local property of the
zero point, one can easily find that the topological number is: W = 1, which is consistent
with the result given in ref. [60].

3.5 q1 =q2 #0, g3 = q4 # 0 case (pairwise-equal AdS)

In this subsection, we investigate a special case of four electric charge parameters: ¢; = g2 # 0
and g3 = g4 # 0, characterizing the four-dimensional static pairwise-equal four-charge AdS
black hole in gauged —iX°?X!-supergravity theory. In figures 12 and 13, taking qi/rq =
q2/ro = 2, q3/T0 = q4/70 = 1, and Pr% = 0.1 for the four-dimensional static pairwise-
equal four-charge AdS black hole in gauged —iX°X!-supergravity theory, we plot the zero
points of ¢™ in the r;, — 7 plane and the unit vector field n with 7 = rg, respectively. In
figure 12, one can observe that there is always one thermodynamically stable four-dimensional
static pairwise-equal four-charge AdS black hole in gauged —iX°X!'-supergravity theory for
any value of 7. In figure 13, We have one zero point at (r,/ro,©) = (2.31,7/2). Based
on the local property of the zero points, it is easy to find that the topological number

,13,



30L_\"F LIRS BRI A A B N D A AR A B R I
I L S R R D R DU A R R D

Sl N T T R A A S A
;4_\\\\{{///////’
e = = w % & rd

25

A v o o o

P A S
20- A e i
L P A e I

- - > - - >

1.0+
[ A N e e

[« «- =« » » \ C\ N R M A a -
0.5- < « w4 ¥ b ¥ U U NN D w w ]
(<« Z F/ F & ¥ ¥ ¥ 0 VN 0N
A 2 2 B v \ \

I W ST SNIE TUNE S BAE SNIE FUNE NN TANE SNIR U N A
0.0 0.5 1.0 1.5 2.0

rplry

Figure 11. The arrows represent the unit vector field n on a portion of the r, — © plane for the
four-dimensional RN-AdS black hole with 7/rg = 2, ¢1/r0 = g2/70 = q3/70 = qa/70 = 1, Pr3 = 0.1.
The zero point (ZP) marked with a black dot is at (rp/ro,©) = (0.75,7/2). The blue contour C' is a
closed loop enclosing the zero point.
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Figure 12. Zero points of the vector ¢™ shown in the r, — 7 plane with ¢1/ro = g2/r0 = 2,
q3/ro = q4/r0 = 1, and Pr% = 0.1. There is always one thermodynamically stable four-dimensional
static pairwise-equal four-charge AdS black hole in gauged —i X% X '-supergravity theory for any value
of 7. Obviously, the topological number is: W = 1.

W =1 for the four-dimensional static pairwise-equal four-charge AdS black hole in gauged
—i X% X! supergravity theory.

3.6 q1 # q2 7 q3 # q4 # 0 case (STU gauged supergravity)

In this subsection, we consider the most general static four-charge AdS black hole case in STU
gauged supergravity theory, i.e., g1 # g2 # q3 # q4 # 0 case. We take ¢1/ro = 0.5, g2/ro =1,
q3/T0 = 2, qa/ro = 3, and Pr% = 0.1, and then plot the zero points of the component ¢™
in figure 14, and the unit vector field n on a portion of the © — r plane with 7/ro = 2 in
figure 15, respectively. It is easy to observe that there is always one thermodynamically
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Figure 13. The arrows represent the unit vector field n on a portion of the r, — © plane for the
four-dimensional static pairwise-equal four-charge AdS black hole in gauged —iX°X!-supergravity
theory with 7/rg = 1, q1/70 = q2/70 = 2, q3/70 = qa/70 = 1, and Pr2 = 0.1. The zero point (ZP)
marked with a black dot is at (rp,/ro, ©) = (2.31,7/2). The blue contour C' is a closed loop enclosing
the zero point.
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Figure 14. Zero points of the vector ¢"» shown in the r;, — 7 plane with ¢1/rg = 0.5, ¢2/rg = 1,
q3/m0 = 2, qa/ro = 3, and Pr3 = 0.1. There is always one thermodynamically stable four-dimensional
static four-charge AdS black hole in STU gauged supergravity theory for any value of 7. Obviously,
the topological number is: W = 1.

stable four-dimensional static four-charge AdS black hole in STU gauged supergravity theory
for any value of 7. In figure 15, we observe a zero point at (r/rg,®) = (0.63,7/2). Based
upon the local property of the zero points, it is simple to demonstrate that the topological
number W =1 for the four-dimensional static four-charge AdS black hole in STU gauged
supergravity theory.
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Figure 15. The arrows represent the unit vector field n on a portion of the r, — © plane for the
four-dimensional static four-charge AdS black hole in STU gauged supergravity theory with 7/rg = 2,
q1/ro = 0.5, q2/ro = 1, q3/10 = 2, qa/ro = 3, and Pr2 = 0.1. The zero point (ZP) marked with a
black dot is at (rp /7, ©) = (0.63,7/2). The blue contour C is a closed loop enclosing the zero point.

4 Five-dimensional static multi-charge black holes in gauged supergravity
theory

In this section, we would like to investigate the topological numbers of the five-dimensional
static multi-charge AdS black holes in gauged supergravity theory [5]. For the general static
three-charge AdS black hole in five-dimensional STU gauged supergravity theory, whose
metric, Abelian gauge potentials, and scalar fields are [5]

3 3

i=1 i=1
; qi(q; +2m) LT
S I | S -y
7=1
where
om 123 qi
=1

in which [ is the AdS radius, m and ¢; are the mass and three independent electric charge
parameters, respectively.

For the metric of a five-dimensional static, charged AdS black hole, as expressed in
eq. (4.1), the most general case is represented by a solution with three independent electric
charge parameters. Moreover, in line with the classification scheme for black hole solutions
depicted in figure 1 of ref. [103], many specific truncated supergravity solutions are identified:
for instance, when ¢; # 0 and g2 = q3 = 0, namely, the five-dimensional static charged AdS
black hole solution in K-K gauged supergravity; when ¢; = ¢2 # 0 and g3 = 0, i.e., the
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five-dimensional static charged AdS black hole solution in EMDA gauged supergravity theory;
when ¢1 # g2 # 0 and ¢3 = 0, i.e., the five-dimensional static charged AdS Horowitz-Sen
black hole solution [110]; and when g1 = g2 = g3 # 0, which is the famous five-dimensional
RN-AdS black hole case after the coordinate transformation by p? = r? + ¢;; etc.

The thermodynamic quantities are [7]

1 1,4 3
7777,4— th QZ = 177\/ QZ(QZ+2m)7 S= 571-2 H(T%L—i_Qi)l/Q? P= 4712’

=1

f' (7h) H ~1/2,, qi(qi+2m) wirh
H; P, =Y V= [[Hi(rn)D>
=1 3 ]

7“;2;1'%'
(4.3)

Then one can verify that the above thermodynamic quantities completely obey the first law
and the Bekenstein-Smarr mass formula simultaneously,

3
dM =TdS +»  ®dQ; + VdP, (4.4)
=1
3
2M =3TS +2) ®,Q; —2VP. (4.5)
=1

From eq. (4.3), one can obtain the expression of the generalized Helmholtz free energy as

(4.6)

3 2
7 [ 27 PTT2 (2 + ¢ 3 3 7721_[':1 T, + 4
]-":4[ HHQ(’Z q’)+—r,%+§ gi| — —— -
T 2T

Using the definition of eq. (2.2), the components vector ¢ can be easily obtained as follows:

32y 4 2% S0 g + mPrn[aeas + q1(g2 + g3)]

o = -
27 [y /i + ai

m*P 27"h + Th Z 149 — H:')):l qi 3nr
+ ( — ban) SRMULL (4.7)

T 4
$® = —cotOcscO. (4.8)

It is simple to obtain
2mr, (37"?2 +2r7 0 4+ a2 + gz + QQQ3)

T= (4.9)

3t + 4P (2r2 +rh g - Il Qz> - \/T%Tq

as the zero point of the vector field ¢, which consistently reduces to the one obtained in
the five-dimensional Schwarzschild-AdS black hole case when the three independent electric
charge parameters are turned off.

Similar to section 3, varying the three independent electric charge parameters yields
distinct black hole solutions within various truncated supergravity theories. In the following,
we will investigate the topological numbers of static, charged AdS black holes in some famous
five-dimensional supergravity theories, respectively.
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Figure 16. Zero points of the vector ¢"* shown in the 7, — 7 plane with ¢, /73 =5, Pr3 = 0.1, and
q2 = q3 = 0. There is one thermodynamically stable five-dimensional static charged AdS black hole in
K-K gauged supergravity theory for 7 < 7, = 3.03rg. Obviously, the topological number is: W = 1.

4.1 q1 # 0, g2 = g3 = 0 case (K-K gauged supergravity)

In this subsection, we focus on the case where ¢; # 0 and g2 = g3 = 0, which corresponds
to the static charged AdS black hole in five-dimensional K-K gauged supergravity theory.
For the five-dimensional static charged AdS black hole in K-K gauged supergravity theory,
similar to the cases of the four-dimensional static charged AdS black hole in EMDA gauged
supergravity theory in section 3.2 and the four-dimensional static charged AdS Horowitz-Sen
black hole in section 3.3, we find that different values of the electric charge parameter also
influence its topological number. Therefore, we also discuss each of the three cases by taking
the larger, smaller, and critical values of the electric charge parameter.

4.1.1 Large value of electric charge parameter

We first consider the case where the electric charge parameter takes a larger value. We plot
the zero points of the component ¢™ with Pr¢ = 0.1, ¢1 /73 = 5, and g2 = g3 = 0 in figure 16,
and the unit vector field n in figure 17 with 7/r¢g = 2. Note that for these values of Pr2 and
q1/7r3, there is one thermodynamically stable five-dimensional static charged AdS black hole
in K-K gauged supergravity theory for 7 < 7, = 3.03rg. In figure 17, one can observe that the
zero point is located at (rp/rg, ©) = (2.87,7/2). Therefore, the topological number W =1 for
the above black hole can be clearly found in figures 16 and 17 by applying the local property
of the zero point, which is the same as that of the five-dimensional RN-AdS black hole [60].

4.1.2 Small value of electric charge parameter and the temperature-dependent
thermodynamic topological phase transition

Then, we consider the case where the electric charge parameter takes a smaller value. We take
q1/r3 =1, g2 =¢q3 =0, and Pr3 = 0.1, and then plot the zero points of the component ¢"*
in figure 18, and the unit vector field n on a portion of the ® — r;, plane with 7 = 3.2r¢, 2rg
in figure 19, respectively. From figure 18, it is a simple matter to observe that there is
one thermodynamically stable and one thermodynamically unstable black hole branch for
2.95r0 = 74 < 7 < 1, = 3.2979, and one thermodynamically stable black hole branch for
T < T4 = 2.951.
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Figure 17. The arrows represent the unit vector field n on a portion of the r, — © plane for the
five-dimensional static charged AdS black hole in K-K gauged supergravity theory with 7/rg = 2,
qi/m3 =5, Pr3 = 0.1, and g2 = g3 = 0. The zero point (ZP) marked with a black dot is at
(rn/ro,©) = (2.87,7/2). The blue contour C is a closed loop enclosing the zero point.
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Figure 18. Zero points of the vector ¢™ shown in the r, — 7 plane with ¢, /r3 =1, ¢2 = ¢35 = 0,
and Pr¢ = 0.1. There is one thermodynamically stable and one thermodynamically unstable five-
dimensional static charged AdS black hole in K-K gauged supergravity theory for 2.95rg =7, < 7 <
Ty = 3.2979, and one thermodynamically stable five-dimensional static charged AdS black hole in K-K
gauged supergravity theory for 7 < 7, = 2.957.

Although in figure 19(a), the zero points are located at (r,/rp,©) = (0.57,7/2), and
(1.27,7/2), respectively. Thus, one can read the winding numbers w; for the blue contours
C;: w1 = —1, wy = 1, and the topological number at this inverse temperature 7 = 3.2rg is
W = —1+1 = 0; But in figure 19(b), the zero point is located at (r3/ro,©) = (3.29,7/2),
thus the winding number for the blue contour C5 is w3 = 1, so the topological number at
this inverse temperature 7 = 2rg is W = 1. Thus, we find that the topological number is
temperature dependent: it is W = 0 (at inverse temperature 2.95r) = 7, < 7 < 7, = 3.29r)
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(a) The unit vector field for the five-dimensional (b) The unit vector field for the five-dimensional
static charged AdS black hole in K-K gauged su- static charged AdS black hole in K-K gauged
pergravity theory with 7/rg = 3.2, ¢1/r3 = 1, supergravity theory with 7/rg = 2, q/r3 = 1,
q2 = q3 = 0, and Pr% =0.1. q2 = q3 = 0, and Pr% =0.1.

Figure 19. The arrows represent the unit vector field n on a portion of the r;, — © plane. The zero
points (ZPs) marked with black dots are at (rp,/ro,©) = (0.57,7/2), (1.27,7/2), (3.29, 7/2), for ZP4,
ZP5, and ZP3, respectively. The blue contours C; are closed loops surrounding the zero points.

or W =1 (at inverse temperature 7 < 7, = 2.9579). At the point of the critical inversion
temperature T = 7,, the black hole occurs a novel temperature-dependent thermodynamic
topological phase transition. The critical point corresponding to the inverse temperature 7,
should be a thermodynamic topological higher-order phase transition critical point.

4.1.3 Critical value of electric charge parameter

In the following, we will calculate the critical value of the electric charge parameter. When
the electric charge parameters ¢; = ¢ and g = g3 = 0, the inverse temperature 7 in
eq. (4.9) becomes

27 (313 + 2q)
\/77 + q(87Pr? + AwPg + 3)

Using the definition of vector ¢ in eq. (3.11), one can obtain the components of the vector ¢ as

T =

(4.10)

ey [AT P(61F 4+ 9r2q + 4¢%) — 9r2 — 12
o = — | 7T2( rh;_ "4 +2 a°) = i al , ©® = —cotOcscO. (4.11)
(ri +q)2 [AnP(2rj + q) + 3]?

Thus, as r, — 0, the critical value of the electric charge parameter ¢. can be determined
by solving the equation @™ = 0, which yields:

3

—_— 4.12
47 P ( )

dc =

— 20 —
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Figure 20. Zero points of the vector ¢™ shown in the 75, — 7 plane with q; /73 = 15/(27), g2 = g3 = 0,
and Pr3 = 0.1. There is one thermodynamically stable five-dimensional static charged AdS black hole
in K-K gauged supergravity theory for 7 < 7. = 3.24r.
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Figure 21. The arrows represent the unit vector field 7+ on a portion of the r, — © plane with
q1/rd =15/(27), g2 = g3 = 0, and Pr¢ = 0.1. The critical point (CP) marked with a red dot is at
(rn/ro,©) = (0,7/2). The blue contour C' is a closed loop enclosing the critical point.

Hence, for ¢ > gq., the static charged AdS black hole in five-dimensional K-K gauged
supergravity exhibits the topological number of W = 1. However, in the case where 0 <
q < ¢, the topological number transitions from W = 0 (at low temperatures) to W = 1
(at high temperatures).

Taking q1/r¢ = q./r8 = 15/(27), g2 = q3 = 0, and Pr3 = 0.1, we plot the zero points of
the component ¢™ in figure 20, and the unit vector field # on a portion of the © — rp plane
in figure 21, respectively. In figure 20, one can observe that there are one thermodynamically
stable five-dimensional static charged AdS black hole in K-K gauged supergravity theory
for 7 < 7, = 3.24r¢. In figure 21, the critical point (CP) is located at (rp/r9,0) = (0,7/2),
and the topological charge of this critical point is W = —1, therefore it is a conventional
critical point [38].
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Figure 22. Zero points of the vector ¢™ shown in the r, — 7 plane with q; /73 = g2 /73 = 1, g3 = 0,
and Pr3 = 0.1. There is always one thermodynamically stable static charged AdS black hole in
five-dimensional EMDA gauged supergravity theory for any value of 7. Obviously, the topological
number is: W = 1.

4.2 g1 = q2 # 0, g3 = 0 case (EMDA gauged supergravity)

In this subsection, we investigate the case with ¢ = ¢2 # 0, g3 = 0, which represents the
static charged AdS black hole in the five-dimensional EMDA gauged supergravity theory.
Considering the pressure as Pr% = 0.1 and the electric charge parameters ¢/ 7“8 = qa/ 7"(2) =1,
g3 = 0 for the static charged AdS black hole in five-dimensional EMDA gauged supergravity
theory, we plot the zero points of ¢ in the rp — 7 plane in figure 22, and the unit vector
field n on a portion of the ©® — r; plane with 7/rg = 2 in figure 23. Obviously, there is
only one thermodynamically stable static charged AdS black hole in five-dimensional EMDA
gauged supergravity theory for any value of 7. In figure 23, one can observe that the zero
point is located at (rp /79, ©) = (3.18,7/2). Based upon the local property of the zero point,
we can easily obtain the topological number W = 1 for the static charged AdS black hole
in five-dimensional EMDA gauged supergravity theory.

4.3 q1 # q2 # 0, g3 = 0 case (D = 5 AdS Horowitz-Sen solution)

In this subsection, we discuss a more general case to the last subsection, focusing on the case
in which the electric charge parameters are ¢; # g2 # 0 and g3 = 0, which corresponds to
the five-dimensional static charged AdS Horowitz-Sen black hole solution [110]. Here, we
would like to begin by exploring an important issue. As the smaller electric charge parameter
equals zero, the five-dimensional static charged AdS Horowitz-Sen black hole reduces to
the five-dimensional static charged AdS black hole in K-K gauged supergravity theory in
section 4.1. For the latter, the topological number W is temperature-dependent; it is W =1
for large electric charge parameter but can be W = 0 (at low temperatures) or W =1 (at
high temperatures) for small electric charge parameter. This raises the question: is there a
critical value for the smaller electric charge parameter below which a temperature-dependent
thermodynamic topological phase transition occurs?
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Figure 23. The arrows represent the unit vector field n on a portion of the r, — © plane for the
static charged AdS black hole in five-dimensional EMDA gauged supergravity theory with 7/rg = 2,
q1/m3 = q2/r3 = 1, g3 = 0, and Pr2 = 0.1. The zero point (ZP) marked with a black dot is at
(re/ro,©) = (3.18,7/2). The blue contour C is a closed loop enclosing the zero point.

When the electric charge parameters ¢ # ¢ # 0, g3 = 0, the inverse temperature
7 in eq. (4.9) becomes

21 [3r} +2r2 (1 + q2) + q1q2]
rh\/r,% +q \/r% + @2[87Pri + 47 P(q1 + q2) + 3]

T =

(4.13)

By employing the definition of the vector ¢ given in eq. (3.11), and by solving the equation
@™ = 0, while taking the limit as r;, — 0, the critical value for the smaller electric charge
parameter, ¢, is found to be

qie=0. (4.14)

Therefore, the smaller electric charge parameter does not have the critical value described
above, allowing the temperature-dependent thermodynamic topological phase transitions
to occur.

Taking the pressure as Pr3 = 0.1 and the electric charge parameters q; /73 = 1, ga/78 = 2,
and g3 = 0 for the five-dimensional static charged AdS Horowitz-Sen black hole, we plot the
zero points of ¢" in the r;, — 7 plane in figure 24, and the unit vector field n on a portion
of the © — 1, plane with 7/rg = 3 in figure 25. It is easy to observe that there is only one
thermodynamically stable five-dimensional static charged AdS Horowitz-Sen black hole for any
value of 7. In figure 25, one can find that the zero point is located at (rp,/rg, ©) = (1.07,7/2).
Based upon the local property of the zero point, we can straightforwardly obtain the topological
number W = 1 for five-dimensional static charged AdS Horowitz-Sen black hole.
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Figure 24. Zero points of the vector ¢"* shown in the 7, — 7 plane with q; /73 = 1, ¢2/78 = 2, g3 = 0,
and Pr3 = 0.1. There is always one thermodynamically stable five-dimensional static charged AdS
Horowitz-Sen black hole for any value of 7. Obviously, the topological number is: W = 1.
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Figure 25. The arrows represent the unit vector field n on a portion of the r, — © plane with
T/ro =3, 1/r8 =1, q2/73 =2, g3 = 0, and PrZ = 0.1. The zero point (ZP) marked with a black dot
is at (r4,/r0,©) = (1.07,7/2). The blue contour C is a closed loop enclosing the zero point.

4.4 g1 = q2 = q3 # 0 case (RN-AdS5)

Considering the pressure as Pr3 = 0.1 and the three electric charge parameters q;/r¢ =
q2/r3 = q3/r2 = 1 for the five-dimensional RN-AdS black hole, we show the zero points of
@™ in the rp — 7 plane in figure 26, and the unit vector field n on a portion of the © — ry,
plane with 7/rop = 3 in figure 27, respectively. Based on the local property of the zero
point, one can easily indicate that the topological number is: W = 1, which is consistent
with the result given in ref. [60].
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and Pr2 = 0.1. There is one thermodynamically stable five-dimensional RN-AdS black hole for any
value of 7.
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Figure 27. The arrows represent the unit vector field n on a portion of the r, — © plane for the
five-dimensional RN-AdS black hole with 7/rq = 3, ¢1/r2 = q2/r3 = q3/r¢ = 1, Pr2 = 0.1. The zero
point (ZP) marked with a black dot is at (rp /79, ®) = (1.21,7/2). The blue contour C is a closed
loop enclosing the zero point.

4.5 q1 # q2 # g3 # 0 case (STU gauged supergravity)

In this subsection, we investigate the most general static three-charge AdS black hole in
five-dimensional STU gauged supergravity theory, namely, ¢1 # g2 # g3 # 0 case. We
take q1/18 = 1, q2/r¢ = 2, q3/r2 = 3, and PrZ = 0.1, and then plot the zero points of the
component ¢™ in figure 28, and the unit vector field n on a portion of the ® — r;, plane with
7/r9 = 3 in figure 29, respectively. It is easy to see that there is always one thermodynamically
stable five-dimensional static three-charge AdS black hole in STU gauged supergravity theory
for any value of 7. In figure 29, we can observe a zero point at (rp/r9,®) = (1.31,7/2).
Based upon the local property of the zero points, it is simple to indicate that the topological
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Figure 28. Zero points of the vector ¢"* shown in the r, — 7 plane with ¢1/r3 = 1, ¢2/r¢ = 2,
q3/r3 = 3, and Pr3 = 0.1. There is always one thermodynamically stable five-dimensional static
three-charge AdS black hole in STU gauged supergravity theory for any value of 7. Obviously, the
topological number is: W = 1.
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Figure 29. The arrows represent the unit vector field n on a portion of the r, — © plane for the
five-dimensional static three-charge AdS black hole in STU gauged supergravity theory with 7/ry = 3,
q/rd =1, q2/r¢ =2, q3/r¢ = 3, and Pr3 = 0.1. The zero point (ZP) marked with a black dot is at
(rn/ro,®) = (1.31,7/2). The blue contour C is a closed loop enclosing the zero point.

number W = 1 for the five-dimensional static three-charge AdS black hole in STU gauged
supergravity theory.

5 Conclusions and outlooks

In this paper, making use of the generalized off-shell Helmholtz free energy, we investigate
the topological number of the four-dimensional static multi-charge AdS black holes in gauged
supergravity theory [4] and the five-dimensional static multi-charge AdS black holes in gauged
supergravity theory [5]. In gauged supergravity theory, four- and five-dimensional static
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BH solution w Generation point | Annihilation point

q1=¢q, 2 = q3 = q4 = 0 case 0 0 1

G =d2=q, g5 =gqu=0case (9> 7E5) | 1 0 0
G =q2=q, g5 =gs =0 case (g < 7Y25) | Oor1 0 1
@ #Fe#0,¢=qu=0cse (1> gp) | 1 0 0
Q175(J2750,CJ3=Q4=00ase(q1<ﬁ) Oor1l 0 1
@1 =q =q3=qs # 0 case (RN-AdSy) 1 0 0

@ =q#0,q3=qs#0 case 1 0 0

Q1 # q2 # q3 # qa # 0 case 1 0 0

Table 1. The topological number W, numbers of generation and annihilation points for the four-
dimensional static multi-charge AdS black holes in gauged supergravity.

BH solution w Generation point | Annihilation point
¢ =, q2=q3=0case (¢ > 2p) 1 0 0
G1=¢ @=g3=0case (¢<25) | Oor 1
¢ =¢q2 #0, g3 =0 case
q1 = q2 = q3 # 0 case (RN-AdS3)
a1 # g2 # g3 # 0 case

Table 2. The topological number W, numbers of generation and annihilation points for the five-

o O O O
S O O

dimensional static multi-charge AdS black holes in gauged supergravity.

charged AdS black holes have four and three independent electric charge parameters, respec-
tively. In this study, we investigate the effect of the electric charge parameter configurations in
static charged AdS black holes on the thermodynamic topological classification in the context
of four- and five-dimensional gauged supergravity theories. For each black hole case, we
examine various electric charge parameter configurations corresponding to several well-known
truncated supergravity solutions and determine their topological numbers, respectively. The
findings are summarized in tables 1-2. We find that the topological number of the static
charged AdS black holes in four-dimensional K-K gauged supergravity theory is W = 0, while
that of the static charged AdS black holes in four-dimensional gauged —iX%X!-supergravity
and STU gauged supergravity theories, and five-dimensional EMDA gauged supergravity
and STU gauged supergravity, as well as five-dimensional static charged AdS Horowitz-Sen
black hole are both W = 1.

Furthermore, we observe a novel temperature-dependent thermodynamic topological
phase transition that can happen in the four-dimensional static charged AdS black hole
in EMDA gauged supergravity theory, the four-dimensional static charged AdS Horowitz-
Sen black hole, and the five-dimensional static charged AdS black hole in K-K gauged
supergravity theory. In other words, in our analysis of four-dimensional black hole cases, we
demonstrate that when only two electric charge parameters are nonzero (with the other two
set to zero), the thermodynamic topological number W exhibits a temperature-dependent
behavior. Specifically, W = 1 when the two electric charge parameters are large, whereas
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for smaller electric charge parameters, W can either be W = 0 at lower temperatures or
W =1 at higher temperatures. This behavior is mirrored in the context of five-dimensional
black hole cases within the framework of K-K gauged supergravity theory, where the static
charged AdS black hole also displays a topological number (W = 1) for the large electric
charge parameter. However, for the smaller electric charge parameters, the topological
number W once again shows a temperature dependence: W = 0 at cold temperatures or
W = 1 at high temperatures.

Therefore, we believe that the current studies related to the thermodynamic topological
classes of black holes are still only the tip of the iceberg, and it is worthwhile to explore
the nature of the topological number of black hole thermodynamics more deeply. A most
related issue is to explore whether there are other black hole solutions in gauged supergravity
theories that can also happen this novel temperature-dependent thermodynamic topological
phase transition. As mentioned above, we only investigated the topological numbers of static
charged AdS black holes in several famous four- and five-dimensional truncated supergravity
models, and the static charged AdS black hole solutions in other supergravity theories can be
investigated in the future, e.g., the S3-supergravity model [110-112], the ST?-supergravity
model [113], etc.
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