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A R T I C L E I N F O A B S T R A C T

Editor: A. Volovich The metric of 𝑆7 can be written as an 𝑆𝑈 (2)-instanton bundle over 𝑆4. It is also possible to write it differently as an 
anti-instanton bundle. We use this observation to construct an instanton–anti-instanton, 𝑆𝑈 (2) ×𝑆𝑈 (2), bundle 
over 𝑆4. We show that this 10d manifold admits two Einstein metrics. We then rewrite the metric to isolate two 
𝑈 (1) directions of the fibre and dimensionally reduce along them to get an eight dimensional metric describing 
an 𝑆2 × 𝑆2 bundle over 𝑆4. This metric allows a harmonic 4-form which we use to derive new supergravity 
solutions in eleven and ten dimensions as 𝐴𝑑𝑆3 ×𝑀8 and 𝐴𝑑𝑆2 ×𝑀8, respectively.
1. Introduction

Among many different types of supergravity solutions, compactifi-

cation to anti de Sitter (AdS) spaces are more typical, and depending 
on the compact manifold and the fluxes that one turns on different 
amounts of supersymmetries are preserved, or it is totally broken [1–5]. 
Exact vacuum solutions, i.e., without source, are of particular interest in 
AdS/CFT duality, which relates string theory in AdS space to a particu-

lar gauge theory on its boundary. In this context, since supersymmetry 
puts strong constraints on the dynamics, supersymmetric solutions are 
more tractable on the gauge theory side. On the other hand, nonsuper-

symmetric solutions are closer to model realistic theories like QCD [6].

𝐴𝑑𝑆4 × 𝑆7 is an exact solution of eleven-dimensional supergravity 
which also shows up as the near horizon limit of an M2-brane solution. 
Writing the metric of 𝑆7 as an 𝑆𝑈 (2) bundle over 𝑆4 has allowed to ob-

tain new solutions where the fibre is squashed [7–10]. In fact, this way 
of expressing the metric reveals how the Yang-Mills solutions, as instan-

tons on 𝑆4, are embedded into the metric of 𝑆7 as an Einstein manifold. 
Interestingly, one can replace the instanton with an anti-instanton to 
get an equivalent metric on 𝑆7. Now, from gauge theory we know that, 
if the gauge group is large enough, instanton–anti-instanton configura-

tions are also a solution to the Yang-Mills equations, so it is curious to 
think if such bundles can be constructed on 𝑆4. This is what we do in 
this paper by constructing an 𝑆𝑈 (2) × 𝑆𝑈 (2) bundle over 𝑆4. The ten-

dimensional metric is Einstein for two specific values of the squashing 
parameters. Noticing that the 𝑆7 metric can also be written as a 𝑈 (1)
bundle over 𝐂𝐏3, we rewrite the ten-dimensional metric as a 𝑈 (1) ×𝑈 (1)
bundle over an eight-dimensional base. It then becomes possible to re-

duce along these directions and get an eight-dimensional metric. This 

metric admits a harmonic 4-form which we then use to write down our 
ansatz and derive the solutions.

In the next section we begin with recalling the 𝑆3 fibration of 𝑆7. 
The fibers are woven with an instanton connection over 𝑆4. Replacing 
the instanton connection with an anti-instanton one gives an equivalent 
metric of 𝑆7. We combine the two structures to write a 10-dimensional 
metric. The point of using an anti-instanton connection, instead of an 
instanton one, is to get the Ricci tensor with constant components, in 
the corresponding orthonormal basis. To derive supergravity solutions, 
in section 3, we rewrite the 10d metric so as to isolate two 𝑈 (1) fiber 
directions. This allows to reduce the 10d metric to an 8d metric simply 
by dropping the two 𝑈 (1) fibers, and at the same time have a Ricci 
tensor with constant components. We will show that the 8d manifold, 
𝑀8, endowed with this metric admits a harmonic 4-form, which we 
then use to write our ansatz for the 4-form field strength, 𝐹4 , in eleven-

dimensional and type IIA supergravities. The solutions will be in the 
form of 𝐴𝑑𝑆3 ×𝑀8 and 𝐴𝑑𝑆2 ×𝑀8. Eleven-dimensional supergravity 
compactification to 𝐴𝑑𝑆3, and type IIB compactification to 𝐴𝑑𝑆2 have 
been studied earlier in [11,12].

2. An 𝑺𝑼 (𝟐) ×𝑺𝑼 (𝟐) bundle over 𝑺𝟒

In this section, we begin with describing the metric of 𝑆7 as an 
𝑆𝑈 (2)-instanton bundle over 𝑆4, and then proceed to add an extra 
𝑆𝑈 (2)-anti-instanton fiber to construct an 𝑆𝑈 (2) × 𝑆𝑈 (2) bundle over 
𝑆4. We could of course choose the extra fiber structure to be an instan-

ton, but the corresponding Ricci tensor components of the metric would 
not be constant. The round metric on 𝑆7 can be written as an 𝑆𝑈 (2)
bundle over 𝑆4 [7,13],
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𝑑𝑠2
𝑆7 = 𝑑𝜇2 + 1

4
sin2 𝜇Σ2

𝑖
+ (𝜎𝑖 − cos2 𝜇

2
Σ𝑖)2 , (1)

with 0 ≤ 𝜇 ≤ 𝜋. Σ𝑖’s and 𝜎𝑖 ’s are two sets of left-invariant one-forms

Σ1 = cos 𝛾 𝑑𝛼 + sin 𝛾 sin𝛼 𝑑𝛽 ,

Σ2 = −sin 𝛾 𝑑𝛼 + cos 𝛾 sin𝛼 𝑑𝛽 ,

Σ3 = 𝑑𝛾 + cos𝛼 𝑑𝛽 , (2)

where 0 ≤ 𝛾 ≤ 4𝜋, 0 ≤ 𝛼 ≤ 𝜋, 0 ≤ 𝛽 ≤ 2𝜋, and with a similar expression 
for 𝜎𝑖 ’s. They satisfy the 𝑆𝑈 (2) algebra, namely,

𝑑Σ𝑖 = −1
2
𝜖𝑖𝑗𝑘 Σ𝑗∧Σ𝑘 , 𝑑𝜎𝑖 = −1

2
𝜖𝑖𝑗𝑘 𝜎𝑗∧𝜎𝑘 , (3)

with 𝑖, 𝑗, 𝑘, … = 1, 2, 3.

Squashing corresponds to modifying the round metric on 𝑆7 as fol-

lows

𝑑𝑠2
𝑆7 = 𝑑𝜇2 + 1

4
sin2 𝜇Σ2

𝑖
+ 𝜆2(𝜎𝑖 −𝐴𝑖)2 , (4)

with 𝜆 the squashing parameter. Here, to see explicitly how the instan-

tons are embedded into the metric, we have written the fibers in terms 
of three 𝑆𝑈 (2) one-form gauge fields

𝐴𝑖 = cos2 𝜇
2
Σ𝑖 , (5)

where 𝑖 is considered as the algebra index. The gauge field strength is

𝐹𝑖 = 𝑑𝐴𝑖 +
1
2
𝜖𝑖𝑗𝑘𝐴

𝑗∧𝐴𝑘 . (6)

If we choose the following orthonormal basis of vielbeins

𝑒0 = 𝑑𝜇 , 𝑒𝑖 = 1
2
sin𝜇Σ𝑖 , 𝑒𝑖 = 𝜆(𝜎𝑖 −𝐴𝑖) , (7)

we can see that the gauge field strengths of connection (5) are anti-self 
dual on the base manifold

𝐹1 = 𝑑𝐴1 +𝐴2∧𝐴3 = −𝑒0∧𝑒1 + 𝑒2∧𝑒3 ,

𝐹2 = 𝑑𝐴2 +𝐴3∧𝐴1 = −𝑒0∧𝑒2 + 𝑒3∧𝑒1 ,

𝐹3 = 𝑑𝐴3 +𝐴1∧𝐴2 = −𝑒0∧𝑒3 + 𝑒1∧𝑒2 . (8)

Interestingly, we could have instead taken

�̃�𝑖 = sin2 𝜇
2
Σ𝑖 , (9)

and get a self-dual field strength;

𝐹1 = 𝑒0∧𝑒1 + 𝑒2∧𝑒3 ,

𝐹2 = 𝑒0∧𝑒2 + 𝑒3∧𝑒1 ,

𝐹3 = 𝑒0∧𝑒3 + 𝑒1∧𝑒2 . (10)

Either of gauge connections (5) or (9), could be used in (4) to get a 
metric with constant Ricci tensor components. In basis (7), we derive

𝑅𝛼𝛽 =
(
3 − 3𝜆2

2

)
𝛿𝛼𝛽 ,

𝑅�̂�𝛽 =
(
1 + 2𝜆4

2𝜆2

)
𝛿�̂�𝛽 , (11)

where 𝛼, 𝛽 = 1, 2, 3, 4 and �̂�, 𝛽 = 5, 6, 7 are the base and the fiber indices, 
respectively. Note that the metric becomes Einstein for 𝜆 = 1 and 𝜆 =
1∕

√
5.

Now, we would like to embed the above two structures into a sin-

gle ten-dimensional metric, namely, an instanton–anti-instanton bundle 
over 𝑆4. This is done simply by adding an extra 3-dimensional anti-

instanton fiber to metric (4);

1 𝜇
2

𝑑𝑠2 =𝑑𝜇2 +
4
sin2 𝜇Σ2

𝑖
+ 𝜆2(𝜎𝑖 − cos2

2
Σ𝑖)2
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+ �̃�2(𝜏𝑖 − sin2 𝜇
2
Σ𝑖)2 , (12)

with �̃� a constant parameter. Before proceeding further, a comment 
about the regularity of metric (12) is in order. We might start our discus-

sion from the metric of 𝑆7, (1), [14]. On the base, 𝑆4, some coordinates 
in Σ𝑖 fibers are not well defined at 𝜇 = 0 and 𝜇 = 𝜋, where the radius 
shrinks to zero size. On the other hand, since the Σ𝑖’s coordinates are 
used in the fiber we need to check that there are coordinate transforma-

tions that render the metric regular at such points. Take, for instance, 
𝛾 coordinate in Σ3, (2), with 𝛼 = 𝛽 = const. Let 𝛾 ′ indicate the corre-

sponding coordinate in 𝜎3. Now, if we make a coordinate transformation 
𝛾 ′′ = 𝛾 ′ − 𝛾 in 𝜎3 on the north patch (0 ≤ 𝜇 < 𝜋), the metric will be 
regular at 𝜇 = 0. On the south patch (0 < 𝜇 ≤ 𝜋), no coordinate trans-

formation is needed as the coefficient of Σ𝑖 vanishes at 𝜇 = 𝜋. Note that 
because of the coefficient 1 of the term cos2 𝜇

2 Σ𝑖 in the fiber (which is 
related to the instanton number of the gauge bundle) the new coordi-

nate on the north patch will have the right period. This argument can 
be repeated for the new anti-instanton fiber that we have added in (12), 
and, therefore, we conclude that the metric is regular.

Let us then compute the Ricci tensor of metric (12) in the following 
orthonormal basis

𝑒0 = 𝑑𝜇 , 𝑒𝑖 = 1
2
sin𝜇Σ𝑖 , 𝑒𝑖 = 𝜆(𝜎𝑖 −𝐴𝑖) , 𝑒𝑖 = �̃�(𝜏𝑖 − �̃�𝑖) , (13)

which results in

𝑅𝛼𝛽 =
(
3 − 3𝜆2

2
− 3�̃�2

2

)
𝛿𝛼𝛽 ,

𝑅�̂�𝛽 =
(
1 + 2𝜆4

2𝜆2

)
𝛿�̂�𝛽 ,

𝑅�̃�𝛽 =
(
1 + 2�̃�4

2�̃�2

)
𝛿�̃�𝛽 , (14)

where �̃�, 𝛽 = 8, 9, 10 are the tangent indices of the extra anti-instanton 
fiber. We observe that for 𝜆2 = �̃�2 = 1∕2, and 𝜆2 = �̃�2 = 1∕4, the metric is 
Einstein, with 𝑅𝑀𝑁 = 3∕2 𝛿𝑀𝑁 , and 𝑅𝑀𝑁 = 9∕4 𝛿𝑀𝑁 , respectively, (𝑀
and 𝑁 being the collective indices). In the present method of deriving 
supergravity solutions it is crucial for the Ricci tensor components to be 
constant. Had we used instanton connections as an extra 3-dimensional 
fiber, the Ricci tensor would not have had constant components.

It is interesting to examine the structure of the metric a bit further, 
and show that it indeed admits a harmonic 3-form. Let us first introduce 
𝜔3 and �̃�3, the volume elements of the instanton and the anti-instanton 
fibers, respectively:

𝜔3 = 𝑒1∧𝑒2∧𝑒3 , �̃�3 = 𝑒1∧𝑒2∧𝑒3 , (15)

taking the exterior derivative, we obtain

𝑑𝜔3 =
𝜆

2
(
𝜖𝑖𝑗𝑘 𝑒

0∧𝑒𝑖∧𝑒𝑗∧𝑒𝑘 + 𝑒𝑖∧𝑒𝑗∧𝑒𝑖∧𝑒𝑗
)
. (16)

The Hodge dual, excluding the extra three anti-instanton fibers, reads

∗7 𝑑𝜔3 = 𝜆𝑒𝑖∧(𝑒0∧𝑒𝑖 + 1
2
𝜖𝑖𝑗𝑘 𝑒

𝑗∧𝑒𝑘) , (17)

so, we derive

𝑑 ∗7 𝑑𝜔3 = 6𝜆2𝜔4 −
1
𝜆
𝑑𝜔3 , (18)

where

𝜔4 = 𝑒0∧𝑒1∧𝑒2∧𝑒3 , (19)

is the volume element of the base. Note that 𝜔4 is closed; 𝑑𝜔4 = 0. Sim-

ilarly,

𝑑∗̃7𝑑�̃�3 = 6�̃�2𝜔4 +
1
�̃�
𝑑�̃�3 , (20)
with



A. Imaanpur

∗̃7𝑑�̃�3 = �̃� 𝑒𝑖∧(𝑒0∧𝑒𝑖 − 1
2
𝜖𝑖𝑗𝑘 𝑒

𝑗∧𝑒𝑘) . (21)

As with ∗7 which defines the Hodge dual with anti-instanton fibers ex-

cluded, ∗̃7 is the Hodge dual with instanton fibers excluded. Now, we 
claim that the metric admits a harmonic 3-form. For simplicity, let us 
set 𝜆 = �̃�. Looking at eqs. (18) and (20), we observe that

Ω3 =∗7 𝑑𝜔3 − ∗̃7𝑑�̃�3 +
1
𝜆
(𝜔3 + �̃�3) , (22)

is closed. Taking the Hodge dual, we get

∗ Ω3 = 𝑑𝜔3∧�̃�3 −𝜔3∧𝑑�̃�3 +
1
𝜆
𝜔4∧(�̃�3 −𝜔3) , (23)

this is also closed since 𝑑𝜔3∧𝑑�̃�3 = 0, as 𝑑𝜔3 is self-dual (with respect 
to the base manifold 𝑆4) while 𝑑�̃�3 is anti-self-dual. Also note that 
𝜔4∧𝑑𝜔3 = 𝜔4∧𝑑�̃�3 = 0. So, we conclude that

𝑑Ω3 = 𝑑 ∗ Ω3 = 0 , (24)

namely, the 10-dimensional manifold with metric (12) admits a har-

monic 3-from.

Using the three closed 4-forms, 𝜔4, 𝑑𝜔3, and 𝑑�̃�3, we could proceed 
along the lines of [15] to try an ansatz for the 4-form field, 𝐹4, and 
solve the equations of motion. However, in type IIA case, the number 
of independent equations will exceed the number of free parameters, 
and so there will be no solution. For eleven-dimensional supergravity, 
we may consider a trivial circle bundle, 𝑆1 ×𝑀10, with 𝑀10 the 10d 
manifold we constructed in this section. But, in this case, the energy-

momentum tensor of 𝐹4 backreacts on 𝑆1, and since 𝑆1 is flat there 
will be no solution. One way out is to observe that the 10d metric can 
be rewritten as a 𝑈 (1) × 𝑈 (1) bundle over an 8d manifold. The 𝑈 (1)
factors can then be scaled away leaving an eight-dimensional manifold. 
This is what we do in the next section.

3. 𝑺𝟐 ×𝑺
𝟐 bundle over 𝑺𝟒

In the beginning of the previous section, the metric of 𝑆7 was writ-

ten as an 𝑆𝑈 (2) bundle over 𝑆4. It is also possible to write the metric 
as a 𝑈 (1) bundle over 𝐂𝐏3. Further, it is observed that 𝐂𝐏3 itself can be 
written as an 𝑆2 bundle over 𝑆4. In this form one can construct a family 
of homogeneous metrics by rescaling the fibers [16,17]. In this section, 
first we rewrite the 𝑆7 metric, (1), as a 𝑈 (1) bundle over 𝐂𝐏3 [15], and 
then repeat the same process for the 10d metric we constructed in the 
previous section. This allows to isolate two 𝑈 (1) directions of the met-

ric and then dimensionally reduce along them to get an 8-dimensional 
metric.

Beginning with metric (4), note that we can also write it as

𝑑𝑠2
𝑆7 = 𝑑𝜇2 + 1

4
sin2 𝜇Σ2

𝑖
+ 𝜆2(𝜎𝑖 −𝐴𝑖)2

= 𝑑𝜇2 + 1
4
sin2 𝜇Σ2

𝑖

+ 𝜆2 sin2 𝜃1 (𝑑𝜙1 − cot 𝜃1(cos𝜙1𝐴1 + sin𝜙1𝐴2) +𝐴3)2

+ 𝜆2(𝑑𝜃1 − sin𝜙1𝐴1 + cos𝜙1𝐴2)2 + 𝜆2(𝑑𝜒1 −𝐴)2 , (25)

where

𝐴 = cos𝜃1 𝑑𝜙1 + sin𝜃1(cos𝜙1𝐴1 + sin𝜙1𝐴2) + cos𝜃1𝐴3 , (26)

and 𝜎𝑖 ’s are left-invariant one-forms that are chosen as follows:

𝜎1 = sin𝜙1 𝑑𝜃1 + sin𝜃1 cos𝜙1 𝑑𝜒1 ,

𝜎2 = −cos𝜙1 𝑑𝜃1 + sin𝜃1 sin𝜙1 𝑑𝜒1 ,

𝜎3 = −𝑑𝜙1 + cos𝜃1 𝑑𝜒1 .

The point of writing the 𝑆7 metric in this form is that the last 𝑈 (1)
factor in (25) can further be rescaled, i.e., 𝜆 → 𝜆′, so that the Ricci tensor 
3

components (in a basis we introduce shortly) are still constant. We use 
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this observation to rewrite 10d metric (12) as a 𝑈 (1) ×𝑈 (1) bundle over 
a base, which itself is an 𝑆2 ×𝑆2 bundle over 𝑆4:

𝑑𝑠210 = 𝑑𝜇2 + 1
4
sin2 𝜇Σ2

𝑖
+ 𝜆2(𝑑𝜃1 − sin𝜙1𝐴1 + cos𝜙1𝐴2)2

+ 𝜆2 sin2 𝜃1 (𝑑𝜙1 − cot 𝜃1(cos𝜙1𝐴1 + sin𝜙1𝐴2) +𝐴3)2

+ 𝜆′ 2(𝑑𝜒1 −𝐴)2

+ �̃�2(𝑑𝜃2 − sin𝜙2�̃�1 + cos𝜙2�̃�2)2

+ �̃�2 sin2 𝜃2 (𝑑𝜙2 − cot 𝜃2(cos𝜙2�̃�1 + sin𝜙2�̃�2) + �̃�3)2

+ �̃�′ 2(𝑑𝜒2 − �̃�)2 (27)

whereas, just as in (26), �̃� is defined in terms of �̃�𝑖;

�̃� = cos𝜃2 𝑑𝜙2 + sin𝜃2(cos𝜙2�̃�1 + sin𝜙2�̃�2) + cos𝜃2�̃�3 . (28)

Note that here we have taken 𝜏𝑖 ’s in (12) as follows:

𝜏1 = sin𝜙2 𝑑𝜃2 + sin𝜃2 cos𝜙2 𝑑𝜒2 ,

𝜏2 = −cos𝜙2 𝑑𝜃2 + sin𝜃2 sin𝜙2 𝑑𝜒2 ,

𝜏3 = −𝑑𝜙2 + cos𝜃2 𝑑𝜒2 ,

and rescaled two 𝑈 (1) fibers in (27) as 𝜆 → 𝜆′ , �̃�→ �̃�′.
Choosing the following basis

𝑒0 = 𝑑𝜇 , 𝑒𝑖 = 1
2
sin𝜇Σ𝑖 ,

𝑒5 = 𝜆(𝑑𝜃1 − sin𝜙1𝐴1 + cos𝜙1𝐴2) ,

𝑒6 = 𝜆 sin𝜃1(𝑑𝜙1 − cot 𝜃1(cos𝜙1𝐴1 + sin𝜙1𝐴2) +𝐴3) ,

𝑒7 = 𝜆′(𝑑𝜒1 −𝐴) ,

𝑒5 = �̃�(𝑑𝜃2 − sin𝜙2�̃�1 + cos𝜙2�̃�2) ,

𝑒6 = �̃� sin𝜃2(𝑑𝜙2 − cot 𝜃2(cos𝜙2�̃�1 + sin𝜙2�̃�2) + �̃�3) ,

𝑒7 = �̃�′(𝑑𝜒2 − �̃�) , (29)

the Ricci tensor turns out to be diagonal and reads

𝑅00 =𝑅11 =𝑅22 =𝑅33 = 3 − 𝜆2 − �̃�2 − 𝜆′ 2∕2 − �̃�′ 2∕2 ,

𝑅55 =𝑅66 = 𝜆2 + 1∕𝜆2 − 𝜆′ 2∕2𝜆4 , 𝑅77 = 𝜆′ 2 + 𝜆′ 2∕2𝜆4 ,

𝑅88 =𝑅99 = �̃�2 + 1∕�̃�2 − �̃�′ 2∕2�̃�4 , 𝑅10,10 = �̃�′ 2 + �̃�′ 2∕2�̃�4 . (30)

This explicitly shows that we can rescale two 𝑈 (1) fiber directions along 
𝜒1 and 𝜒2 and still have a diagonal Ricci tensor with constant compo-

nents. In fact, we can set 𝜆′ = �̃�′ = 0 in (27) and get an 8-dimensional 
metric. In the following, we show that this manifold admits a harmonic 
4-form which is then used to derive a supergravity solution in 11 dimen-

sions.

3.1. The ansatz for 𝐹4

To discuss our ansatz for 𝐹4 and the solutions, henceforth, we take 
the following eight-dimensional metric

𝑑𝑠28 = 𝑑𝜇2 + 1
4
sin2 𝜇Σ2

𝑖
+ 𝜆2(𝑑𝜃1 − sin𝜙1𝐴1 + cos𝜙1𝐴2)2

+ 𝜆2 sin2 𝜃1 (𝑑𝜙1 − cot 𝜃1(cos𝜙1𝐴1 + sin𝜙1𝐴2) +𝐴3)2

+ �̃�2(𝑑𝜃2 − sin𝜙2�̃�1 + cos𝜙2�̃�2)2

+ �̃�2 sin2 𝜃2 (𝑑𝜙2 − cot 𝜃2(cos𝜙2�̃�1 + sin𝜙2�̃�2) + �̃�3)2 , (31)

and assume that the eleven-dimensional manifold is given by 𝐴𝑑𝑆3 ×
𝑀8, with the metric

𝑑𝑠211 = 𝑑𝑠23 + 𝑑𝑠28 . (32)
As in [15], it also proves useful to define the following self-dual 2-forms
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𝑅1 = sin𝜙1(𝑒01 + 𝑒23) − cos𝜙1(𝑒02 + 𝑒31) ,

𝑅2 = cos𝜃1 cos𝜙1(𝑒01 + 𝑒23)

+ cos𝜃1 sin𝜙1(𝑒02 + 𝑒31) − sin𝜃1(𝑒03 + 𝑒12) ,

𝐾 = sin𝜃1 cos𝜙1(𝑒01 + 𝑒23) + sin𝜃1 sin𝜙1(𝑒02 + 𝑒31)

+ cos𝜃1(𝑒03 + 𝑒12) , (33)

where we have used the shorthand notation 𝑒𝑖𝑗 = 𝑒𝑖∧𝑒𝑗 . The key feature 
of this definition, that we will use frequently in this paper, is that these 
three forms are orthogonal to each other, i.e.,

𝑅1∧𝑅2 =𝐾∧𝑅1 =𝐾∧𝑅2 = 0 . (34)

We can also define a set of anti self-dual 2-forms which are orthogonal 
(with respect to the wedge product) to the above self-dual set:

�̃�1 = sin𝜙2(−𝑒01 + 𝑒23) − cos𝜙2(−𝑒02 + 𝑒31) ,

�̃�2 = cos𝜃2 cos𝜙2(−𝑒01 + 𝑒23) + cos𝜃2 sin𝜙2(−𝑒02 + 𝑒31)

− sin𝜃2(−𝑒03 + 𝑒12) ,

�̃� = sin𝜃2 cos𝜙2(−𝑒01 + 𝑒23) + sin𝜃2 sin𝜙2(−𝑒02 + 𝑒31)

+ cos𝜃2(−𝑒03 + 𝑒12) (35)

and obey relations like the ones in (34). 𝐾 and �̃� naturally appear in 
the field strength of 𝐴 and �̃�, respectively;

𝐹 = 𝑑𝐴 = −𝐾 − 𝑒56∕𝜆2 ,

𝐹 = 𝑑�̃� = −�̃� − 𝑒56∕�̃�2 . (36)

Taking the exterior derivative, it is easy to see that

𝑑𝐾 = − 1
𝜆2
𝑑𝑒56 = −1

𝜆
ImΩ ,

𝑑�̃� = − 1
�̃�2
𝑑𝑒56 = −1

�̃�
Im Ω̃ , (37)

where,

ImΩ =𝑅1∧𝑒6 −𝑅2∧𝑒5 ,

Im Ω̃ = �̃�1∧𝑒6 − �̃�2∧𝑒5 . (38)

Here, Ω is the holomorphic 3-form of the 𝐂𝐏3 which appears in the 
metric of 𝑆7 viewed as a 𝑈 (1) bundle over 𝐂𝐏3, and it should not be 
confused with Ω3 of the previous section, and Ω4 that will appear in the 
next section. From (37), it trivially follows that 𝑑ImΩ = 𝑑Im Ω̃ = 0.

Now, let us examine if there is any harmonic 4-form on the 8d man-

ifold endowed with metric (31). A closed 4-form which is easy to guess 
is

Ω4 = 𝛼𝜔4 + 𝛽𝐾∧𝑒56 + 𝛾�̃�∧𝑒56 , (39)

for constant coefficients 𝛼, 𝛽, 𝛾 . The first term is closed, 𝑑𝜔4 = 0. Using 
(37) together with ImΩ∧𝑒56 = ImΩ∧𝐾 = 0, and ImΩ̃∧𝑒56 = ImΩ̃∧�̃� =
0, we see that the second and the third terms are also separately closed, 
so 𝑑Ω4 = 0. For the Hodge dual we have

∗8 Ω4 = 𝛼𝑒56∧𝑒56 + 𝛽𝐾∧𝑒56 − 𝛾�̃�∧𝑒56 , (40)

the minus sign is because �̃� is anti self-dual. Demanding 𝑑 ∗8 Ω4 = 0, 
and noticing that

Im Ω̃∧𝐾 = 0 , ImΩ∧�̃� = 0 , (41)

as untilted and tilted 2-forms are self-dual and anti self-dual, respec-

tively, the 𝛽 and 𝛾 get fixed in terms of an overall constant 𝛼. So, here 
is the harmonic 4-form;
4

Ω4 = 𝜔4 + 𝜆2𝐾∧𝑒56 − �̃�2�̃�∧𝑒56 . (42)
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Either Ω4 or ∗8 Ω4 can be used as an ansatz for the 4-form field strength 
in its 11d supergravity equation of motion

𝑑 ∗11 𝐹4 = −1
2
𝐹4∧𝐹4 . (43)

If we take 𝐹4 = 𝛼Ω4, since Ω4∧Ω4 = 0, it is clear that Maxwell equation 
(43) is satisfied. However, for this ansatz we have found no real solution 
of the Einstein equations. Our next choice is to take

𝐹4 = 𝛼 ∗8 Ω4 = 𝛼(𝑒56∧𝑒56 + 𝜆2𝐾∧𝑒56 + �̃�2�̃�∧𝑒56) , (44)

since ∗ Ω4∧ ∗ Ω4 = 0, the right hand side of (43) becomes zero. There-

fore, since ∗ Ω4 is harmonic, 𝐹4 satisfies both the Bianchi identity and 
the equation of motion, (43). One might think that similar ansatz may 
also work for simpler 8d manifolds like 𝑆4 ×𝑆4 or 𝐂𝐏4, which admit 4-

form harmonics too. The point, however, is that for such ansatz the right 
hand side of Maxwell equation does not vanish. So, here, it is important 
that we have ∗ Ω4∧ ∗ Ω4 = 0.

Having found a solution for the Maxwell equation, (43), let us now 
turn to the eleven-dimensional Einstein equations;

𝑅𝑀𝑁 = 1
12

𝐹𝑀𝑃𝑄𝑅𝐹
𝑃𝑄𝑅

𝑁
− 1

3 ⋅ 48
𝑔𝑀𝑁 𝐹𝑃𝑄𝑅𝑆𝐹

𝑃𝑄𝑅𝑆 , (45)

where 𝑀, 𝑁, 𝑃 , … = 0, 1, … , 10. Setting for simplicity 𝜆 = �̃�, the Ricci 
tensor components of 𝑀8 on the left hand side can be read off from (30)

(with 𝜆′ = �̃�′ = 0). Further, with ansatz (44), we can calculate the right 
hand side of the above equations to get;

3 − 2𝜆2 = 𝛼2
(
𝜆4

3
− 1

6

)
,

1 + 𝜆4

𝜆2
= 𝛼2

(
𝜆4

3
+ 1

3

)
. (46)

The solution reads

𝜆2 = 1
6
(
√
15 + 3) , 𝛼2 = 3(

√
15 − 3) . (47)

So, the Ricci tensor along the base, 𝑆4, reads

𝑅00 =𝑅11 =𝑅22 =𝑅33 = 2 −
√

5
3
, (48)

while, along the 𝑆2 × 𝑆2 fiber we get

𝑅𝛼𝛽 =
1
6

(
7
√
15 − 15

)
𝛿𝛼𝛽 , (49)

𝑅�̃�𝛽 =
1
6

(
7
√
15 − 15

)
𝛿�̃�𝛽 . (50)

Since the Ricci tensor components along the base and the fiber are not 
equal, 𝑀8 is not Einstein. Also, note that as 𝜆2 > 1, the 𝑆2 × 𝑆2 fibers 
in (31) are stretched with respect to the base. For the Ricci tensor along 
𝐴𝑑𝑆3, we obtain

𝑅𝜇𝜈 = −1
6

(
5
√
15 − 3

)
𝑔𝜇𝜈 , (51)

with 𝜇 and 𝜈 the tangent indices along 𝐴𝑑𝑆3.

3.2. Supersymmetry

Having obtained a solution, it is interesting to see whether it pre-

serves any supersymmetry. The supersymmetry transformation of the 
gravitino reads

𝛿𝜓𝑀 =∇𝑀𝜀+ 1
288

[
Γ 𝑁𝑃𝑄𝑅

𝑀
− 8𝛿 𝑁

𝑀
Γ𝑃𝑄𝑅

]
𝐹𝑁𝑃𝑄𝑅 𝜀 , (52)

and thus for a bosonic solution to preserve supersymmetry this must 
vanish. First, let us look at the implication of this equation along 𝐴𝑑𝑆3 ,

∇𝜇𝜀+
1
288

Γ 𝑛𝑝𝑞𝑟
𝜇

𝐹𝑛𝑝𝑞𝑟 𝜀 = 0 . (53)
For eleven dimensional gamma matrices we choose
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Γ𝜇 = 𝜏𝜇 ⊗ 𝛾(8)

Γ𝑎+2 = 1⊗ 𝛾𝑎 , 𝑎 = 1,2,… ,8 , (54)

with 𝜏012 = 1, and where 𝛾(8) is the chirality operator in D=8, 𝛾(8) =
𝛾1𝛾2… 𝛾8. Further, let

𝜀(𝑥, 𝑦) = 𝜖(𝑥)⊗𝜂(𝑦) , (55)

where 𝜖(𝑥) and 𝜂(𝑦) are two spinors along 𝐴𝑑𝑆3 and 𝑀8, respectively. 
With these conventions, (53) becomes

∇𝜇𝜖 ⊗ 𝜂 + 1
12
𝜏𝜇𝜖 ⊗ Γ𝜂 = 0 , (56)

where we have defined

Γ = 1
4!
𝛾(8)𝛾

𝑛𝑝𝑞𝑟𝐹𝑛𝑝𝑞𝑟 . (57)

Now, for (56) to reduce to a Killing spinor equation along 𝐴𝑑𝑆3 we must 
have

Γ𝜂 = 𝑘𝜂 , (58)

for some constant 𝑘. Plugging in (44) for 𝐹4 and setting 𝜆 = �̃�, we get

𝛼−1Γ = 𝛾1234

+ 𝜆2
(
sin𝜃1 cos𝜙1(𝛾12 + 𝛾34) + sin𝜃1 sin𝜙1(𝛾13 + 𝛾42)

+ cos𝜃1(𝛾14 + 𝛾23)
)
𝛾56

− 𝜆2
(
sin𝜃2 cos𝜙2(𝛾12 − 𝛾34) + sin𝜃2 sin𝜙2(𝛾13 − 𝛾42)

+ cos𝜃2(𝛾14 − 𝛾23)
)
𝛾78.

Here, to be consistent with the notation in (54), we have made a slight 
change in our notation for the 8d indices of the gamma matrices. It is 
now easy to see that Γ is neither a projector operator nor its squared is 
independent of the coordinates 𝜃𝑖 and 𝜙𝑖. Therefore, it has no constant 
eigenvalues (without imposing any further conditions on 𝜂). One way 
to get rid of the coordinate dependence of Γ is to impose the conditions

(𝛾12 + 𝛾34)𝜂 = 0 ,

(𝛾12 − 𝛾34)𝜂 = 0 ,

but this implies 𝜂 = 0. In sum, we conclude that the solution preserves 
no supersymmetry.

4. 10d IIA supergravity solution

The ansatz we found in the previous section can also be used to ob-

tain a ten-dimensional type IIA supergravity solution. For type IIA field 
equations in the string frame we have

𝑑𝐹4 = −𝐹2 ∧𝐻 , 𝑑 ∗ 𝐹4 = −𝐹4 ∧𝐻 , 𝑑𝐻 = 0 , 𝑑𝐹2 = 0 ,

𝑑 ∗ (𝑒−2𝜙𝐻) = −𝐹2∧ ∗ 𝐹4 +
1
2
𝐹4 ∧ 𝐹4 , 𝑑 ∗ 𝐹2 =𝐻∧ ∗ 𝐹4 ,

𝑑 ∗ 𝑑𝜙− 𝑑𝜙∧ ∗ 𝑑𝜙− 1
8
𝐻∧ ∗𝐻 + 1

4 ⋅ 3!
𝑅𝜖4∧𝐽 3 = 0 ,

𝐹4 = 𝐹4 −𝐴1 ∧𝐻 . (59)

If we only turn on 𝐹4 = 𝛼 ∗ Ω4 as in the previous section, since 𝐹4∧𝐹4 =
0 we can set 𝐻 = 𝐹2 = 0. But then 𝑅, the scalar curvature, will not be 
zero and hence, acts via the last equation as a source for the dilaton, 𝜙. 
However, if we further turn on 𝐹2 = 𝜂𝜖2, with 𝜖2 the volume element of 
an 𝐴𝑑𝑆2 factor, we can satisfy 𝑅 = 0, and have a constant dilaton. Our 
ansatz for the metric thus will be

𝑑𝑠210 = 𝑑𝑠2
𝐴𝑑𝑆2

+ 𝑑𝑠28 , (60)

together with
5

𝐹4 = 𝛼 ∗ Ω4 , 𝐹2 = 𝜂𝜖2 , 𝐻 = 0 , 𝜙 = 𝑐𝑜𝑛𝑠𝑡. (61)
Physics Letters B 856 (2024) 138933

We can check it easily that with this ansatz all the equations of motion, 
(59), are satisfied. For the Einstein equations we have,

𝑅𝑀𝑁 = 𝑒2𝜙

12

(
𝐹𝑀𝑃𝑄𝑅𝐹

𝑃𝑄𝑅

𝑁
− 3

32
𝑔𝑀𝑁 𝐹𝑃𝑄𝑅𝑆𝐹

𝑃𝑄𝑅𝑆
)

+ 𝑒2𝜙

2

(
𝐹𝑀𝑃𝐹

𝑃
𝑁

− 1
4
𝑔𝑀𝑁 𝐹𝑃𝑄𝐹

𝑃𝑄
)
, (62)

so requiring 𝑅 = 0, fixes the relative scale of 𝐹4 and 𝐹2;

𝜂2 = 𝛼2

3
(1 + 4𝜆4) . (63)

Using (30) and ansatz (61), the Einstein equations along 𝑀8 become

3 − 2𝜆2 = 𝑒2𝜙𝛼2
(
𝜆4

3
− 1

6

)
,

1 + 𝜆4

𝜆2
= 𝑒2𝜙𝛼2

(
𝜆4

3
+ 1

3

)
, (64)

which are the same equations as in (46), with the solution

𝜆2 = 1
6
(
√
15 + 3) , 𝑒2𝜙𝛼2 = 3(

√
15 − 3) . (65)

For the Ricci tensor along 𝐴𝑑𝑆2 we obtain

𝑅𝜇𝜈 = −1
3

(
5
√
15 − 3

)
𝑔𝜇𝜈 , (66)

with 𝜇, 𝜈 = 0, 1.

The above type IIA solution can be understood as a reduction of the 
𝐴𝑑𝑆3 ×𝑀8 solution of the previous section. In fact, 𝐴𝑑𝑆3 metric can 
be written as a 𝑈 (1) bundle over 𝐴𝑑𝑆2. If we dimensionally reduce 
along this 𝑈 (1) direction, then, in ten dimensions, 𝐹2 appears as the 
field strength of the corresponding 𝑈 (1) connection.

5. Conclusions

In this paper, we studied adding an extra structure of anti-instanton 
fibers to the metric of 𝑆7, and constructed a 10d metric, which had 
constant Ricci tensor components in the corresponding orthonormal ba-

sis. The metric also admitted a harmonic 3-form. To get a supergravity 
solution, however, we argued that the metric could be rewritten as a 
𝑈 (1) × 𝑈 (1) bundle over an 8d manifold. In this way, it was possi-

ble to scale away the 𝑈 (1) directions and get a new 8d manifold with 
metric (31). We showed that this manifold admits a harmonic 4-form, 
which we then used as an ansatz for the 4-form field strength in eleven-

dimensional and ten-dimensional type IIA supergravities. At the end, 
we saw that, through this choice of the metric and the ansatz for 𝐹4, the 
equations of motion could be reduced to a set of simple algebraic equa-

tions. The solutions, in turn, fixed the free parameter 𝜆, the scale factor 
of fibers in the metric, and the overall scale of 𝐹4 (and 𝐹2 in the case of 
type IIA).
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