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Recently, the complexity equals any gravitational observable conjecture has been proposed in [Phys.
Rev. Lett. 128, 081602 (2022)], which is an extension of the complexity equals volume proposal. These
gravitational observables are referred to as generalized volumes. In this paper, we investigate the
generalized volume complexity for black holes with one or two horizons respectively. We verify that the
turning time is universal and independent of the Cauchy horizon. Not only does this phase transition occur
once, but it may also occur two or more times depending on the number and height of the effective potential
peaks. On the other hand, we confirm that the generalized volume complexity can be divided based on the
shape of the effective potential. We then discuss the nonsmooth transition from the Reissner–Nordström–
anti-de Sitter (AdS) black hole to the Schwarzschild-AdS black hole.
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I. INTRODUCTION

In the last three decades, the holographic principle has
attracted widespread attention [1–48]. In 1997, Maldacena
made the first concrete realization of the holographic
principle [1]. The calculation shows that the conformal
field theory (CFT) of d-dimensional spacetime is equiv-
alent to the quantum gravity theory in (dþ 1)-dimensional
asymptotic anti-de Sitter (AdS) spacetime, known as the
AdS/CFT correspondence [1,2]. After 26 years of develop-
ment, the AdS/CFT correspondence has become a popular
and important research direction in quantum gravity and
quantum information.
On the other hand, Susskind and Maldacena proposed a

new idea regarding the holographic principle [3]. They
observed the similarities between the Einstein-Podolsky-
Rosen (EPR) paradox and the Einstein-Rosen (ER) bridge
and referred to this as the ER ¼ EPR relation [3,4].
According to ER ¼ EPR, two systems are connected by
an ER bridge if and only if they are entangled. The ER
bridge is not a static object, it grows linearly with time for a
very long time. However, for a black hole system, the dual

system reaches thermal equilibrium quickly. Therefore,
entanglement entropy is not enough. For a complete
description of the growth of the ER bridge, Susskind
introduced quantum computational complexity as a mea-
sure of the volume growth of the ER bridge [5].
Complexity quantifies the level of difficulty associated

with performing a task using a set of simple operations. In
quantum complexity, a quantum circuit is constructed by
combining simple gates that act on a few qubits to perform
a particular operation using a unitary operator. In the
context of black holes and holography, quantum complex-
ity has recently triggered significant interest, offering a new
perspective in the ongoing effort to connect quantum
information theory with quantum gravity. In recent years,
there has been dramatic progress toward holographic
complexity [15–37], circuit complexity in quantum field
theory [49–53], Krylov complexity [54–61], and complex-
ity in de Sitter space [62,63].
Under the framework of AdS/CFT, there are three

important proposals regarding the holographic complexity:
complexity equals volume (CV) [5–7], complexity equals
action (CA) [10,11], and complexity equals spacetime
volume (CV 2.0) [12]. The CV proposal maintains that
complexity is determined by the maximal volume slice of a
hypersurface anchored on the CFT boundary, i.e.,

CV ¼ max
∂Σ

�
VðΣÞ
GNL

�
; ð1:1Þ
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where Σ is a hypersurface anchored on the boundary CFT
slice, GN denotes Newton’s constant in the bulk gravita-
tional theory, and L is a constant with length dimension
which often replaced by AdS radius. Based on the CV
proposal, Stanford and Susskind calculated the maximum
volume hypersurface inside the AdS black hole after it is
disturbed by shock wave geometries and proposed the
butterfly effect of complexity [6]. Recently, an analytical
expression about the butterfly effect of complexity for an
inverted harmonic oscillator was obtained in Refs. [13,14].
For the CA proposal, complexity is defined as the action of
the Wheeler–de Witt patch, which is given by

CA ¼ IWdW

πℏ
; ð1:2Þ

where the Wheeler–de Witt patch is the set of all spacelike
hypersurfaces in spacetime [15]. And the CV 2.0 proposal
is optimized based on the first two conjectures. In this case,
complexity equals the volume of the Wheeler–de Witt
patch, that is,

CSV ¼ VWdW

GNL2
: ð1:3Þ

Among them, all of holographic complexity proposals have
ambiguous definitions, just like the ill-defined constant L in
the CV or CV 2.0 proposal, or a similarly indeterminate
length scale that occurs on the null boundaries of the
Wheeler–de Witt patch. In this regard, some scholars
believe that this ambiguity is not a shortcoming of the
theory itself but a feature of holographic complexity
because there are similar ambiguities in quantum computa-
tional complexity, such as the choice of a quantum gate set.
The concept of holographic complexity is generalized in
Refs. [33–35]. The authors defined the new gravitational
observable as the generalized volume complexity, i.e.,

OF1;ΣF2
ðΣCFTÞ ¼

1

GNL

Z
ΣF2

ddσ
ffiffiffi
h

p
F1ðgμν;XμÞ; ð1:4Þ

where ΣF2
is an codimension-1 hypersurface anchored on

the CFT slice ΣCFT, h is the induced metric on the ΣF2
, and

both F1 and F2 are scalar functions of the bulk metric gμν
and of an embedding coordinate Xμ of the ΣF2

. If the CFT
slice is a constant time slice in the boundary CFT, ΣCFT can
be rewritten as Στ; i.e., ∂ΣF2

¼ Στ. ΣF2
is determined by

δX

�Z
ΣF2

ddσ
ffiffiffi
h

p
F2ðgμν;XμÞ

�
¼ 0: ð1:5Þ

In the general case, there is no correlation between F1 and
F2. However, for F1 ¼ F2 ¼ 1, the extremal hypersurface
obtained by Eq. (1.5) is the extremal volume slice in the CV
proposal (1.1). Extending this example, they analyzed in

detail the case where F1 ¼ a1ðrÞ, F2 ¼ a2ðrÞ, and the
conjecture that “complexity equals anything” is validated
across multiple models [36].
In our previous work [37], we considered the generalized

volume complexity for the four-dimensional Reissner-
Nordström-AdS (RN-AdS) black hole, whose growth rates
exhibit a discontinues change at a certain boundary time.
This discontinuous change in bulk belongs to a phase
transition, and the transition time is defined as a turning
time. However, our analysis of the RN-AdS black hole still
has certain limitations. First, It is possible that the existence
of the turning time is universal and not unique. Therefore,
we need to consider more models to get a more general law.
Second, we believe that the impact of the disappearance of
the Cauchy horizon on the growth rate of the generalized
volume complexity for black holes with two horizons at
late time also deserves discussion. Finally, all the above
calculations in Ref. [37] were done for the case of F1 ¼ F2.
We believe that these questions are also worth exploring for
the more general case of F1 ≠ F2.
In this paper, we would like to investigate the generalized

volume complexity for the planar AdS black hole, the
charged Bañados-Teitelboim-Zanelli (BTZ) black hole, and
the five-dimensional Gauss-Bonnet-AdS black hole with
some different gravitational observables and additionally
discuss the difference between the RN-AdS black hole at
the limit of Q → 0 and Q ¼ 0. Our findings reveal that the
Cauchy horizon is not a necessary condition for the
existence of turning time. When we choose a suitable
gravitational observable, we can always find such a phase
transition, whether or not the Cauchy horizon exists.
Furthermore, there may not be only one turning time but
rather two or even more, depending on the properties of the
effective potential. On the other hand, we will demonstrate
that the generalized volume complexity can be divided into
two categories according to the properties of the effective
potential at the singularity or theCauchy horizon, resulting in
different parameter spaces of coupling constants. During a
supplementary discussion of theRN-AdSblack hole,we find
that withQ → 0 the generalized volume complexity does not
smoothly transform into to the AdS-Schwarzschild solution
case. In addition, we find that for the more general case of
F1 ≠ F2 the existence of the turning time is still universal.
Different from the F1 ¼ F2 case, in this situation, the
existence of the turning time depends not only on the number
of the effective potential peaks decreasing from left to right
but also on the form of F1. Regarding the growth rate of the
generalized volume complexity, its linear growth in the late-
time limit can still be satisfied, although the early evolution is
not necessarily monotonic.
In Sec. II, we review the generalized volume complexity

using the planarAdSblack hole as an example. In Sec. III, we
analyze the generalized volume complexity of the black
holeswith a single horizon. Taking the planarAdS black hole
and the five-dimensional Gauss-Bonnet-AdS black hole as
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examples, we find that the turning time is independent of the
limit of the Cauchy horizon and divide the generalized
volume complexity into two categories based on the shape of
the effective potential. In Sec. IV, we analyze the generalized
volume complexity of the black hole with two horizons.
Taking the charged BTZ black holes as an example, we
examine the generalized volume complexity constructed by
spacetime curvature or matter content respectively. In addi-
tion, we discuss the unsmooth transition of the RN-AdS
black hole to the AdS-Schwarzschild black hole. In Sec. V,
we calculate the generalized volume complexity and turning
time for theF1 ≠ F2 case and explain how it differs from the
case of F1 ¼ F2. Finally, the discussion and conclusion are
given in Sec. VI.

II. COMPLEXITY EQUALS
ANYTHING CONJECTURE

In this section, we review the “complexity equals any-
thing” conjecture using the planar AdS black hole as an
example, presented in Ref. [33]. The metric of the (dþ 1)-
dimensional eternal AdS planar black hole can be described
in Eddington-Finkelstein coordinates,

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2

L2
dx⃗2; ð2:1Þ

where fðrÞ ¼ r2

L2 ð1 − rdh
rdÞ and v ¼ tþ r�ðrÞ with r�ðrÞ ¼

−
R∞
r

dr0
fðr0Þ. This geometry is regarded as the dual of two

decoupled CFTs on planar spatial slices Σ, which are
entangled in the thermofield double (TFD) state

jψTFDðτÞi ¼
X
n

e−βEn=2−iEnτjniL ⊗ jniR; ð2:2Þ

where β is the inverse of the temperature, En is the energy
eigenstate, and L and R symbolize the two entangled sides
of the planar AdS black hole and label the quantum states
jniL and jniR, respectively. The time τ is associated with
the left and right boundaries with tL ¼ tR ¼ τ=2.
According to Ref. [33], when we select F1 ¼ F2 ¼ aðrÞ,
the general expression of complexity can be obtained by

C ¼ max
∂Σ¼Στ

�
1

GNL

Z
Σ
ddσ

ffiffiffi
h

p
aðrÞ

�
; ð2:3Þ

where σ is a radial coordinate on the hypersurface Σ.
Thanks to the planar symmetric, we can parametrize
Eq. (2.3) as

C ¼ Vd−1

GNL

Z
Σ
dσ
�
r
L

�
d−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−fðrÞv̇2 þ 2v̇ ṙ
q

aðrÞ

≡ Vd−1

GNL

Z
Σ
dσLðr; v̇; ṙÞ; ð2:4Þ

where Vd−1 denotes the volume element of the spatial
directions x⃗. We can refer to C as the generalized volume
complexity and treat the integrand as the Lagrangian L.
Choosing the gauge as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞv̇2 þ 2v̇ ṙ

q
¼ aðrÞ

�
r
L

�
d−1

; ð2:5Þ

we can note that the L does not depend explicitly on v, so
we can define a conserved momentum Pv:

Pv ¼
aðrÞðr=LÞd−1ðṙ − fðrÞv̇Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−fðrÞv̇2 þ 2v̇ ṙ
p ¼ ṙ − fðrÞv̇: ð2:6Þ

According to Eqs. (2.5) and (2.6), we can obtain the
extremality conditions

ṙ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v þ fðrÞa2ðrÞ

�
r
L

�
2ðd−1Þ

s
; ð2:7Þ

v̇ ¼ 1

fðrÞ

 
−Pv �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v þ fðrÞa2ðrÞ

�
r
L

�
2ðd−1Þ

s !
: ð2:8Þ

Therefore, we can explain this problem as the motion of a
classical particle in a potential

ṙ2 þ UðrÞ ¼ P2
v; ð2:9Þ

where the effect potential UðrÞ is given by

UðrÞ ¼ −fðrÞa2ðrÞ
�
r
L

�
2ðd−1Þ

: ð2:10Þ

Based on Eq. (2.5), we can rewrite Eq. (2.4) as

C ¼ Vd−1

GNL

Z
Σ

a2ðrÞðrLÞ2ðd−1Þ
ṙ

dr: ð2:11Þ

Using Eq. (2.9), we can get ṙ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v −UðrÞ

p
. On the

other hand, we have UðrminÞ ¼ P2
v, where rmin is the

minimum radius for the largest generalized volume slice
as shown in Fig. 1. Therefore, ṙ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UðrminÞ −UðrÞp
, and

we have

C ¼ 2Vd−1

GNL

Z
r∞

rmin

a2ðrÞðrLÞ2ðd−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v − UðrÞ

p dr

¼ −
2Vd−1

GNL

Z
r∞

rmin

UðrÞ
fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UðrminÞ −UðrÞp dr: ð2:12Þ
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On the other hand, according to the ingoing coordinates, we
can have

τ

2
þ r�ðr∞Þ − r�ðrminÞ

¼
Z

v∞

vmin

dv ¼
Z

r∞

rmin

v̇
ṙ
dr

¼
Z

r∞

rmin

dr
�

1

fðrÞ −
Pv

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v þ fðrÞa2ðrÞðrLÞ2ðd−1Þ

q �
:

ð2:13Þ

We hope to extract the part containing Eq. (2.13) from
Eq. (2.12). By following the method provided in Ref. [16],
we can rewrite Eq. (2.12) as follows:

C¼ 2Vd−1

GNL

Z
r∞

rmin

dr

�
−

P2
v

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
vþfðrÞa2ðrÞðrLÞ2ðd−1Þ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
vþfðrÞa2ðrÞðrLÞ2ðd−1Þ

q
fðrÞ þ Pv

fðrÞ−
Pv

fðrÞ
�
: ð2:14Þ

Therefore, we have

GNL
2Vd−1

C ¼
Z

r∞

rmin

dr

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v þ fðrÞa2ðrÞðrLÞ2ðd−1Þ

q
fðrÞ −

Pv

fðrÞ

#

þ Pv

�
τ

2
þ r�ðr∞Þ − r�ðrminÞ

�
: ð2:15Þ

Next, we can take the time derivative of Eq. (2.15):

GNL
2Vd−1

dC
dτ

¼ dPv

dτ

Z
r∞

rmin

dr

�
Pv

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v þ fðrÞa2ðrÞðrLÞ2ðd−1Þ

q −
1

fðrÞ
�

þ dPv

dτ

�
τ

2
þ r�ðr∞Þ − r�ðrminÞ

�
þ Pv

2
: ð2:16Þ

We notice that the same term as in Eq. (2.13) appears
in Eq. (2.16), which can greatly simplify the equation,
that is,

dC
dτ

¼ Vd−1

GNL
Pv: ð2:17Þ

Therefore, the growth rate of the complexity is propor-
tional to the conserved momentum Pv. Because of
r� ¼ −

R
∞
r

dr0
fðr0Þ, we can get the expression of the boundary

time by Eq. (2.13):

τ ¼ −2
Z

∞

rmin

dr
Pv

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v þ fðrÞa2ðrÞðrLÞ2ðd−1Þ

q
¼ −2

Z
∞

rmin

dr
Pv

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v − UðrÞ

p : ð2:18Þ

When τ → ∞, we let the UðrfÞ ¼ P∞, so we have

dC
dτ

����
τ→∞

¼ Vd−1

GNL
P∞: ð2:19Þ

III. HOLOGRAPHIC COMPLEXITY FOR BLACK
HOLES WITH A SINGLE HORIZON

In this section, we will take the planar AdS black hole
and the five-dimensional Gauss-Bonnet-AdS black hole as
examples to discuss the generalized volume complexity for
the black holes with a single horizon and a spacelike
curvature singularity. We find that in such a case the turning
time still exists and may not be unique. On the other hand,
for the five-dimensional Gauss-Bonnet-AdS black hole, we
find that the shape of the effective potential can determine
whether the parameter space of the coupling constant is the
full space.

A. Planar AdS black hole

There are some examples of aðrÞ presented in Ref. [35].
In this section, we expand on the authors’ examples and
consider the turning time in each other. We also use the
Weyl tensor for the bulk spacetime to construct the

FIG. 1. The Penrose diagram of the eternal AdS black hole. The
curves are the extremal hypersurfaces anchored at tL ¼ tR ¼ τ=2.
On the black dashed line t ¼ 0, we have ṙjr¼rmin

¼ 0. When we
anchor the boundary time as τ → ∞, the extremal hypersurface
becomes a constant-r slice, i.e., r ¼ rf. This image refers to
Fig. 1 in Ref. [33].
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gravitational observable on the codimension-1 extremal
slice Σ. That is,

aðrÞ ¼ 1þ
XN
j¼1

ð−1ÞjλjðL4C2Þj; ð3:1Þ

C2 ≡ RμνσρRμνσρ −
4

d − 1
RμνRμν þ 2

dðd − 1ÞR

¼ dðd − 1Þ2ðd − 2Þ r2dh
L4r2d

; ð3:2Þ

where C2 ≡ CμνσρCμνσρ denotes the square of the Weyl
tensor for the bulk spacetime, λj are dimensionless cou-
pling constants, and j ¼ 1; 2;…; N. To simplify the cal-
culation, we set λ̃j ¼ ½dðd − 1Þ2ðd − 2Þ�jλj. After this
substitution, aðrÞ can be rewritten as

aðrÞ ¼ 1þ
XN
j¼1

ð−1Þjλ̃j
�
rh
r

�
2dj

: ð3:3Þ

When all λj ¼ 0, we have aðrÞ ¼ 1, which corresponds to
the CV proposal. The case of N ¼ 1 was discussed in
Ref. [33]. We begin our analysis with N ¼ 2, i.e.,

aðrÞ ¼ 1 − λ̃1

�
rh
r

�
2d
þ λ̃2

�
rh
r

�
4d
: ð3:4Þ

It was chosen in Ref. [35] to make the extreme surface
approach the singularity. Then, we can obtain the expres-
sion of the effective potential, i.e.,

UðrÞ¼−r−d
�
r
L

�
2d
ðrd−rdhÞ

�
1−
�
rh
r

�
2d
λ̃1þ

�
rh
r

�
4d
λ̃2

�
2

:

ð3:5Þ

We consider the case of d ¼ 3 and choose appropriate value
of the coupling parameter λ̃j as shown in Fig. 2(b). In the
red area, UðrÞ gives two peaks, and their values gradually
decrease from left to right. According to Eq. (2.12), we can
obtain the expression for the generalized volume, which is
given by

Vgen ¼ Vd−1

Z
r∞

rmin

a2ðrÞðrLÞ2ðd−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pv2 −UðrÞ

p dr: ð3:6Þ

By calculating the generalized volume, we can observe its
correspondence with Pv as shown in Fig. 3(b). When we
select the appropriate value of λ to construct the UðrÞ as
shown inFig. 2(a), there are two localmaximaof the effective
potential. Equation (2.17) tells us that a higher peak
corresponds to a larger growth rate of the generalized volume
complexity. Therefore, at a very late time, the generalized
volume corresponding to the peak on the left must be bigger
than that of the right. Interestingly, as shown in Fig. 3(a), the
shorter peak corresponds to a larger generalized volume over
a significant range. Consequently, there must be a moment
when the generalized volumes corresponding to the left and
right peaks are equal, and after that, the relative size
relationship between these two will reverse. We refer to this
moment as the turning time [37].
By selecting different values of λ̃1 and λ̃2, we can get the

corresponding relationship between the parameters and the
turning time, as shown in Fig. 4. In another paper, we
investigated the turning time for the four-dimensional RN-
AdS black hole [37].
We discovered that the turning time has a logarithmic

dependence on its parameter, and we have determined the
fitting function to be given by

τturning ¼ a1 − b1 lnðλ̃1 þ c1Þ; ð3:7Þ

FIG. 2. (a) The image of the effective potential UðrÞ with different coupling constants. (b) In the red area, the effective potential has
two local maxima, and the left one is larger than the right one. In the blue area, there are also two local maxima, but the local maxima on
the right is greater than the one on the left.
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τturning ¼ a2 − b2 lnð1=λ̃2 þ c2Þ; ð3:8Þ

where ai, bi, and ci are the fitting values. Among them, ai
and bi have dimensions of length, while ci are dimension-
less constants.
Similarly, we can also consider polynomials with three

monomials or even more. Choosing N ¼ 3, we can get

aðrÞ ¼ 1 − λ̃1

�
r
L

�
2d
þ λ̃2

�
r
L

�
4d
− λ̃3

�
r
L

�
6d
; ð3:9Þ

UðrÞ ¼ −r−d
�
r
L

�
2d
ðrd − rdhÞ

�
1 −

�
rh
r

�
2d
λ̃1

þ
�
rh
r

�
4d
λ̃2 −

�
rh
r

�
6d
λ̃3

�
2

: ð3:10Þ

As before, we continue to consider the planer black hole in
(3þ 1)-dimensional spacetime. Choosing different values
of the parameters, we may have from 0 to 3 local maxima of
the effective potential, as shown in the left image of Fig. 5.
In this case, there are three growth rates at late time.
However, the number of turning times does not necessarily
have to be 2, as shown in the right image of Fig. 5. The
highest peak is so steep that the middle peak corresponds to
a generalized volume that can never be the largest. On the
other hand, if we select more extreme parameters such that
the heights of the two peaks on the left and middle are very
close to each other, we can identify a second turning time,
as shown in Fig. 6.
The emergence of the turning time shows that the growth

rate of the complexity is abrupt while the complexity itself
is still continuous. This phenomenon may imply that there

FIG. 3. (a) The relation between the generalized volume and the conserved momentum Pv of the planar AdS black hole with
d ¼ 3; rhL ¼ 1; λ̃1 ¼ 10−4; λ̃2 ¼ 1.1 � 10−10. The part outside the horizon grows linearly with r and diverges at infinity, we just cut it off at
r ¼ 10rh. (b) The relation between the boundary time τ and the conserved momentum Pv using the parameters mentioned in (a). The
two solid gray lines represent the two local maxima of UðrÞ, i.e., UðrfÞ. The pink curve corresponds to the right peak, the red curve
corresponds to the left one, and the purple curve corresponds to the divergent branch on the left. Both the pink and red solid lines
represent larger generalized volumes at the corresponding boundary time, while the dotted lines are the opposite.

FIG. 4. The fitting of turning time on λ̃1 and λ̃2.
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are phase transitions and may mean that the shortest
geodesic between the reference state and the target state
will change. Similar phase transitions have also been
observed in quantum computation complexity [54,64–66]
and holographic complexity [67–69].

B. Five-dimensional Gauss-Bonnet-AdS black hole

In Ref. [38], the authors analyzed the four-dimensional
and five-dimensional Gauss-Bonnet-AdS black hole and
found that there is a turning time for the four-dimensional
Gauss-Bonnet-AdS black hole, which has two horizons and
for which the extremal hypersurfaces are confined between

them. In this subsection, we will delve deeper into this issue
and examine the distinctions among various gravitational
observables. The metric of the five-dimensional Gauss-
Bonnet-AdS black hole is given by Ref. [70],

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2
3; ð3:11Þ

where

fðrÞ ¼ 1þ r2

2α

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α

�
m
r4

−
1

L4

�s #
; ð3:12Þ

FIG. 5. (a) The image of the effective potential UðrÞ with L ¼ 1, λ̃1 ¼ 10−2, λ̃2 ¼ 3 � 10−6, and λ̃3 ¼ 1.9 � 10−10. (b) The relation
between the boundary time τ and the conserved momentum Pv using the parameters mentioned in (a). The three solid gray lines
represent the three local maxima of UðrÞ, i.e., UðrfÞ. The pink, red, and blue curves correspond to the right, middle, and left peaks,
respectively, and the purple curve corresponds to the divergent branch on the left. Both the pink and blue solid lines represent larger
generalized volumes at the corresponding boundary time, while the dotted lines are the opposite.

FIG. 6. (a) The image of the effective potential UðrÞ with L ¼ 1, λ̃1 ¼ 10−2, λ̃2 ¼ 3 × 10−6. and λ̃3 ¼ 1.967 × 10−10. (b) The relation
between the boundary time τ and the conserved momentum Pv using the parameters mentioned in (a). The three solid gray lines
represent the three local maxima of UðrÞ, i.e., UðrfÞ. The pink, red, and blue curves correspond to the right, middle, and left peaks,
respectively, and the purple curve corresponds to the divergent branch on the left. The pink, red, and blue solid lines represent larger
generalized volumes at the corresponding boundary time, while the dotted lines are the opposite.
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α is a coupling constant with dimensions of length squared,
and m≡ 16πGM=ðd − 2ÞΩd−2 represents the re-scaled
mass of the black hole. We can easily obtain the effective
potential, i.e.,

UðrÞ ¼ −fðrÞa2ðrÞr6: ð3:13Þ

In this section, we use the Gauss-Bonnet invariant and the
Weyl tensor, respectively, to construct aðrÞ. For the Gauss-
Bonnet case, we choose

aGBðrÞ ¼ 1þ λGBα
2RGB; ð3:14Þ

where λGB is the dimensionless coupling constant, andRGB
is given by

RGB ¼
12ð2ðfðrÞ−1ÞÞfðrÞ0 þ rfðrÞ02þ rðfðrÞ−1ÞfðrÞ00

r3
:

ð3:15Þ

The effective potential (3.13) calculated with aðrÞGB is
shown in Fig. 7.
In this case, the effective potential goes to zero at the

singularity. Additionally, since it remains consistently zero
on the event horizon and the effective potential is always
non-negative in the spacelike region inside the black hole,
there is at least one extreme hypersurface at late time. By
selecting the appropriate coupling constant λGB, we can
find the turning time as shown in the left image of Fig. 8. It
is worth noting that in this case the growth rate of the
complexity at late time always exist and is not zero. It has a
lower limit when the turning time tends to infinity, as
shown in the right image of Fig. 8.
For the Weyl tensor case, there are some discussions in

Ref. [38], and we can still find the turning time by adding
higher-order terms, i.e.,

aWðrÞ ¼ 1þ λW1
L4C2 − λW2

L8C4; ð3:16Þ

where

FIG. 7. The shape of the effective potential. (a) L ¼ 1, m ¼ 1, α ¼ 0.1. (b) L ¼ 1, m ¼ 1, λGB ¼ 0.2.

FIG. 8. (a) The relation between the boundary time τ and the conserved momentum Pv with L ¼ 1, m ¼ 1, α ¼ 0.1, λGB ¼ 0.2.
(b) The relation between the coupling constant λ and the conserved momentum at late time P∞ with L ¼ 1, m ¼ 1, α ¼ 0.1.
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C2 ¼ ð2 − 2fðrÞ þ 2rfðrÞ0 − r2fðrÞ00Þ2
2r4

: ð3:17Þ

In this case, the effective potential diverges at a singularity,
as shown in the left image of Fig. 9. We can still find the
turning time by choosing an appropriate coupling constant
λW , as shown in the right image of Fig. 9.
For the case where the effective potential is zero at a

singularity, the presence of extremal hypersurfaces that
cannot reach the late-time regime will no longer occur. As
the effective potential is consistently zero at the horizon, if
it is also zero at the singularity, there must be at least one
local maximum between the horizon and the singularity.
This situation is similar to a black hole with two horizons.
And when the effective potential diverges at the singularity,
the existence of the local maximum depends on the choice
of the coupling constant.
In our opinion, the generalized volume complexity can

be divided into two categories. In the first category, the
effective potential diverges at the singularity, while in
the second one, it goes to zero at either the singularity
or the Cauchy horizon. For the single horizon black holes
without singularity, there exists a third possible scenario for
the effective potential, which we consider to be the same as
when it diverges at the singularity and thus belong to the
first category; see Appendix for details. The first category
will make the coupling constant have a limit, which
requires that there exists an extremal hypersurface at late
time. In the second category, the coupling constants are
desirable across the full phase space, as the extreme
hypersurfaces capable of evolving at late time always exist.
Different values of the coupling constant will only affect
the growth rate of the complexity at late time, as well as the
presence or absence of the turning time. In this case, the
growth rate of the generalized volume complexity will have
a lower limit value, but not zero.

IV. HOLOGRAPHIC COMPLEXITY
FOR BLACK HOLES

WITH TWO HORIZONS

In this section, we take the charged BTZ black hole as an
example to calculate its generalized volume complexity for
black holes with a Cauchy horizon. In this case, there is no
generalized volume complexity of the first category. We
will, respectively, use spacetime curvature and matter to
construct the gravitational observables. Let us first give
the charged BTZ black hole, whose metric is given by
Refs. [71,72],

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2;

fðrÞ ¼ −M þ r2

L2
− πQ2 ln

r
L
: ð4:1Þ

The metric is asymptotically AdS3 with radius L. By
convention, we set 8GN ≡ 1, where GN is the Newton’s
constant. The mass and the charge of the black hole are
denoted byM and Q, respectively, and can be expressed in
terms of the event horizon and the Cauchy horizon r�:

M ¼ r2þ ln r−
L − r2− ln

rþ
L

L2 ln r−
rþ

; ð4:2Þ

Q2 ¼ r2þ − r2−
πL2 ln rþ

r−

: ð4:3Þ

We can also rewrite the metric into the ingoing Eddington-
Finkelstein coordinates, that is,

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dθ2: ð4:4Þ

FIG. 9. (a) The shape of the effective potential with L ¼ 1, m ¼ 1, α ¼ 0.1, λW1
¼ 5 � 10−4. The red line gives the two peaks that are

larger on the left than on the right, the blue line has only one peak, and the black dotted line has no peak. (b) The relation between the
boundary time τ and the conserved momentum Pv with L ¼ 1, m ¼ 1, α ¼ 0.1, λW1

¼ 5 � 10−4, λW1
¼ 4 � 10−14.
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The generalized volume complexity can be represented by

C ¼ 2π

Z
dσr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v̇ ṙ−fðrÞv̇2

q
aðrÞ

≡ 2π

GNL

Z
Σ
dσLðr; v̇; ṙÞ: ð4:5Þ

Obviously, the gauge given by Eq. (2.5) becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞv̇2 þ 2v̇ ṙ

q
¼ aðrÞr: ð4:6Þ

We can just write down its effective potential, complexity,
and complexity growth rate:

UðrÞ ¼ −fðrÞa2ðrÞr2; ð4:7Þ

C ¼ −
4π

GNL

Z
∞

rmin

UðrÞ
fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UðrminÞ −UðrÞp dr; ð4:8Þ

dC
dτ

¼ 2π

GNL
Pv: ð4:9Þ

A. Generalized volume complexity constructed
by spacetime curvature

It is well known that the Weyl tensor is always zero when
d ¼ 2, so we need to look for other nontrivial scalar
functions. In this regard, we can naturally think of the
three-dimensional replacement of the Weyl tensor, i.e., the
Cotton tensor C3. In this subsection, we choose aðrÞ ¼
1þ λL6C2

3, where

C3¼Cijk≡∇iRjk−∇jRik−
1

4
ð∇iRgjk−∇jRgikÞ ð4:10Þ

is the Cotton tensor. In the three-dimensional case,
C2
3 ¼ 1

4
fðrÞf000ðrÞ2. Thus, we can obtain the expression

of the effective potential,

UðrÞ¼
�
M−

r2

L2
þπQ2 ln

r
L

�

×

�
rþλ

L6π2Q4ð−Mþr2=L2−πQ2 ln r
LÞ

r5

�
2

: ð4:11Þ

Similarly, we can still get a figure of the effective
potential and the corresponding turning time as shown
in Fig. 10.
When q ¼ 0, the cotton tensor is zero, and generalized

volume complexity regresses to the CV proposal.

B. Generalized volume complexity constructed
by matter content

For charged black holes, another naturally occurring
scalar function can effectively construct the generalized
volume complexity. i.e., the electromagnetic field action. In
this situation, we choose aðrÞ ¼ 1 − λL2FμνFμν, where

FμνFμν ¼ −2 Q2

r2 , and can obtain an expression for the
effective potential, that is,

UðrÞ ¼
�
r −

2L2Q2λ

r

�
2
�
M −

r2

L2
þ πQ2 ln

r
L

�
: ð4:12Þ

Of course, we can use this configuration to analyze all other
charged black holes.
In this case, we can still find a series of λ,Q, andM such

that UðrÞ has more than one local maxima between r− and
rþ; the one with smaller r is also larger. The parameter
space is shown in Fig. 11. In the analysis that follows, we
only consider the parameters that fall within the red areas,
where we have two local maxima that decrease sequentially
from left to right. As before, we consider their turning time.
For the example shown in Fig. 12, the boundary time and
turning time can be reflected in Fig. 13.

FIG. 10. Left: the shape of the effective potential with L ¼ M ¼ 1 and Q ¼ 0.4. Right: the relation between the boundary time τ and
the conserved momentum Pv with λ ¼ 2 � 10−2, L ¼ M ¼ 1, and Q ¼ 0.4.
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We fix M ¼ L ¼ 1 and choose different Q2

M or λ to
construct a series of UðrÞ as shown in Fig. 14, in which we
only consider the case that the effective potential has two
local maxima. It is worth mentioning that when we fix

M ¼ L, r− varies monotonically with Q2

M as shown in the
right figure of Fig. 14. The turning time of the complexity is
still logarithmic with its parameter,

τturning ¼ AQM − BQM ln

�
M
Q2

þ CQM

�
;

τturning ¼ Aλ − Bλ lnðλþ CλÞ; ð4:13Þ

where A, B, and C are the fitting values. Among them,
A and B have length dimensions, and C is a dimensionless
constant. This conclusion is similar to that of constructing

FIG. 11. The parameter space of the effective potential UðrÞ
between the two horizons of the charged BTZ black hole. In the
red area, there are two local maxima that decrease from left to
right. In the blue area, there are also two local maxima, but the
local maximum on the right is greater than the one on the left. In
the remaining white area, there is only one local maximum.

FIG. 12. The effective potential defined in Eq. (4.12). In this situation, we may have 1 or 2 local maxima of the effective potential for
different parameters. When the number of the local maxima is 1, the result is similar to the CV proposal. Therefore, we only consider the
case of two local maxima. Left: the shape of the effective potential for λ ¼ 0.5, L ¼ M ¼ 1, and Q ¼ 0.3. There are two local maxima
and the local minimum between them is zero. Right: the shape of the effective potential for λ ¼ −0.5, L ¼ M ¼ 1, and Q ¼ 0.3. There
are also two local maxima, but the minimum between them does not reach zero. Whether the local minimum is zero depends only on the
positive or negative of λ.

FIG. 13. The relation between the boundary time τ and the conserved momentum Pv. (a) λ ¼ 0.5, L ¼ M ¼ 1, and Q ¼ 0.3.
(b) λ ¼ −0.5, L ¼ M ¼ 1, and Q ¼ 0.3.
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generalized volume complexity with spacetime curvature
discussed in Sec. III.

C. RN-AdS black hole rediscussion

In our previous work [37], we considered the four-
dimensional RN-AdS black hole as an example to find
the turning time. However, it is important to note that the
conclusion regarding the RN-AdS black hole does not
necessarily converge to that of the AdS-Schwarzschild
black hole. Therefore, we continue our research using
the metric under the Eddington-Finkelstein coordinate,
denoted as

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2; ð4:14Þ

fðrÞ¼1−
2M
r

þQ2

r2
þ r2

L2

¼ðr−r1Þðr−r2ÞðL2þr2þr21þr22þr1r2þrðr1þr2ÞÞ
r2L2

;

ð4:15Þ

where

M ¼ ðr1 þ r2ÞðL2 þ r21 þ r22Þ
2L2

; ð4:16Þ

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2ðL2 þ r21 þ r1r2 þ r22Þ

p
L

: ð4:17Þ

The solution to the equation of motion remains unchanged
from before, and we can get the expression of the effective
potentialUðrÞ ¼ −fðrÞa2ðrÞr4.We still use theWeyl tensor
to construct the gravitational observable, i.e.,

aðrÞ ¼ 1þ λL4C2; ð4:18Þ

C2 ¼ ð2 − 2fðrÞ þ 2rf0ðrÞ − r2f00ðrÞÞ2
3r4

: ð4:19Þ

Now, we can fix the event horizon and adjust Q so that the
Cauchy horizon gradually approaches the singularity, mean-
while the peak on the left also approaches the singularity, as
shown in the left image of Fig. 15.WhenQ → 0, the Cauchy
horizonwill be infinitely close to the singularity. At the same
time, the left peak still has a finite maximum value that
depends on the coupling constant λ. However, ifQ ¼ 0, the
black hole returns to the Schwarzschild-AdS black hole.
With the disappearance of the Cauchy horizon, the left peak
disappears together, and the effective potential diverges at
the singularity. In other words, in the configuration we are
considering, as the chargeQ disappears, the second category
of the generalized volume complexity transitions to the first

FIG. 14. The shape of the effective potential with L ¼ M ¼ 1. (a) λ ¼ 0.4 to 0.8 and Q ¼ 0.3. (b) Q ¼ 0.30 to 0.35 and λ ¼ 0.5.

FIG. 15. (a) The shape of the effective potential with L ¼ rþ ¼ 1, λ ¼ 1 � 10−6. (b) The comparison of Q → 0 and Q ¼ 0.
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case. This mutation in the growth rate of complexity at late
time is shown in the right image of Fig. 15. This brings us
back to the Schwarzschild situation, where the coupling
constant no longer holds in the full parameter space.

V. F1 ≠ F2

In this section, we will consider the case where F1 ≠ F2.
We determine the extreme hypersurface by setting F2 ¼
a2ðrÞ and consider the gravitational observables con-
structed using F1 ¼ a1ðrÞ, as shown in Eqs. (1.4) and
(1.5). Taking the (dþ 1)-dimensional AdS spherically
symmetric black hole as an example, we can still use
the method in Sec. II to get the conserved momentum and
effective potential, i.e.,

ṙ2 þ U2ðrÞ ¼ P2
v; U2ðrÞ ¼ −fðrÞa22ðrÞr2ðd−1Þ: ð5:1Þ

The anchored boundary time τ is uniquely determined by
the properties of the hypersurface, so τ is only related to
a2ðrÞ, i.e.,

τ ¼ −2
Z

∞

rmin

dr
Pv

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v −U2ðrÞ

p
¼ −2

Z
∞

rmin

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2ðrminÞ

p
fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2ðrminÞ −U2ðrÞ
p : ð5:2Þ

However, the generalized volume complexity will depend
on both a1ðrÞ and a2ðrÞ, that is,

CF1;ΣF2
¼ 2Vd−1

GNL

Z
∞

rmin

a1ðrÞa2ðrÞr2ðd−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v þ fðrÞa22ðrÞr2ðd−1Þ

q dr: ð5:3Þ

A. Restriction of aðrÞ
We still take the five-dimensional Gauss-Bonnet-AdS

black hole as an example and select Eqs. (3.14) and (3.16)
as a1ðrÞ and a2ðrÞ, respectively. Using Eqs. (5.2) and (5.3),

we find that the generalized volume complexity loses the
property of late linear growth, as shown in Fig. 16; we think
this is unreasonable. The reason for this is that when aðrÞ2
is replaced by a1ðrÞa2ðrÞ the integrand of C is no longer
positive inside the event horizon. So, we need to impose
certain restrictions on aðrÞ. The modified aðrÞ will ensure
that the integrand of C is always positive inside the event
horizon, i.e.,

a1ðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2GBðrÞ

q
¼ j1þ λGBα

2RGBj;

a2ðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
a2WðrÞ

q
¼ j1þ λW1

L4C2 − λW2
L8C4j: ð5:4Þ

where the parameters and scalar functionals we choose are
consistent with those in Sec.. III B. In this premise, if we
order U1ðrÞ ¼ −fðrÞa21ðrÞr2ðd−1Þ, Eq. (5.3) can be rewrit-
ten as

CF1;ΣF2
¼ −

2Vd−1

GNL

Z
∞

rmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1ðrÞU2ðrÞ

p
fðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
v −U2ðrÞ

p dr: ð5:5Þ

This conclusion is consistent with what Ref. [33] discusses.
And its growth rate is only analytically solved at a later
stage, i.e.,

lim
τ→∞

dCF1;ΣF2

dτ
¼ Vd−1

GNL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1ðrfÞ

q
: ð5:6Þ

It is worth noting that when rmin → rf, U2ðrÞ is at the local
maximum, but the value of the growth rate is determined by
U1ðrÞ as shown in Fig. 17. We can still find the turning time
in this situation, as shown in the right figure of Fig. 18.
Naturally, we can also exchange a1ðrÞ and a2ðrÞ, i.e.,

a1ðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
a2WðrÞ

q
¼ j1þ λW1

L4C2 − λW2
L8C4j; ð5:7Þ

a2ðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2GBðrÞ

q
¼ j1þ λGBα

2RGBj; ð5:8Þ

and can still obtain the turning time as shown in Fig. 19.

FIG. 16. The relation between the boundary time τ and the generalized volume complexity C for the case of F1 ≠ F2 with L ¼ 1,
m ¼ 1, α ¼ 0.1, λGB ¼ 0.3, λW1

¼ 0.5 × 10−2, and λW2
¼ 0.5 × 10−7. The blue and red curves correspond to two extreme hypersurfaces

that can evolve to the late time. When τ → ∞, rmin is rfR and rfL , respectively.
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B. Differences from F1 =F2

For the case of F1 ≠ F2, since the generalized volume
depends on the two different scalar functions, a1ðrÞ and
a2ðrÞ, a higher peak no longer necessarily corresponds to
an extremal hypersurface with a larger generalized volume
as shown in Fig. 20, in which we follow the scalar function
defined by Eqs. (5.7) and (5.8). For this case, the gener-
alized volume corresponding to the left peak will never
exceed that of the right, even if it is higher. On the other
hand, unlike F1 ¼ F2, the evolution of the generalized
volume complexity over time may not be monotonous as
shown in Fig. 21; this does not affect the linear growth at
late time.FIG. 17. The shape of the effective potential for the case of

F1 ≠ F2 with L ¼ 1, m ¼ 1, α ¼ 0.01, λGB ¼ 0.3, λW1
¼

0.3 × 10−3, and λW2
¼ 0.3 × 10−10.

FIG. 18. The figure of the growth of generalized volume complexity with time and the turning time for the case of F1 ≠ F2 with
L ¼ 1, m ¼ 1, α ¼ 0.01, λGB ¼ 0.3, λW1

¼ 0.3 × 10−3, and λW2
¼ 0.3 × 10−10. (a) The relation between the boundary time τ and the

conserved momentum Pv. (b) Generalized volume-complexity evolution over time.

FIG. 19. The evolution of the generalized volume complexity over time after swapping a1ðrÞ and a2ðrÞ in Fig. 17. (a) The effective
potential for the case of F1 ≠ F2 with L ¼ 1, m ¼ 1, α ¼ 0.01, λGB ¼ 0.3, λW1

¼ 0.3 × 10−3, and λW2
¼ 0.3 × 10−10. (b) The relation

between the boundary time τ and the conserved momentum Pv.
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VI. CONCLUSIONS

In this paper, we considered the generalized volume
complexity for the planar AdS black hole, the five-
dimensional Gauss-Bonnet-AdS black hole, the charged
BTZ black hole, and again discussed the four-dimensional
RN-AdS black hole. We derived the expressions for the
complexity, Eq. (2.12), and the growth rate of complexity,
Eq. (2.17). The growth rate of complexity is directly
proportional to the conserved momentum Pv. We used
some different scalar functions aðrÞ to construct various
gravitational observables. Through this process, we dis-
covered that the effective potentials exhibit diverse
behaviors depending on the choice of aðrÞ, which corre-
sponds to different behaviors in the growth rate of
complexity.

In the case we analyzed, there are two or more local
maxima for the effective potential. Through numerical
integration to solve inversely the boundary times with
Eq. (2.18), we observed that in the Pv − τ diagram multiple
Pv values can intersect at the same boundary time τ. It
means there are multiple extremal hypersurfaces that
anchor to the same boundary time. We chose the one with
the largest generalized volume as the dual of the complex-
ity. However, the relative sizes of the generalized volumes
are not fixed; the smaller one would “surpass” at a certain
moment. We refer to this moment as the turning time. It is
worth mentioning that the existence of the turning time
does not depend on the spacetime background inside the
black hole but can always exist by choosing different
gravitational observables. Additionally, the turning time

FIG. 20. (a) The effective potential for the case of F1 ≠ F2 with L ¼ 1, m ¼ 1, α ¼ 0.01, λGB ¼ 1, λW1
¼ 10−4, and λW2

¼ 10−12.
(b) Generalized volume-complexity evolution over time with the above parameters.

FIG. 21. (a) The effective potential for the case of F1 ≠ F2 with L ¼ 1, m ¼ 1, α ¼ 0.1, λGB ¼ 0.3, λW1
¼ 0.7 × 10−2, and

λW2
¼ 10−8. (b) Generalized volume-complexity evolution over time with the above parameters.
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can occur more than once. Furthermore, we found that
the turning time has a logarithmic relationship with the
parameters.
In addition, we divided the generalized volume complex-

ity into two categories based on their properties at the
singularity or the Cauchy horizon. Different categories
determine whether the parameter space is contained within
the full parameter space. Further, by taking the four-
dimensional RN-AdS black hole as an example, we find
that for black holes with two horizons the growth rate of the
generalized volume complexity at late time may change
discontinuously as the Cauchy horizon disappears.
On the other hand, we find that for the case of F1 ≠ F2,

in order to satisfy the property of late-time linear growth of
complexity, some restrictions need to be imposed for the
scalar function aðrÞ to ensure that the integrand of the
generalized volume complexity remains positive. On this
basis, the turning time can still exist; the difference lies in
the fact that during the relatively early stages the evolution
of complexity with time may not necessarily be monotonic.
Finally, it should be pointed out that we can also consider

the complexity equals anything conjecture under the
quantum correction, just like the quantum BTZ black hole.
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APPENDIX: JT black holes

In this Appendix, we will consider briefly about the
Jackiw-Teitelboim (JT) black holes, whose matrix is

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2;

fðrÞ ¼ r2

L2

�
1 −

r2h
r2

�
: ðA1Þ

It is natural that we can use the dilaton field to construct
scalar functions, that is,

aðrÞ ¼ 1þ λ
ϕðrÞ
ϕ0

; ðA2Þ

where

ϕðrÞ ¼ ϕh
r
rh

; ðA3Þ

ϕ0 is a proportionality factor in place of the Newton’s
constant, and the integration constant ϕH is the value of ϕ
on the horizon. In this case,

UðrÞ ¼ −fðrÞa2ðrÞ; ðA4Þ

we can get a shape of the effective potential from this, as
shown in Fig. 22. The JT black hole does not have a
singularity, and the fðrÞjr¼0 ¼ r2h=L

2 is a nonzero constant;
it results in the effective potential’s starting point not being
zero or infinity. The characteristics of the effective potential
at r ¼ 0 depends only on the choice of the scalar functions.
However, we think it can be contained by the first category.
Whether the effective potential diverges at zero does not by
itself affect the extent of the phase space or the size of the
local maximum.

FIG. 22. The shape of the effective potential for L ¼ ϕh ¼
ϕ0 ¼ 1. The purple line has one peak, and the blue line has
no peak.
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