
Contents lists available at ScienceDirect

Nuclear Physics, Section B

journal homepage: www.elsevier.com/locate/nuclphysb

High Energy Physics -- Theory

Cardy-Verlinde formula from boundary matrix model

Pavan Kumar Yerra a,b, Chandrasekhar Bhamidipati c, ,∗, Sudipta Mukherji a,b

a Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha, 751005, India
b Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
c School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India

A R T I C L E I N F O A B S T R A C T 

Editor: Stephan Stieberger Cardy-Verlinde (CV) formula relates the entropy of a strongly coupled conformal field theory 
(CFT) possessing AdS dual, at finite temperature, to its total energy (with an appropriate insertion 
of additional internal energy for charged systems) and Casimir energy. While the CV formula 
has been checked for various CFTs, in the present work, we intend to verify it directly, by 
exploiting a phenomenological matrix model, which is believed to qualitatively capture features 
of strongly coupled  = 4, 𝑆𝑈 (𝑁) Super Yang-Mills theory on 𝑆3, at finite temperature and 
chemical potential at large 𝑁 .

1. Introduction

A couple of decades ago, Verlinde observed that the entropy of a strongly coupled conformal field theory (CFT), possessing AdS 
dual, satifies a Cardy-like formula at finite temperature [1]. This later came to be known as the Cardy-Verlinde (CV) formula. For 
CFTs on 𝑅× 𝑆𝑛, it reads

𝑆 = 2𝜋𝑅

𝑛 
√

𝐸𝑐(2𝐸 −𝐸𝑐). (1.1)

Here, 𝑆 is the entropy associated with the CFT, 𝑅 is the radius of the 𝑆𝑛, 𝐸 is the total energy and 𝐸𝑐 is the subextensive part of 
it. This relation was shown to arise holographically from the thermodynamic quantities associated with the AdS-Schwarzschild black 
hole. The CV formula drew immediate attention to many as it satifies a Bekenstein like entropy bound1 in 𝑛 dimensions, namely,

𝑆 ≤ 2𝜋𝑅𝐸

𝑛 
. (1.2)

Subsequently, the formula was generalized and found its way into many other CFTs. One example that will be important for our 
purpose is the one dual to an electrically charged AdS black hole. The entropy was then found to obey [3]

𝑆 = 2𝜋𝑅

𝑛 
√

𝐸𝑐[2(𝐸 −𝐸𝑞) −𝐸𝑐], (1.3)

where 𝐸𝑞 is the electrostatic potential energy.
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of 2 in eqn. (1.1) takes the value of 4 [2]. The CV formula is expected to hold at general coupling, where the prefactor becomes a function of 𝑔2
𝑌𝑀

𝑁 , smoothly 
interpolating between the two values. Thus, the bound in eqn. (1.2) is Bekenstein-like.
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While a direct computation [4] of the entropy of a weakly coupled CFT is shown to violate the bound (1.2), for a strongly 
coupled CFT, a similar analysis is missing. In this work we wish to take a step along this direction. Generally, to describe a gauge 
theory on 𝑆3 × 𝑆1 at zero coupling, one writes down an effective action involving the vev of the Wilson-Polyakov loop variable on 
𝑆1 as the only light degree of freedom [5--12]. Since it is hard to compute such an action at finite Yang-Mills coupling, one may 
resort to phenomenological model belonging to the same universality class of the boundary theory. Indeed, such a phenomenological 
model was proposed in [7]. It contains two parameters which depend on the temperature and 𝜆, the ’t Hooft coupling. In [7,13], 
these dependences were found by exploiting the data arising from the dual supergravity description. Subsequently, the model was 
generalized to incorporate the 𝑅-charge emerging from the charged AdS black hole [8,13]. This is done by allowing the model 
parameters to depend on the chemical potential as well. Armed with the results of these investigations, in the present work, we check 
if the model is consistent with the CV formula. To this end, we compute the left and the right hand sides of the equation (1.1) directly 
from the model and find qualitative agreement. A similar agreement follows for the charged case as well when compared against 
the equation (1.3). Due to the complexity of the model, at places analytical handle becomes difficult and we had to resort to the 
numerical computations.

The organization of this paper is as follows. In section-2, we start with the AdS-Schwarzschild black hole. In subsection-2.1, 
we briefly review the corresponding matrix model living on the boundary. Subsection-2.2 contains a direct check on the CV formula 
arising from the model. Subsequently, in section-3, working in the canonical ensemble, we generalize our computation of the previous 
section to the electrically charged black hole case. In subsection-3.1, we review the extension of the matrix model to include non-zero 
chemical potential. The computation leading to the agreement with the CV formula is presented in the next subsection. Section-4

contains some remarks. We end the paper with two appendices where the thermodynamic properties associated with the bulk black 
holes are summarized.

2. Cardy-Verlinde formula from boundary matrix model: zero chemical potential

In this section, we start by considering the case of a conformal field theory (CFT) represented by a matrix model dual to the 
Schwarzschild-AdS5 black hole on the gravity side. We compute the entropy of the CFT from the effective potential of the matrix 
model. Considering the CFT in a finite volume, the Casimir energy can be obtained. Then, we numerically verify the Cardy-Verlinde 
formula relating the entropy with its energy and Casimir energies.

2.1. Boundary matrix model: zero chemical potential

Our starting point is the phenomenological matrix theory, called the (𝑎, 𝑏) model, which has been shown to capture, among other 
aspects, the decofinement phase transition of  = 4, 𝑆𝑈 (𝑁) gauge theory in the large 𝑁 limit. We only describe this model briefly, 
as details are available in [6,7]. We also closely follow the set up in [9,11--13], well suited for our purposes. To this end, the partition 
function of the SYM theory is written as a matrix integral over the effective action consisting of the operator corresponding to the 
Wilson-Polyakov loop, i.e., (tr𝑈 )∕𝑁 as

𝑍(𝜆,𝑇 ) = ∫ 𝑑𝑈𝑒𝑆eff(𝑈 ). (2.1)

Here, 𝑈 = 𝑃 exp(𝑖 ∫ 𝛽

0 𝐴𝑑𝜏) is the 𝑈 (𝑁) unitary matrix, where 𝐴(𝜏) stands for the zero mode (of the time component) of the gauge field 
on 𝑆3. Generally, the action 𝑆eff(𝑈 ) turns out to be a polynomial in the traces of 𝑈 and its powers, which are allowed by imposing 
the 𝑍𝑁 symmetry. Now, by truncating the above action and retaining only a couple of terms, one ends up with the aforementioned 
phenomenological (𝑎, 𝑏) model, which takes the form,

𝑍(𝑎, 𝑏) = ∫ 𝑑𝑈 exp[𝑎(tr𝑈 tr𝑈†) + 𝑏 
𝑁2 (tr𝑈 tr𝑈†)2]. (2.2)

Here, 𝑎 and 𝑏 are the key parameters of the model which contain nontrivial dependence on the temperature 𝑇 and the ’t Hooft 
coupling 𝜆. Furthermore, the effecting potential ensuing from this set up can be expressed in terms of the order parameter 𝜌 (which 
is the expectation value of the Polyakov loop 1 

𝑁
⟨tr𝑈⟩) that characterizes the decofined phase of the gauge theory as:

𝑉 (𝜌) = 1 − 𝑎

2 
𝜌2 − 𝑏 

2
𝜌4 for 0 ≤ 𝜌 ≤ 1

2
(2.3)

= −𝑎

2 
𝜌2 − 𝑏 

2
𝜌4 − 1

4
log[2(1 − 𝜌)] + 1

8
for

1
2
≤ 𝜌 ≤ 1. (2.4)

Here, 𝜌2 = ( 1 
𝑁2 )tr𝑈 tr𝑈† and the saddle point equation is

𝑎𝜌+ 2𝑏𝜌3 = 𝜌 for 0 ≤ 𝜌 ≤ 1
2

(2.5)

= 1 
4(1 − 𝜌)

for
1
2
≤ 𝜌 ≤ 1. (2.6)

The parameters satisfy the bounds 𝑎 < 1 and 𝑏 > 0. The dependence of the parameters 𝑎(𝑇 ) and 𝑏(𝑇 ) on the temperature 𝑇 can be 
obtained numerically making use of the bulk data, as in [7,9,13]. The result is captured in Fig. 1. 
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Fig. 1. Plots show the temperature dependence of the parameters 𝑎(𝑇 ) and 𝑏(𝑇 ) for the phenomenological (𝑎, 𝑏) matrix model at zero chemical potential. The red dots 
denote the data points, which are fitted by the blue colored curves. The fitting formulas are 𝑎(𝑇 ) = 𝑐1log(𝑇 ) + 𝑐2𝑇 + 𝑐3 , and 𝑏(𝑇 ) = 𝑐4𝑇 + 𝑐5 , (where, 𝑐1 = 2.257, 𝑐2 =
−4.579, 𝑐3 = 4.171, 𝑐4 = 11.239, 𝑐5 = −4.169.).

Fig. 2. Case of (𝑎, 𝑏) matrix model at zero chemical potential: (a) Nature of 𝑇 (𝜌) qualitatively resembles the behavior of the equation of state of the bulk (cf. Fig. 7 in 
Appendix-A). (b) The effective potential 𝑉 (𝜌) at various temperatures 𝑇 is shown. Temperature of the curves increases from top to the bottom. Blue curve is for 𝑇min, 
where as the dashed red curve showing the HP transition is for 𝑇HP, with 𝑎 = 0.3155 and 𝑏 = 1.194, (𝜌min, 𝜌HP) = (0.714,0.861).

Now, utilizing the fitting curves for 𝑎(𝑇 ) and 𝑏(𝑇 ), the saddle point equation (2.6) can be solved, yielding the following expression 
for temperature:

𝑇 (𝜌) =
𝑐1

(𝑐2 + 2𝑐4𝜌2)
ProductLog

[ 𝑒

1−4𝑐3(1−𝜌)𝜌−8𝑐5(1−𝜌)𝜌3

4𝑐1𝜌(1−𝜌) (𝑐2 + 2𝑐4𝜌2)
𝑐1

]
. (2.7)

As seen from Fig. 2a, 𝑇 (𝜌) mimics the behavior of the equation of state of the theory in the bulk (see Fig. 7 in Appendix-A). 
Now, let us discuss the nature of the effective potential 𝑉 (𝜌), which has been plotted in Fig. 2b for various temperatures. In the 

𝜌 > 1∕2 region, the phase structure of the bulk system emerges from the saddle points of 𝑉 (𝜌) [7]. At any temperature above a certain 
minimum temperature 𝑇min, one gets two saddle points corresponding to large black holes (LBH) and small black holes (SBH), with the 
former being stable and the later unstable. 𝑇 = 𝑇min is the nucleation point for the creation of this black hole pair. Minimum occurring 
at 𝜌 = 0.861 denotes the HP transition temperature in the bulk, which corresponds to the decofining temperature of the boundary 
theory. The minima occurring at 𝜌 = 0 stands for the thermal AdS5 phase. It is useful to note that the supergravity description is not 
valid in the 𝜌 ≤ 1∕2 region and at 𝜌 = 1∕2 the matrix model exhibits a third order Gross-Witten transition [14], which has a natural 
interpretation as a Horowitz-Polchinski point in string theory [15].

Since, here the effective potential 𝑉 (𝜌) plays the role of off-shell free energy of the bulk theory (see equation-(A.8) in Appendix-A), 
in what follows, we use it to derive other thermodynamic quantities, as is generally done in standard treatment. The on-shell free 
energy 𝐹 can now be obtained, using the fitting curves for 𝑎(𝑇 ), 𝑏(𝑇 ), and on substituting 𝑇 (𝜌) in the effective potential 𝑉 (𝜌) in 
equation (2.4), as

𝐹 = −𝜌2

2 
(𝑐1log𝑇 + 𝑐2𝑇 + 𝑐3) −

𝜌4

2 
(𝑐4𝑇 + 𝑐5) −

1
4

log[2(1 − 𝜌)] + 1
8

. (2.8)

The computation of the entropy 𝑆 of the CFT (assuming a relation of the form 𝑑𝐹 = −𝑆𝑑𝑇 analogous to bulk free energy) turns out 
to be

𝑆 = − 𝜕𝐹

𝜕𝑇
= −

𝜕𝐹∕𝜕𝜌

𝜕𝑇 ∕𝜕𝜌 
. (2.9)

Although, the above can be evaluated straightforwardly, the expression is large and hence we do not present it here.
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Fig. 3. For (𝑎, 𝑏) matrix model with zero chemical potential: red curve is for the LHS and the blue curve is for the RHS of the equation (2.17). 

2.2. Cardy-Verlinde formula

Now, to derive the Cardy-Verlinde (CV) formula, we closely follow the set up in [16]. We write the boundary metric, from the 
large 𝑟 behavior of the bulk metric (A.2), as

𝑑𝑠2 = 𝑟2

𝑙2
(−𝑑𝑡2 + 𝑙2𝑑Ω2

3). (2.10)

After scaling the time parameter to 𝜏 = 𝑅

𝑙
𝑡, the above metric can be recast as

𝑑𝑠2 = 𝑟2

𝑅2 (−𝑑𝜏2 +𝑅2𝑑Ω2
3), (2.11)

which is conformally equivalent to ℝ × 𝑆3, where 𝑆3 now has radius 𝑅. According to the holographic principle, the temperature 𝑇
and the free energy 𝐹 of the CFT can be obtained by scaling the respective expressions in (2.7) and (2.8) as [16]:

𝑇̄ = 1 
𝛽
= 𝑙

𝑅
𝑇 , (2.12)

𝐹 = 𝑙

𝑅
𝐹 , (2.13)

with the CFT volume taken to be 𝑉 = 𝜔3𝑅
3. Assuming the free energy to be 𝐹 = 𝐸̄ − 𝑇̄ 𝑆̄ , we derive the energy 𝐸̄ as a function of 

temperature 𝑇̄ and volume 𝑉 as

𝐸̄ = 𝜕(𝛽𝐹 )
𝜕𝛽

|||V̄ =
𝜕(𝛽𝐹 )∕𝜕𝜌

𝜕𝛽∕𝜕𝜌 
|||R, (2.14)

while, the entropy 𝑆̄ is

𝑆̄ = 𝛽(𝐸̄ − 𝐹 ) = 𝑆. (2.15)

This shows that the entropy of the CFT does not scale with 𝑅. Now, the pressure 𝑃 can be dfined as

𝑃 = − 𝜕𝐹

𝜕𝑉

|||𝛽 = −
𝜕𝐹 (𝛽, 𝜌)∕𝜕𝜌

𝜕𝑉 ∕𝜕𝜌 
|||𝛽 , (2.16)

which satifies the equation of state 𝐸̄ = 3𝑃𝑉 . The Gibbs free energy is 𝐺̄ = 𝐹 + 𝑃𝑉 , and thus the Casimir energy can be dfined by 
𝐸̄𝑐 = 3𝐺̄ [1]. The expressions for the aforementioned thermodynamic quantities can be obtained, but are quite lengthy. Hence, we 
directly show our result in Fig. 3, which cofirms validity of the following Cardy-Verlinde formula given as [1]:

𝑆̄ = 2𝜋𝑅

3 

√
𝐸̄𝑐(2𝐸̄ − 𝐸̄𝑐). (2.17)

There is however a mismatch of the curves around 𝜌 = 1 in Fig. 3, which we attribute to some statistical errors and the approximations 
which were considered in the current model. 

3. Cardy-Verlinde formula from boundary matrix model: non-zero chemical potential

In this section, we consider a boundary matrix model with chemical potential dual to Reissner-Nordstrom-AdS5 black holes in 
canonical (fixed charge) ensemble. Using the effective potential of the matrix model, we perform a computation similar to the one 
in the previous section. We also numerically verify the Cardy-Verlinde formula, which now contains electrostatic potential energy 
coming from the charge, in addition to the Casimir energy present earlier.
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Fig. 4. Case of (𝑎, 𝑏) phenomenological matrix model at non-zero chemical potential (in the canonical ensemble): Plots show the temperature dependence of the 
parameters 𝑎(𝑇 ) and 𝑏(𝑇 ) for 𝑇 ≥ 𝑇cr =

4
√
3

5𝜋
. Red dots denote the data points, whose fits are represented by blue colored curves. The fitting curves are, 𝑎(𝑇 ) = 𝑐1𝑇 + 𝑐2 , 

and 𝑏(𝑇 ) = 𝑐3𝑇 + 𝑐4 . (Note: 𝑐1 = −0.641573, 𝑐2 = 0.611924, 𝑐3 = 14.2782, 𝑐4 = −5.64198.)

Fig. 5. For the (𝑎, 𝑏) matrix model with finite chemical potential (in canonical ensemble): (a) Plot of equation of state 𝑇 (𝜌, 𝑞) for 𝑞 ≤ 𝑞cr . From top to bottom, the 
charge increases. Dashed curve stands for the case 𝑞 = 𝑞cr with the red dot denoting the critical point; Plots in (b) and (c) are for the potential 𝑉 (𝜌) for the cases 𝑞 = 𝑞cr
(and 𝑇 = 𝑇cr ) and for 𝑞 < 𝑞cr , respectively.

3.1. Boundary matrix model at non-zero chemical potential

One can extend the (𝑎, 𝑏) matrix model shown in eqn. (2.2), with an additional logarithmic term in the effective potential at a 
fixed nonzero charge 𝑞. This will serve as a boundary dual for the Reissner-Nordstrom AdS5 black holes in the canonical ensemble. 
The effective action of this model is [8]:

𝑆𝑞 = 𝑆
(
𝑎(𝑇 ), 𝑏(𝑇 ), 𝜌

)
+ 𝑞 log(𝜌), (3.1)

which is supplemented by the following saddle point equations:

𝜌𝐹 + 𝑞 = 𝜌2 for 0 ≤ 𝜌 ≤ 1
2

(3.2)

= 𝜌 
4(1 − 𝜌)

for
1
2
≤ 𝜌 ≤ 1 , (3.3)

where 𝐹 (𝜌) = 𝑎𝜌+ 2𝑏𝜌3. The effective potential for this model is

𝑉 (𝜌) = 1 − 𝑎

2 
𝜌2 − 𝑏 

2
𝜌4 − 𝑞 log(𝜌) for 0 ≤ 𝜌 ≤ 1

2
(3.4)

= −𝑎

2 
𝜌2 − 𝑏 

2
𝜌4 − 𝑞 log(𝜌) − 1

4
log[2(1 − 𝜌)] + 1

8
for

1
2
≤ 𝜌 ≤ 1. (3.5)

For the 𝜌 > 1∕2 region, the behavior of the parameters 𝑎(𝑇 ) and 𝑏(𝑇 ) can be computed for 𝑇 ≥ 𝑇cr regime [8,13]. The results are 
shown in the Fig. 4. This of course requires the usage of bulk equation of state (see the Appendix-B for details). 

The fitting curves for 𝑎(𝑇 ) and 𝑏(𝑇 ) can now be used to solve the saddle point equations (3.3) for temperature, giving:

𝑇 (𝜌, 𝑞) =
4𝑞(1 − 𝜌) + 8𝑐4(1 − 𝜌)𝜌4 + 4𝑐2(1 − 𝜌)𝜌2 − 𝜌 

4(𝜌− 1)𝜌2(𝑐1 + 2𝑐3𝜌2) 
. (3.6)

The behavior of the above expression extracted from curve fitting, matches qualitatively with the known bulk formula, as is evident 
from Fig. 5a. The critical point can also be shown to lie at (𝑇cr , 𝑞cr , 𝜌cr ) = ( 4

√
3

5𝜋 , 1 
3
√
15

, 0.546293). 
Let us now summarize how the effective potential 𝑉 (𝜌) at a fixed charge 𝑞 characterizes the phases for various temperatures, 

particularly looking at figures Fig. 5b, and Fig. 5c. The stable/unstable saddle points of 𝑉 (𝜌) (for 𝜌 > 1∕2) denote the corresponding 
stable/unstable black hole solutions in the bulk (cf. Fig. 8 in Appendix-B). In the regime 𝑞 < 𝑞cr at certain low temperatures, such 
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as, 𝑇 < 𝑇01, one sees the presence of only one saddle point, which can be interpreted as the small black hole in the bulk. A raise in 
temperature to 𝑇01 results in the nucleation of two saddle points which in the bulk are the unstable intermediate and the stable large 
black hole. When the temperature is raised further, such that, 𝑇01 < 𝑇 < 𝑇02, there exist three saddle points (corresponding to small, 
intermediate and large black holes in the bulk). As can be seen in the aforementioned figures, for 𝑇 = 𝑇02, two of the saddle points 
merge (namely, the merging of small and intermediate black hole branches). Finally, for any temperature 𝑇 > 𝑇02, there is always a 
single saddle point, representing the stable large black hole of the bulk. There is also an interesting critical point at 𝑞 = 𝑞cr , where 
all the three saddle points coalesce and with this, the phase structure exhibited by the effective potential 𝑉 (𝜌) reproduces the known 
results from the bulk for 𝑞 ≤ 𝑞cr .

2 We should add that 𝜌 = 0 is not a solution in the non-zero charge case.

Since, close to the critical region (i.e., 𝑞 ≤ 𝑞cr ), the effective potential 𝑉 (𝜌) reproduces the nature of the off-shell bulk free energy, 
we utilize it to obtain other thermodynamic quantities as follows. The on-shell free energy 𝐹 , can be computed from the fitting curves 
for 𝑎(𝑇 ), 𝑏(𝑇 ). This is practically done by substituting 𝑇 (𝜌, 𝑞) in the effective potential 𝑉 (𝜌) in equation (3.5), to obtain

𝐹 = −𝜌2

2 
(𝑐1𝑇 + 𝑐2) −

𝜌4

2 
(𝑐3𝑇 + 𝑐4) − 𝑞log(𝜌) − 1

4
log[2(1 − 𝜌)] + 1

8
≡ 𝐸 − 𝑇 𝑆, (3.7)

where similar to the situation in the bulk, we assume that the free energy obeys 𝑑𝐹 = 𝜇𝑑𝑄−𝑆𝑑𝑇 .3 Now, the computation of entropy 
𝑆 of the CFT results in

𝑆 = − 𝜕𝐹

𝜕𝑇

|||Q = −
𝜕𝐹∕𝜕𝜌

𝜕𝑇 ∕𝜕𝜌 
|||Q = 1

2
𝜌2(𝑐1 + 𝑐3𝜌

2). (3.8)

Also, the energy 𝐸 of the CFT is

𝐸 = 𝐹 + 𝑇 𝑆

= 1 
24

(
3 − 12𝜌2(𝑐2 + 𝑐4𝜌

2) − 6log[2(1 − 𝜌)] − 2
√
3𝑄log(𝜌)

)
, (3.9)

where we assume that it satifies the first law: 𝑑𝐸 = 𝑇 𝑑𝑆 + 𝜇𝑑𝑄. The chemical potential 𝜇 corresponding to the charge is

𝜇 = 𝜕𝐸

𝜕𝑄

|||S = −
log(𝜌)

4
√
3

. (3.10)

3.2. Cardy-Verlinde formula

It is now possible to derive the Cardy-Verlinde (CV) formula following the set up in [3]. Taking the scaling of the boundary metric 
as in eqn. (2.11), the energy 𝐸̄, temperature 𝑇̄ , chemical potential 𝜇̄, charge 𝑄̄, and the entropy 𝑆̄ of the CFT are scaled as:

𝐸̄ = 𝑙

𝑅
𝐸, (3.11)

𝑇̄ = 𝑙

𝑅
𝑇 , (3.12)

𝜇̄ = 𝑙

𝑅
𝜇, (3.13)

𝑄̄ = 𝑄, (3.14)

𝑆̄ = 𝑆. (3.15)

These satisfy the first law: 𝑑𝐸̄ = 𝑇̄ 𝑑𝑆̄ + 𝜇̄𝑑𝑄̄− 𝑃𝑑𝑉 . The pressure 𝑃 , conjugate to the volume 𝑉 = 𝜔3𝑅
3, is given by

𝑃 = − 𝜕𝐸̄

𝜕𝑉

|||S̄,Q̄
= −

𝜕𝐸̄∕𝜕𝑅 
𝜕𝑉 ∕𝜕𝑅

|||S̄,Q̄

= 1 
72𝑅4

(
3 − 12𝜌2(𝑐2 + 𝑐4𝜌

2) − 6log[2(1 − 𝜌)] − 2
√
3𝑄log(𝜌)

)
. (3.16)

We now dfine the Casimir energy 𝐸̄𝑐 (as the violation of the Euler identity [1,3]), and the electric potential energy 𝐸̄𝑄 [3], as:

𝐸̄𝑐 ≡ 3(𝐸̄ + 𝑃𝑉 − 𝑇̄ 𝑆̄ − 𝜇̄𝑄̄), (3.17)

𝐸̄𝑄 ≡ 1
2

𝜇̄𝑄̄. (3.18)

Now, as shown in the Fig. 6, one can numerically verify the Cardy-Verlinde formula [3]:

𝑆̄ = 2𝜋𝑅

3 

√
𝐸̄𝑐[2(𝐸̄ − 𝐸̄𝑄) − 𝐸̄𝑐]. (3.19)

2 One can refer [8], for further details of the phase structure.
3 Here, we have replaced 𝑞 with the physical charge 𝑄, using eqn. (B.5).
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Fig. 6. For (𝑎, 𝑏) matrix model with non-zero chemical potential: red curve is for the LHS and the blue curve is for the RHS of the equation (3.19). Here, we used 
𝑄 = 0.1.

4. Conclusion

To conclude, in this work, we made an attempt to verify the Cardy-Verlinde (CV) formula directly working in the boundary gauge 
theory. Our computations were facilitated by the phenomenological matrix model proposed to be an effective model for the strongly 
coupled  = 4, 𝑆𝑈 (𝑁) gauge theory at finite temperature and chemical potential at large 𝑁 . Our results are summarized in Figs. 3
and 6. While for small values of 𝜌, we find that the CV formula is satified, there are discrepancies when 𝜌 approaches one. Though the 
reasons are not immediately obvious to us, it could be because of truncating the model to contain terms with only a few lower powers 
of 𝜌 with possible statistical errors. With the inclusion of higher curvature terms in the Einstein action and in the cases involving 
arbitrary horizon topologies, interesting modfications of the CV formula have been noted [3]. Using known methods to include such 
corrections in the boundary matrix models [9--11], it should be a good exercise to check the validity of CV formula in more general 
situations.
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Appendices

In the following two appendices, we summarize the procedure for obtaining the off-shell free energy of Schwarzschild-AdS and 
the Reissner–Nordstrom-AdS black holes, and also present their phase structure, which will be helpful to refer to, when comparing 
with the phase structure shown by boundary matrix model in the main text.

Appendix A. Schwarzschild-AdS black holes

Staring point is the 5-dimensional Schwarzschild-AdS black holes in the bulk, with the action given below, followed by the line 
element [17]:

𝐼 = − 1 
16𝜋𝐺 ∫ 𝑑5𝑥

√
−𝑔

[
𝑅+ 12

𝑙2

]
, (A.1)

𝑑𝑠2 = −𝑉 (𝑟)𝑑𝑡2 + 𝑑𝑟2

𝑉 (𝑟)
+ 𝑟2𝑑Ω2

3, (A.2)

where 𝐺 denotes the Newton’s constant, 𝑑Ω2
3 is the metric on the unit 3-sphere 𝑆3 with volume 𝜔3. The function 𝑉 (𝑟) takes the form

𝑉 (𝑟) = 1 − 𝑚 
𝑟2

+ 𝑟2

𝑙2
(A.3)

with 𝑙 as the AdS length and 𝑚 related to the ADM mass 𝑀 of the hole. The usual thermodynamic quantities, such as, energy 𝐸, 
temperature 𝑇 , entropy 𝑆 , and finally the free energy 𝐹 of the hole can be written as a function of the horizon radius 𝑟+ as:
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Fig. 7. Schwarzschild black holes in AdS5 : (a) Temperature 𝑇 plotted in terms of the horizon radius 𝑟+ , showing the existence of small (𝑟+ < 𝑟min) and large (𝑟+ > 𝑟min)
black hole branches for 𝑇 > 𝑇min . The Hawking-Page (HP) transition is seen at 𝑇 = 𝑇HP . (b) This plot shows the nature of Bragg-Williams free energy 𝑓 with respect to 
the horizon radius 𝑟+ at various temperatures 𝑇 . Temperature of the curves decreases from the bottom to the top. The blue curve is at 𝑇min and the dashed red curve 
corresponds to the temperature 𝑇HP. Also, (𝑟min, 𝑇min) = ( 1 √

2
,

√
2

𝜋
) and (𝑟HP, 𝑇HP) = (1, 3 

2𝜋
).

𝐸 = 𝑀 =
3𝜔3
16𝜋𝐺

𝑚

=
3𝜔3
16𝜋𝐺

(
𝑟2+ +

𝑟4+

𝑙2

)
, (A.4)

𝑇 =
𝑙2 + 2𝑟2+
2𝜋𝑙2𝑟+

, (A.5)

𝑆 =
𝜔3
4𝐺

𝑟3+, (A.6)

𝐹 = 𝑀 − 𝑇 𝑆. (A.7)

The above quantities can be shown to satisfy the first law of thermodynamics: 𝑑𝐸 = 𝑇 𝑑𝑆 , with the free energy obeying 𝑑𝐹 = −𝑆𝑑𝑇 . 
From the equation of state i.e., the plot of temperature in Fig. 7a, one deduces the existence of a minimum temperature 𝑇min, beyond 
which there can be two black holes, known as, the small (𝑟+ < 𝑟min) and large (𝑟+ > 𝑟min). The small black hole is locally unstable 
(with negative specific heat), and the larger counterpart is stable. A key point in the phase structure is at a different temperature 
𝑇HP > 𝑇min, which corresponds to the Hawking-Page (HP) transition, beyond which the large black hole branch is preferred over 
other phases. 

The HP phase transition can be understood straightforwardly with the construction of Bragg-Williams (BW) off-shell free energy 
𝑓 4 as [18]:

𝑓 (𝑟+, 𝑇 ) = 𝑀 − 𝑇 𝑆 = 3𝑟2+(1 + 𝑟2+) − 4𝜋𝑟3+𝑇 . (A.8)

Here, the horizon radius 𝑟+ is treated as an order parameter and the temperature 𝑇 as an external parameter. The nature of the free 
energy 𝑓 for various temperatures can be inferred from Fig. 7b. The minima of the free energy 𝑓 , represent the locally stable large black 
hole phase, and the maxima represent the locally unstable small black hole phase, while the AdS space (𝑟+ = 0) corresponds to the zero 
of free energy. The HP transition happens when there is a degenerate minimum that satifies the two conditions (𝑓 = 0 and

𝜕𝑓

𝜕𝑟+
= 0). 

Further details of the phase structure can be found in [18,19].

Appendix B. Reissner–Nordstrom-AdS black holes

Let us now consider charged black holes, namely, the Reissner–Nordstrom-AdS black holes in 5-dimensions in the canonical (i.e., 
fixed charge) ensemble. The action and the line element are known to be [20,21]:

𝐼 = − 1 
16𝜋𝐺 ∫ 𝑑5𝑥

√
−𝑔

[
𝑅− 𝐹 2 + 12

𝑙2

]
, (B.1)

𝑑𝑠2 = −𝑉 (𝑟)𝑑𝑡2 + 𝑑𝑟2

𝑉 (𝑟)
+ 𝑟2𝑑Ω2

3, (B.2)

with 𝑉 (𝑟) and gauge potential noted to be:

𝑉 (𝑟) = 1 − 𝑚 
𝑟2

+ 𝑞2

𝑟4
+ 𝑟2

𝑙2
, (B.3)

4 Through out the manuscript, we work with the units ℏ = 𝑐 = 1, and we set AdS length 𝑙, volume of the three sphere 𝜔3, and 16𝜋𝐺 to 1.
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Fig. 8. The Reissner-Nordstrom black hole phases in AdS5 (in the canonical ensemble): (a) Plots of equation of state, i.e., 𝑇 (𝑟+ , 𝑞) for various charges 𝑞, inferring the 
presence of three black hole branches (i.e., the small, the intermediate, and the large) for 𝑞 < 𝑞cr , with one branch for 𝑞 > 𝑞cr . Charge of the curves decreases from 
bottom to the top. Dashed curve is plotted for 𝑞 = 𝑞cr . Red dot corresponds to the critical point; Off-shell free energy 𝑓 is shown for two cases, namely, (b) 𝑞 = 𝑞cr , 
and 𝑇 = 𝑇cr . (c) for 𝑞 < 𝑞cr . The inset plot shows the corresponding temperatures.

𝐴 =
(
−1

𝑐

𝑞

𝑟2
+ 𝜇

)
𝑑𝑡. (B.4)

We get 𝑐 = 2∕
√
3, and the parameter 𝑞 is related to the black hole’s charge as

𝑄 = 2
√
3
( 𝜔3
8𝜋𝐺

)
𝑞. (B.5)

The gauge potential is picked to vanish on the horizon at 𝑟 = 𝑟+, which of course fixes the chemical potential

𝜇 = 1
𝑐

𝑞

𝑟2+
. (B.6)

This shows the electrostatic potential difference between the horizon and ifinity. The standard thermodynamic quantities such as, 
energy 𝐸, temperature 𝑇 , entropy 𝑆 , and the free energy 𝐹 receive additional corrections due to the presence of charge and read as:

𝐸 = 𝑀 =
3𝜔3
16𝜋𝐺

𝑚

=
3𝜔3
16𝜋𝐺

(
𝑟2+ + 𝑞2

𝑟2+
+

𝑟4+

𝑙2

)
, (B.7)

𝑇 =
2𝑟6+ + 𝑙2𝑟4+ − 𝑞2𝑙2

2𝜋𝑙2𝑟5+
, (B.8)

𝑆 =
𝜔3
4𝐺

𝑟3+, (B.9)

𝐹 = 𝑀 − 𝑇 𝑆. (B.10)

These once again follow the first law: 𝑑𝐸 = 𝑇 𝑑𝑆 + 𝜇𝑑𝑄, and the free energy satifies 𝑑𝐹 = 𝜇𝑑𝑄 − 𝑆𝑑𝑇 . Thermodynamics and 
phase transitions of charged black holes in AdS have a rich history, whose phase structure closely follows the van der Waals fluid 
model [20--22], which is captured by the equation of state 𝑇 (𝑟+, 𝑞), shown in Fig. 8a. There is a special critical charge 𝑞cr and 
temperature 𝑇cr , above which the black holes enter a unique stable phase. Below this critical limit, the system can exist in any of 
the three phases (namely, the small, intermediate, and the large black hole branches). The small and large black hole branches are 
locally stable (due to positive specific heat), but the intermediate branch is unstable. There is of course a first order transition between 
the small black holes and the large black holes, terminating in a second order critical point, which is a point of iflection, obtained 
generally as

𝜕𝑇

𝜕𝑟+
= 0, and, 𝜕2𝑇

𝜕𝑟2+
= 0. (B.11)

This gives the critical point as (𝑇cr , 𝑟cr , 𝑞cr ) = ( 4
√
3

5𝜋 ,
1 √
3
,

1 
3
√
15
). 

Now, we can construct the Bragg-Williams off-shell free energy 𝑓 as in Appendix-A, where, in addition to the temperature, the 
charge is also an external parameter. Horizon radius 𝑟+ continues to be the order parameter as before, with the free energy found to 
be [21,23]:

𝑓 = 𝑀 − 𝑇 𝑆 = 3 
𝑟2+

(𝑟6+ + 𝑟4+ + 𝑞2) − 4𝜋𝑟3+𝑇 . (B.12)

The phase structure of these charged black holes can now be obtained easily by studying the free energy, whose extremal points 
precisely correspond to the black hole solutions themselves. For instance, the minima (maxima) stand for stable (unstable) phases. 
For 𝑞 > 𝑞cr and at any temperature 𝑇 , existence of a single extremal point indicates the presence of the stable large black hole phase. In 
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addition, for 𝑞 = 𝑞cr and 𝑇 = 𝑇cr , the three extremal points merge and signal the critical point, as shown in Fig. 8b. Further, for 𝑞 < 𝑞cr
and in the temperature range 𝑇01 < 𝑇 < 𝑇02, free energy 𝑓 contains three extremal points representing the small, intermediate, and 
large black holes branches (as also emphasized in the Fig. 8c). One can refer to [20,21,23], for further details of the phase structure, 
which our construction reproduces.

Data availability

No data was used for the research described in the article.
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