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We discuss the modeling of the hadronic phase of QCD at finite magnetic field in the framework of hadron
resonance gas (HRG). We focus on the statistical description of particle yields that include contribution from
resonance decays. We demonstrate that the swift increase in the number of protons with magnetic field predicted
in the HRG is due to the assumption of structureless resonances. We discuss fluctuations of conserved charges
and show that at present the qualitative comparison of the model predictions with the lattice QCD data should be
treated with care. We also discuss the principle of detailed balance which allows us to study the magnetic field
dependence of neutral resonances.
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I. INTRODUCTION

Magnetic fields generated in noncentral heavy-ion colli-
sions (HICs) are among the strongest in the universe [1–3].
Since quarks and antiquarks are electrically charged and
influenced by a magnetic field, understanding the interplay be-
tween the magnetic field and the strong interactions governed
by quantum chromodynamics (QCD) is crucial for properly
comprehending noncentral HICs. Understanding the impact
of an extremely strong magnetic field on strongly interacting
matter is also relevant for studying magnetars [4] and the early
universe [5]. The magnetic field induces a variety of inter-
esting phenomena in QCD matter, such as anomaly-induced
transport phenomena, e.g., the chiral magnetic effect (CME)
[6] and chiral vortical effect (CVE) [7], charged ρ meson
condensation [8] and modifications of QCD Debye mass [9],
QCD equation of state (EoS) [9–12], and dilepton production
rate [13,14].

Investigation of QCD in the background of magnetic fields
is also interesting from the theoretical standpoint since it
can be simulated from first-principle lattice QCD (LQCD)
methods even for large fields, in contrast to the finite baryon
chemical potential where the simulations are marred by
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the numerical sign problem. LQCD simulations indicate a
nontrivial interplay between the magnetic field and strong
interactions, such as magnetic catalysis at low temperatures
[15,16], and inverse magnetic catalysis [17–19], which in-
fluences the QCD phase diagram. These effects have also
been widely studied using several other formalisms, viz., the
Nambu-Jona-Lasinio (NJL) model, the Polyakov improved
NJL (PNJL) model [20], the quark-meson (QM) model [20],
and gauge-gravity duality [21]. However, the inverse magnetic
catalysis is not captured in commonly used chiral models [22].
Nevertheless, it can be generated by considering additional in-
medium effects (see, e.g., [23]). It has also been found that the
pseudocritical temperature of the QCD crossover decreases
with increasing magnetic field (see, e.g., Refs. [18,24,25]),
with the possible existence of a critical point at large field
strength [25,26]. For recent reviews of QCD in external
magnetic field, see [22,27–29]. Recently, the fluctuations of
conserved charges in the magnetic field background have
attracted considerable interest, and they have been evaluated
using LQCD methods [12,30–32]. It has been observed that
a finite magnetic field has a nontrivial effect on these fluctu-
ations. They are of direct phenomenological interest because
they are sensitive to in-medium degrees of freedom and can
be measured experimentally.

The hadron resonance gas (HRG) model has been success-
ful in describing the LQCD data on the EoS and fluctuations
of conserved charges at vanishing magnetic field [33,34] as
well as the hadron yields from heavy-ion collisions [35]. In
[36], the HRG model was generalized to include the effects
of finite magnetic field. The model has been used to study the
impact of magnetic field on the QCD EoS [10,36], fluctuations
of conserved charges [31,37–39], as well as other effects, such
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as transport coefficients [40,41]. The behavior of spin-0 and
spin-1/2 particles in an external magnetic field is well under-
stood and involves the Landau quantization in the directions
perpendicular to the magnetic field [42]. However, when the
same prescription is applied to higher-spin resonances, it leads
to imaginary dispersion relations at strong fields as well as
instabilities in pressure [36]. This is due to the bold assump-
tion of structureless resonance states in the HRG model. This
suggests that the treatment of higher-spin resonances in the
HRG model is doubtful and requires further investigation.

In this work, we study the fluctuations of conserved
charges and particle yields at a finite magnetic field using
the HRG model. We find that the magnetic field enhances the
baryon yields, while π± and K± yields are weakly affected.
With our choice of resonances included in the HRG model, we
find that the model underestimates the LQCD baryon number
fluctuations at a weak magnetic field while overestimating
them at large eB, the latter originating from the divergences
induced by higher-spin resonances. We also gauge the impact
of the magnetic field on neutral resonances by implementing
detailed balance conditions. We compare the proton and pion
yields obtained using the HRG and our detailed balance re-
quirement and observe a substantial difference, indicating the
need for further research on the impact of a strong magnetic
field on resonance properties.

This paper is organized as follows: In Sec. II we introduce
the HRG thermodynamics at finite temperature and magnetic
field and show the numerical results. We discuss the effect
of magnetic field on particle densities and yields, and fluctu-
ations of conserved charges in conjunction with the LQCD
data. In Sec. III, we show how the external magnetic field
affects neutral particle densities considering detailed balance
conditions. Finally, Sec. IV is devoted to a summary and
conclusions.

II. HADRONIC MATTER IN FINITE MAGNETIC FIELD

In a phenomenological description of hadronic matter, one
needs to identify the relevant degrees of freedom and their
interactions. In the confined phase of QCD, the medium is
composed of hadrons and their resonances. In its simplest
version, the hadron resonance gas (HRG) model assumes that
the constituents of the medium are independent and pointlike
[43]. This effectively neglects their widths and interactions.
Consequently, the pressure in the HRG model is approximated
by the sum over partial pressures of hadrons and their reso-
nances, treated as noninteracting particles,

P =
∑

i

Pi, (1)

where i goes through all strange and non-strange hadrons and
their resonances listed in the Particle Data Group summary
tables [44].1 We note that the thermodynamic pressure P
contains all the relevant information about the medium
through the mass and quantum numbers of hadrons. Thus, it

1In this work, we include established mesons and baryons with
three- and four-star rating.

allows for the study of different thermodynamic observables,
including particle numbers and fluctuations of conserved
charges.

The partial pressures in Eq. (1) are given as

Pi = ±γiT
∫

d3 p

(2π )3
ln (1 ± fi ), (2)

where γi is the spin degeneracy factor,

fi = 1

eβ(εi−μi ) ± 1
(3)

is the distribution function, εi =
√

�p2 + m2
i is the dispersion

relation, and μi = BiμB + QiμQ + SiμS is the chemical po-
tential of the particle. The upper (lower) signs in Eqs. (2) and
(3) refer to fermions (bosons).

In the presence of a constant external magnetic field eB
pointing along the z direction, the system undergoes Landau
quantization in the xy plane [22,27]. Consequently, the disper-
sion relation for a charged particle (Q > 0) becomes

ε =
√

p2
z + m2 + 2|Q|B(

l + 1
2 − sz

)
, (4)

where sz is the z component of the particle’s spin and l ∈
{0, 1, 2, . . .} numbers the Landau levels. We note that the dis-
persion relation in Eq. (4) is exact for structureless spin-0 and
spin-1/2 particles [22]. On the other hand, it has been found
that spin-3/2 particles, governed by the Rarita-Schwinger
equation, exhibit a noncausal behavior in the presence of an
external magnetic field [45–47], which can be fixed by adding
a nonminimal interaction term to the Lagrangian [48,49].
Such a procedure leads to a dispersion relation similar to
Eq. (4).

We stress that Eq. (4) neglects the compositeness of
resonances, that is, the possibility of decaying to daugh-
ter particles. This assumption becomes questionable when
the scale of magnetic field resolves the structure of hadron
states, i.e.,

√|Q|B > mπ . Problems become more apparent
for higher spin states, where the effective mass of particles
can be substantially reduced, which eventually leads to a
complex dispersion relation (signaling instability). Resolving
these issues would require a more sophisticated treatment of
the decay dynamics [50,51].

Furthermore, in general, the masses of hadrons should be
affected by the presence of an external magnetic field. This
has been studied in the LQCD [52–55] and effective models
[56–60]. For example, the continuum-extrapolated mass of
π0 from the first-principle LQCD calculations decreases with
increasing magnetic field. However, in the range of magnetic
fields considered in our work [53], the change is less than
10%. The magnetic-field-dependent masses of nucleons and
� baryons at zero temperature were also calculated in LQCD
[54]. Again, in the range of magnetic fields considered in our
work, they are changing only mildly. Beyond this calculation,
it is challenging to estimate the effect of the magnetic field
on the masses of other particles, in particular hadronic res-
onances. The systematic implementation of the mass shifts
for individual hadronic resonances requires a more elaborate
treatment of interactions [61–63] going beyond the current
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hadron resonance gas model. Reliable results are limited to
only a few channels and the rest remain highly model depen-
dent. Therefore, we do not account for these effects in this
work.

When the energies of particles are given by Eq. (4), the
phase-space integral of a charged particle acquires the follow-
ing form [64,65]:

γ

∫
d3 p

(2π )3
→ |Q|B

2π2

∑
sz

∞∑
l=0

∫ ∞

0
dpz, (5)

where γ is the spin degeneracy factor and Q is the elec-
tric charge of the particle. The presence of a homogeneous
background magnetic field breaks the spherical symmetry,
causing the pressure transverse to the magnetic field (P⊥) to
be different than the pressure parallel to it (P‖). As demon-
strated in Ref. [66] for a Fermi gas, the system satisfies
the canonical relations � = −P‖, and P⊥ = P‖ − BM, where
M = −∂�/∂B = ∂P‖/∂B is the magnetization. P‖ can be
obtained by applying prescription (5) to Eq. (2),

P‖
i = ±T

|Qi|B
2π2

∑
sz

∞∑
l=0

∫ ∞

0
dpz ln (1 ± fi ). (6)

However, the contribution of the magnetization current den-
sity to the transverse pressure [67] is not considered in this
formalism. If this contribution is taken into account, the
pressure becomes isotropic [67] (see also Refs. [68,69]). Nev-
ertheless, it has been shown [70] that whether or not one
should include this contribution depends on the formal def-
inition of pressure as a derivative of the free energy F , i.e.,
whether the magnetic field or the flux of the field is kept
constant while taking the derivative. In both cases observables
such as the energy density, entropy, number density, and fluc-
tuations of conserved charges are equal and do not depend on
the scheme used to compute the pressure [71]. Therefore, we
use Eq. (6) to define pressure of the hadron gas and omit the ‖
symbol in the remainder of this work.

The pressure of a finite magnetic field contributes to the
other thermodynamic quantities as well, and the vacuum part
of the thermodynamic pressure must be properly renormalized
[36]. In this work, we focus on the densities and fluctuations
of conserved charges which do not depend on the vacuum part
of the pressure. Thus, we omit it in our considerations. We
also note that the magnetic field does not distinguish between
positive and negative electric charges [cf. Eqs. (4) and (6)].

The particle density is defined as

ni = 〈Ni〉
V

= ∂Pi

∂μi

∣∣∣∣∣
T

, (7)

where 〈Ni〉 is an average number of particle i in volume V .
To quantify the change of the medium composition due to
the presence of a finite magnetic field, we study the densities
(normalized to their densities at vanishing magnetic field) of
selected hadrons at fixed temperature T = 0.155 GeV. This
is depicted in Fig. 1. The densities of p, �+, and 
− gen-
erally increase with the magnetic field. This is attributed to
the lowest Landau level being magnetic-field independent and

FIG. 1. Particle densities normalized to densities at vanishing
magnetic field at T = 0.155 GeV as functions of magnetic field eB.

hence its contribution growing linearly with eB [cf. Eqs. (4)
and (6)]. In contrast to this, the densities of π− and K− are
exponentially suppressed because in this case the energies
of all Landau levels increase with magnetic field. We note
that there is a clear mass ordering for spin-1/2 baryons and
spin-0 mesons: the lighter the particle, the larger the effect.
The exceptions to this mass ordering are the higher-spin par-
ticles, ρ+ and �−, whose increase is much greater than for
other particle species. This swift increase is caused by the
contribution of the lowest Landau level being negative for
these particles; see Eq. (4). As mentioned, the extrapolation
of Eq. (4) to higher-spin states requires the assumption of
structureless hadrons, which can be questionable depending
on the strength of magnetic field and the structure of the
resonance in question.

The HRG model can be used to determine the hadron
yields, assuming thermal and chemical equilibrium between
all stable hadrons and resonances (see, e.g., [35,72,73]). This
is done by accounting for the resonance decays into lighter
particles. The average number 〈Ni〉 of particle i in volume V
is given as [43]

〈Ni〉 = 〈
N th

i

〉 + ∑
r→i

�r→i〈Nr〉, (8)

where 〈N th
i 〉 = V ni is the average thermal number defined

through Eq. (7), the sum in the second term is over all decays
with particle i in the final state, and �r→i is the branching ratio
of the resonance r to particle i.

In Fig. 2, we show the particle yields normalized to the
yields at the vanishing magnetic field. At small values of
eB, the π+ and K+ yields decrease with increasing eB, but
at stronger magnetic field, their yields increase with increas-
ing eB. Nevertheless, at eB � 0.2 GeV2, π+ and K+ yields
change only a few percent. However, at the same values of
eB, proton yields increase substantially, due to decaying �

resonances. We warn the reader again about the uncertainties
related to the description of high spin (s � 1) states and note
that the weak dependence of � and 
 yields on the magnetic
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FIG. 2. Particle yields normalized to the yields at vanishing mag-
netic field at T = 0.155 GeV as functions of the magnetic field eB.

field may be a result of there being much fewer known strange
than nonstrange resonances.

In the literature, the observed particle yields are often dis-
cussed in terms of particle ratios instead of actual yields to
avoid dependency on system size. To facilitate the discussion
in terms of particle ratios, we show the particle yields normal-
ized to the yield of π+ in Fig. 3. Again, the prominent feature
is the behavior of protons: the p/π ratio increases substan-
tially with the increasing strength of the magnetic field. We
note that even if the �+ yield increases much faster than the
pion yield in Fig. 2, it is still so tiny compared to the pion
yield that the change in the ratio cannot be seen at the scale of
Fig. 3.

Now we turn to the fluctuations of conserved charges. In
a thermal medium, the second-order fluctuations and correla-
tions of conserved charges are quantified by the generalized

FIG. 3. Particle yields normalized to the π+ yield at T =
0.155 GeV as functions of magnetic field eB.

FIG. 4. Net-baryon number susceptibility for T = 0.145 (red)
and 0.155 GeV (blue) as a function of magnetic field eB.

susceptibilities,

χi j = ∂2(P/T 4)

∂ (μi/T )∂ (μ j/T )

∣∣∣∣∣
T

. (9)

where i, j ∈ {B, Q, S}. The susceptibilities are observables
sensitive to the quantum numbers of medium constituents.
Thus, they can be used to identify the contributions of dif-
ferent species of particles to QCD thermodynamics [74,75].

For a sufficiently small net-baryon density, the EoS can
be expanded in the Taylor series. Under the assumption of
strangeness neutrality, the pressure is expanded as [32]

P

T 4
≈ c0 + c2

(μB

T

)2
+ O

((μB

T

)4
)

, (10)

where c0 is the pressure at vanishing chemical potentials and
c2 is a mixture of second-order susceptibilities,

c2 = 1
2χBB + 1

3χBS + 1
18χSS. (11)

We note that the coefficient c2 is evaluated at vanishing chem-
ical potentials. At a sufficiently small net-baryon density,
the strangeness neutrality condition can be approximated by
μS = 0. Thus, one can expect that χBB ≈ 2c2, as is found to
be the case in the HRG model. This allows us to compile
the LQCD data on χBB [31] and c2 [32] in a single figure.
They are shown in Fig. 4 for T = 0.145 and 0.155 GeV.
We find that the HRG model systematically underestimates
the LQCD data for eB � 0.16 GeV2 at both temperatures.
We note that this is in contrast to the HRG model with an
augmented list of resonances which includes states predicted
by relativistic quark models. Such a HRG model reproduces
χBB at vanishing magnetic field [34], but, as the magnetic
field increases, both the HRG model with established states
only, and the model with all the predicted states, start to
overestimate the LQCD results. The calculated susceptibility
increases rapidly and drastically overshoots the LQCD data
at eB = 0.3 GeV2. The contribution of baryons with s � 3/2
ranges from 75% at vanishing eB to 95% at eB = 0.3 GeV2.
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This result exposes the weakness of the current treatment of
the higher-spin resonances.

Ultimately, to fully evaluate the contributions of higher-
spin states to thermodynamic observables their internal
structure should be taken into account. This, however, requires
a dynamical treatment of resonances, e.g., the S-matrix formu-
lation of statistical mechanics [76–78], suitably extended to
the presence of eB, and is currently under development. As a
temporary attempt, we consider the detailed balance approach
to neutral particles (see the next section).

Based on our results and arguments presented above, we
conclude that the current uncertain treatment of high-spin
particles in a finite magnetic field prevents a direct comparison
of the HRG model with both the experimental data from HICs
and results obtained in LQCD simulations.

III. DETAILED BALANCE

So far, we have assumed neutral particles to have zero
magnetic moments. Consequently they were not affected by
the magnetic field at all. However, in chemically equilibrated
HRG detailed balance prevails, e.g., the decay rate of rho
mesons is equal to the scattering rate of pions forming ρ

resonances. The scattering rate depends on the densities and,
as seen in Fig. 1, pion density decreases with the magnetic
field. Thus, the ρ0 density may depend on the magnetic field
after all.

However, systematic calculation of the decay rates of reso-
nances is challenging. For example, the pair production in the
decay process of a neutral scalar boson into two charged scalar
bosons is suppressed by the presence of an external magnetic
field [79], and the neutral boson emission rate by a fermion is
enhanced by the magnetic field [80]. Nevertheless, it is known
that a weak magnetic field causes a negligibly small change in
the width of ρ0 [50,81]. Thus, we make an approximation that,
in the presence of a magnetic field, the ρ0 decay rate changes
only if the ρ0 density changes, and the change in the rate is
proportional to the change in density.

Unfortunately, we cannot evaluate the scattering rate of
pions using a conventional kinetic theory calculation, since
particles in magnetic field do not have well-defined momenta.
To gain insight into how the detailed balance requirement
could affect the densities of neutral resonances, we make
the bold assumption that the magnetic field affects the pion
scattering rate (and thus ρ0 production rate) only by changing
their densities. In other words, at fixed temperature,

�(π+π− → ρ0) = nπ+ (B) nπ− (B)

neq
π+ neq

π−
�eq(π+π− → ρ0), (12)

where �(π+π− → ρ0) is the production rate of ρ0 in the
presence of a magnetic field, nπ± (B) are the pion densities
in magnetic field, neq

π± are the corresponding pion densities
when eB = 0, and �eq(π+π− → ρ0) the ρ0 production rate
in equilibrated HRG when there is no magnetic field.

We can evaluate an effective pion chemical potential such
that

nπ (T, μπ , B = 0) = nπ (T, B). (13)

FIG. 5. ρ0 and �0 densities when the detailed balance is re-
quired, normalized to densities at eB = 0, at T = 0.1 and 0.155 GeV
as functions of the magnetic field.

With the above-mentioned considerations, detailed balance
requires that ρ0 obtains a chemical potential, which is a sum
of pion chemical potentials: μρ0 = μπ+ + μπ− = 2μπ+ , since
both π+ and π− are affected the same way by the magnetic
field, and thus their effective chemical potentials are equal.
We can repeat similar arguments for �0 resonance, and ob-
tain a requirement that it also develops an effective chemical
potential in magnetic field: μ�0 = (μp + μπ+ )/3.

We have evaluated the ρ0 and �0 densities corresponding
to these chemical potentials, and show them scaled with their
equilibrium densities in Fig. 5. Unlike the expectation that
neutral particles should not be affected by the magnetic field,
both ρ0 and �0 densities decrease with increasing strength
of magnetic field, the effect being stronger as the system
becomes colder. We note here that our assumption about the
production rate is extremely naive, but the ρ0 and �0 densities
staying independent of the magnetic field would require very
careful fine tuning of the pion-pion and pion-nucleon interac-
tions.

Detailed balance must prevail not only between neutral
resonances and their daughters, but also between charged
resonances and their daughters. To gauge the overall uncer-
tainty in the chemical composition of HRG in magnetic field,
we assume that the densities of � and ρ are not given by
Eqs. (4)–(7), but all charged states of � and ρ gain effective
chemical potentials similar to �0 and ρ0. We keep all the other
densities unchanged and evaluate the pion and proton yields
after decays. The resulting yields and their ratios are shown in
Fig. 6. As expected, the reduction in ρ and � densities leads
to reduced yields, and since the reduction in 〈p〉 is greater than
in 〈π+〉, the proton-to-pion ratio becomes smaller.

In the literature, particle ratios have been used to constrain
the magnetic field in heavy-ion collisions (e.g., [82,83]). Here
we apply this idea to the proton-to-pion ratio in particular. We
assume that the field is negligible in most central collisions,
largest in most peripheral collisions, and that the centrality de-
pendence of the p/π ratio is entirely due to the change in the
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FIG. 6. Proton and pion yields (top panel) and their ratio (bot-
tom panel) as functions of magnetic field eB calculated using the
conventional HRG in magnetic field approach (HRG) and using
the requirement of detailed balance discussed in Sec. III (this work).
The results are for T = 0.155 GeV and are normalized to their values
at vanishing magnetic field.

magnetic field. The ALICE Collaboration has measured the
p/π ratio in Pb+Pb collisions at

√
sNN = 5.02 TeV [84], and

reported that the ratio increases by a factor ≈1.3 from central
to peripheral collisions. In the lower panel of Fig. 6, we have
included dots on the p/π curves indicating where the ratio has
increased by 30% compared to its value at vanishing magnetic
field. We find that this occurs at eB = 0.13 GeV2 � 6.6m2

π

and eB = 0.20 GeV2 � 10.1m2
π . Thus, our assumptions about

the chemical composition of HRG lead to a ∼30% uncertainty
in the allowed strength of the magnetic field.

IV. CONCLUSIONS

In this work, we examined the effect of finite magnetic field
on the thermal properties of hadronic medium. We modeled
the hadronic phase of QCD with the hadron resonance gas
(HRG) model. For spin-0 particles, the densities decrease with
magnetic field, while the densities of spin-1/2 show the oppo-
site behavior, which is due to a different structure of the lowest
Landau level. The densities of higher-spin resonances strongly
increase with magnetic field, which is caused by a singular
behavior of the dispersion relation [cf. Eq. (4)] applied to
higher-spin particles. Since these densities contribute to final

production yields of proton and pions after including the reso-
nance decays, the latter also diverge at sufficiently large fields.
This may be problematic for a reliable estimation of magnetic
field from noncentral HICs based on observed particle yields.
As an example, we compared the magnetic field predicted
using the HRG and the detailed balance conditions and found
a substantial difference between the two predictions. Our
results suggest that the interpretation of the magnetic field
dependence of particle yields in the HRG model, although
feasible, should be treated with great care.

We have also studied the second-order fluctuations of con-
served charges in conjunction with the recent LQCD data. We
find that, for our choice of the resonance content of HRG,
the LQCD data are underestimated by model results at small
fields, while the singular behavior at larger eB leads to over-
estimation of the data. Although including hypothetical states
improves the description of LQCD data at small eB [31], it
makes the breakdown in strong fields even worse.

Therefore, for a reliable comparison between LQCD re-
sults and experimental data, it would be crucial to treat
the dynamical structure of resonances, especially those with
higher spins and neutral states. As a first step, we explored the
effect of the principle of detailed balance. Another possibility
is to generalize the S-matrix approach to finite magnetic field
which would allow us to take into account the dynamics
of hadrons via the scattering data. Ultimately, nonperturba-
tive approaches capable of describing bound states should be
employed to study the dynamics of hadrons in an external
magnetic field. Many of these interesting points will be pur-
sued in future research.

Note added. Recently, an article discussing similar issues
appeared in Ref. [85].
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