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I. INTRODUCTION

Filaments carrying n quanta of magnetic flux (n-vortices)
were first discovered by Abrikosov within the framework of
the Ginzburg-Landau theory of type II superconductors [1].
These magnetic flux tubes reappeared in the relativistic
setting of the Abelian Higgs model in the seminal work
of Nielsen and Olesen [2]. Such solutions are also of
cosmological significance, where they manifest as cosmic
strings [3]. For the critical value of the coupling constant
λ ¼ 1 (the transition point between type I and type II
superconductivity) it was demonstrated that the vortices
satisfy first-order BPS (Bogomolny–Prasad–Sommerfield)
PDE [4,5]. This endows the vortices with special properties
[6], particularly, the absence of static interactions among
them, allowing the vortices to move almost freely at low
velocities in space. This implies the existence of 2n linearly
independent zero modes of fluctuation. This result was
rigorously established by E. Weinberg [7] through a gen-
eralization of the index theorem for elliptic operators. The
existence of these zero modes is central to the analysis of
low-energy vortex dynamics, which can be understood as
geodesic motion in the moduli space of BPS vortex solutions
[8–10]. In addition to these zero modes, the second-order
small fluctuation operator associated with the self-dual
vortices includes massive discrete modes. Derrick-type
bound states, where the vortex size oscillates periodically,
were identified by Goodman and Hindmarsh [11]. These
modes exhibit the same angular dependence as the static
n-vortex solution. Other eigenfluctuations, however, do not

follow this form. Indeed, the complete set of normal
modes for the rotationally invariant n-vortex at the critical
value λ ¼ 1 was unveiled in [12,13], where the hidden
supersymmetry of the spectral problem associated with the
self-dual vortex fluctuation operator was exploited. For the
1-vortex, it was shown that there are two zero modes, one
Derrick-type mode with frequency ω2 ¼ 0.777476, and a
continuous spectrum starting at the threshold value ω2 ¼ 1.
In contrast, the rotationally invariant 2-vortex exhibits a
richer structure, involving four zero modes, one Derrick-
type mode with frequency ω2 ¼ 0.53859, a doubly degen-
erate shape mode with ω2 ¼ 0.97303, and a continuous
spectrum beginning at ω2 ¼ 1. As the vorticity increases,
the spectrum becomes more intricate.
The analysis of the spectral problem for the second-order

small fluctuation operator associated with a solution is
often essential to understand its properties. For instance,
stability is ensured if the eigenvalues are non-negative.
However, the significance of eigenfluctuations extends
beyond stability. Recent studies have demonstrated that
the dynamics of two self-dual vortices are drastically
altered when they are excited [14,15]. In the absence of
excitation, the vortices do not interact. However, when they
vibrate in phase (due to the aforementioned Derrick-type
mode), an attractive force emerges; conversely, when they
vibrate out of phase, a repulsive force arises. Additionally, a
resonant energy transfer mechanism can occur during
vortex collisions, facilitating energy exchange between
different eigenmodes and leading to chaotic vortex dynam-
ics [16]. Other works emphasize the role of these vibration
modes in the context of topological defects in cosmo-
logy [17–20]. Notably, interesting effects of the massive
states on vortex cores have also been identified in the
superfluid phase of the isotope 3He [21]. Moreover, the
bound modes play a key role in estimating quantum
corrections to the mass of topological defects [22].
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Despite the importance of the vibrational modes, the full
spectral structure of the rotationally invariant n-vortex
beyond the critical point λ ¼ 1 has remained largely un-
explored. For λ ≠ 1, the supersymmetry structure present at
the critical value is lost, necessitating a different math-
ematical approach to attack the problem. In this paper, we
present a comprehensive description of the spectral structure
of the vortex fluctuation operator as a function of the
coupling constant λ. One application of this study is in
understanding vortex dynamics in the Abelian Higss model
when λ ≠ 1. It is well known that in type I superconductors
(λ < 1), vortices attract each other, whereas in type II super-
conductors (λ > 1), vortices repel. However, as discussed
earlier, this interaction scheme changes drastically when the
vortices are in an excited state. Excited vortices in type I
materials could exhibit repulsive behavior, while vibrations
could stabilize n-vortices in type II superconductors.

II. THE ABELIAN HIGSS MODEL: VORTEX
FLUCTUATIONS

The action of the Abelian Higgs model describes the
minimal coupling between a Uð1Þ-gauge field and a
charged scalar field in a phase where the gauge symmetry
is spontaneously broken. In terms of nondimensional co-
ordinates, couplings, and fields, the action functional for
this relativistic system inR1;2 Minkowski space-time reads:

S ¼
Z

d3x
�
−
1

4
FμνFμν þ 1

2
DμϕDμϕ −

λ

8
ðϕ̄ϕ − 1Þ2

�
:

The main ingredients are one complex scalar field,
ϕðxÞ ¼ ϕ1ðxÞ þ iϕ2ðxÞ, the vector potential AμðxÞ ¼
ðA0ðxÞ; A1ðxÞ; A2ðxÞÞ, the covariant derivative DμϕðxÞ ¼
ð∂μ − iAμðxÞÞϕðxÞ, and the electromagnetic field tensor
FμνðxÞ ¼ ∂μAνðxÞ − ∂νAμðxÞ. We choose the metric tensor
in Minkowski space in the form gμν ¼ diagð1;−1;−1Þ,
with μ; ν ¼ 0; 1; 2, and use the usual Einstein repeated
index convention. In the temporal gauge A0 ¼ 0, the
second-order PDE for the complex field ϕ and the spatial
components of the vector field Aμ are given by

1

2
∂
2
0ϕ −

1

2
DjDjϕ ¼ −

λ

4
ϕ
�
ϕ̄ϕ − 1

�
; ð1Þ

∂
2
0Aj − ∂kFkj ¼ −

i
2

�
ϕ̄Djϕ −Djϕϕ

�
: ð2Þ

Equations (1) and (2) must be supplemented by the
Gauss law ∂0iAi ¼ − i

2
ðϕ̄∂0ϕ − ϕ∂0ϕÞ, which is automati-

cally satisfied for static solutions. Rotationally invariant
n-vortex solutions with quantized magnetic flux Φ ¼
1
2π

R
R2 d2xF12 ¼ n can be identified by imposing the radial

gauge condition Ar ¼ 0 and the ansatz

ϕðr; θÞ ¼ fnðrÞeinθ; rAθðr; θÞ ¼ nβnðrÞ; ð3Þ

where we have used spatial polar coordinates ðr; θÞ.
The radial profile functions fnðrÞ and βnðrÞmust comply

with the differential equations

d2fn
dr2

þ 1

r
dfn
dr

−
n2ð1 − βnÞ2fn

r2
þ λ

2
fnð1 − f2nÞ ¼ 0;

d2βn
dr2

−
1

r
dβn
dr

þ ð1 − βnÞf2n ¼ 0: ð4Þ

Near r ¼ 0, these functions behave as fnðrÞ ∼ d0rn and
βnðrÞ ¼ c0r2 for some constants d0; c0 ∈R, while their
asymptotic behavior is given by the relations
limr→∞ fnðrÞ ¼ 1 and limr→∞ βnðrÞ ¼ 1. For intermediate
values of r the equations (4) must be solved numerically.
The scalar and vector fields corresponding to this solution
will be respectively represented as ψðx⃗Þ ¼ ψ1ðx⃗Þ þ iψ2ðx⃗Þ
and Vðx⃗Þ ¼ ðV1ðx⃗Þ; V2ðx⃗ÞÞ with x⃗ ¼ ðx1; x2Þ in the sub-
sequent formulas.
The fluctuations of the vortex solution will be denoted as

φðx⃗Þ ¼ φ1ðx⃗Þ þ iφ2ðx⃗Þ and aðx⃗Þ ¼ ða1ðx⃗Þ; a2ðx⃗ÞÞ. To dis-
card pure gauge fluctuations, we impose the background
gauge condition [11–13]

∂kakðx⃗Þ −
�
ψ1ðx⃗Þφ2ðx⃗Þ − ψ2ðx⃗Þφ1ðx⃗Þ

� ¼ 0 ð5Þ
as the gauge fixing condition on the fluctuation modes. If
we assemble the perturbation fields as

ξðx⃗Þ ¼ �
a1ðx⃗Þa2ðx⃗Þφ1ðx⃗Þφ2ðx⃗Þ

�
t

the normal modes of vibration of an n-vortex solution are
determined by the spectral condition

Hþξμðx⃗Þ ¼ ω2
μξμðx⃗Þ; ð6Þ

where μ is a label used to enumerate the eigenfunctions and
eigenvalues. Hþ is the second-order vortex small fluc-
tuation operator

Hþ ¼

0
BBBBB@
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where Diψ j ¼ ∂iψ j þ ϵjkViψk. The operator (7) comes
from linearizing the field equations (in the background
gauge) around the vortices. The fluctuation vectors ξðx⃗Þ
belong in general to a rigged Hilbert space, such that there
exist square integrable eigenfunctions ξjðx⃗Þ∈L2ðR2Þ ⊕
R4 belonging to the discrete spectrum, for which the norm
kξðx⃗Þk ¼ R

R2 d2x½kaðx⃗Þk2 þ jφðx⃗Þj2� < þ∞ is bounded,
together with continuous spectrum eigenfunctions ξνðx⃗Þ
with ν ranging in a dense set. In this section we have
used the convention A1 ¼ Ar cos θ − Aθ sin θ and A2 ¼
Ar sin θ þ Aθ cos θ.

III. NORMAL MODES OF VIBRATION
OF VORTICES

In this section, we will investigate the normal modes of
vibration, ξðx⃗; n; kÞ, of a rotationally invariant n-vortex.

To achieve this, we will distinguish between two types of
fluctuations, each leading to a distinct spectral problem.
The first class of eigenfunctions follows the form

ξðx⃗; n; 0Þ ¼

0
BBBB@

vðn;0ÞðrÞ sin θ
−vðn;0ÞðrÞ cos θ
uðn;0ÞðrÞ cosðnθÞ
uðn;0ÞðrÞ sinðnθÞ

1
CCCCA ð8Þ

and describes Derrick-type modes, which preserves the
same angular dependence as the n-vortex solution (3). We
associate these modes with an integer index k ¼ 0. The
functions vðn;0ÞðrÞ and uðn;0ÞðrÞ in (8), giving respectively
the radial profile of the vector and scalar fluctuations, are
determined by the spectral problem

−
d2vðn;0Þ

dr2
−
1
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þ
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−
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dr2
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þ
�
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þ 3λ

2
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λ

2
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r
ð1 − βnðrÞÞfnðrÞvðn;0ÞðrÞ ¼ ω2

nuðn;0ÞðrÞ: ð9Þ

The second class of eigenfunctions is characterized by the expression

ξμðx⃗; n; kÞ ¼

0
BBBBBB@
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h
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i
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where k ¼ 1; 2;…. Now, the spectral problem
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¼ ω2
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uðn;kÞðrÞ

þ 2f0nðrÞ
r

vðn;kÞðrÞ ¼ ω2
nwðn;kÞðrÞ ð11Þ

fixes the radial profiles vðn;kÞðrÞ, uðn;kÞðrÞ, and wðn;kÞðrÞ of
the fluctuations for distinct vorticities n and angular
momenta k. The eigenfunctions (8) and (10) automatically
verify the gauge condition (5). Notably, when either (8)

or (10) is substituted into the spectral problem (6), some of
the resulting equations become combinations of others,
ensuring the consistency of the procedure. For k ≥ 1, a
second linearly independent eigenfunction χμðx⃗; n; kÞ can
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be constructed simply by making the changes cosðkθÞ →
sinðkθÞ and sinðkθÞ → − cosðkθÞ in (10), which satisfies
the same spectral problem (11). Therefore, eigenvalues
with k ≥ 1 are doubly degenerate.
To gain insight into the behavior of the eigenfunctions

near r ¼ 0, we plug the expansion vðn;kÞðrÞ ¼ rs
P∞

i¼0 vir
i,

uðn;kÞðrÞ ¼ rt
P∞

i¼0 uir
i, and wðn;kÞðrÞ ¼ rm

P∞
i¼0 wiri into

the radial spectral problems (9) and (11). The following
results are obtained:
(1) For k ¼ 0, consistency conditions at the lowest orders

require that s ¼ 1, t ¼ n with v0; u0 ∈R and v1, u1 ¼ 0.
(2) For k > 0, consistency can be achieved by imposing

one of two sets of conditions:
(2.1) We can choose s ¼ k and t ¼ m ¼ n − k, with

v0; w0 ∈R, subject to the additional constraints u0 ¼
ðn − kÞw0 and v1; u2; w1 ¼ 0. This type of eigenfunction
corresponds to a finite number of modes because, in order
to avoid singularities at the vortex center, we must impose
k ¼ 1; 2;…; n. At the critical point λ ¼ 1, these eigen-
functions represent the zero modes; see [12,13].
(2.2) Alternatively, we can set s ¼ k and t ¼ m ¼ nþ k

with the additional conditions u0 ¼ −kw0 þ d0v0 and
v0; w0 ∈R, while u1 ¼ v1 ¼ w1 ¼ 0. These eigenfunctions
correspond to the shape modes in the self-dual case;
see [12,13].
In summary, the spectral problem (11) determines

both the zero modes and shape modes, except for the
Derrick-type modes, which are governed by the spectral
problem (9). To explore the normal mode frequencies of an
n-vortex for specific values of the coupling constant λ, a
similar numerical scheme to that described in [12,13] can
be employed on (9) and (11). Figures 1–4 illustrate the
resulting spectral structure for the range λ∈ ½0.3; 2.6�. In
our numerical analysis, the coupling constant λ is varied in
steps of Δλ ¼ 0.02. In these figures, the known spectrum
for the special case λ ¼ 1 is indicated with hollow points,
showing clear agreement between these points and the
results of our general approach.

The continuum spectrum involves two distinct threshold
values, corresponding to the scalar and vector fields. For
the scalar field, the continuum spectrum begins at ω2

n ¼ λ,
while for the vector field, it starts at 1, as shown in
Figs. 1–4.
In the case of 1-vortices, Fig. 1 shows the presence of

one zero mode associated with k ¼ 1. Since this eigenvalue
FIG. 1. Spectral structure for the 1-vortex as a function of the
coupling constant λ.

FIG. 3. Spectral structure for the rotationally invariant 3-vortex
as a function of the coupling constant λ.

FIG. 4. Spectral structure for the rotationally invariant 4-vortex
as a function of the coupling constant λ.

FIG. 2. Spectral structure for the rotationally invariant 2-vortex
as a function of the coupling constant λ.
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is doubly degenerate, the figure indicates the existence of
two zero modes. Additionally, a Derrick-type mode (with
k ¼ 0) is identified, which merges into the continuum
spectrum around λ ¼ 1.5. For k ≥ 2, the centrifugal barrier
in the potential well of (11) prevents the appearance of new
bound states, and only the continuum spectrum is observed
in these cases.
For self-dual 2-vortices, there are four zero modes. For

general values of λ, only two of these zero modes (with
k ¼ 1) persist, while the other two (with k ¼ 2), degenerate
at λ ¼ 1, shift away from zero. These eigenvalues decrease
as a function of λ, indicating that the 2-vortex is stable for
λ < 1 but becomes unstable for λ > 1. A Derrick-type
mode is also present and increases with λ. This behavior is
general: eigenvalues related to eigenfunctions of type 2.1,
which correspond to zero modes in the self-dual case,
decrease with λ, while those related to type 2.2 (shape
modes) increase. In Fig. 2, a shape mode with k ¼ 1 is also
visible near the threshold value at λ ≈ 1.
The potential wells associated with the spectral problems

become deeper as the vorticity n increases, leading to a
greater number of bound states in the spectrum. For n ¼ 3,
the shape mode corresponding to k ¼ 1 becomes more
visible, and the degenerate zero modes at λ ¼ 1 split into
three distinct curves; see Fig. 3. A similar pattern is
observed for 4-vortices, as shown in Fig. 4.

IV. CONCLUSIONS

In this work, we have determined the spectrum of the
second-order small fluctuation operator associated with
rotationally invariant n-vortices in the Abelian Higgs
model. By identifying the precise angular dependence of
the eigenfunctions, we reduce the dimensionality of the
original problem, making it more tractable and allowing for
the eigenvalues to be computed with high precision. This
knowledge of the eigenfunctions opens the door to studying
the dynamics of excited vortices beyond the critical value
λ ¼ 1. Such dynamics may alter the balance between
attractive and repulsive forces in type I and type II super-
conductors, potentially leading to the surprising result that
excited n-vortices could become stabilized in type II
superconductors.
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