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In the recently proposed non-local theory of quantum gravity one can avoid massive tensor ghosts at the 
tree level by introducing an exponential form factor between the two Ricci tensors. We show that at the 
quantum level this theory has an infinite amount of massive unphysical states, mostly corresponding to 
complex poles.
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1. Introduction

The general relativity (GR) is a very successful theory of gravity, 
but it is perhaps not an ultimate theory. One of the reasons is 
that the fourth derivative terms in the action of gravity become 
necessary as the UV completion of the theory at the semiclassical 
level [1] (see also [2,3] for the introduction and [4] for a recent 
pedagogical review). The same fourth-derivative terms make the 
theory of quantum gravity (QG) renormalizable [5]. On the other 
side, fourth derivatives lead to the massive ghosts in the physical 
spectrum of the theory, leading to the violation of unitarity.

The consistency of the fourth derivative quantum gravity (QG) 
can be, in principle, achieved by dealing with the dressed prop-
agator instead of the classical one [6–8]. The main expectation 
is that the massive ghost poles become unstable and decay in 
the far future, such that the asymptotic out-state becomes free 
of ghosts. Unfortunately, the final conclusion concerning this ap-
proach requires a complete non-perturbative knowledge of the 
dressed propagator [9], which is unavailable.

Some years ago a completely different approach was proposed 
by Tomboulis [10]. The action of this new theory of QG has an in-
finite amount of derivatives. It was discovered a few years earlier 
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by Tseytlin [11] that for some specially tuned form of the non-
local action such a theory is free of ghosts at the tree level while 
the exponential form factors remove Newtonian singularity, simi-
lar to the much simpler fourth derivative gravity [5]. The approach 
of [11] (see also [12]) was to use this action in the framework of 
string theory, as an alternative of the Zwiebach ghost-killing trans-
formation of the background fields [13–15]. In string theory the 
ghost-free non-local action is a kind of a “final product”, which is 
not supposed to gain further quantum corrections.1 On the con-
trary, if one takes the same model as a basis of quantum gravity 
[10], the following three important questions should be answered:

• First, how to quantize the non-local theory?
• Second, what is the power counting in a theory with infinite 

amount of derivatives?
• The third and most difficult question is what happens with 

the ghost-free structure of the theory after the quantum cor-
rections are taken into account?

Concerning the first point, the quantization of non-local the-
ories has been discussed in the literature [17] and is relatively 
well-understood. The second issue has been explored in [10] and 

1 However, this does not make it free of ambiguity related to the third and higher 
powers of curvature, similar to the one discussed in [16].
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in the more recent publications [18–20]. The main conclusion is 
that the power counting in the non-local theory of [10] is the same 
as in the local higher derivative superrenormalizable QG suggested 
earlier in [21]. Moreover, in both cases there is a chance to make 
such a QG theory finite. This can be certainly achieved in the local 
case [21] and very likely in the non-local one.2

In the present work we will mainly address the third question. 
There are strong arguments that at least the most simple exam-
ple of the non-local theory suggested in [10] does not remain free 
of ghost-like states at the quantum level. The last means that the 
quantum corrections lead to an infinite amount of the ghost-like 
states in the dressed propagator. The relation between ghosts in 
the classical (naked) and dressed propagators is almost opposite to 
what was expected in the fourth-derivative renormalized theory of 
QG [5–8].

The paper is organized as follows. In Section 2 we present a 
brief review of the non-local gravity which is ghost-free at the 
tree-level. In Section 3 we explain the power counting in the 
non-local model, here our consideration mainly follows previous 
publications [10,18] and [20], but we try to make it more transpar-
ent, especially by comparing to the local superrenormalizable QG 
case [21]. Some relevant details concerning Lagrangian quantiza-
tion of the non-local theory are settled in Appendix A. In Section 4
it is shown how the ghost-free structure is violated by quantum 
corrections to the propagator. In Section 5 we discuss the modi-
fied Newtonian limit in the non-local theory and the possible role 
played by the “hidden” ghosts. Finally, in the last section we draw 
our conclusions.

2. Non-local ghost-free models

The simplest way to count degrees of freedom in QG is based 
on the analysis of the tree-level propagator on the flat background. 
In most of the theories this procedure gives the same result as 
canonical quantization [22,3]. In order to explore the flat-space 
propagator, the relevant part of the classical action is at most bi-
linear in the curvature tensor,

S =
∫

d4x
√−g

{
− 1

κ2
R + R F1(�) R + Rμν F2(�) Rμν

+ Rμναβ F3(�) Rμναβ
}

. (1)

Here κ2 = 16πG and F1,2,3 are functions of d’Alembertian op-
erator. The cosmological constant term is set to zero, following 
the standard treatment [5]. In order to simplify the action, let us 
note that the difference between the term Rμναβ F3(�)Rμναβ and 
the combination 4Rμν F3(�)Rμν − R F3(�)R is proportional to the 
term of the third power in curvature, O(R3

...) (see, e.g., [21,23]). 
Therefore one can cast the relevant part of the action (1) in the 
form

S =
∫

d4x
√−g

{
− 1

κ2
R + 1

2
Cμναβ �(�) Cμναβ

+ 1

2
R �(�) R

}
, (2)

where Cμναβ is the Weyl tensor. The function � is responsible for 
the spin-0 part of the propagator and the function � for the spin-
2 part. For the sake of simplicity, we can mainly concentrate on 
the spin-2 sector. The consideration for the �-part would be very 
similar. After the Fourier transformation, the relevant equation for 
defining the poles of the propagator is [10]

2 In the odd space–time dimensions this can be easily proved in [18].
p2 [
1 + κ2 p2�(−p2)

] = 0 . (3)

One can see that there is always a massless pole corresponding 
to gravitons. For a constant � there is also a massive pole cor-
responding to a spin-2 ghost, which may be also a tachyon. For 
a non-constant polynomial function � there are always ghost-like 
poles, real or complex [21]. However, one can choose the function 
� in such a way that there will not be any other spin-2 pole, ex-
cept the graviton p2 = 0. The simplest example of this sort is [11]

1 + κ2 p2�(−p2) = eαp2
, (4)

where α is some constant of the dimension mass−2. One can find 
other entire functions which have the same features [10,18], but 
for the sake of simplicity we consider only (4).

Let us remember that the exponential function has two remark-
able properties. The equation exp z = 0 has no real solutions and 
only one very peculiar solution

z = −∞ + i × 0 (5)

on the extended complex plane. At the same time, already the 
equation exp z = A �= 0 has infinitely many complex solutions, the 
same is true for

ez = Az2 log z , (6)

which is the typical case for the exponential theory with logarith-
mic quantum corrections. These well-known features of exponen-
tial function mean, in our case, that the absence of massive ghosts 
in the spin-2 part of the propagator of the theory (4) is the result 
of an absolutely precise tuning of the function �(−p2). If this tun-
ing is violated by the loop corrections, then the ghosts-like states 
will emerge in an infinite number. For instance, any polynomial 
addition to the exponential function produce infinitely many com-
plex solutions.

One important note is in order. The expression “ghosts-like 
states” means that these states are not exactly the “classical” mas-
sive ghosts, that means states with positive square of mass and 
negative kinetic energy. In the present case there are mostly com-
plex poles, that means a complex “square of mass” and complex 
“kinetic energy”. This situation makes the particle interpretation 
of these states rather complicated. We postpone the discussion of 
this issue until another publication and will call these states sim-
ply ghosts in what follows.

If the theory with more ghosts should be qualified worst, then 
the exponential gravity (4) with violated absolute tuning is worse
than the polynomial version of superrenormalizable QG [21] (see 
also the next section), because the last has only finite amount of 
ghosts. So, the main question concerning the theory of exponential 
gravity (4) is whether one can preserve an absolute tuning of (4)
at the quantum level. In the next sections we consider this issue 
starting from the strongest effect related to the UV divergences 
and related logarithmic running. For comparison, we also present 
considerations for the mentioned polynomial model of QG.

3. Power-counting in local and non-local QG

Before discussing the dressed propagator and possible violation 
of the absolute tuning in (4), let us shortly review the renormaliza-
tion properties of the theory (2) and some its natural extensions. 
A brief survey of the Lagrangian quantization of the theories such 
as (2) or (7) with some details related to non-local versions of the 
theory can be found in Appendix A.
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3.1. Polynomial higher-derivative gravity

The action of the general superrenormalizable polynomial 
model can be written as

S = S E H +
∫

d4x
√−g

{
d1 R2

μναβ + d2 R2
μν + d3 R2 + . . .

+ c1 Rμναβ�k Rμναβ + c2 Rμν�k Rμν + c3 R�k R + . . .

+ b1,2,..R
k+2
...

}
, (7)

where the omitted terms and b1,2,..Rk+2
... denote the set of all co-

variant local terms with the derivatives up to the order 2k + 4. 
The action includes not only quadratic in curvature terms, but also 
generic O(R3

...) terms, and so on. d1,2,3, c1,2,3, . . . , b1,2, ... are arbi-
trary coefficients.

In order to explore the superficial degree of divergence of the 
theory one needs two relations, namely

D + d =
∑
lint

(4 − rl) − 4n + 4 +
∑
ν

Kν (8)

for the power counting, and the topological relation

lint = p + n − 1 . (9)

In these formulas lint is the number of internal lines with the in-
verse power of momenta rl in the propagator, n is the number of 
vertices with Kν derivatives and p is the number of loops. On the 
l.h.s., d is the number of derivatives acting on the external lines of 
a given diagram and D is its superficial degree of divergence.

In the theory (7) the most divergent diagrams correspond to 
the vertices with maximal number of derivatives, Kν = 2k + 4. One 
can always formulate the theory (see [5,24,21] and Appendix A of 
the present work) in such a way that rl ≡ 2k + 4 for all fields. Then 
it is an easy exercise to combine (8) and (9), and the result is [21]

d = 4 + k(1 − p) (10)

for the logarithmically divergent diagrams with D = 0. The last 
relation shows that the versions of QG with k ≥ 3 have only one-
loop divergences. This means, the higher order contributions may 
be also divergent, but they become finite after we renormalize 
the one-loop sub-diagrams. Furthermore, the possible countert-
erms may have only four, two and zero mass dimensions. In other 
words, only the terms in the first line of (7) needs to be renormal-
ized. All terms with derivatives higher than four are not running. 
At the same time, the coefficients of these higher derivative terms 
define the running of the cosmological and Newton constants and 
of the coefficients d1, d2 and d3.

The last two observations which will be used in the rest of the 
paper and (as we shall see in what follows) can be applied also to 
the exponential gravity, are as follows:

• The running of the parameters G , ρ
 and d1,2,3 is gauge-fixing 
independent, because the classical equations of motion have 
more derivatives than the counterterms. In order to under-
stand this statement, let us remember that the gauge-fixing 
dependence disappears on-shell (see, e.g., [26] for further ref-
erences on the subject). The practical application of this fea-
ture to QG was discussed in [25].

• The β-functions for the Newton constant and the ones of d1,2,3
are given by bi-linear and linear combinations of the coeffi-
cients of the O(R3

...) and O(R4
...) terms in the action (7). There-

fore, one can provide to these β-functions any desirable values 
by changing the corresponding coefficients.3 The remarkable 
exception is the β-function for the cosmological constant de-
rived in [21]. This unique β-function is completely defined by 
the coefficients c1,2,3 in (7).

3.2. Exponential gravity

In the exponential gravity theory the power counting formula 
(8) has no much sense, because it leads to an indefinite output 
of the ∞–∞ type. At the same time the topological relation (9)
is working well and shows that the theory is superrenormalizable 
[10,18,20]. Let us consider this point.

Each propagator gives contribution of infinite negative powers 
of momenta, let us call it I . With the vertices the situation is 
more complex, because there are vertices with different powers 
of momenta. Without loss of generality one can consider only the 
diagrams with maximal divergence, when each vertex gives con-
tribution −I . It is important that the two symbols I and −I
correspond to the same power of infinity, for otherwise the re-
lation should become more complicated.4 Then it is clear that the 
diagram with more internal lines than vertices will be automati-
cally convergent and the diagram with more vertices than internal 
lines will be strongly divergent. The relation (9) tells us that the 
difference is lint − n = p − 1. This means that only the one-loop 
diagrams with p = 1 can be divergent. At the same time, the pres-
ence of the exponential form factor does not change the degree of 
divergence of the one-loop diagrams.

The power counting in the exponential gravity is performed by 
the topological relation (9), without the formula (8). Nevertheless, 
the result is exactly the same as in the polynomial theory (7) for 
k ≥ 3. Namely, the divergences show up only at the one-loop level, 
and the counterterms have zero, two and four derivatives of the 
metric only. In other words, the possible counterterms have the 
form

�S =
∫

d4x
√−g

{
a1 R2

μναβ + a2 R2
μν + a3 R2 + a4�R

+ a5 R + a6
}
. (11)

The divergent coefficients a1,2,...,6 are at most O(1/(n − 4)) in di-
mensional regularization.

Similar to the polynomial case, there is a chance to specially 
tune the O(R2

...), O(R3
...) and O(R4

...)-terms in the action (7) such 
that the divergent coefficients a1,2,...,6 in (11) can be adjusted to 
have desirable values. In the case of exponential QG one should 
try to provide these divergent coefficients to become zero, because 
the possible running would violate an absolute tuning requested 
by the ghost-free structure of the exponential gravity. In case of 
the logarithmic divergences of the form (11), the equation for the 
poles of the propagator has the form (6) with z = p2 and A =
4a1 + a2 for the spin-2 sector of the propagator. As we already 
know, if such corrections take place, then the dressed propagator 
has infinitely many ghost-like states. So, if we intend to keep the 
ghost-free structure at the quantum level, the first thing to do is 
to require that the theory should be finite. We shall discuss this 
subject further in the next section.

3 Of course, this does not mean that the explicit derivation of these β-functions 
would not be interesting. Since the potential result is a possibility to obtain exact 
β-functions in some model of quantum gravity, this calculation would worth the 
requested hard work anyway. From the physical side, different choices of these co-
efficients may correspond to different physical properties of the theory, so such a 
calculation would be quite relevant.

4 This means, in particular, that the value of α in Eq. (4) must be identical for 
both functions �(�) and �(�) in (2), for otherwise the theory would be badly 
non-renormalizable.
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4. Quantum corrections and dressed propagator

As we already know, the power counting in the theory with ex-
ponential form factors (4) is exactly the same as in the polynomial 
theory (7) with k ≥ 3. One can see this similarity in the follow-
ing way. Imagine we replace the exponential function in (4) by the 
partial sum of its Taylor expansion,

P N(αp2) =
N∑

l=0

(
αp2

)l

l! . (12)

For a sufficiently large N the theory will be superrenormalizable, 
exactly as in the exponential case. At the same time, there will 
be N roots of the polynomial P N (αp2) at the complex plane. The 
number of these roots is growing with larger N . When N → ∞ the 
power counting remains the same. At the same time, the number 
of poles becomes infinite, so the theory gains an infinite amount of 
ghost-like poles, most of them complex. However, it happens that 
all these poles converge to the very special infinite point (5). Then 
the theory is ghost-free at the tree-level, but there is a danger that 
the absolute tuning may be broken by the one-loop corrections, 
which require very special attention.

The one-loop effective action in the theory (2) is given by the 
expression [24] (see Appendix A for details)

�
(1)

div = i

2
Tr Log Ĥ − i Tr Log Ĥghost + i

2
Tr Log Ŷ . (13)

The last two terms are contributions of ghost and weight opera-
tors. Both of them have standard form plus some part related to 
the term Tr�. This term is discussed in Appendix A, where we ar-
gue that its contribution has the form (11) with fixed coefficients. 
Therefore, the main question is whether the finiteness can be pro-
vided by changing the action S in such a way that the operator

Ĥ = 1

2
√−g

δ2 S

δgαβδgρσ
(14)

provides a cancellation of the first term in the formula (13) with 
the divergences coming from the last two terms of the same ex-
pression.

It is obvious that one cannot achieve this goal by using the orig-
inal action (2), because both functions � and � are proportional 
to the same expression

� = c1 e−α� , � = c2 e−α� . (15)

It is easy to see that by changing the coefficients c1 and c2 one 
modifies only the cosmological constant-type counterterm, and not 
the fourth-derivative ones, which are relevant for Eq. (6). There-
fore, in order to provide finiteness one has to generalize the action 
(2). As it was discussed for the polynomial QG, this can be done by 
adding O(R3

...)- and O(R4
...)-type terms. The explicit calculation in 

this theory would be quite difficult and also there is no real need 
to make it. Let us instead present a general evaluation of the possi-
ble effect of the O(R3

...)-type terms. The general form of the terms 
with a minimal possible non-local insertion is

1

M2

∫ √−g R ...R ... e−α� R ... , (16)

where M is a new massive parameter. Then the operator (14) will 
have a general non-minimal structure (after an appropriate gauge-
fixing)

Ĥ ∝ �̂ + M−2 D̂μν∇μ∇ν + �̂ , (17)
where all the operators act in the space of quantum metrics, and 
D̂μν and �̂ are proportional to the curvature tensor. The contri-
bution of Tr Log Ĥ for the operators of the form (17) is known, 
in particular it was elaborated recently in [28] by means of the 
generalized Schwinger–DeWitt technique [34]. One meets the one-
loop divergences which are given by an infinite series in curvatures 
D̂μν and �̂, and the (super)renormalizability of the theory is com-
pletely broken, so we have to look for some generalization.

Another possibility is to modify the expression (16) by intro-
ducing further non-localities. The possible solution is to consider 
the non-local terms of the general form∫ √−g R ...

1

� R ... e−α� R ... . (18)

The one-loop divergences in the theories of similar type were al-
ready considered in the literature [35]. Let us note that the ex-
pression (18) still leaves us a lot of freedom in the choice of the 
action, because of the numerous possible tensor structures and 
corresponding coefficients. Since the number of the possible tensor 
structures in the operator Ĥ is restricted, there is a good chance 
to meet such a combination of terms in (18) which would lead to 
the operator

Ĥ ∝ �̂2 + V̂ μν∇μ∇ν + Û , (19)

plus some contribution of the operator �̂−1 which can be fac-
torized out in a standard way (see, e.g., Chapter 9 of [3]). In the 
expression (19) one still has the freedom to choose the operator 
V̂ μν , which is proportional to the curvature tensor. As a result, it 
is possible to manipulate the divergent part of effective action (11)
and to provide the desirable pre-fixed values for the coefficients 
a1,2...6. In particular, there is a chance to obtain a finite QG in this 
way.

The situation may be even more simple if we include the 
O(R4

...)-type terms with an additional �−2 insertion. In this case 
the relevant operator will have the form

Ĥ ∝ �̂3 + V̂ μναβ∇μ∇ν∇α∇β + Ûμν∇μ∇ν + Ŵ , (20)

similar to the one we dealt with in [21]. The operator Ûμν will be 
linearly proportional to the coefficients of the O(R4

...)-type terms. 
On the other hand, linear dependence will also take place between 
Ûμν and the fourth-derivative terms in (11). Therefore, there are 
pretty good chances to provide finiteness in the exponential QG 
theory by means of a special choice of the coefficients of the 
O(R4

...)-type terms with an appropriate non-local insertion.
Indeed, the possibility to have a finite theory in the non-local 

case is not so certain as in the polynomial QG (7). In case of the 
non-finite theory the ghost-free structure will be certainly violated. 
So, let us be generous to the exponential QG and simply assume 
that the non-local theory can be made finite in the way we de-
scribed above. As we shall see right now, this is still not sufficient 
to prevent the theory from the ghost-like states. The consistent 
theory of QG should include quantization of matter fields, not only 
the metric. The matters fields of the spin-0, spin-1/2 and spin-1
contribute to the divergences in the form of Eq. (11) [2,3]. For the 
illustration purpose, let us reproduce the complete form factors of 
the one-loop quantum corrections to the �-function in Eq. (2), de-
rived in [27,29] for massive scalar and fermion fields,

�̄
(1)

scal =
1

32π2

∫
d4x

√−g Cρσαβ

[ 1

60 (4 − n)

+ 1

120
ln

(4πμ2

m2

)
+ 1

2
ks

W (a)
]

Cρσαβ (21)

and
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�̄
(1)

ferm = 1

32π2

∫
d4x

√−g Cρσαβ

[ 1

10 (4 − n)
+ 1

20
ln

(4πμ2

m2
f

)

+ 1

2
k f

W (a)
]

Cρσαβ , (22)

where

kW (a) = 240A + 20a2 + 3a4

450 a4
, (23)

k f
W (a) = 300Aa2 − 480 A − 40a2 + 19 a4

225 a4
(24)

and we used notations

A = 1 − 1

a
ln

1 + a/2

1 − a/2
and a2 = 4�2

�2 − 4m2
. (25)

The contributions to the �-function are qualitatively similar [29], 
but we do not reproduce them here for the sake of brevity.

The first observation is that the divergences in the Weyl-
squared sector have the same sign independent on whether we 
take scalar, fermion, massless or massive vector. This well-known 
feature of the divergences [2] means that no cancellation of the 
overall contribution to the �-function due to supersymmetry is 
possible. Therefore, if there is no cancellation with the divergences 
coming from the QG sector, the expression (4) gains p4 log p2 con-
tribution due to the matter fields loops and this is certainly suffi-
cient to have infinitely many ghost-like excitations at the quantum 
level.

The second important point is that, even if the cancellation of 
the divergences really takes place, it is not sufficient to preserve 
the ghost-free structure of the theory even at the one-loop level. 
The reason is that both expressions (23) and (24) have an infinite 
set of sub-logarithmic contributions, and those cannot be canceled 
by the QG part. The situation may be, in principle, different in a 
strictly massless theory of matter, when the cancellation in the 
leading-log part may be sufficient.

Furthermore, even if one can adjust the QG contribution to 
make the theory completely free of divergences in the presence of 
matter fields, this would be true only at the one-loop level. Let us 
remember that the exponential QG has only one-loop divergences, 
but for the matter loops this is not so. Starting from the second 
loop, matter fields produce the form factors with higher powers of 
log

(
�/μ2

)
in the UV. Then the compensation seems to be com-

pletely impossible. Let us note that the β-functions in the matter 
sector are not affected by QG in all superrenormalizable models, as 
it was explained in Section 5 of [21].

One can naturally expect that the same breaking will take place 
in the case of pure QG without matter. Indeed, any quantum the-
ory, including (2) may produce sub-logarithmic contributions in 
the dressed propagator, and then an absolute fine-tuning leading 
to the ghost-free structure will be violated. Unfortunately, the ex-
plicit results concerning sub-logarithmic contributions in QG are 
not available, but there cannot be much doubts about their exis-
tence. And the last is sufficient for violating an absolute tuning 
leading to the ghost-free structure of exponential gravity (4). So 
we have to conclude that the exponential QG has an infinite set of 
massive ghost-like states at the quantum level.

5. Note concerning Newtonian singularity

There is a very interesting and simple relation between the 
renormalizability of the QG theory and the absence of Newtonian 
singularity at the classical level. This relation was first noted by 
Stelle in [5], the main formula for the modified Newtonian poten-
tial is
ϕ(r) = −GM

[
1

r
− 4

3

e−m(2)r

r
+ 1

3

e−m(0)r

r

]
. (26)

Here m(2) and m(0) are masses of the spin-2 ghost and spin-0 
massive particle which are present in the spectrum of the fourth-
derivative gravity. It is easy to see that near the origin r = 0 the 
contribution of these two massive degrees of freedom exactly can-
cels the one of the graviton, such that the limit of the modified 
Newtonian potential ϕ(r) at r → 0 is free of singularity. In our 
recent work [23] it was shown that the same cancellation takes 
place in the more general theory of gravity with the action (7), 
if additional degrees of freedom in this theory correspond to the 
non-degenerate real massive poles.5 For a while, there is no proof 
that the same effect takes place in the case of complex massive 
poles.

It is remarkable that the non-singular modified Newtonian limit 
takes place also in the exponential gravity theory (4). This was 
originally found by Tseytlin in [11]. Recently, exactly the same non-
singular solution has been rediscovered in the papers [18,30,20]. 
An unfortunate detail apparently related to Ref. [30] is the eval-
uation of our preprint [23] which was done by Biswas et al. in 
[20]. On page 3 of their manuscript authors say “It was not un-
til recently though, that concrete criteria for any covariant gravitational 
theory (including infinite-derivative theories) to be free from ghosts and 
tachyons around the Minkowski vacuum was obtained by Biswas, Ger-
wick, Koivisto and Mazumdar (BGKM) [23,24], see also [25] for a recent 
re-derivation of the same results using auxiliary field methods.”.6

I believe that the evaluation of our work which was done in 
[20] is not correct for at least two reasons. First, in our Ref. [23]
there is no use of auxiliary fields. Second, we did not explore 
or discuss “concrete criteria for any covariant gravitational theory 
(including infinite-derivative theories) to be free from ghosts and 
tachyons around the Minkowski vacuum” and moreover we even 
did not deal with the “infinite-derivative theories” in [23]. As it 
was already mentioned above, our work [23] is about Newtonian 
singularity in the polynomial theory (7), so it is not easy to under-
stand what the observation of [20] actually means.

Coming back to the relation between (super)renormalizability 
of QG and the absence of Newtonian singularity, perhaps the most 
intriguing aspect is that the theory without real poles can be free 
of singularities. One can note that the polynomial theory with a 
form factor given by the partial sums of the exponential func-
tion (12) has no real poles in the propagator. From the other side, 
the limit at N → ∞ is free of Newtonian singularity, according to 
[11] and to the consequent publications on the subject [12,30]. Let 
us remember that the polynomials with growing N have growing 
amount of massive poles. One most natural physical interpretation 
is as follows. These poles are organized in such a way that they 
lead to the cancellation of singularity in a way similar to (26) and 
to the more complicated relations discussed in [23]. Then the can-
cellation of singularity in the exponential case of [11] is nothing 
else but the same effect coming from an infinite amount of the 
“hidden” ghosts. This conjecture is something interesting to verify, 
in our opinion it would give better understanding of the relation 
between local and non-local models of QG.

5 The spin-0 contribution was elaborated much earlier in [32].
6 Here [23,24] correspond to [30] and [31] and [25] to the citation [23] of the 

present work. Let me stress that our paper [23] is devoted to the Newtonian singu-
larity in the polynomial theory (7) and hence we did not repeat the result of [11]
and consequent works such as [12] and [30], which calculated the modified Newto-
nian limit in the exponential theory case.
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6. Conclusions and discussions

The main conflict of QG is between renormalizability and uni-
tarity. In order to have renormalizable or superrenormalizable QG, 
one has to include higher derivatives into the starting action. 
Higher derivatives lead to ghosts and/or tachyons and excluding 
these unphysical states from the spectrum produces violation of 
unitarity. Since higher derivatives emerge already at the semiclassi-
cal level, apparently there is no way to avoid them, so the question 
is how to deal with the massive ghosts.

Some qualitatively new approach to the problem of QG was 
suggested in [10] and recently elaborated further in [18,19] and 
[20]. This new approach assumes that the starting theory is cho-
sen in such a way that the higher derivative theory is free of ghosts 
from the very beginning. Such a choice implies that the theory 
must be non-local, in a way explored earlier by Efimov et al. [17].

We have shown that in the case of exponential QG the usual 
power counting evaluation must be modified and the main role is 
played by the topological relation between the number of vertices 
and internal lines. After all, the renormalization properties of the 
non-local theory of [10] are very similar to the ones of the su-
perrenormalizable QG, introduced earlier in [21]. In particular, this 
means that the β-functions of the matter fields are not affected by 
QG and that the β-functions in the gravitational sector can vanish, 
rending the theory finite.

While the classical theory of exponential gravity is ghost-free, 
the quantum corrections may easily lead to the dressed propaga-
tor which has infinitely many complex ghost-like poles. We have 
shown that this scenario is unavoidable if the theory is not finite. 
The finiteness in such a theory is possible by tuning the O(R3

...)

and O(R4
...)-type non-local terms in the action. This may guarantee 

the absence of the strongest logarithmic corrections and the result 
can be extended even to the one-loop theory with quantum mat-
ter included. However, at higher loops this tuning breaks down. On 
the other hand, even the one-loop contributions of massive matter 
fields have well-established sub-logarithmic contributions, which 
cannot be canceled in the exponential QG model. The final conclu-
sion is that an infinite amount of unphysical complex poles emerge 
in the theory at the quantum level.

In our opinion, an improved understanding of the role of ghosts 
is one of the most relevant issues for QG. In particular, the main 
lesson which one should learn from the comparison of polynomial 
and exponential models of QG is the importance of the models 
with complex poles, which were not covered by the consideration 
of [21]. It would be interesting to treat this case in detail in both 
quantum field theory framework and in the more phenomenologi-
cal way proposed recently in [33].
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Appendix A. Brief review of Lagrangian quantization

Let us consider the Faddeev–Popov procedure for the theory of 
QG based on the action (2) with possible additional terms of the 
O(R3

...)- and O(R4
...)-type. Higher order terms have no much im-

portance, because they do not affect the divergences, in case of the 
“right” distribution of non-local exponential factors. Our treatment 
will cover both polynomial and exponential choices of the form 
factors � = �(�) and � = �(�) in Eq. (2). As we have noted 
in the main text, in the exponential case the theory can be su-
perrenormalizable only if the functions � and � have the same 
exponential factor, let’s call it exp(−α�). In the polynomial QG of 
Ref. [21] the requirement is less rigid, namely � and � should be 
polynomials of the same order. For the sake of simplicity, let us as-
sume that � = � . Our consideration will be partially repeating the 
one of [5,3] and [21] and we include it mainly to provide consis-
tent presentation and to discuss special features of the non-local 
case.

We assume that the quantum metric hμν is defined as hμν =
gμν −ημν . Let us introduce the gauge fixing condition in the form

Sgf =
∫

d4x χμ Y μν χν , (27)

with the following form of the gauge-fixing and weight functions:

χμ = ∂λhλ
μ − β ∂μh

Y μν = − 1

τ
�(�)

(
gμν �+ γ ∇μ ∇ν

)
. (28)

Here h = hμνημν and β , τ , γ are gauge-fixing parameters. Further-
more, �(�) is a function, which can be chosen by the convenience 
criteria. Our first purpose is to have a non-degenerate bilinear form 
of the action, therefore it is useful to choose �(�) = �(�) =
�(�). As it was discussed in the main text, the divergences do not 
depend on the choice of the gauge fixing. For this reason we will 
not discuss the most general form of the weight function, which 
may be dependent on the curvature tensor. Also, the gauge-fixing 
parameters can be chosen to make the consideration simpler.

The most general bilinear form of the action on the flat back-
ground is

S(2) = 1

2

∫
d4x hκω

{
k1δκω,ρσ �2 + k2 gκω gρσ �2

+ k3
(

gκω∂ρ∂σ + gρσ ∂κ∂ω

)
+ k4

(
gκρ∂ω∇σ + gκσ ∂ω∇ρ + gωρ∂ρ∂σ + gωσ ∂κ∂ρ

)
+ k5∂ω∂κ∂ρ∂σ

}
hρσ . (29)

Here ki, i = 1, . . . , 5 are some functions of �, which depend on 
the choice of the theory. In case of the polynomial theory (7) they 
are polynomials, while in the case of the exponential theory they 
are all proportional to � exp

(−α�
)
. The explicit form of these 

functions can be found in [30] and [18], but we do not need them 
here.

Since the gauge-fixing parameters β , τ and γ do not affect di-
vergences, one can choose them in such a way that the bilinear 
form of the overall action S(2) + Sgf becomes minimal. This means 
that the tensor structures proportional to k3, k4 and k5 cancel. 
Then, since the remaining k1 and k2 will be proportional to �(�), 
the propagator of the quantum metric has rl = 4 +2N for the �(�)

being polynomial of order N , and rl = I for the exponential.
In order to apply the power counting relations (8) and (9), 

one has to provide that the Faddeev–Popov ghosts have the same 
power of momenta rl in the bilinear form of their action. This can 
be achieved by using the method suggested by Fradkin and Tseytlin 
[24]. The presence of extra derivatives in the form factors of the 
initial action does not affect the scheme [21], in both polynomial 
and exponential models. Let us introduce the modified form of the 
ghost action,
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S gh =
∫

d4x
√−g C̄α Y α

β Mβ
γ Cγ ,

where Mβ
γ = δχβ

δhρσ
Rρσ .γ , (30)

where Rρσ .γ is the generator of gauge transformations of hμν in 
the background field method. An extra insertion of the weight 
function in the definition of the ghost action in (30) provides that 
for the quantum metric and for the Faddeev–Popov ghosts there 
will be the same rl in the formula (8).

The effective action � is defined as [24]

ei�[gμν ] = (
Det Y β

α

)−1/2
∫

dhμνdC̄αdCβ eiS+i S g f +i S gh . (31)

The remaining problem is how to evaluate the functional determi-
nant Det Y β

α in the last expression. For the polynomial QG theory 
(7), this operator is of the standard sort,

Y β
α =�2k (

�2 δα
β + λ∇α∇β

) + O(R ...) × ∇2k
... + . . . , (32)

considered in [21]. This type of operator can be elaborated by the 
generalized Schwinger–DeWitt technique of Barvinsky and Vilko-
visky [34]. The divergent contribution of this expression is O(R2

...), 
confirming the power counting-based analysis.

In the exponential case the contribution of the weight operator 
in (32) is more complicated. It is easy to see that Det Y β

α is factor-
ized into the product of determinants of the two operators. One of 
these operators is trivial and for the second one has to evaluate

log Det�(�) = log Det exp
(−α�

) = Tr log exp
(−α�

)
= Tr

(−α�
)
. (33)

The last expression has quadratic divergences, but it does not 
mean there are no logarithmic ones too, as usual. The evalua-
tion of it can be performed by local momentum representation or 
by the Schwinger–DeWitt technique. Unfortunately, the operator 
(33) seems to be unappropriate for the technique of [34]. How-
ever, there are strong reasons to suppose that the result will be 
qualitatively the same as for the polynomial case. In order to see 
this, one has to regard the exp

(−α�
)

as a limit of the expression 
(12). In order to complete the story, one has to note that a quali-
tatively different result for the divergent part of (33) would mean 
one more addition to Eq. (6). This would further enforce the main 
conclusion of the present paper, concerning the presence of the 
infinite set of ghosts in the dressed propagator of the exponential 
theory.
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